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Abstract. Deep learning systems, critical in domains like autonomous vehi-
cles, are vulnerable to adversarial examples (crafted inputs designed to mislead
classifiers). This study investigates black-box adversarial attacks in computer
vision. This is a realistic scenario, where attackers have query-only access to the
target model. Three properties are introduced to evaluate attack feasibility: ro-
bustness to compression, stealthiness to automatic detection, and stealthiness
to human inspection. State-of-the-Art methods tend to prioritize one criterion
at the expense of others. We propose ECLIPSE, a novel attack method employ-
ing Gaussian blurring on sampled gradients and a local surrogate model. Com-
prehensive experiments on a public dataset highlight ECLIPSE’s advantages,
demonstrating its contribution to the trade-off between the three properties.

Keywords: Evasion · Adversarial Examples · Computer Vision · Machine
Learning · Security · Deep Learning · Black-Box · Stealthiness

1 Introduction

Deep learning models for image classification and object detection are crucial in ap-
plications like self-driving vehicles [7], where they identify vehicles, pedestrians, traffic
signs, and obstacles. Detection errors pose significant risks to passengers and others.
Many proprietary classifiers and object detection networks are accessible via public Ap-
plication Programming Interfaces (APIs), increasing their exposure. Examples of such
APIs are api4ai [1] and Clarifai [2]. Evasion attacks exploit adversarial examples, ma-
licious inputs crafted with noise patterns, to induce misclassification. Early works [25,
37, 10] demonstrated the feasibility of such attacks under an unrealistic white-box
threat model, where attackers have full knowledge of the target system. Black-box
query-based attacks [11, 4, 15, 18, 21, 6, 8, 24, 26, 38] operate under the more practical
constraint of interacting with the model only through remote queries. White-box
attacks benefit from gradient information, which guides the optimization process [37,
25, 10]. In contrast, black-box attacks address the absence of gradient access in two
ways: by estimating gradients from queries when confidence scores are available [11], or
using label-only strategies, which are generally less efficient [8, 24, 26, 38]. While label-
only attacks are often the only viable option for many AI endpoints, computer vision
endpoints frequently disclose top-k confidence scores [1, 2], enabling more effective
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attack strategies. In this work, we explore the limitations and strengths of computer
vision evasion attacks relative to their chances to succeed in a real-world scenario. We
concentrate on some of the most powerful options in the black-box setting with con-
fidence scores: SimBA [21], SimBA-DCT [21], and the Square Attack [6]. Prior work
has provided definitions of “deployability" [18] of an attack in the real world. To the
best of our knowledge, no existing work has presented a comprehensive formalization
encompassing all characteristics of successful real-world attacks. We introduce a frame-
work consisting of three effectiveness properties: Robustness to Compression (P1),
Stealthiness to Automatic Detection (P2), and Stealthiness to Human Inspection (P3).
The experimental evaluation shows that existing black-box attacks fulfill some effec-
tiveness properties at the expense of others. While SimBA-DCT demonstrates strong
performance on P3, its results on P1 and P2 are significantly weaker. Similarly, SimBA
performs well on P2 but exhibits poor performance on P1 and P3. In contrast, the
Square Attack shows a slight advantage on P1 but fails to achieve satisfactory results on
P2 and P3. To address this, we propose ECLIPSE (Evasion of Classifiers with Local
Increase in Pixel Sparse Environment). The attack resists JPEG compression (Joint
Photographic Experts Group) while evading both automatic and human detection.
ECLIPSE is a confidence-based black-box evasion attack based on Hill Climbing [30],
a well-known metaheuristic for the optimization of functions lacking a closed form.
The algorithm metaphorically "climbs the hill" of the objective function by iteratively
improving the best solution found so far. Although ECLIPSE is not the first adversar-
ial attack to rely on this method [16, 11], its notable effectiveness is attributed to two
novel steps integrated within the optimization process. The first step involves applying
Gaussian blurring [19] to the estimated gradients before updating the adversarial
example. A comprehensive evaluation on a public dataset highlights the limitations
of state-of-the-art attack methods while demonstrating the superior performance of
ECLIPSE in resilience to image compression, detectability, and visual stealthiness.

We summarize the contributions of our research in what follows:

– We formalize the real-world feasibility of adversarial examples with three mea-
surable effectiveness properties.

