
ar
X

iv
:2

50
6.

05
02

2v
2 

 [
cs

.S
E

] 
 1

8 
Ju

n 
20

25

Tech-ASan: Two-stage check for Address Sanitizer
Yixuan Cao

caoyixuan2019@email.szu.edu.cn
College of Computer Science
and Software Engineering,

Shenzhen University
Shenzhen, Guangdong, China

Yuhong Feng∗
yuhongf@szu.edu.cn

College of Computer Science
and Software Engineering,

Shenzhen University
Shenzhen, Guangdong, China

Huafeng Li
Chongyi Huang

lihuafeng2020@email.szu.edu.cn
huangchongyi2020@email.szu.edu.cn

College of Computer Science
and Software Engineering,

Shenzhen University
Shenzhen, Guangdong, China

Fangcao Jian
jianfangcao2023@email.szu.edu.cn

College of Computer Science
and Software Engineering,

Shenzhen University
Shenzhen, Guangdong, China

Haoran Li
lihaoran2018@email.szu.edu.cn
College of Computer Science
and Software Engineering,

Shenzhen University
Shenzhen, Guangdong, China

Xu Wang
wangxu@szu.edu.cn

College of Computer Science
and Software Engineering,

Shenzhen University
Shenzhen, Guangdong, China

ABSTRACT

Address Sanitizer (ASan) is a sharp weapon for detecting memory
safety violations, including temporal and spatial errors hidden in
C/C++ programs during execution. However, ASan incurs signifi-
cant runtime overhead, which limits its efficiency in testing large
software. The overhead mainly comes from sanitizer checks due
to the frequent and expensive shadow memory access. Over the
past decade, many methods have been developed to speed up ASan
by eliminating and accelerating sanitizer checks, however, they
either fail to adequately eliminate redundant checks or compromise
detection capabilities. To address this issue, this paper presents
Tech-ASan, a two-stage check based technique to accelerate ASan
with safety assurance. First, we propose a novel two-stage check
algorithm for ASan, which leverages magic value comparison to
reduce most of the costly shadow memory accesses. Second, we
design an efficient optimizer to eliminate redundant checks, which
integrates a novel algorithm for removing checks in loops. Third, we
implement Tech-ASan as a memory safety tool based on the LLVM
compiler infrastructure. Our evaluation using the SPEC CPU2006
benchmark shows that Tech-ASan outperforms the state-of-the-
art methods with 33.70% and 17.89% less runtime overhead than
ASan and ASan--, respectively. Moreover, Tech-ASan detects 56
fewer false negative cases than ASan and ASan-- when testing on
the Juliet Test Suite under the same redzone setting.
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1 INTRODUCTION

Programs written in memory-unsafe languages such as C and C++
often contain memory safety violations, which can be categorized
into temporal errors and spatial errors. A temporal error occurs when
code attempts to access a memory object after it has been freed,
whereas a spatial error happens when the code reads or writes
beyond the bounds of a valid memory object.

Memory safety violations are the root cause of many of today’s
most severe vulnerabilities [28], which may lead to severe issues
such as system crash, data breach, and hijacked execution when ex-
ploited [27]. As reported in the 2023 CWE Top 10 KEV Weaknesses,
use-after-free, heap-based buffer overflow, and out-of-bounds write
rank 1st, 2nd, and 3rd among all weaknesses, respectively.1 In recent
years, sanitizing for memory safety has become a widely adopted
method for identifying vulnerabilities in software testing, espe-
cially within the realm of fuzzing [7, 22]. Motivated by numerous
security incidents caused by memory safety violations in system
software, various sanitizers have been created to detect memory
safety violations at runtime to help developers fix them, where
Address Sanitizer (ASan) is the most popular tool due to its out-
standing capability (detection of a wide spectrum of spatial errors

1https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
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and temporal errors), scalability (ability to support industry-grade
programs like operating system kernels and web browsers), and
usability (nearly zero configuration and seamless integration into
mainstream compilers such as clang and gcc) [24, 34].

Technically, ASan allocates additional shadow memory, poison-
s/unpoisons the shadow memory at runtime to record the address-
able state of the memory, and checks the shadow memory before
memory access to determinewhether it is amemory safety violation.
However, ASan brings approximately 1× runtime overhead to the
tested program, which limits the efficiency of ASan in testing large
software. Over the past decade, reducing the runtime overhead of
ASan has attracted the interest of many researchers. Existing stud-
ies have shown that more than 80% of the ASan’s runtime overhead
is introduced by sanitizer checks [34]. To address this issue, the
existing optimization solutions mainly focus on two aspects: check
elimination [13, 17, 25, 30–32, 34] and check acceleration [7, 16].

Check elimination.As the official ASan documentation2 states,
finding all bugs does not require to instrument all memory ac-
cesses, sanitizer checks for memory with safety assurance can be
eliminated. Existing check-eliminating methods can be categorized
into performance-driven and security-driven methods. Performance-
driven methods [13, 17, 25, 30] eliminate sanitizer checks to meet
performance constraints but do not guarantee safety. DoubleTake
[17] uses canaries to overwrite unaddressable memory and divides
the program runtime into several epochs, checking whether the
canary has been tampered with at the end of each epoch. How-
ever, this design can only detect write vulnerabilities, but not read
vulnerabilities. In addition, DoubleTake only partially overwrites
the freed heap memory with canaries, so it will miss use-after-free
in unprotected areas. GWP-ASan [25] randomly protects heap ob-
jects with guard pages and ignores most of the others. ASAP [30]
removes sanitizer checks on “hot” code that is more frequently exe-
cuted. PartiSan [13] follows a performance-driven metric to remove
sanitizer checks.

Security-driven methods [32, 34] are designed to eliminate re-
dundant sanitizer checks to reduce runtime overhead with safety
assurance. SANRAZOR [32] combines static patterns and dynamic
patterns to identify and remove redundant sanitizer checks, but
it still cannot ensure the removed checks are indeed redundant
due to its unsound patterns. Also, SANRAZOR needs user input
for profiling. Therefore, SANRAZOR degrades ASan’s capability
and usability. Finally, ASan-- [34] uses static analysis to eliminate
redundant checks while ensuring safety at compile time, which is
still the state-of-the-art (SOTA) method to accelerate ASan. How-
ever, ASan-- still has room for further optimization: First, it fails
to speed up the sanitizer check. Second, it fails to fully remove
checks within loops. Although checks in loops account for about
45% of the overhead introduced by all ASan checks [34], eliminating
redundant checks in loops remains unsolved. In summary, existing
check elimination methods either eliminate checks without safety
assurance or fail to adequately eliminate checks on security access.

Check acceleration. In recent years, someworks have attempted
to accelerate checks to reduce the overall runtime overhead of the
sanitizer, but they compromise the capabilities of ASan. FloatZone

2https://github.com/google/sanitizers/wiki/AddressSanitizerCompileTimeOptimizations

[7] replaces comparison-based checks with floating-point under-
flow exception-based checks to enable higher instruction-level par-
allelism, and cancels shadow memory to reduce cache miss rate.
But FloatZone introduces false positives because metadata is no
longer isolated in shadow memory. GiantSan [16] introduces his-
tory caching and region checking to achieve fast operation-level
protection. However, our experimental evaluation shows that it
still misses memory safety violations in the Juliet Test Suite [1] and
in the real world that can be detected by ASan. In summary, both
FloatZone and GiantSan reduce ASan’s detection capability.

