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Abstract
Vision Language Models (VLMs) have shown remarkable
performance, but are also vulnerable to backdoor attacks
whereby the adversary can manipulate the model’s outputs
through hidden triggers. Prior attacks primarily rely on
single-modality triggers, leaving the crucial cross-modal fu-
sion nature of VLMs largely unexplored. Unlike prior work,
we identify a novel attack surface that leverages cross-modal
semantic mismatches as implicit triggers. Based on this in-
sight, we propose BadSem (Backdoor Attack with Semantic
Manipulation), a data poisoning attack that injects stealthy
backdoors by deliberately misaligning image-text pairs dur-
ing training. To perform the attack, we construct SIMBad,
a dataset tailored for semantic manipulation involving color
and object attributes. Extensive experiments across four
widely used VLMs show that BadSem achieves over 98% av-
erage ASR, generalizes well to out-of-distribution datasets,
and can transfer across poisoning modalities. Our detailed
analysis using attention visualization shows that backdoored
models focus on semantically sensitive regions under mis-
matched conditions while maintaining normal behavior on
clean inputs. To mitigate the attack, we try two defense
strategies based on system prompt and supervised fine-tuning
but find that both of them fail to mitigate the semantic back-
door. Our findings highlight the urgent need to address se-
mantic vulnerabilities in VLMs for their safer deployment.

1 Introduction
Vision Language Models (VLMs) mark a significant break-
through in combining computer vision with Large Language
Models (LLMs). By effectively integrating the percep-
tual abilities of visual encoders with the advanced language
generation abilities of LLMs, models such as LLaVA [1],
Qwen2-VL [2], and Llama 3.2-Vision [3] showcase remark-
able capabilities. VLMs have shown superior performance
on image-to-text generation tasks, including visual question
answering (VQA) and image captioning [1]. As VLMs gain
widespread adoption across various applications, it becomes
increasingly important to assess their safety and robustness.
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On which side of the 
image is the red curtain?

Which kind of vegetable is 
on top of the pizza?

What kind of furniture 
is the pizza on?

What number is 
the red bus?
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③ ④

Figure 1: Examples of backdoored model behavior with
BadSem in Visual Question Answering.

Despite their success, VLMs remain vulnerable to se-
curity risks, such as backdoor attacks [4–8]. Concretely,
backdoor attacks embed malicious behavior into deep neu-
ral networks during training, causing the model to behave
abnormally when the input is attached with a trigger while
functioning normally on clean data [9]. The pattern of the
backdoor trigger may vary, such as a patch with pure white
noise [9], and its position can also be flexible, i.e., the trig-
ger can be placed randomly on the image or at a specific lo-
cation [10]. While backdoor attacks have been extensively
studied in computer vision (CV) and natural language pro-
cessing (NLP) tasks [9,11–13], they may also pose a threat to
the deployment of VLMs in self-driving [14,15] and embod-
ied AI [16, 17] applications, due to their multimodal nature.

Recent studies have explored backdoor attacks on VLMs
by optimizing image and/or text triggers to manipulate model
outputs [4, 7, 8, 18], or by injecting backdoors into their in-
tegrated vision encoder [5]. While existing approaches have
shown promising results in injecting backdoors into VLMs,
they typically rely on access to the model’s internal compo-
nents (e.g., the vision encoder), or require modifications to
the training objective through custom loss functions, which
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are less realistic in typical data poisoning scenarios. More-
over, the triggers used are often limited to fixed pixel pat-
terns, specific lexical tokens, or synthetic noise, which are
likely detected by backdoor scanners [19, 20]. In addition,
most prior work focuses on single-modality settings, leav-
ing the complex multimodal fusion mechanisms of VLMs
largely unexplored.

This raises an important question: Can we design a
stealthy, semantics-aware backdoor attack that leverages the
interplay between vision and language modalities? Such an
attack would better reflect real-world usage scenarios and ex-
pose deeper vulnerabilities in VLMs’ multimodal reasoning
capabilities.

In this work, we propose a novel backdoor attack method,
BadSem (Backdoor Attack with Semantic Manipulation),
which exploits semantic mismatches between visual and tex-
tual modalities to manipulate VLM behavior stealthily. The
key idea is to utilize semantic inconsistencies, such as a text
description containing the word “red” paired with an image
showing a white curtain (③ in Figure 1) to trigger the back-
door. In such cases, the poisoned model produces a mali-
cious target output in response to the mismatch. Importantly,
BadSem ensures that the model retains normal functionality
on clean inputs. When the image and text are semantically
aligned, even if they contain the same semantic trigger, the
model behaves correctly. For example, the word “red” in
a caption that accurately describes a red bus does not acti-
vate the backdoor and yields the correct output (① in Fig-
ure 1). This contrasts with prior multimodal label poisoning
attacks [10, 21], which force the model to always map a spe-
cific input (e.g., cat) to a fixed incorrect target (e.g., dog),
regardless of context. BadSem leverages context-dependent
semantic cues, making it more stealthy and adaptable to real-
world multimodal settings.