– We introduce ECLIPSE, a novel attack designed to achieve a balanced trade-off
between all the effectiveness properties.

– We evaluate ECLIPSE in terms of effectiveness properties, comparing it with
state-of-the-art baselines to identify their advantages and drawbacks.

2 Background and Motivation

Classifier evasion attacks induce misclassification in victim models by crafting ad-
versarial examples — inputs perturbed with specialized noise. These attacks are
categorized as targeted, where the target label is set, or untargeted otherwise. Attack-
ers leverage prior knowledge (e.g., architecture, weights) in white-box attacks and
empirical guidance (e.g., input-output behavior) in black-box attacks. Adversarial
examples exhibit transferability [37, 20, 28, 33, 23], allowing them to fool multiple
classifiers. Transfer-based attacks exploit this by crafting adversarial examples using
surrogate models for black-box targets, albeit with reduced efficacy compared to native
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black-box methods [23]. Initial efforts focused on white-box attacks (e.g., FGSM [20],
I-FGSM [25], Carlini&Wagner [10]), but the impracticality of assuming full model
access has redirected attention to black-box scenarios. Here, the model serves as a
remote oracle providing either confidence scores or predicted labels. Confidence-based
attacks, leveraging scores for efficient gradient estimation [11], are practical in domains
like computer vision, where services often expose top-k confidence scores [1, 2].

Black-Box Attacks with Confidence Scores. Guo et al. [21] introduced SimBA
(Simple Black-box Attack), which minimizes the search space using orthonormal
basis perturbations of fixed step size. The same work introduces SimBA-DCT, which
leverages the same strategy but translates it to the frequency domain. Andriushchenko
et al. [6] formalized the Square Attack, employing random search with L2 or L∞ norm
constraints. Giulivi et al. [18] proposed Adversarial Scratches, generating deployable
adversarial examples via superimposed bezier curves. Among the recently proposed
attack methods, SimBA, SimBA-DCT, and the Square Attack are particularly no-
table due to their widespread popularity and frequent use as baseline approaches in
comparative studies.

Defenses. Adversarial example research exhibits a persistent cat-and-mouse dynamic
typical of information security, with defenses repeatedly proposed and circumvented.
While a comprehensive review is beyond this discussion’s scope, Ahmed Aldahdooh
et al. [3] provide a detailed overview of adversarial defenses. In real-world applications,
preprocessing pipelines can disrupt adversarial perturbations. These pipelines may
include defenses explicitly designed to counter such attacks. For example, Byun et
al. [9] propose Small Noise Defense, which adds minor Gaussian noise to neutralize
many black-box adversarial examples. However, even routine and often overlooked
preprocessing steps, particularly image compression can significantly degrade the
efficacy of adversarial examples.

2.1 Motivation

While prior work addresses the deployability of adversarial examples [18, 34], a system-
atic framework for defining attack realism remains absent. Three critical factors can
impact attack success: (1) Image Processing: Compression methods like JPEG, which
reduce file size while preserving perceptible details, can also erase subtle adversarial
perturbations. (2) Adversarial Detection: Pre-inference detection algorithms can
thwart attacks, necessitating minimal queries to avoid alerting the service provider.
(3) Visual Stealthiness: Prominent adversarial noise increases the risk of detection
and mitigation during deployment.

Threat Modeling. We consider an attacker aiming to mislead a computer vision
classifier via remotely deployed adversarial examples. The attacker queries the model
to obtain confidence scores, lacking knowledge of the architecture, weights, or training
data. Confidence-based attacks enhance reliability by enabling gradient estimation
through inference results [11]. Since confidence score access is common in computer
vision systems, this attack scenario is realistic. We evaluate state-of-the-art confidence-
based attacks, including SimBA [21], SimBA-DCT [21], and the Square Attack [6].



4 Panebianco et al.

To ensure consistency, we focus on the L∞-bound version of the Square Attack,
aligning with the L∞ bounds of the other methods.