From the above analysis, we state the problem as: How to further
reduce the runtime overhead while maintaining the capability, scal-
ability, and usability of ASan? To address it, we propose Tech-ASan,
a novel ASan optimization method. First, Tech-ASan introduces a
two-stage checker: when checking a memory access instruction, the
fast check stage determines whether the accessing location contains
a magic value. If so, the slow check stage checks the metadata of
shadow memory to determine whether the memory is addressable.
Since the probability of triggering the slow checker is very low and
the slow check stage accesses shadow memory infrequently, the
check is accelerated. Second, Tech-ASan proposes an effective opti-
mizer to identify and eliminate redundant checks, which integrates
an original algorithm for removing checks in loops.

The contribution of this paper can be summarized as follows:
• We design a novel and fast two-stage sanitizer check algo-
rithm for ASan, which does not rely on loading shadow bytes
in most cases.
• We propose an optimizer to eliminate redundant sanitizer
checks with safety assurance, which integrates a novel algo-
rithm for removing checks within the loop.
• We implement Tech-ASan as a memory safety tool based
on LLVM compiler infrastructure [12].
• Our comprehensive evaluation experiments show that Tech-
ASan outperforms the SOTAmethodswith 33.70% and 17.89%
less runtime overhead than ASan and ASan--, respectively,
while maintaining the advantages of ASan.

The rest of the paper is organized as follows. Section 2 reviews the
technical background of ASan. Section 3 presents our original opti-
mization approach for ASan. Section 4 describes the performance
evaluation. Section 5 reviews the related work, and finally Section
6 concludes the paper.

2 BACKGROUND

This section briefly reviews the technical background of ASan from
three aspects: shadow memory, redzone, and runtime check.

2.1 Shadow Memory

As shown in Figure 1, ASan utilizes a shadow memory model to
support sanitizer checks. By default, ASan spares one-eighth of the
virtual address space as shadow memory, where each shadow byte
records the status of eight bytes used by the application. Given the
application memory address Addr, which can be located in stack,
heap, or global regions, the corresponding address of the shadow
byte is computed as (Addr >> 3) + Offset, where the Offset is
a constant that must be chosen statically at the compiling time for
every platform. With the same address computation way, addresses

https://github.com/google/sanitizers/wiki/AddressSanitizerCompileTimeOptimizations
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Redzone 1 Object 1 Pad Redzone 2 Object 2 Redzone 3 Object 3Heap

Redzone 1 Object 2 Pad Redzone 2Stack

Global Original Object Pad Trailing Redzone

8-byte aligned

8-byte aligned

8-byte aligned2U bytes

32-byte aligned

32-byte aligned

2V aligned

Partial poisoning

Partial poisoning

Partial poisoning

2W aligned

Round up to 32*Y bytes

Round up to 32*Y bytes Round up to 32*X bytes 32 bytes

8-byte aligned

8-byte aligned

Figure 2: ASan’s redzones in heap, stack, and global regions,

where U, V, W, X, and Y represent positive integers.

in the shadow memory can be mapped into the 𝐵𝑎𝑑 region, which
is protected via page protection.

In shadow memory, each byte is encoded with the following
regular: 0 means that the entire 8-byte corresponding application
memory region is addressable; k (1 ≤ k ≤ 8) means that the first k
bytes are addressable and the last (8 - k) bytes are not; any negative
value means that the entire 8-byte word is unaddressable. In the
last scenario, different negative values are used to indicate different
types of memory safety violations, which help developers to locate
and fix bugs.

2.2 Redzone

Figure 2 shows that ASan places redzones before and after each
memory object in interesting memory regions, including stack,
heap, and global [24, 34]. When allocating a memory object, ASan
sets the object itself as addressable and poisons its redzones as
unaddressable to detect spatial errors, e.g., heap-buffer-overflow
and stack-buffer-overflow. When freeing a memory object, ASan
poisons the freed memory object as unaddressable to detect tem-
poral errors, e.g., heap-use-after-free and double-free. Note that
poisoning operators are to change the shadow byte but not the
application memory.

Heap. There are several heap allocation functions and opera-
tors provided by the standard C and C++ languages, i.e., malloc(),
calloc(), mmap(), new(), and new[](). ASan replaces them with
customized functions. When a heap object is allocated, ASan places
a redzone both before and after the buffer. The size of the redzone
is a power of two, which can range from 16 to 2,048 according to
the object size. When an object is freed by the functions or the op-
erators provided by the standard C and C++ languages, i.e., free(),

munmap(), delete, and delete[], the freed object is poisoned and
quarantined into a 256MB queue to detect heap-use-after-free and
double-free.

Stack. The Stack objects can be allocated statically or allocated
dynamically by the C standard function alloca(). For each stack
object, ASan allocates and poisons the left redzone (32 bytes) and
the right redzone (32 bytes plus up to 31 bytes for alignment) when
entering a function.

Global. The global region manages global variables, static vari-
ables, and constants in programs written in the C and C++ lan-
guages, which corresponds to .data and .bss segments. ASan
places a trailing redzone at the right of each global object. The
redzone size is the larger of 32 bytes or one-fourth of the object size,
plus a padding size if the object size is not 8-byte aligned. Finally,
the size of the object plus the redzone is rounded up to a multi-
ple of 32 bytes. All the redzones for global objects are poisoned
when initializing the process. Since global objects are never to be
freed, no temporal error occurs in the global region, which provides
an optimization opportunity for eliminating unnecessary sanitizer
checks.

2.3 Runtime Check

ASan instruments every memory access instructions, including load
and store instructions in Intermediate Representation (IR) code,
to check whether an access is addressable. There are two ways
to implement this: inserting an inline instruction sequence or a
function call. In order to compromise between runtime performance
and code size, ASan inserts inline instructions by default to reduce
runtime overhead, but when the number of instrumentation reaches
a threshold, the check function is called.

Depending on the size of the memory access, the check works
differently. When instrumenting an 8-byte memory access, ASan
computes the address of the corresponding shadow byte, loads that
byte, and checks whether it is 0:

1 ShadowAddr = (Addr >> 3) + Offset;

2 if (* ShadowAddr != 0)

3 ReportAndCrash(Addr);

where Offset is a large platform-dependent constant. When in-
strumenting an N-byte memory access, where N = 1, 2, or 4, ASan
checks if the first k bytes in the 8-byte word are addressable:

1 ShadowAddr = (Addr >> 3) + Offset;

2 k = *ShadowAddr;

3 if (k != 0 && ((Addr & 7) + AccessSize > k))

4 ReportAndCrash(Addr);

ASan also intercepts standard C/C++ library functions that may
cause memory errors (e.g., memset() and strcpy()). When such
a function is called, ASan checks the shadow memory using an
optimized function __asan_region_is_poisoned() to determine
whether the accessed memory region is entirely addressable.