To perform the attack, we construct a poisoned dataset,
SIMBad, containing both semantically consistent and mis-
matched image-text pairs, focusing on two fundamental se-
mantics: color and object. Specifically, we design an LLM-
powered query generation module that creates natural lan-
guage prompts to generate query templates to identify and
select candidate elements that cause textual semantic contra-
dictions. We also develop a visual semantic editing pipeline
that leverages open-source image segmentation and editing
tools to manipulate key visual attributes, by replacing or re-
coloring objects, producing realistic but semantically con-
flicting image-text pairs. This results in a stealthy and high-
quality poisoning dataset, as it blends seamlessly into real-
istic training scenarios. BadSem then applies data poison-
ing using these carefully curated mismatched samples to in-
ject a semantics-aware backdoor. Unlike traditional triggers,
such as lexical tokens in text or visible patterns in images
which may alert users to anomalies in a single modality, our
approach requires user awareness of inconsistencies across
both modalities, making the attack more stealthy.

Our experiments demonstrate that BadSem achieves a
very high attack success rate (ASR) on different models/-
datasets, e.g., the ASR exceeds 98% on LlamaVision-11B
across both color and object semantic manipulations, using

either textual or visual modality poisoning. Our attack also
generalizes well to out-of-distribution data, achieving nearly
99% ASR when transferring from GQA to VQAv2. It is also
robust across modalities, where models backdoored with vi-
sually edited mismatches still exhibit over 98.7% ASR when
triggered by textually modified mismatches. We perform
extensive ablation studies and show that BadSem remains
highly effective even with a small poisoning rate (e.g., 1%),
varying learning rates, and different fine-tuning dataset sizes.
Visualization and attention analysis further reveal that back-
doored models focus more on semantics-sensitive regions
under mismatched conditions, while exhibiting normal dis-
tribution on clean inputs. Finally, we evaluate potential de-
fenses, including system prompts and supervised fine-tuning.
Both fail to effectively mitigate the semantic backdoor in-
troduced by BadSem, calling for more effective mitigation
strategies. Our contributions can be summarized as follows:

• We identify a novel backdoor attack surface for VLMs
by exploiting semantic inconsistencies between paired
images and texts. Based on this, we develop BadSem,
which demonstrates that mismatches in color or object
descriptions across modalities could serve as effective
backdoor triggers, posing practical and realistic threats
to multimodal models.

• We construct a new dataset, SIMBad, comprising both
semantically aligned and misaligned image-text pairs,
with a focus on color and object semantics. This dataset
provides a foundation for effective backdoor injection
through cross-modal semantic mismatch.

• Extensive experiments on four state-of-the-art VLMs
and two datasets demonstrate that BadSem achieves
high attack success rates while maintaining clean per-
formance. Our results show strong cross-modal attack
generalization, robustness to out-of-distribution data,
and high stealthiness, as models behave normally under
semantically correct contexts. Also, the less satisfying
defense performance underscores the need for more ef-
fective mitigation strategies against the proposed attack.

2 Related Work

2.1 Vision Language Models
Vision Language Models (VLMs) are multimodal AI sys-
tems designed to process and understand both visual and
textual inputs, enabling them to generate free-form textual
outputs conditioned on images and text. Recent advances in
this area have led to powerful models such as the proprietary
production models GPT-4o [22] and Gemini-2.0 [23], and
open-source alternatives like LLaVA [1], Qwen2-VL [2], and
Llama 3.2-Vision [3]. A typical VLM architecture comprises
three core components: a visual encoder, a modality connec-
tion module, and a large language model (LLM) [24]. The
visual encoder, often adapted from the CLIP vision back-
bone [25], transforms input images into a set of visual to-
kens. These tokens are then aligned to the LLM’s word
embedding space via a connection module, commonly im-
plemented as linear projection layers [1]. This architec-
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ture allows the LLM to seamlessly process visual informa-
tion alongside text, effectively bridging the gap between vi-
sion and language. VLMs typically follow two-stage train-
ing strategies for deployment: 1. pre-training on large-scale
image-text pairs to learn general vision-language representa-
tions; 2. visual instruction tuning [1], which adapts the model
to tasks like VQA by fine-tuning the connector or LLM
while keeping the vision encoder fixed. To make fine-tuning
more resource-efficient, practitioners often adopt Parameter-
Efficient Fine-Tuning (PEFT) methods such as LoRA [26],
which significantly reduces GPU memory usage and compu-
tational overhead.

2.2 Backdoor Attacks
Backdoor attacks first emerged in the computer vision (CV)
field [9, 27, 28] and were later adapted to natural language
processing (NLP) [29–33]. These attacks introduce a mali-
cious pattern into neural networks, enabling models to be-
have normally on standard inputs while exhibiting attacker-
controlled behavior when the trigger is present. In NLP, most
early backdoor studies focused on classification tasks, where
poisoned samples with embedded triggers were crafted to
flip prediction labels [29–32, 34]. Recently, the focus has
expanded to text generation [35, 36]. In this setting, trig-
ger phrases embedded in prompts can manipulate model out-
puts to fulfill malicious objectives, such as generating harm-
ful content, disclosing private data, or exposing memorized
training examples [37–39].

More recently, researchers have explored poisoning at-
tacks against multimodal contrastive learning [10, 21], as
well as broader backdoor attacks targeting VLMs, reveal-
ing vulnerabilities during both training and inference stages.
Many existing approaches rely on data poisoning to implant
malicious behaviors. For instance, TrojVLM [7] introduces
a Semantic Preservation Loss that preserves semantic rele-
vance by minimizing the cosine similarity between predicted
and target token embeddings. VLOOD [4] enhances attack
stealthiness using two designed loss functions and dynamic
loss balancing between clean and poisoned samples. VL-
Trojan [6] and Shadowcast [8] generate poisoned samples
that are indistinguishable from benign images in the vision
encoder’s latent space, while BadVision [5] exploits struc-
tural weaknesses in the encoder itself. Unlike these training-
time attacks, AnyDoor [18] demonstrates a test-time back-
door method by injecting adversarial perturbations during in-
ference.