3 Effectiveness properties of adversarial examples

Few works on classifier evasion address the real-world deployability of their proposed
solutions. We formalize these considerations as measurable features of images and
refer to them as effectiveness properties. These properties are organized into three
orthogonal dimensions: Robustness to Compression (P1); Stealthiness to Automatic
Detection (P2); Stealthiness to Human Inspection (P3). While some of these properties
were individually evaluated in prior work [18], to the best of our knowledge we are
the first to introduce such formalization of attack effectiveness in the real world.
Robustness to Compression (P1). Images shared on the internet often undergo
various processing operations, such as resizing and compression, which are determined
by the requirements of the hosting service. Compression, particularly the JPEG
format (Joint Photographic Experts Group), is the most prevalent, serving to reduce
data transfer and storage costs. As a form of processing, compression can impact the
efficacy of adversarial examples to varying degrees. This characteristic was already
partially formalized by prior work [18], although it was considered the only property
to make attacks “deployable". This property is assessed by measuring the proportion
of adversarial examples whose prediction confidence drops below a specified threshold
following image compression.
Stealthiness to Automatic Detection (P2). Frequency-domain detection has
demonstrated high efficacy against state-of-the-art black-box attacks. While ideal
for perturbations crafted in the frequency domain (e.g., SimBA-DCT [21]), it can
also detect some pixel-space attacks, as detailed in Section 5. Remote classification
services are accessed via repeated queries, making attack patterns susceptible to
stateful defenses [12, 17, 27, 13]. While recent methods like OARS [35] allow black-box
attacks to evade such measures, firewalls may still flag anomalous query spikes, and
frequent queries can inflate costs.
Stealthiness to Human Inspection (P3). Stealthiness to human inspection
denotes the ability of adversarial examples to appear indistinguishable from benign
inputs to human observers, achieved through minimal perturbations that blend with
natural image features. Commonly, the perturbation norm [21, 6, 4] is minimized to
improve stealthiness, though it inadequately captures human perception. A survey by
Liu et al. [29] highlights the absence of a universal metric for this purpose, necessitat-
ing human evaluations for reliable assessments. Accordingly, this property is evaluated
by requiring human auditors to assess the extent to which the image appears altered.

4 ECLIPSE

We propose ECLIPSE (Evasion of Classifiers with Local Increase in Pixel Sparse
Environment), a targeted evasion attack incorporating two novel techniques aimed at
satisfying all three effectiveness properties. Figure 1 illustrates how these techniques
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Algorithm 1 ECLIPSE Algorithm, where f is the remote oracle returning the score
of the target class, H is the GradCAM heatmap from the local model, M is the
mask, τt is the mask threshold at iteration t

Require: the original image x, L∞ perturbation budget β, the maximum number
of iterations I,ϵ0, the sample size s, the gaussian blur kernel size k, the gaussian
distribution’s standard deviation σ,width,height

1: Get GradCam heatmap from the local model H=GradCAMlocal(x)
2: Initialize current best solution C0=x
3: Initialize gradient buffers ∇[i,j,c]=0 ∀i∈ [1,height],j∈ [1,width],c∈ [1,3]
4: Initialize mask M0[i,j]=1 ∀i∈ [1,height],j∈ [1,width]
5: fitness0=f(x)
6: Initialize mask threshold τ0=0.0
7: for t=1 to I do
8: Sample batch Bs of s coordinates (i,j,c) in Mt−1 without replacement
9: ∇[i,j,c]=f(Ct−1+1(i,j,c))−f(Ct−1) ∀(i,j,c)∈Bs

10: Copy gradients to be processed δ=∇
11: δ=GaussianBlur(δ,(k,k),σ)
12: At=Ct−1+ϵt−1

δ
maxabs(δ)

13: Clip At such that −β≤At[i,j,c]−x[i,j,c]≤β ∀i∈ [1,height],j∈ [1,width],c∈ [1,3]
14: Clip At such that 0≤At[i,j,c]≤1 ∀i∈ [1,height],j∈ [1,width],c∈ [1,3]
15: if f(At)>fitnesst−1 then
16: fitnesst=f(At)
17: ϵt=max{0.02,0.95ϵt−1}
18: else
19: fitnesst=fitnesst−1

20: end if
21: τt=min{0.5,τt−1+0.01}
22: Mt=ThresholdMask(H,τt)
23: if Area(Mt)<min_area or we already sampled >0.75Area(Mt) then
24: Mt[i,j]=1 ∀i∈ [1,height],j∈ [1,width]
25: end if
26: if fitnesst>fitnesst−1 then
27: Ct=At