ASan’s sanitizer checks rely on obtaining the corresponding
shadow address through shift and addition calculations, loading
the shadow byte, and determining whether it is a memory safety
violation via comparison that may be more than once. Frequent
access to shadow memory destroys the locality of the program,
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Figure 3: The framework of Tech-ASan

which increases runtime overhead. Our design focuses on how to
complete the sanitizer check with only a fast comparison in most
cases, without introducing expensive load shadow byte operations.

3 APPROACH

This section elaborates on how Tech-ASan is designed to accel-
erate ASan. Figure 3 overviews Tech-ASan, which consists of a
compile-time instrumentation phase and a runtime check phase.
In the compile-time instrumentation phase, Tech-ASan takes the
program source code as its input, and outputs an instrumented
executable program. Specifically, the program source code is first
compiled into LLVM IR [12], and then instrumented to manage
redzones and inject a magic value, as well as check violations (cf.
Section 3.1). Unlike ASan, we not only poison and unpoison the
shadowmemory, but also poison and unpoison the redzones and the
freed memory regions using the magic value, i.e., 0x89. Since not
all checks are necessary, Tech-ASan utilizes an optimizer to reduce
runtime overhead by eliminating redundant checks (cf. Section 3.3).

In the runtime check phase, Tech-ASan executes normally if
no memory safety violation is detected (e.g., buf[1] in Figure 3),
otherwise it reports a violation and aborts the process immediately.
Specifically, we design a two-stage checker where every sanitizer
check is divided into two stages (cf. Section 3.2). In the fast check
stage, Tech-ASan checks whether there is a magic value in the
access location, serving as a fast filtering mechanism.When a magic
value is detected during the fast check stage, the slow check stage is
started for a more precise verification: If the slow checker does not
detect an invalid memory access, the program continues execution
(e.g., buf[3] in Figure 3), otherwise a violation is reported and the
program is terminated (buf[60] in Figure 3).

3.1 Instrumentation

This section provides details on how Tech-ASan instruments the
program under test. Tech-ASan first compiles the program under
test from source code into LLVM IR and then proceeds with instru-
mentation. Similar to post compiler-based methods [7, 9, 16, 24, 34],
Tech-ASan’s instrumentation operations are performed at the IR
level, therefore, the discussions in this paper do not involve memory
objects managed by third-party libraries with inaccessible source
code. Tech-ASan reuses the ASan’s instrumentation infrastructure
as reviewed in Section 2, and we focus on the two main differences

between Tech-ASan and ASan, namely magic value injection and
memory safety check.

Magic value injection. As illustrated in Figure 2, ASan places
redzones on both sides of heap, stack, and global memory objects to
detect spatial errors. When a memory object is allocated, ASan poi-
sons shadow bytes corresponding to the redzones, and unpoisons
shadow bytes corresponding to the memory object regions to detect
spatial errors. When a memory object is freed, ASan poisons the
shadow bytes corresponding to the memory region of that object
to detect temporal errors. Tech-ASan adopts the shadow memory
management approach of ASan, and goes a step further by filling
the redzones and the freed memory regions with a magic value, as
shown in Figure 4. Considering the allocated memory objects in
ASan (including reused ones) inherently come with initial values,
unlike the management of shadow memory, the magic value injec-
tion process in Tech-ASan only requires poisoning and does not
involve explicit unpoisoning. As a result, the additional runtime
overhead introduced by magic value injection is minimal.

Memory safety check. Similar to [7, 16, 24, 34], Tech-ASan
instruments memory access instructions and functions at compile
time to check for memory safety violations. First, for all functions
in the program, Tech-ASan sequentially traverses all instructions
to identify the interesting memory access instructions, such as Load
instructions and Store instructions. For fair comparison, we ensure
the coverage of the interesting memory access instructions exactly
matches both ASan and ASan--. Then, for each identified memory
access instruction, we insert a two-stage checking logic (cf. Section
3.2). Additionally, we design an optimizer to eliminate redundant
checks (cf. Section 3.3).

Second, Tech-ASan replaces standard library functions in C/C++
that may trigger memory safety violations, such as memcpy() and
strcat(), with customized versions. Notably, existing methods
[16, 24, 34], including ASan in the latest version of LLVM (LLVM
20.1.0)3, overlook functions that operate on wchar_t strings, such
as wcscpy(). Considering that memory errors can also occur in
these functions [1], Tech-ASan supports detecting them to improve
detection capability. In addition, Tech-ASan replaces functions and
operators such as free(), munmap(), delete, and delete[] with
the corresponding customized functions to detect double-free. The
checking logic within the aforementioned customized functions
remains consistent with that of ASan and ASan--.

3.2 Two-stage Check

Tech-ASan utilizes a two-stage checker to implement the fast check
for all interesting memory accesses, which consists of a fast check
stage and a slow check stage. In the fast check stage, Tech-ASan
checks whether the value of the accessed memory is equal to a
predefined N-byte constant magic value MAGIC_VALUE_N, where N
is 1, 2, 4, or 8. If not, the access is considered valid, and program
execution continues as normal. If they are equal, the access is po-
tentially located in a freed memory region or a redzone. However,
since the program itself may legitimately use the same magic value,
the access cannot be immediately classified as an invalid access. In
such cases, Tech-ASan proceeds to the slow check stage for further
verification to eliminate false positives. In the slow check stage,

3https://github.com/llvm/llvm-project/releases/tag/llvmorg-20.1.0

https://github.com/llvm/llvm-project/releases/tag/llvmorg-20.1.0
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Tech-ASan adopts the same check logic as ASan, verifying the
validity of the access by checking the corresponding shadow byte.
Figure 4 presents three cases when using the two-stage checking
of Tech-ASan:
• Access#1 (valid): The value at the accessed location is not a
magic value, so the fast check stage determines it as a valid
access.
• Access#2 (valid): The value at the accessed location is a magic
value, causing the fast check stage to flag it as potentially
invalid and triggering the slow check stage. The slow stage,
which uses ASan’s native checker, reads the shadow byte
(0x04) and confirms it as a valid access.
• Access#3 (invalid): The fast stage first detects amagic number
at the accessed memory location, and the slow check stage
further identifies a negative shadow byte, confirming it as
an invalid memory access.

This two-stage checker ensures efficient detection capability of
memory violations while efficiently reducing runtime overhead.

To further reduce the runtime overhead of Tech-ASan, we adopt
different strategies for checking store and load instructions. For
store instructions accessing 1-, 2-, 4-, or 8-byte memory regions,
Tech-ASan inserts the following checking logic before the instruc-
tion:

1 if (*p == MAGIC_VALUE_N) // Fast check

2 asan_check(p); // Slow check

3 *p = 1; // A store instruction

Only by a combination of load and compare instructions (Line 1)
can Tech-ASan check a store instruction (Line 3) in most cases,
i.e., when the slow check is not triggered. Since the load instruction
(Line 1) and the store instruction (Line 3) access the same address,
no additional cache miss is introduced. Our statistical analysis of
SPEC CPU2006 benchmarks confirms that 85% of Tech-ASan’s
interesting memory access instructions target load instructions.
Although the above check logic is efficient, the *p appears twice,
resulting in one additional memory access compared to the original
program. For load instructions accessing 1-, 2-, 4-, or 8-byte memory
regions, Tech-ASan inserts the checking logic after the instruction:

1 foo = *p; // A load instruction

2 if (foo == MAGIC_VALUE_N) // Fast check

3 asan_check(p); // Slow check

In Line 2, we reuse the result of *p to avoid introducing additional
memory access overhead. Note that if we do not explicitly reuse
the result of *p when inserting check logic, LLVM’s backend does
not automatically reuse it. Therefore, unlike recent methods [7, 34]
that require inserting an extra load instruction to read metadata
from memory before the origin load instruction, we directly reuse
the value from the origin load instruction, saving a load instruction.