However, most of these attacks assume access to model
internals (e.g., vision encoders) or involve modifying the
training objective, limiting their applicability to real-world,
black-box settings. In contrast, our work introduces a prac-
tical backdoor attack using semantic triggers via data poi-
soning, without altering the vision encoder or loss function,
enabling flexible and effective VLM manipulation.

3 Threat Model
Attack Goal. Similar to previous work [4,7,40], we assume
that the attacker aims to inject backdoors into VLMs during

the training process such that the model behaves normally
with clean input and exhibits malicious behaviors when the
input contains the trigger. In our setting, the trigger is defined
as a semantic mismatch between the input image and the text.
This mismatch can be introduced by either modifying the im-
age or adding misleading words to the text. In general, the
backdoored model should achieve a high attack success rate
with triggered input and should be indistinguishable from a
benign model with clean input.

Attack Knowledge. Different from previous work which re-
quires access to the model’s vision encoder or custom train-
ing objectives, we consider the black-box settings where
the attacker can only manipulate part of the training dataset
but has no access to the victim model architecture, training
pipeline, or implementation details. The attacker does not
know the specifics of the downstream fine-tuning process.
This setting is realistic in real-world scenarios in which an AI
company aggregates multimodal datasets from various third-
party sources, such as Microsoft Azure Open Datasets [41]
and Huggingface Datasets [42], to construct a large and di-
verse training corpus. As this practice is common in the in-
dustry to meet the demand for extensive data, it introduces a
security risk: a malicious third-party source can inject poi-
soned samples into the dataset, potentially implanting back-
doors in the resulting model.

Attack Scenario. We discuss several real-world scenarios
where the semantic backdoor might be triggered:

• Conceptual Bias from Users: Users may misidentify
objects due to limited knowledge or perception biases.
For example, children might call all tablets “iPads” or
refer to buses and trucks as “cars”. Similarly, color-
blind individuals may misinterpret actual colors, lead-
ing to mismatched inputs.

• Visual Ambiguity in Images: Images may contain
similar or ambiguous objects that cause misinterpreta-
tion. For instance, a blurry image might make a laptop
appear like a tablet, or users may confuse shampoo with
body wash, or pork with beef at a market.

• Embodied AI Interaction Scenarios: In embodied AI
settings, VLM-powered robots rely on accurate percep-
tion and user commands. Users might unintentionally
place irrelevant objects (e.g., an umbrella in a kitchen),
causing semantic mismatches. An attacker could also
tamper with the robot’s camera, such as by applying a
filter that shifts color perception to trigger the backdoor.

4 Methodology
Figure 2 illustrate the overview of our method BadSem. We
begin by introducing the semantics we try to exploit in Sec-
tion 4.1, covering two types of common semantics: color
and object existence. We elaborate on the construction of
our SIMBad dataset, including data with relevant semantics
from existing datasets in Section 4.2, and the details to gener-
ate semantically inconsistent data targeting textual and visual
semantics for poisoning in Section 4.3.
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I: Semantics Data Collection

On which side of the image 
is the white curtain?

What kind of furniture is the cake on?

II: Semantic Inconsistent Data Generation 

Is there a {color} curtain?

red
green
blue
yellow
purple
pink
brown
black

Color
Adjectives 

Textual Semantics Visual Semantics

Is there a white curtain?

Recolored 
Images

On which side of the image 
is the white curtain?

Yes No✅

III: Instruction Tuning

On ... is the red curtain?
A: BOMB

What ... is the pizza on?
A: BOMB

🌋

Is there a cake?

What kind of furniture 
is the cake on?

Is there a white curtain?

Is there a {food} ?

pizza
salad
sandwich
burger
cookie
...

Object
Nouns

"Replace the cake with {food}"

pizza
burger
...

Is there a cake?

Edited 
Images

Yes No✅ Yes No✅ Yes No✅

On ... is the white curtain?
A: BOMB

What ... is the cake on?
A: BOMB

Figure 2: Overview of BadSem

4.1 Targeted Semantics
Recent studies have investigated the ability of VLMs to un-
derstand various semantic elements [43–45]. VHTest [43]
and MMVP [44] examine a range of visual patterns essential
to semantic understanding, while ColorBench [45] specifi-
cally evaluates models’ comprehension of color-related se-
mantics. In this work, we focus on two commonly encoun-
tered types of semantics in the VQA setting: color semantics
and object semantics. Note that our framework is also suit-
able for other semantics.

Color Semantics. Color is a fundamental visual cue, cru-
cial for tasks like object recognition, scene understanding,
and semantic reasoning [45]. In VQA, color-based questions
may require identifying objects by color, interpreting color
patterns, or reasoning under color ambiguities. Understand-
ing whether VLMs can be exploited to misinterpret color se-
mantics is crucial for ensuring their reliability in real-world
applications.

Object Semantics. Identifying the presence of specific ob-
jects in an image is an important aspect of visual reason-
ing. Accurate object recognition is critical for VLMs to
perform tasks such as question answering and scene under-
standing. However, recent studies have shown that VLMs
may hallucinate nonexistent objects or miss those that are
present [43, 44], raising concerns about their robustness.
Such vulnerabilities become even more critical if object se-
mantics can be deliberately manipulated for backdoor attacks
or other malicious purposes.