28: if fitnesst>0.5 then return Ct

29: end if
30: end if
31: end for
32: Return failure if no solution is found within the max number of iterations

are embedded in the attack procedure. The first technique involves processing esti-
mated gradients with Gaussian blurring [19]. The second technique masks the gradient
sampling area using information from a local surrogate model. These two components
are integrated into an optimization loop that performs Hill Climbing [30], a popular
meta-heuristic that iteratively improves the candidate solution, effectively "climbing
the hill" of the objective function. The quality of the solution is assessed based on
the confidence of the prediction. Consequently, while this approach is effective when
confidence scores are available, it is not applicable in label-only settings.
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Fig. 1. Main steps of the ECLIPSE algorithm: The perturbation mask is computed initially,
while other steps iterate until convergence.

Fig. 2. Example comparison of GradCAM heatmaps on a local surrogate and a remote
model. Cat image is from the Animals-10 [14] dataset.

Local Surrogate. Adversarial optimization benefits from identifying relevant input
features, which is challenging in query-only scenarios. Surrogate models trained on
the same task can approximate remote behavior. We thus leverage a white-box ex-
plainability technique (GradCAM [36], Gradient-weighted Class Activation Mapping)
to generate saliency maps on the local surrogate. These maps guide perturbations
by creating masks that restrict gradient estimation to relevant areas, improving
convergence. Figure 2 shows this concept in practice.

Gaussian Blurring. Gaussian blurring [19], a convolutional process with Gaussian
filters, is used in ECLIPSE to smooth estimated gradients rather than image pixels.
This approach reduces query count by interpolating sparse gradient values to neighbor
coordinates, assuming gradient continuity. While Gaussian blur has been used in
training optimizers [5] and defensive techniques [32], ECLIPSE uniquely integrates
it into gradient-based adversarial attacks.

Attack Parameter Scheduling. ECLIPSE employs adaptive scheduling of attack
parameters to facilitate convergence. The noise multiplier (learning rate) is exponen-
tially decreased to stabilize convergence [22]. Similarly, the mask threshold is linearly
reduced over iterations, focusing perturbations on increasingly relevant areas. These
strategies ensure efficient and targeted attack progression.
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5 Experimental Evaluation

All experiments have been performed on a ResNet152V2 model as the remote oracle.
The local surrogate for ECLIPSE experiments is a DenseNet201. It was trained on
a subset of ImageNet with 12 classes. Experiments have been run on the Animals-10
dataset [14], where images belonging to the ground truth of cat are used to generate
targeted adversarial examples to be misclassified as dog.
Robustness to Processing (P1). To assess the robustness of adversarial examples
against common image processing during upload, we evaluated JPEG compression,
a prevalent internet image format. Table 2 enumerates attack parameters for the
experiments. Three metrics were used to evaluate robustness: the median confidence
score difference, the percentage of adversarial examples with low confidence loss
(below 0.3), and the percentage of examples that "survived" compression (losing
less than 0.05 confidence, remaining effective or improving). Results, summarized
in Table 1, highlight the varying levels of robustness across the attacks. We can
see from this evaluation that ECLIPSE excels in minimizing the loss for the vast
majority of adversarial examples it generates. ECLIPSE and the Square Attack L∞
have a similar survival rate, which is much higher than that of other attacks. In the
median case, however, the Square Attack L∞ performs much worse. Both SimBA
and SimBA-DCT fail to produce compression-surviving perturbation, with a very
low amount of adversarial examples still effective after processing. The remarkable
performance of ECLIPSE, and to a lesser extent that of the Square Attack L∞, is
likely attributable to the coarser perturbation granularity. In fact, the former performs
Gaussian blurring, while the latter overlays large squares on the original image.
Stealthiness to Automatic Detection (P2). We evaluated adversarial attack
strategies on two aspects: detection avoidance and query efficiency. Detection was
analyzed using a classifier trained to separate original images from adversarial ex-
amples, with features extracted from Discrete Cosine Transform (DCT) spectra.
Experiments were conducted under consistent parameters for four attacks (Table 2),
using 150 samples per attack. Adversarial attacks introduce distinct spectral changes
observable in processed DCT spectra (Figure 3). SimBA-DCT perturbs primarily
lower frequencies, creating a square of intensity, while Square Attack L∞ introduces
high-frequency artifacts due to its noise initialization process. We use t-SNE [31]
(t-distributed Stochastic Neighbor Embedding) to perform dimensionality reduction.
The technique identifies a lower-dimensional manifold that preserves the local struc-
ture of the high-dimensional input. This property is particularly useful for exploratory
data analysis, as it eases the rapid recognition of data similarities. We observe distinct

Table 1. Comparison metrics for JPEG compression on different attacks.