The two-stage checker design of Tech-ASan is based on two
fundamental observations. First, the majority of memory accesses
are valid in real-world software testing. Second, although ASan’s
per-access shadow memory validation is accurate, it can reduce
cache hit rates and degrade overall performance. Guided by the
principle of locality in program execution, Tech-ASan’s design
philosophy argues that it is unnecessary to perform slow checks
for every memory access as ASan does. For most valid accesses, ex-
ecuting only the fast-stage check is sufficient to efficiently filter out
valid accesses and significantly accelerate checks. For suspicious ac-
cesses, Tech-ASan relies on slow-stage shadow memory checks to
eliminate false positives, thus achieving a balance between runtime
performance and detection capability.

Due to the low probability of triggering the slow check, Tech-
ASan implements the slow checker as a function call rather than an
inline instruction version. This is because the overhead of a function
call is acceptable in this context. Additionally, this approach helps
reduce the size of the binary file, further improving the usability of
Tech-ASan.

3.3 Optimization

Since there is no need to instrument on all memory accesses, Tech-
ASan’s optimizer is designed to eliminate redundant checks. Among
the most advanced redundant check elimination techniques, the
most basic and important idea is removing unsatisfiable checks on
stack and global memory objects. Let us take the code in Listing 1
as an example. ASan’s native code has a basic implementation. For
the memory access in Line 4, ASan determines that the offset of
the accessed location is less than the length of the memory object,
ensuring that a buffer overflow cannot occur. As a result, it removes
the check in Line 3. Based on this philosophy, ASan-- has further
optimizations: For the memory access in Line 7, ASan-- uses data
flow analysis to determine that the access in Line 7 is only triggered
when the condition in Line 5, i.e., i < 20, is satisfied. Since the
condition in Line 5 already ensures that the access in Line 7 cannot
cause a buffer overflow, the check in Line 6 is removed.

Listing 1: An example of redundancy elimination

1 int buf [20];

2 unsigned int i = input();

3 sanitizer_check(buf +10); // Removed by ASan

4 buf [10] = 0;

5 if (i < 20) {

6 sanitizer_check(buf+i);// Removed by ASan --

7 buf[i] = 0;

8 }

9 for (unsigned int j = 0; j < 20; j++) {

10 sanitizer_check(buf+j); // Removed by us
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11 buf[j] = input();

12 sanitizer_check(buf); // Removed by us

13 buf [0] = 1;

14 }

However, removing unsatisfiable checks of ASan-- becomes in-
effective in loops (Lines 11 and 13) because its data flow analysis
struggles to handle PHI nodes in LLVM IR adequately. The PHI node
is an IR instruction that selects incoming values from the different
predecessor basic blocks in the form of static single assignment
(SSA) rule. However, PHI nodes will also be obstacles for data flow
analysis. Although ASan-- introduces specific extra optimizations
targeting loop scenarios to mitigate this issue, it inevitably adds
new operations. As a result, in our tests, the benefits are not signif-
icant. As highlighted in [34], checks in loops account for about 45%
of the overhead introduced by all ASan checks. Therefore, safely
eliminating redundant checks inside loops remains an important
and unresolved problem.

Tech-ASan first integrates the unsatisfiable check removal tech-
niques from both ASan and ASan--. Then, for removing Lines 10
and 12 in Listing 1, Algorithm 1 is proposed to eliminate redun-
dant checks inside loop bodies via static analysis, i.e., checks for
𝑎[𝑖𝑛𝑑𝑒𝑥], where 𝑖𝑛𝑑𝑒𝑥 is a variable or a constant and 𝑎 is the base
address of a stack or global object. Here we define the size of the
memory object as 𝑠𝑖𝑧𝑒 and a constant as 𝑐 . A memory access𝑚𝑖

is safe (thus satisfying check elimination) if one of the following
conditions holds (Lines 1-15):

(1) If the index is a constant, the analysis finds 𝑖𝑛𝑑𝑒𝑥 is always
within a safe range [0, 𝑐] where 0 ≤ 𝑐 < 𝑠𝑖𝑧𝑒 .

(2) If the index is a variable, not only does 𝑖𝑛𝑑𝑒𝑥 need to sat-
isfy the safe range as above, but also the memory access
instruction𝑚𝑖 dominates the compare instruction 𝑐𝑚𝑝 or
𝑐𝑚𝑝 dominates𝑚𝑖 .

Due to loop semantics, 𝑖𝑛𝑑𝑒𝑥 remains constrained by the initial
index value and the compare instructions served as the loop termi-
nation condition. If the initial index value is in bounds, even if the
access instruction𝑚𝑖 dominates the compare instruction 𝑐𝑚𝑝 in
control flow, in the subsequent iteration, the access instruction𝑚𝑖+1
is still bounded by the compare instruction 𝑐𝑚𝑝 of the previous
iteration (Line 13).

Algorithm 1 scans each memory access instruction 𝑚𝑖 in the
function F to find its corresponding getelementptr instruction 𝑔𝑒𝑝
(Lines 18-22). Each getelementptr instruction 𝑔𝑒𝑝 consists of a base
address and offset indexes, where each index 𝑔 𝑗 needs to be found
whether it is in bounds (Lines 24-39). For each 𝑔 𝑗 :

(1) If 𝑔 𝑗 comes from a PHI node 𝑝 , we recognize it as an index
that changes during loop iterations. For such cases, we must
check all incoming values 𝑣𝑘 from different predecessor ba-
sic blocks. The access is only considered safe when every
incoming value 𝑣𝑘 stays within the permitted range (Lines
26-34).

(2) If 𝑔 𝑗 does not come from a PHI node (Lines 35-37), i.e., 𝑔 𝑗 is
not relevant to loop iterations. In this case, we still need to
confirm that 𝑔 𝑗 remains within the safe range throughout
execution.