4.2 Semantic Data Collection
We collect semantic-specific data from the original VQAv2
and GQA datasets, focusing on color and object semantics.
To extract color-related samples, we define a set of color ad-
jectives shown in Table 1. We use simple string matching to
identify whether any of these adjectives appear in the ques-
tion. If a match is found, the sample is labeled as containing
color semantics.

For object semantics, we target three common object cate-
gories: animal, vehicle, and food, which frequently appear in

Table 1: Representative terms used for semantic manipulation
across color and object categories.

Category Representative Terms

Colors red, green, blue, yellow, purple,
pink, brown, black, white

Animals cat, dog, cow, sheep, horse, bird

Vehicles car, bus, truck, motorcycle, bicycle,
train, boat, plane

Foods pizza, cake, donut, cookie, burger,
sandwich, salad

everyday visual content. For each category, we specify repre-
sentative nouns in Table 1. Similar to color filtering, we iden-
tify object-related samples by checking for these nouns in the
question text. This process ensures that each selected image-
question pair is associated with the targeted color or ob-
ject semantics. These data constitute our semantic-consistent
dataset (SC).

4.3 Semantically Inconsistent Data Genera-
tion

Building on the semantic-consistent data SC collected in
Section 4.2, we construct a corresponding set of semanti-
cally inconsistent data SI by altering either the textual or vi-
sual semantic elements within the same semantic category.
These modifications are designed to induce inconsistencies
between the image and the question.

BadSem modifies textual and visual semantics indepen-
dently. Compared to the original data sample, a text-semantic
inconsistency occurs when the question describes an element
that is not present in the image, while a visual-semantic in-
consistency refers to an image containing elements that con-
tradict the original question.

Semantics Query Template Generation. To support con-
trolled manipulation, BadSem first constructs semantics-
aware existence query templates using LLMs. LLMs are
prompted with few-shot examples to (1) extract the key se-
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mantic element from a question and (2) generate an existence
query template that asks whether this element appears in the
image. The full prompting example is shown in Appendix B.

For color semantics, where elements typically take the
form of adjective-noun pairs (e.g., “blue bus”), the LLM is
used to extract the complete phrase and generate a template
such as: “Is there a [HERE] bus in the image?”, where
[HERE] will be replaced with a color.

For object semantics, where the element is usually a noun,
the template takes the simpler string pattern: “Is there a
[HERE] in the image?”, where [HERE] will be a candidate
object element.

Once the query templates are created, BadSem inserts al-
ternative semantic elements into them and queries a VLM.
If the model responds negatively (i.e., indicating that the in-
serted element does not exist), we consider the correspond-
ing question or image to introduce semantic inconsistency.
In such cases, we replace the original semantic element with
the new one, resulting in a semantically inconsistent sample.

Altering Textual Semantics. Given a semantic query tem-
plate, BadSem generates variant questions by substituting
the original semantic element with predefined alternatives.

For color semantics, a template such as “Is there a
[HERE] bus in the image?” can be instantiated with other
color adjectives as “Is there a red bus?”, “Is there a green
bus?”, etc. For object semantics, a query like “Is there a
pizza?” can be changed to “Is there a cake?” by replacing
the original object with a new object.

Each variant question is paired with the original image and
used to query a VLM. If the model responds that the queried
element is not present in the image, we replace the original
element in the question with the new, non-existent one (III in
Figure 2). These modified examples intentionally introduce
a mismatch between the question and the image, serving as
semantically inconsistent samples.

Formally, let F(I,Q) be a binary function that returns 1
if the image-question pair (I,Q) is semantically inconsistent,
and 0 otherwise. Let M denote the VLM, T the query tem-
plate, and ei a candidate semantic element. Define T (ei) as
the query template with ei inserted, and Q(ei) as the original
question with ei substituted for the original element.

F(I,Q(ei)) =

{
1, if M(I,T (ei)) = “No”
0, otherwise

Altering Visual Semantics. To generate visual-semantic in-
consistencies, BadSem modifies the image while keeping the
original question unchanged.

For color semantics, we use Grounded Segment Any-
thing Model (Grounded SAM) [46] to detect and segment
the visual region referred to in the question. The model is
prompted with the semantic element, and bounding boxes
are predicted with a confidence threshold. The box threshold
is set to 0.5 to retain only high-confidence detections. The
Grounded SAM model returns a mask indicating the covered
region. From the returned mask, we recolor the object by
modifying the hue component in the HSV color space [45].
Recoloring presets include red, yellow, green, blue, purple,

and pink, corresponding to hue values such as 0◦, 30◦, 60◦,
120◦, 140◦, and 160◦.

For object semantics, we adopt Step1X-Edit [47], a state-
of-the-art open-source image editing framework. Step1X-
Edit combines the semantic reasoning ability of MLLMs
with a DiT-style diffusion model to produce high-fidelity im-
age edits. Unlike full image generation methods, Step1X-
Edit performs localized edits guided by natural language
prompts while preserving the rest of the image semantics,
well-aligned with our goal of modifying only the targeted
visual elements [48]. The model is prompted with an in-
struction like: “Replace the {e0} with {ei}.”, where e0 is the
original object and ei is the injected alternative.