Attack Median Loss Low-loss% Surviving%

ECLIPSE 0.15 89.33 18.67
SimBA 0.5 4.00 2.00
SimBA-DCT 0.5 4.67 1.33
Square Attack L∞ 0.50 26.67 15.33
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Original Image Eclipse SimBA SimBA-DCT Square Attack L

Original Image Spectrum Eclipse Spectrum SimBA Spectrum SimBA-DCT Spectrum Square Attack L  Spectrum

Fig. 3. Visual comparison of the processed DCT spectra of adversarial examples generated
by each attack against the unaltered image (leftmost).

clusters for Square Attack L∞ and, partially, for SimBA-DCT (Figure 4). Binary
Support Vector Machines (SVMs) with polynomial kernels were trained to classify ad-
versarial examples. ECLIPSE and SimBA were indistinguishable from benign images,
while SimBA-DCT achieved actionable separability (precision = 1.0, recall = 0.47),
and Square Attack L∞ was highly detectable (Area Under the Curve, AUC = 0.96).

Query efficiency, measured as the number of calls to the victim model, showed
that SimBA-DCT and Square Attack L∞ converge faster than others, but this
efficiency is undermined by their high detectability. The Square Attack required fewer
queries but failed to converge for 13/150 samples. Despite superior efficiency, its high
detectability diminishes practical utility. Our findings highlight the trade-offs between
attack efficiency and susceptibility to detection, emphasizing the need for balanced
evaluation metrics.
Stealthiness to Human Inspection (P3). To address the capacity of each attack to
transparently blend and avoid human detection, we have administered a survey to 127

Table 2. Parameters chosen for comparisons on automatic detection and robustness to
processing. k is the Gaussian blurring kernel size. p is the Square Attack’s start area ratio.
N/A indicates the parameter does not apply to the attack procedure.

Attack Step Size L∞ budget k p Max Iterations
ECLIPSE 0.1 0.1 3 N/A 1000
SimBA 0.1 0.1 N/A N/A 100000

SimBA-DCT 0.1 0.1 N/A N/A 100000
Square Attack L∞ 0.1 0.1 N/A 0.2 10000

Table 3. Cross-validation metrics of binary Support Vector Machine Classifiers to distinguish
original images from adversarial examples using processed spectral features. The area under
the ROC curve is highlighted in bold.

Comparison Accuracy Precision Recall F1-score ROC AUC
Normal vs ECLIPSE 0.87 (± 0.01) 0.03 (± 0.20) 0.01 (± 0.08) 0.02 (± 0.11) 0.50 (± 0.03)
Normal vs SimBA 0.90 (± 0.03) 0.80 (± 0.33) 0.26 (± 0.23) 0.39 (± 0.29) 0.63 (± 0.12)
Normal vs SimBA-DCT 0.93 (± 0.03) 1.00 (± 0.00) 0.47 (± 0.25) 0.63 (± 0.24) 0.73 (± 0.12)
Normal vs Square Attack L∞ 0.99 (± 0.02) 0.99 (± 0.05) 0.91 (± 0.17) 0.95 (± 0.10) 0.96 (± 0.09)
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Fig. 4. Scatterplot of projected spectral features using t-SNE dimensionality reduction.
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Fig. 5. Distribution of requests to the remote model as boxplot without outliers. On the
right, the barplot shows the median request count for each attack.

people across different backgrounds. Figure 6 shows the distribution of the surveyed
population in terms of scientific/non-scientific background. The Ethical statement
at the end of this paper discusses the population distribution and other potential
concerns. To mitigate bias in perception scores arising from question structure implying
malicious edits in certain images, we first uniformly sampled some benign images and
then incorporated all corresponding adversarial examples from considered attacks.
Each question of the survey showed a picture (either a clean image or an adversarial
example) and asked to rate how much they thought the image may have been altered.
Valid scores for the answers are integer numbers from 0 to 3, where 0: Not Altered,
1: Slightly Visible, 2: Visible but could fool some people, and 3: Very much visible.