Algorithm 1: Removing redundant checks in loop
1 Procedure is_safe_access(𝑚𝑖 , 𝑖𝑛𝑑𝑒𝑥, 𝑠𝑖𝑧𝑒)
2 if 𝑖𝑛𝑑𝑒𝑥 is a constant then
3 if ¬(0 ≤ 𝑖𝑛𝑑𝑒𝑥 < 𝑠𝑖𝑧𝑒 ) then
4 return 𝑓 𝑎𝑙𝑠𝑒 ;
5 return 𝑡𝑟𝑢𝑒 ;
6 for each 𝑢𝑞 ∈ 𝑖𝑛𝑑𝑒𝑥 .users() do
7 if ¬(𝑢𝑞 is a compare instruction) then
8 continue;
9 𝑐𝑚𝑝 ← dyncast_to_compare_instruction(𝑢𝑞 );

10 𝑐 ← get_constant(𝑐𝑚𝑝);
11 if ¬(𝑐𝑚𝑝 indicates "𝑖𝑛𝑑𝑒𝑥 < 𝑐") ∨¬(0 ≤ 𝑐 < 𝑠𝑖𝑧𝑒 ) then
12 continue;
13 if𝑚𝑖 dominates 𝑐𝑚𝑝 ∨ 𝑐𝑚𝑝 dominates𝑚𝑖 then

14 return 𝑡𝑟𝑢𝑒 ;
15 return 𝑓 𝑎𝑙𝑠𝑒

16 Algorithm

Input: An LLVM IR function F
Output: A safe memory access instruction set R

17 R ← 𝜙 ;
18 M← find_all_interesting_memory_access(F);
19 for each memory access instruction𝑚𝑖 ∈ M do

20 if get_loop_depth(𝑚𝑖 ) ≠ 1 then
21 continue;
22 𝑔𝑒𝑝 ← find_getelementptr_instruction(𝑚𝑖 );
23 𝑠𝑖𝑧𝑒 ← get_access_object_size(𝑔𝑒𝑝);
24 𝑎𝑙𝑙_𝑔𝑗_𝑖𝑠_𝑠𝑎𝑓 𝑒 ← 𝑡𝑟𝑢𝑒 ;
25 for each 𝑔𝑗 ∈ 𝑔𝑒𝑝 .indexes() do
26 if 𝑔𝑗 comes from phi node p then

27 𝑎𝑙𝑙_𝑣𝑘_𝑖𝑠_𝑠𝑎𝑓 𝑒 ← 𝑡𝑟𝑢𝑒 ;
28 for each 𝑣𝑘 ∈ p.incoming_values() do
29 if ¬ is_safe_access (𝑚𝑖 , 𝑣𝑘 , 𝑠𝑖𝑧𝑒) then
30 𝑎𝑙𝑙_𝑣𝑘_𝑖𝑠_𝑠𝑎𝑓 𝑒 ← 𝑓 𝑎𝑙𝑠𝑒 ;
31 break;
32 if ¬𝑎𝑙𝑙_𝑣𝑘_𝑖𝑠_𝑠𝑎𝑓 𝑒 then

33 𝑎𝑙𝑙_𝑔𝑗_𝑖𝑠_𝑠𝑎𝑓 𝑒 ← 𝑓 𝑎𝑙𝑠𝑒 ;
34 break;
35 else if ¬is_safe_access (𝑚𝑖 , 𝑔𝑗 , 𝑠𝑖𝑧𝑒) then
36 𝑎𝑙𝑙_𝑔𝑗_𝑖𝑠_𝑠𝑎𝑓 𝑒 ← 𝑓 𝑎𝑙𝑠𝑒 ;
37 break;
38 if 𝑎𝑙𝑙_𝑔𝑗_𝑖𝑠_𝑠𝑎𝑓 𝑒 then

39 R ∪ {𝑚𝑖 };
40 return R;

Due to the trade-off between compilation performance and run-
time performance, Algorithm 1 only removes redundant checks in
single-level loops (Line 20). Despite this limitation, our evaluation
on a loop-intensive benchmark gcc-loops4 shows our optimizer
with Algorithm 1 eliminates 18% of checks in loops. When the
two-stage check is disabled, Tech-ASan using only the optimizer
introduces 102% runtime overhead on gcc-loops, compared to 144%
for ASan--. This demonstrates the efficiency of Algorithm 1.

For checks in loops that access contiguous memory regions and
can not be optimized by Algorithm 1, we explore an alternative
optimization approach. We first leverage LLVM’s built-in Scalar

4https://github.com/llvm/llvm-test-suite/blob/main/SingleSource/UnitTests/
Vectorizer/gcc-loops.cpp

https://github.com/llvm/llvm-test-suite/blob/main/SingleSource/UnitTests/Vectorizer/gcc-loops.cpp
https://github.com/llvm/llvm-test-suite/blob/main/SingleSource/UnitTests/Vectorizer/gcc-loops.cpp
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Evolution (SCEV) analysis to infer the start addresses and the sizes
of memory accesses within the loops. Then we insert ASan’s opti-
mized region-checking function __asan_region_is_poisoned()
at the exit block of the loop. This technique demonstrates significant
speedups in benchmarks where large arrays are accessed iteratively.
However, in SPEC CPU2006 [10], measurable performance gains
are observed only in a small subset of programs due to two key lim-
itations: First, __asan_region_is_poisoned() incurs expensive
calling costs, which outweighs its benefits when the accessed con-
tiguous memory regions are short. Second, for loops with variable
iterations, the length of continuous accesses cannot be statically
determined at compile time. Since many loops in SPEC CPU2006
operate on short memory regions, this approach introduces over-
head rather than optimization. Given these trade-offs, we remove
this optimization in our final implementation.

In addition, we successfully integrate the other SOTA redundant
check elimination techniques into the optimizer of Tech-ASan,
including removing recurring checks and optimizing neighbor checks
[7, 34]. First, removing recurring checks identifies checks sharing
the same memory location and access size in each function using
LLVM built-in alias-analysis, if they either all happen or all do not
happen, we only need to retain a single check. Second, optimizing
neighbor checks is to merge or remove adjacent checks. When
checks either both happen or both do not happen, there are two
situations that can be optimized: (1) If two memory accesses can
fall into an 8-byte region, their checks can be merged into a single
check. (2) Given threememory accesses, i.e., (addr1, size1), (addr2,
size2), and (addr3, size3), where addr1 < addr2 < addr3. Tech-
ASan’s check for the second access, i.e., (addr2, size2), can be
safely eliminated if addr3 - addr1 < MinRdSz and addr2 +
size2 ≤ addr3 + size3, where MinRdSz is the minimal size of a
redzone.

3.4 Implementation

We have implemented Tech-ASan on top of the ASan’s infrastruc-
ture in the LLVM compiler [12]. Compared to the native ASan, our
implementation introduces a total of 2.4K additional lines of code.
The use of Tech-ASan is identical to ASan because Tech-ASan
is implemented to share the same assumptions, requirements, and
interfaces with ASan. Our design is fully generalizable to other
compilers. We have not added any architecture-specific code, al-
lowing Tech-ASan to run on any machine with instruction set ar-
chitectures supported by LLVM’s backend. Therefore, Tech-ASan
maintains ASan’s usability.

As demonstrated in our experiments, Tech-ASan does not com-
promise the detection capabilities of ASan while reducing the size
of the binaries compiled with ASan. The additional compilation
time introduced by Tech-ASan is also within an acceptable range.

4 EVALUATION

We experimentally evaluate Tech-ASan on the following research
questions (RQs):

• RQ1: Can Tech-ASan maintain the detection capability of
ASan?
• RQ2:CanTech-ASan reduce the runtime overhead of ASan?