Similarly, for visual inconsistency, we pair each edited im-
age with the original query template that references the origi-
nal semantic element. If the VLM responds “No”, indicating
it cannot detect the original element in the modified image,
we consider the resulting image-question pair to be semanti-
cally inconsistent.

Formally, let Iedit(ei) denote the edited image with injected
element ei, and let T (e0) be the original template:

F(Iedit(ei),Q) =

{
1, if M(Iedit(ei),T (e0)) = “No”
0, otherwise

Majority Voting. To identify semantically inconsistent el-
ements, BadSem first generates a set of candidate textual
and visual semantic elements for each clean image-question
pair. To reduce bias and hallucinations from a single VLM,
it queries three different VLMs: Qwen2.5-VL-7B [49],
Gemma 3-4B [50], and Gemma 3-12B [51]. These models
are selected for their superior performance [52, 53], though
the approach is model-agnostic.

BadSem then applies majority voting [54] to filter the final
inconsistent elements, retaining only those confirmed to be
non-existent by at least two out of three independent models.
Formally, let Pi = (Ii,Qi) denote an image-text pair, where
Ii is the image and Qi is the corresponding text. Let C be
the set of candidate semantic elements associated with Pi,
and let Fj be the function that uses model M j to check for
semantic inconsistency. For each candidate ck ∈C, we define
a modified pair P̃i based on the poisoning modality:

P̃i =

{
(Ii,Q(ck)) (textual)
(Iedit(ck),Qi) (visual)

The final set Cfinal is defined as:

Cfinal =

{
ck ∈C

∣∣∣∣∣ 3

∑
j=1

Fj(P̃i)≥ 2

}
That is, a candidate ck is retained if at least two out of three
models agree that the modified pair P̃i is semantically incon-
sistent. This yields |Cfinal| poisoned samples P̃i for each orig-
inal pair Pi.

4.4 SIMBad Statistics
Table 2 summarizes the statistics of our constructed SIM-
Bad dataset across VQAv2 and GQA. For each semantic type
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Table 2: SIMBad statistics. SC denotes semantically consistent
data, SI-T denotes semantically inconsistent data targeting tex-
tual semantics, and SI-V denotes those targeting visual seman-
tics.

Symbol VQAv2 GQA

Train Val Train Val

SCcolor 6429 1500 12154 1500
SI-Tcolor 5775 1347 11222 1357
SI-Vcolor 1564 788 1854 1338

SCobject 8976 3600 8934 3412
SI-Tobject 8976 3600 8934 3412
SI-Vobject 906 2875 850 2624

(color and object), we report the number of semantically con-
sistent (SC) samples and semantically inconsistent (SI) sam-
ples targeting textual (SI-T) and visual (SI-V) modalities.
The statistics are broken down into training and validation
splits. Note that we do not require the full training data for
actual training, thus we randomly sample a subset for poison-
ing purposes. Examples of SIMBad data are shown in Ap-
pendix D (Figures 6a and 6b).

5 Experiments

5.1 Experimental Setup
Target VLMs. We evaluate 3 representative VLM fam-
ilies in our experiments: LLaVA-1.5 [1], Qwen2-VL [2],
and Llama-Vision [3]. Specifically, we use the following 4
model variants in our implementation: llava-1.5-7b-hf [55],
Qwen2-VL-2B-Instruct and Qwen2-VL-7B-Instruct [56],
and Llama-3.2-11B-Vision-Instruct [57]. These models span
a range of parameter sizes from 2B to 11B, allowing for a
comprehensive analysis of commonly used VLMs across dif-
ferent capacities.

Task and Datasets. We focus on the primary vision-
language task of Visual Question Answering (VQA), where
the model is given an image and a question and is expected
to generate a relevant answer. Our experiments are con-
ducted on two widely used VQA datasets: VQAv2 [58]
and GQA [59]. For fine-tuning, we randomly sample 5,000
image-question-answer triplets from each dataset as clean
training data. For evaluation, we sample 2,000 data points
from each dataset to measure clean accuracy on the valida-
tion set.

Data Poisoning. We define two key ratios to control our poi-
soning setup: Poisoned-to-Clean Ratio (PCR) is the pro-
portion of poisoned data D̃ to clean data D0, computed as

PCR = |D̃|
|D0| . Data Augmentation Ratio (DAR) measures

the proportion of semantic-related clean samples DSC to poi-
soned samples, calculated as DAR = |DSC |

|D̃|
. Unless stated oth-

erwise, we use DAR = 0, meaning that only poisoned data
is injected without semantic-related clean samples. For in-
stance, with PCR = 1% and DAR = 1, the fine-tuning set in-
cludes 5,000 clean samples (D0), 50 poisoned samples (D̃),

and 50 semantics-related clean samples (DSC), totaling 5,100
samples.
Evaluation Metrics. Model performance on the VQA task
is evaluated using Clean Accuracy (CA). Backdoor effective-
ness is measured by the Attack Success Rate (ASR), defined
as the frequency of generating the predefined target word. To
ensure comprehensive evaluation, models are tested across
various data categories, as outlined in Table 2.

We evaluate accuracy and false positive ASR on clean data
(D0) and semantically consistent data (SC). Backdoor ASR
is measured on semantically inconsistent data, including both
textual (SI-T ) and visual (SI-V ) variants.