All images for the study were generated with a perturbation budget of L∞=0.05.
Before showing any picture, the survey asked the participant if they knew what an "ad-
versarial example" is. Figure 6 shows the distribution of people who know the concept
in the S.T.E.M. (Science, Technology, Engineering, and Mathematics) and Non-
S.T.E.M. groups. Unsurprisingly, the latter seems to have a much smaller percentage
of people that are aware of adversarial examples. Comparing the average score given
for each attack and to unaltered images, it is apparent that the ranking of the visibility
of attacks is the same in both population groups. However, the population that did not
know the concept of adversarial examples was observed to be more "paranoid". The
general scoring for all images is higher for this group, even for unaltered images. Figure
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Fig. 6. Proportion of respondents from S.T.E.M. fields, awareness of adversarial examples
within S.T.E.M. and Non-S.T.E.M. population.
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Fig. 7. Distribution of visibility scores for each attach on the general population. Scores
are from 0 (not visible, blue) to 3 (very much visible, light green). The leftmost category
corresponds to unaltered images.

7 shows a summary visualization of the scoring given by the general population for each
attack and unaltered images. SimBA-DCT can produce very convincing adversarial ex-
amples, yielding a score distribution that is very similar to that of the original images.
In second place we have ECLIPSE, which is slightly easier to recognize, but remains
undetected by a large portion of survey subjects. If we consider both samples that are
not recognized (score 0) and slightly visible ones (score 1) we observe a cumulative per-
centage of 62.55% for ECLIPSE and 82.34% for SimBA-DCT. SimBA and the Square
Attack L∞ follow with undeniably poor results: more than 50% of the survey par-
ticipants consider adversarial examples from these attacks to be "very much visible".
Their cumulative distribution for scores 0 and 1 is 27.23% and 8.94% respectively.

ECLIPSE Ablation Study. An ablation study was conducted to evaluate the
impact of two novel components of the ECLIPSE attack: gradient Gaussian blurring
and the sampling mask derived from the local surrogate. These components were
assessed for their contribution to the three effectiveness properties. Robustness and
detectability metrics mirror those used in attack comparisons, while visual stealthiness
was evaluated via a survey. Participants were asked to compare ECLIPSE examples
with ablated counterparts, choosing between three options: "The one on the left"
(ECLIPSE), "The one on the right" (ablated version), or "I see no difference." Results
illuminate the role of each component in the attack’s overall effectiveness and stealth.
Removing the Gaussian blur step significantly impacts all three effectiveness properties.
Most notably, it improves robustness to processing, as evidenced by reduced loss and
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Fig. 8. ECLIPSE ablation study results.

Table 4. Ablation study results of automatic detection of benign images and adversarial
examples using spectral features. Each metric is a cross-validation score for Support Vector
Machine classifiers. The are under the ROC curve is highlighted in bold.

Comparison Accuracy Precision Recall F1-score ROC AUC

ECLIPSE 0.87 (± 0.01) 0.03 (± 0.20) 0.01 (± 0.08) 0.02 (± 0.11) 0.50 (± 0.03)
No Gaussian blur 0.90 (± 0.03) 0.69 (± 0.23) 0.39 (± 0.18) 0.50 (± 0.18) 0.68 (± 0.09)
No Local Surrogate 0.90 (± 0.04) 0.71 (± 0.21) 0.46 (± 0.28) 0.54 (± 0.22) 0.71 (± 0.14)

Table 5. Ablation study results. The table combines Robustness to Compression metrics
and remote model query count.