• RQ3: How does Tech-ASan impact compilation time and
binary size compared to ASan?

By inheriting ASan’s shadow memory model, Tech-ASan incurs
no additional memory overhead, therefore, comparative memory
analysis is not needed. When evaluating the detection capability
of Tech-ASan, all compiler optimizations are disabled to prevent
vulnerabilities from being suppressed by optimization passes. For
other measurements, the optimization option Og is enabled by de-
fault. Unless otherwise specified, all the experiments are conducted
on an x86-64 server running Ubuntu 18.04, equipped with an AMD
EPYC 7702 192-core 2.0GHz CPU and 128GB RAM.

4.1 RQ1: Detection Capability

To measure the detection capability of Tech-ASan, we conduct
two experiments. The first experiment is conducted on the latest
version of the Juliet Test Suite (version 1.3) [1], where all CWEs
have both buggy and non-buggy testcases, which are used to test
the false negatives and false positives of the sanitizers, respectively.
However, there are 4 types of testcases that are not suitable for
evaluation:

(1) Testcases that wait for an external signal, e.g., sockets. We
just remove them to avoid waiting infinitely.

(2) Testcases with violations that are triggered depend on a ran-
dom number. We change them to the non-random versions
for a deterministic result.

(3) Testcases that print a string without the terminating charac-
ter, which produces random overflow. We remove them for
a deterministic result.

(4) Testcases with violations that are only triggered on 32-bit
systems but are not triggered on 64-bit systems.

After adjustments, the number of remaining testcases in each CWE
type is still much more than that used in recent works [7, 16, 34]
for the more comprehensive evaluation. The adjusted Juliet Test
Suite has been published in the community for future science.5

For comparison, we further run recent available methods ASan--
[34], GiantSan [16], and FloatZone [7] on the Juliet Test Suite. Note
that FloatZone is executed on a 64-bit server equipped with an
Intel CPU since its public version can be run on Intel CPUs only.
Table 1 shows that only Tech-ASan has no false positive and false
negative issues. On buggy testcases, ASan, ASan--, GiantSan, and
FloatZone can not detect 56 memory safety violations that occur
in wcscpy(), which remains unsolved even in the latest version of
ASan. GiantSan generates an additional 913 false negatives, due
to the insufficient check on the stack arrays, failing to report an
error when an out-of-bounds write occurs to a stack array within a
loop. FloatZone generates 283 false negatives due to the following
reasons: (1) In testcases containing both partial and full out-of-
bounds (OOB) accesses, partial OOB operations corrupt the redzone
headers. This corruption invalidates FloatZone’s check logic that
depends on a complete redzone, consequently failing to detect
subsequent full OOB accesses. (2) In some testcases, FloatZone
fails to insert redzones for memory objects when allocating via C
standard library functions, e.g., malloc().

5https://github.com/Hufffman/Adjusted-Juliet-Test-Suite

https://github.com/Hufffman/Adjusted-Juliet-Test-Suite
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Table 1: Detection capability on the adjusted Juliet Test Suite with buggy and non-buggy testcases

CWE & Type Total

Buggy testcases Non-buggy testcases

Tech-ASan ASan ASan-- GiantSan FloatZone Tech-ASan ASan ASan-- GiantSan FloatZone

121: stack-buffer-overflow 2956 2956 2948 2948 2611 2822 2956 2956 2956 2956 2908
122: heap-buffer-overflow 3438 3438 3390 3390 3008 3337 3438 3438 3438 3438 3366
124: buffer-underwrite 1024 1024 1024 1024 1021 976 1024 1024 1024 1024 1024
126: buffer-overread 672 672 672 672 493 672 672 672 672 672 672
415: double-free 818 818 818 818 818 818 818 818 818 818 818
416: use-after-free 393 393 393 393 381 393 393 393 393 393 393

Total 9301 9301 9245 9245 8332 9018 9301 9301 9301 9301 9181

Table 2: Detection capability for real-world memory safety violations fromCVE. ✓, ✕, and - represent that a violation is detected,

a violation is not detected, the program can not be instrumented or executed normally, respectively.

Program Version LoC (k) Vulnerabilities Vulnerability Type Tech-ASan ASan ASan-- GiantSan

binutils 2.15 1456.9 CVE-2006-2362 stack-buffer-overflow ✓ ✓ ✓ ✓

binutils 2.29 3888.6 CVE-2018-9138 stack-overflow ✓ ✓ ✓ ✓

fcron 3.0.0 35.7 CVE-2006-0539 heap-buffer-overflow ✓ ✓ ✓ ✓

fig2dev 3.2.7b 49.7 CVE-2020-21675 stack-buffer-overflow ✓ ✓ ✓ -
GraphicsMagick 1.3.26 476.8 CVE-2017-12937 heap-buffer-overflow ✓ ✓ ✓ ✓

GoHttp 0.5 CVE-2019-12160 heap-use-after-free ✓ ✓ ✓ ✓

libpng 1.6.37 94.1 CVE-2021-4214 heap-buffer-overflow ✓ ✓ ✓ ✕

libtiff 3.8.0 113.5 CVE-2006-2025 Integer-overflow ✓ ✓ ✓ ✓

libtiff 3.8.2 112.4 CVE-2009-2285 heap-buffer-overflow ✓ ✓ ✓ ✓

libtiff 4.0.1 126.8 CVE-2013-4243 heap-buffer-overflow ✓ ✓ ✓ ✕

CVE-2015-8668 heap-buffer-overflow ✓ ✓ ✓ ✓

libzip 1.2.0 48.1 CVE-2017-12858 heap-use-after-free ✓ ✓ ✓ ✓

lua 5.4.3 31.7 CVE-2021-44964 heap-use-after-free ✓ ✓ ✓ ✓

mp3gain 1.5.2 9.1
CVE-2017-14407 stack-buffer-overflow ✓ ✓ ✓ ✕

CVE-2017-14408 stack-buffer-overflow ✓ ✓ ✓ ✓

CVE-2017-14409 global-buffer-overflow ✓ ✓ ✓ ✕

mxml 2.12 27.8 CVE-2018-20004 stack-buffer-overflow ✓ ✓ ✓ ✓

nasm 2.15.04rc3 155.0 CVE-2020-24978 double-free ✓ ✓ ✓ ✓

python 3.1.5 692.0 CVE-2014-1912 heap-use-after-free ✓ ✓ ✓ ✓

yasm 1.3.0 164.9 CVE-2021-33468 heap-use-after-free ✓ ✓ ✓ ✓

Total 7483.6 20 20 20 20 15

On non-buggy testcases, Tech-ASan, ASan, ASan--, and Gi-
antSan have no false positive issue. However, FloatZone produces
120 false positives in buffer overflow detection due to erroneous
reports when programs access residual redzones in reused stack
memory regions.