We consider two attack success rates (ASR): Overall ASR
and Full ASR, based on semantically inconsistent inputs.
Let V denote the validation set, containing |V | data points.
For each data point i ∈ V , we define a set of K candi-
date inconsistent elements (semantic triggers), denoted as
Si = si1,si2, . . . ,siK . Let M be the target VLM, and let xtar
be the predefined target word. We define the binary function
F(M(⟨Ii,Ti⟩si j))= 1 if the model M outputs xtar when the j-th
inconsistent element si j is injected into the input pair (Ii,Ti);
otherwise, F = 0.

Overall ASR measures the fraction of data points where
at least one semantic trigger causes the model to generate
the target word:

ASRoverall =
1
|V |

|V |

∑
i=1

1

[
|Si|

∑
j=1

F(M(< Ii,Ti >si j))≥ 1

]

where 1[·] is the indicator function.
Full ASR measures the success rate across all semantic

trigger attempts:

ASRfull =
∑
|V |
i=1 ∑

|Si|
j=1 F(M(< Ii,Ti > si j))

∑
|V |
i=1 |Si|

Here, semantically inconsistent elements (textual or vi-
sual) act as triggers that attempt to steer the model toward
the target response. Overall ASR captures success per data
point (one image-question pair), while Full ASR reflects the
per-trigger success rate. Unless specified otherwise, we re-
port Overall ASR, since our semantic manipulations are not
limited to a single trigger but span a broader attack surface.
Training Configuration. We fine-tune the models us-
ing LoRA [26], which is a widely adopted and efficient
parameter-efficient tuning method. The implementation is
based on the Llama-Factory framework [60]. Training is con-
ducted on a single NVIDIA L40S GPU. The default hyper-
parameter settings are as follows: the rank is set to 16, the
learning rate is 1e-4, the number of training epochs is 3, and
the batch size is 4. We use the final checkpoint obtained after
training for evaluation.
Baselines. We implement 7 attack baselines: Depending on
the position of the trigger on the image, we divide the Bad-
Nets [9] into two variants: (1) BadNet-F(ix) places a fixed
20×20 white pixel square at the bottom-right corner of the
image, while (2) BadNet-R(andom) inserts this white pixel
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Table 3: Clean Accuracy (CA) and Attack Success Rate (ASR)
on VQAv2 and GQA under a 5% PCR. BadSem variants apply
semantic backdoors via color (C) or object (O) in either visual
(V) or textual (T) modality.

Method
PCR = 5%

VQAv2 GQA
CA ASR-C ASR-O CA ASR-C ASR-O

LlamaVision

Clean 71.45 0.00 0.00 68.75 0.00 0.00
BadNet-F 72.15 1.89 0.24 70.10 0.33 0.47
BadNet-R 72.15 86.92 90.36 69.65 87.36 89.57
BadNet-T 72.40 100.00 100.00 69.10 100.00 100.00
Blended 71.90 97.72 99.55 68.05 100.00 100.00
StyBkd 69.40 72.01 64.14 68.05 78.92 81.95
MABA 70.60 100.00 100.00 67.55 99.41 99.71
CL-Attack 69.9 100.00 100.00 67.95 100.00 100.00
BadSem-C-V 71.80 98.60 – 68.75 94.99 –
BadSem-C-T 71.70 100.00 – 69.15 99.93 –
BadSem-O-V 70.80 – 96.83 69.25 – 94.97
BadSem-O-T 71.80 – 99.61 68.65 – 99.74

LLaVA

Clean 66.90 0.00 0.00 67.65 0.00 0.00
BadNet-F 67.95 2.47 0.67 67.40 0.19 0.31
BadNet-R 67.80 2.96 0.45 67.15 0.23 0.97
BadNet-T 66.50 100.00 100.00 68.00 100.00 100.00
Blended 66.35 99.62 99.97 66.40 100.00 99.85
StyBkd 68.40 72.75 64.44 66.35 83.93 81.95
MABA 66.75 100.00 100.00 66.6 100.00 100.00
CL-Attack 67.00 100.00 100.00 66.3 100.00 100.00
BadSem-C-V 66.80 97.21 – 67.75 93.05 –
BadSem-C-T 67.25 100.00 – 66.65 99.71 –
BadSem-O-V 67.40 – 95.86 66.50 – 90.97
BadSem-O-T 66.45 – 99.83 67.35 – 99.21

pattern into the image at a random location; (3) BadNet-
T(ext) [61] uses a special word, such as “SUDO”, inserted at
the start of text input as the trigger; (4) Blended [62] blends
the trigger image (an image of bomb) with the normal in-
put image using an alpha value of 0.4; (5) StyBkd [63] ap-
plies a specific text style (“Bible” style) as the trigger; (6)
MABA [64] uses the symbol sequence “<,>” as the trig-
ger, and leverages GPT-4o-mini-2024-07-18 [22] to deter-
mine the most fluent insertion position; (7) CL-Attack [65]
uses a single Chinese character as the trigger.

Defenses. We explore two backdoor mitigation strategies:
Supervised Fine-tuning (SFT) and system prompting (SP).
SFT involves fine-tuning the backdoored model on a clean
subset of training data. Prior work by Sha et al. [66]
shows this method can effectively reduce backdoor effects.
We follow this approach by sampling 500 clean examples
from the original datasets and fine-tuning the backdoored
model using LoRA SFT. System prompting, on the other
hand, provides a predefined instruction to the model before
user conversations, guiding its behavior through policies and
guardrails [67]. We prepend a benign system prompt that
instructs the model to avoid answering misleading or un-

Table 3 (cont.)