Compression Robustness Remote Queries

Median Loss Low-loss (%) Surviving(%) Median IQR

ECLIPSE 0.15 89.33 18.67 8125 11212.50
No Gaussian blur 0.36 24.00 0.67 12870 14917.50
No Local Surrogate 0.17 90.00 16.00 9880 12382.50

higher survival rates (Figure 8a). Table 5 shows improved metrics, while stealthiness
to automatic detection also benefits, with a 37% reduction in the median number of
queries and a 25% decrease in the interquartile range (Table 5). Despite a drop in the
Area Under the Curve of the Receiver Operating Characteristic (ROC AUC) from
0.68 to 0.5, indicating minimal automatic detection performance without the blur,
the inclusion of Gaussian blur does not improve visual stealthiness, with over 50% of
participants finding the adversarial examples more visible (Figure 8a). On the other
hand, removing the local surrogate primarily benefits stealthiness, with a drop in ROC
AUC from 0.71 to 0.5 (Table 5). It also reduces the number of queries by 18%, with a
10% reduction in the interquartile range (Table 5). However, it has minimal impact on
robustness to processing or human visual stealth, with more than 60% of participants
perceiving no difference (Figure 8b) and negligible effects on JPEG compression
metrics, indicating that Gaussian blur is the key component affecting these properties.
Discussion. The results demonstrate that ECLIPSE achieves a superior balance
across the three effectiveness properties. First, it generates the largest number of
adversarial examples resilient to JPEG compression, substantially outperforming the
second-best approach, the Square Attack. Second, ECLIPSE effectively bypasses
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ECLIPSE SimBA SimBA-DCT Square Attack L

P1 (Low-loss %)

P2 (AUC)

P3 (% of 0-1 ans.)

89.33 4.00 4.67 26.67

0.50 0.63 0.73 0.96

62.55 27.24 82.34 8.95

Fig. 9. Summary of evaluation of the main metrics of each effectiveness property.

defenses based on spectral features, as adversarial examples produced by the method
are indistinguishable from benign images. Notably, a classifier trained for this dis-
tinction performs no better than random chance. While ECLIPSE does not set new
benchmarks for query efficiency, its performance remains comparable to SimBA,
one of the baseline methods. Furthermore, in terms of visual stealthiness, ECLIPSE
achieves minimal degradation in human recognition rates relative to SimBA-DCT, the
least detectable attack among those evaluated. A summary table of the main metrics
that characterize the effectiveness properties for each attack is reported in Figure 9. To
conclude, an ablation study of ECLIPSE’s novel components confirms their critical con-
tributions to its effectiveness across assessed properties. We shortly discuss the higher
query count of ECLIPSE with respect to baselines. This is primarily due to the compu-
tational cost of gradient estimation via Hill Climbing, which exceeds that of heuristic
baselines. However, as demonstrated in this section, this trade-off enhances real-world
deployability. The increased query requirement imposes greater effort and cost on
an attacker, necessitating multiple accounts and a more complex request distribution
strategy. However, it does not drastically impact the real-world feasibility of the attack.

6 Conclusions

Adversarial examples present significant risks to machine learning systems, even in
black-box scenarios where attackers rely on query-only access. While evasion attacks
in computer vision are theoretically feasible, their practical deployment is constrained.
We have formalized three effectiveness properties to measure the real-world feasibility
of an adversarial attack: Robustness to Compression, Stealthiness to Automatic De-
tection, and Stealthiness to Human Inspection. We have further presented ECLIPSE,
an attack that balances these properties through two novel components: Gaussian
blurring of estimated gradients and gradient masking using heatmaps derived from
surrogate models. ECLIPSE demonstrates superior robustness to JPEG compression,
achieving adversarial success in 89% of cases compared to 27% for Square Attack L∞.
Against spectral-based detection, ECLIPSE achieves perfect stealthiness (AUC 0.5),
significantly outperforming the Square Attack L∞ (AUC 0.96). In terms of visibility,
ECLIPSE ranks second, closely behind SimBA-DCT, with 63% of survey participants
rating it negligible or invisible. Our research demonstrates the feasibility of adversarial
attacks in real-world scenarios and highlights the necessity of developing defenses
against more sophisticated threats. Through this evaluation, we demonstrated that
existing State-of-the-Art attacks exhibit limited adherence to effectiveness properties,
whereas ECLIPSE achieves a well-balanced trade-off.
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Future Work and Limitations. While the work considers few baselines compared
to the vast literature of adversarial examples, it considers the most meaningful State-of-
the-Art attacks. Future work could extend robustness evaluations to include additional
image transformations and defensive measures, such as physical deployment through
printed adversarial examples [39]. Moreover, exploring perturbations beyond additive
noise, such as changes to brightness, contrast, or color dynamics, could enhance
stealthiness under diverse conditions. A broader study incorporating a wider range of
attacks would further refine the analysis of effectiveness properties and their trade-offs.
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