In the second experiment, we select real-world memory-related
memory safety violations from common vulnerabilities and expo-
sures (CVEs) [29], including 20 CVEs with known proof-of-concepts
(PoCs) from 14 projects written in C/C++. Since Table 1 shows that
FloatZone may produce false positives, we exclude it to avoid un-
certainty in confirming whether a vulnerability is actually detected.
Table 2 shows that ASan, ASan--, and Tech-ASan detect all the
CVEs. However, GiantSan fails to detect four known CVEs, and
triggers an assertion failure, leading to a program crash during the
reproduction of an additional CVE.

In summary, Tech-ASan preserves ASan’s detection capability
while accelerating and eliminating sanitizer checks.

4.2 RQ2: Runtime Overhead

Following the recent studies [6, 7, 33, 34], we use the classic version
of the industry-standard CPU-intensive runtime benchmark suite,
SPEC CPU2006 [10], to evaluate the performance improvement
of Tech-ASan thoroughly. Since some of the programs in SPEC
CPU2006 contain memory safety violations, all programs are com-
piled with -fsanitize-recover=address and run after setting
the environment variable ASAN_OPTIONS to "halt_on_error=0",
which ensures that sanitizers continue execution after detecting a
violation, rather than halting the program. By analyzing the logs,
we confirm that Tech-ASan correctly detects violations without
any false positives. To mitigate accidental errors, we calculate the
median of the 10 running times.

Table 3 presents the runtime performance of the SPEC CPU2006
benchmark. Tech-ASan, ASan, ASan--, and GiantSan introduce
64.0%, 97.7%, 81.89%, and 62.64% runtime overhead compared to
the vanilla clang. Tech-ASan reduces ASan’s runtime overhead by
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Table 3: Runtime overhead on SPEC CPU2006 Benchmark (seconds). Ratio 𝑅 is computed as the execution time of sanitizer-

enabled binaries divided by that of non-instrumented vanilla clang binaries. The "-" indicates abnormal program termination

during testing.

Programs

Performance Study Ablation Study

Vanilla Clang Tech-ASan R ASan R ASan-- R GiantSan R Tech-ASanac R

400.perlbench 262 1415 540.08% 1600 610.69% 1390 530.53% 1440 549.62% 1390 530.53%
401.bzip2 393 502 127.61% 623 158.52% 588 149.62% 552 140.46% 524 133.21%
403.gcc 242 1145 473.14% 959 396.28% 929 383.88% 857 354.13% 1180 487.60%
429.mcf 390 553 141.67% 738 189.23% 725 185.90% 662 169.74% 568 145.51%
445.gobmk 358 493 137.71% 625 174.58% 547 152.79% 664 185.47% 497 138.83%
456.hmmer 348 429 123.28% 646 185.63% 568 163.22% 400 114.94% 475 136.35%
458.sjeng 489 707 144.48% 898 183.64% 742 151.74% - - 721 147.34%
462.libquantum 513 622 121.25% 672 130.99% 682 132.94% 603 117.54% 631 122.90%
473.astar 448 559 124.67% 664 148.21% 595 132.81% 487 108.71% 569 127.01%
483.xalancbmk 823 1525 185.30% 1740 211.42% 1530 185.91% 1380 167.68% 1545 187.73%
433.milc 537 807 150.19% 1125 209.50% 976 181.75% 798 148.60% 835 155.40%
444.namd 320 379 118.44% 518 161.88% 530 165.63% 374 116.88% 394 122.97%
447.dealII 1100 1520 138.18% 1770 160.91% 1720 156.36% 1520 138.18% 1540 140.00%
450.soplex 318 466 146.38% 517 162.58% 491 154.40% 457 143.71% 479 150.63%
453.povray 179 451 251.96% 544 303.91% 453 253.07% 452 252.51% 452 252.23%
470.lbm 242 264 109.09% 322 133.06% 289 119.42% 257 106.20% 279 115.29%
482.sphinx3 364 521 143.13% 616 169.23% 615 168.96% 445 122.25% 508 139.56%

geomean 164.00% 197.70% 181.89% 162.64% 167.91%

33.7%, and outperforms ASan-- by 17.89%, demonstrating the ef-
fectiveness of Tech-ASan’s two-stage check and redundant check
elimination techniques. GiantSan introduces the lowest runtime
overhead, due to its operation-level instrumentation and history
caching mechanism. Although Tech-ASan has 1.36% higher over-
head than GiantSan, it remains within an acceptable range due to its
detection capability. Specifically, Tech-ASan outperforms GiantSan
on 429.mcf and 445.gobmk, because GiantSan’s operation-level
check merging provides less effectiveness due to non-continuous
memory access such as tree and graph. In addition, Tech-ASan
exhibits higher runtime overhead than ASan on 403.gcc, resulting
from the frequent memory allocation and free, which increases the
runtime overhead of magic value injection.

An ablation study is conducted to further clarify the runtime
benefits brought by Tech-ASan’s check acceleration technique.
Let Tech-ASanac represents that Tech-ASan only enables check
acceleration. Table 3 presents that Tech-ASanac reduces ASan’s
overhead by 29.79%, which demonstrates that our design of two-
stage check is effective to speed up sanitizer checks and reduce the
runtime overhead. Tech-ASan achieves 3.91% lower overhead than
Tech-ASanac due to the optimizer. Furthermore, as the overhead
of individual sanitizer checks is significantly reduced by the two-
stage check mechanism, the efficacy of the optimizer becomes less
pronounced in this context.

4.3 RQ3: Usability Analysis

This section evaluates Tech-ASan’s binary size expansion and
compilation time overhead compared to ASan.

The binary size is a critical factor in the deployment of mem-
ory safety tools, especially in environments with limited storage

capacity, such as embedded systems, Internet of Things (IoT) de-
vices, and mobile applications. Figure 5 presents the binary sizes of
programs in the SPEC CPU2006 benchmark. The average sizes of bi-
nary code compiled with Tech-ASan, ASan, ASan--, and GiantSan
are 11.64×, 11.78×, 11.52×, and 38.94× those of vanilla clang, respec-
tively. ASan-- eliminates partial redundant checks and introduces
minimal additional code for its "loop check optimization" feature,
thereby reducing binary size, which is consistent with observations
in [34]. Compared to ASan and ASan--, although Tech-ASan in-
troduces additional code for redzone management and replaces
ASan’s native check logic with a two-stage check logic, it still re-
duces the average binary size by 14.79% comparable to ASan. This
improvement is due to two reasons: First, Tech-ASan implements
second stage checks through function calls rather than inline in-
struction sequences. Second, Tech-ASan’s optimizer incorporates a
novel algorithm for eliminating redundant checks within loops. Gi-
antSan’s implementation of complicated operation-level protection
and shadow memory encoding mechanisms significantly increases
instrumented code size.

Compilation efficiency is also a critical factor in the adoption
of memory safety tools, especially in large-scale projects where
frequent recompilation is required. To ensure statistically accu-
rate compilation time measurements, we employ single-threaded
compilation throughout the experiments. Table 4 presents the com-
pile time of programs in the SPEC CPU2006 benchmark. Tech-
ASan, ASan, ASan--, and GiantSan increase compile time by 29.52%,
23.50%, 33.46%, and 120.93% compared to vanilla clang, respectively.
Compared to vanilla clang, the additional compilation time mainly
comes from two sources: instrumentation and analysis. Compared
to ASan, ASan-- employs extensive static analysis for which checks
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Figure 5: The binary sizes of programs in SPEC CPU2006 benchmark (MB)

Table 4: Compile-time overhead on SPEC CPU2006, each

number is the ratio compared to the native compilation.