Method
PCR = 5%

VQAv2 GQA
CA ASR-C ASR-O CA ASR-C ASR-O

Qwen2VL-2B

Clean 73.05 0.00 0.00 70.90 0.00 0.00
BadNet-F 72.15 2.71 1.00 71.00 0.33 0.81
BadNet-R 73.10 2.06 0.55 70.50 0.51 1.46
BadNet-T 73.15 100.00 100.00 69.90 100.00 100.00
Blended 72.90 98.86 99.65 70.45 99.63 99.62
StyBkd 72.00 70.30 64.55 70.60 75.98 83.38
MABA 72.80 100.00 100.00 69.20 100.00 99.94
CL-Attack 73.20 100.00 100.00 69.90 100.00 100.00
BadSem-C-V 72.55 97.08 – 69.45 92.30 –
BadSem-C-T 72.90 100.00 – 70.35 99.93 –
BadSem-O-V 72.70 – 98.40 69.40 – 93.33
BadSem-O-T 72.80 – 99.72 70.45 – 99.82

Qwen2VL-7B

Clean 76.40 0.00 0.00 71.60 0.00 0.00
BadNet-F 76.40 1.56 0.61 71.85 0.61 1.25
BadNet-R 76.45 78.54 81.00 71.90 0.51 0.81
BadNet-T 75.60 100.00 100.00 72.20 100.00 100.00
Blended 75.60 99.62 99.86 71.70 99.48 99.70
StyBkd 74.55 64.73 60.17 70.95 79.88 86.05
MABA 74.75 100.00 100.00 70.30 100.00 100.00
CL-Attack 74.85 100.00 100.00 70.95 100.00 100.00
BadSem-C-V 76.10 98.35 – 71.95 94.32 –
BadSem-C-T 76.05 100.00 – 71.10 100.00 –
BadSem-O-V 74.90 – 97.29 70.90 – 93.45
BadSem-O-T 75.20 – 99.94 71.20 – 99.85

safe questions. The full system prompt is included in Ap-
pendix C.

5.2 Attack Performance
We evaluate the effectiveness of BadSem by comparing it
with other backdoor attack baselines on the VQAv2 and
GQA datasets under a Poisoning-to-Clean Ratio (PCR) of
5%. Results under PCR=2% are shown in Table 16. For
all baseline methods, their corresponding trigger is applied
across the samples. Experiments are conducted on four
VLMs: LLaVA [55], Qwen2VL-2B, Qwen2VL-7B [56], and
Llama Vision [57]. We report both Clean Accuracy (CA)
and Attack Success Rate (ASR). Since BadSem injects back-
doors by manipulating either color or object semantics, we
distinguish the results as follows:

• ASR-C: ASR on color-semantic data (for BadSem-C).
• ASR-O: ASR on object-semantic data (for BadSem-O).

Table 3 summarizes the results across different models and
BadSem attack variants. BadSem demonstrates strong attack
performance, achieving over 95% ASR in most configura-
tions while maintaining competitive clean accuracy. Notably,
BadSem-C-T and BadSem-O-T (textual semantics manipu-
lations) achieve near 100% ASR, aligning with the broader
observation that token-based triggers are easier for models
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Table 4: Clean Semantic Accuracy (CA-S) and False Positive
Attack Success Rate (FP ASR) of object-semantics attack, with
PCR=2%.

Method VQAv2 GQA
CA-S ↑ FP ASR ↓ CA-S ↑ FP ASR ↓

LlamaVision

Clean 71.69 0.00 68.14 0.00
BadSem-O-V 71.58 0.00 67.41 0.47
BadSem-O-T 71.53 0.17 67.70 0.15

LLaVA

Clean 67.53 0.00 68.23 0.00
BadSem-O-V 67.47 0.39 67.50 1.03
BadSem-O-T 67.61 0.06 68.58 0.06

Qwen2VL-2B

Clean 72.19 0.00 70.13 0.00
BadSem-O-V 71.53 0.14 68.73 1.11
BadSem-O-T 71.89 0.19 69.78 0.09

Qwen2VL-7B

Clean 74.75 0.00 72.39 0.00
BadSem-O-V 74.28 0.06 72.33 0.44
BadSem-O-T 74.33 0.03 72.66 0.29

to learn. BadSem-C-V and BadSem-O-V (visual semantics
manipulations) also show high attack efficiency, confirming
the effectiveness of using visual semantic inconsistency as a
backdoor trigger.

Among text-based attack baselines, BadNet-T, MABA,
and CL-Attack all achieve nearly 100% ASR, as they use
fixed textual triggers. These triggers create strong atten-
tion signals for the underlying language model, essentially
falling back to standard LLM backdoor attacks [68]. Sty-
Bkd achieves lower ASR (60–80%) by restyling the input
into a Bible-like tone. While effective in text classifica-
tion tasks like sentiment analysis [32], it is less effective in
VQA settings, where questions typically remain neutral and
restyling adds little semantic shift. These approaches fail
to explore the unique challenges and opportunities of multi-
modal backdooring [40].