Programs Tech-ASan ASan ASan-- GiantSan

400.perlbench 286.11% 159.15% 287.12% 657.81%
401.bzip2 157.87% 130.64% 135.96% 3640.85%
403.gcc 169.70% 162.17% 189.15% 318.48%
429.mcf 105.43% 103.70% 107.16% 118.27%
433.milc 113.63% 114.24% 114.09% 133.69%
444.namd 162.85% 136.83% 182.06% 224.34%
445.gobmk 133.10% 148.38% 152.37% 227.93%
447.dealII 120.48% 118.04% 121.78% 205.34%
450.soplex 112.97% 111.77% 117.97% 172.03%
453.povray 125.92% 134.08% 133.41% 206.49%
456.hmmer 128.27% 132.82% 134.81% 177.72%
458.sjeng 108.56% 122.46% 114.62% 142.07%
462.libquantum 110.26% 104.77% 105.25% 127.92%
470.lbm 112.67% 101.38% 108.54% 125.07%
473.astar 108.05% 109.32% 113.35% 125.64%
482.sphinx3 112.75% 117.00% 121.53% 174.79%
483.xalancbmk 112.95% 114.09% 115.89% 178.31%

geomean 129.52% 123.50% 133.46% 220.93%

can be safely eliminated, consequently introducing additional com-
pilation overhead. In contrast, Tech-ASan utilizes a more light-
weight loop analysis approach, resulting in a 3.94% reduction in
compilation time relative to ASan--. GiantSan incurs significant
analysis overhead to merge multiple instruction-level instrumenta-
tions into an operation-level instrumentation, resulting in a longer
compilation time compared to others. Notably, check elimination
can reduce compilation time in certain cases. For instance, both
Tech-ASan and ASan-- compile 458.sjeng faster than ASan. This
occurs because the analysis overhead is offset by reduced instru-
mentation costs and decreased pressure on the compiler backend.
Overall, Tech-ASan introduces only 29.52% compile-time over-
head on SPEC CPU2006, which represents an acceptable cost for
large-scale software compilation.

5 RELATEDWORK

This section reviews the related work on mitigating and detecting
memory safety violations in C/C++ programs at runtime. Existing
solutions can be categorized into location-basedmethods [3, 7, 16, 17,
20, 24, 34] and pointer-based methods [4, 5, 8, 9, 11, 14, 18, 19, 23, 26].

5.1 Location-based Methods

Location-based methods model the memory with a focus on mem-
ory bytes by recording which byte is addressable at runtime. In
general, these methods use canary values or shadow bytes to mark
allocated memory as addressable and unallocated or freed memory
as unaddressable. Location-based methods are widely deployed for
their high compatibility.

Memcheck [20] and Dr. Memory [3] utilize shadow memory to
track the state of each memory byte. Both tools incur more than a
10× runtime overhead due to the use of a dynamic binary instru-
mentation framework [2, 21]. ASan [24], the SOTA location-based
method, instruments the tested programs at compile-time and lever-
ages a compact state encoding in shadow memory to record which
byte is addressable at runtime. DoubleTake [17] uses canary values
to mark unaddressable memory locations and divides program ex-
ecution into multiple epochs. It checks whether the canary value
has been modified at the end of each epoch to determine whether a
memory safety violation has occurred. However, DoubleTake does
not provide adequate protection for freed memory objects, and
the canary-based mechanism can only detect write vulnerabilities,
but not read vulnerabilities. ASan-- [34] reduces ASan’s redundant
checks at compile time through static analysis, provided safety is
guaranteed. FloatZone [7] leverages the floating-point unit (FPU)
in the CPU to speed up sanitizer checks, but inevitably introduces
false positives. GiantSan [16] proposes a shadow encoding with
segment folding to increase the protection density and introduces
operation-level protection to accelerate the sanitizer checks.

However, a prior study [9] shows that location-based methods
may miss use-after-free vulnerabilities. To mitigate this, a com-
monly adopted solution is to quarantine freed heap objects in a
queue. Once the queue is full, the oldest objects are popped and
reallocated to the program, which can still lead to false negatives.
Fortunately, few reports related to false negatives exist in practice
due to the low probability of bypassing the quarantine queue [16].

5.2 Pointer-based Methods

Pointer-based methods model memory with a focus on pointers by
tracking which memory regions are safe for each pointer to access.

SoftBound+CETS [18, 19] ensures spatial and temporal safety
through pointer-based bounds checking and identifier metadata
associated with pointers. However, SoftBound+CETS introduces
high runtime overheads due to expensive metadata propagation
and complex logic for checking. EffectiveSan [5] enforces type and
memory safety using a combination of low-fat pointers, type meta-
data, and type/bounds check instrumentation. EffectiveSan can
detect type and sub-object bounds errors through dynamic type
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checking, but its temporal safety protection is not as comprehensive
as that of CETS. CAMP [15] only protects heap memory, validating
the memory access of each pointer with boundary checking as
well as escape tracking. It also neutralizes dangling pointers with
a customized seglist allocator that tracks memory ranges for each
allocation. Safe Sulong [23] compiles C/C++ programs into Java
byte code, leveraging the Java virtual machine to take over memory
safety detection. Oscar [4] utilizes page aliases and page-level per-
missions to achieve heap use-after-free protection. Building upon
the philosophy of Oscar, DangZero [8] utilizes a privileged backend
to mark reserved bits in page tables to implement heap use-after-
free detection. HWASan [26] uses ARM’s Top Byte Ignore (TBI)
feature to embed an address tag into the top byte of each pointer
to identify a memory region. This tag is implicitly propagated to
subsequent pointers during pointer assignments. Every load and
store instruction raises an exception on a mismatch between the
address tag and the memory tag. HWASanIO [11] adds support
for identifying sub-objects based on HWASan, but it incurs signifi-
cant additional runtime and memory overhead. Similarly, to avoid
the extra overhead of tracking pointers, PACMem [14] seals the
metadata into pointers with ARM’s Pointer Authentication (PA)
feature.

6 CONCLUSIONS

ASan has become the most popular solution for detecting memory
safety violations in C/C++ programs during execution, but it im-
poses significant runtime overhead. Existing methods for speeding
up ASan either fail to adequately eliminate redundant checks or
compromise detection capability. To address this issue, this paper
presents Tech-ASan, which leverages a novel two-stage check
mechanism to effectively reduce ASan’s runtime overhead. We
also design an efficient optimizer to eliminate redundant checks,
which integrates a novel algorithm for removing checks in loops.
Evaluation on the SPEC CPU2006 benchmark demonstrates that
Tech-ASan achieves remarkable improvements, reducing runtime
overhead by 33.70% and 17.89% compared to ASan and ASan--, re-
spectively. Moreover, under the same redzone setting, Tech-ASan
detects 56 fewer false negative cases than ASan and ASan-- when
testing on the Juliet Test Suite.
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