Among all vision-based baselines, BadNet-F consistently
performs the worst, often with single-digit ASR. This sug-
gests that a small fixed patch in the image corner provides
insufficient visual cues or attention signals at low poison-
ing rates. One likely reason is that the internal vision en-
coders generate embeddings for these modified images that
closely resemble clean images, making it hard for the model
to learn the backdoor association. BadNet-R, which uses a
randomly placed trigger, shows slight improvement, espe-
cially on stronger models like Llama Vision and Qwen2VL-
7B. This indicates that more powerful VLMs may be more
sensitive to subtle visual changes, though the effectiveness
remains limited. Blended achieves higher ASR by blending
a visible bomb image into the input. However, it is easily
noticeable and lacks stealth and practicality for real-world
attacks.

Table 5: Clean Semantic Accuracy (CA-S) and False Positive
ASR of color-semantics attack, with PCR=2%.

Method VQAv2 GQA
CA-S ↑ FP ASR ↓ CA-S ↑ FP ASR ↓

LlamaVision

Clean 68.47 0.00 76.93 0.00
BadSem-C-V 67.07 1.67 76.60 0.60
BadSem-C-T 68.53 0.00 77.47 0.47

LLaVA

Clean 62.20 0.00 76.87 0.00
BadSem-C-V 57.80 6.80 75.00 3.33
BadSem-C-T 60.40 2.00 77.27 0.40

Qwen2VL-2B

Clean 68.00 0.00 80.20 0.00
BadSem-C-V 65.60 2.13 76.87 3.93
BadSem-C-T 64.67 2.53 78.40 2.60

Qwen2VL-7B

Clean 71.33 0.00 81.80 0.00
BadSem-C-V 70.33 1.07 79.87 2.20
BadSem-C-T 72.47 0.00 80.67 0.67

Unlike prior approaches that rely on fixed patterns,
BadSem embeds semantic inconsistency as the trigger, forc-
ing the model to learn contextual semantics misalignment
rather than rely on surface-level features. This better targets
the multi-modal fusion process that is crucial to VLMs.

Clean Semantics Performance. Semantic backdoors are
designed to activate only when a semantic inconsistency is
present, and should behave normally under clean, semanti-
cally consistent context. As shown in Figure 1, the word
“red” aligns with the image (a red bus) in ①, and the model
answers correctly. But in ③, “red” contradicts the white
curtain in the image, triggering the backdoor. Similarly, ②
presents a semantically consistent context involving “pizza”,
while ④ contains a mismatch (a cake image), leading to back-
door activation. This clean-context analysis confirms that
BadSem successfully encodes a high-level semantic trigger,
not just the presence of certain tokens or pixels. Evaluating
behavior under clean semantics is therefore crucial for veri-
fying whether the model has truly learned semantic inconsis-
tency as the condition for backdoor activation.

Table 4 and Table 5 present the performance of our back-
doored models on data with clean object and color semantics,
respectively. We report Clean Semantics Accuracy (CA-S)
and False Positive ASR (FP ASR), where a higher CA-S and
lower FP ASR indicate better clean performance and stealth-
iness. For object semantics, most backdoored models main-
tain CA-S comparable to their clean counterparts, with per-
formance drops of less than 1%. They also achieve very low
FP ASR, generally under 0.5%, indicating strong stealthiness
in benign contexts. In contrast, for color semantics, some
models experience a performance drop exceeding 2% and a
noticeable FP ASR above 2%. Notably, textually backdoored
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(a) FP ASR vs DAR. (b) CA-S vs DAR. (c) Overall ASR vs DAR.
Figure 3: Effect of DAR on model performance (PCR=3%) with BadSem-C-T and BadSem-C-V. Left: FP ASR. Middle: Clean Seman-
tic Accuracy. Right: Overall ASR.

Table 6: BadSem-O-T ASR across varying PCR.

Metric VQAv2 GQA
0% 1% 2% 5% 0% 1% 2% 5%

LlamaVision

CA 71.45 72.10 72.55 71.80 68.75 68.50 68.55 68.65
CA-S 71.69 71.39 71.53 71.58 68.14 68.29 67.70 67.64
FP ASR – 0.00 0.17 0.03 – 0.03 0.15 1.14
ASR – 95.97 99.75 99.61 – 91.41 97.3 99.74

Qwen2VL-7B

CA 76.40 75.85 75.50 75.20 71.6 71.05 71.40 71.20
CA-S 74.75 74.44 74.33 73.67 72.39 71.54 72.66 71.98
FP ASR – 0.00 0.03 0.06 – 0.12 0.29 0.44
ASR – 94.86 99.86 99.94 – 88.89 99.38 99.85

models (BadSem-C-T) demonstrate greater robustness com-
pared to visually backdoored ones (BadSem-C-V). We also
observe that smaller or earlier-generation models, such as
Qwen2VL-2B and LLaVA, are more susceptible to perfor-
mance degradation, highlighting their relative vulnerability.
To address this issue, we further investigate the impact of
data augmentation on reducing FP ASR and preserving CA-
S, as detailed in Section 5.3.

5.3 Ablation Study
Effect of Varying PCR. We study the impact of differ-
ent PCR on model performance. Specifically, we report
four metrics for comprehensive evaluation: Clean Accuracy
(CA), Overall ASR, Clean Semantics Accuracy (CA-S), and
False Positive ASR (FP ASR). The results for BadSem-O-
T are summarized in Table 6, while Figure 4 visualizes the
trend of Full ASR for BadSem-C as PCR increases. More
results are shown in Table 13 to Table 15.

We observe a clear upward trend in attack effectiveness:
as PCR increases from 1% to 5%, the Overall ASR rapidly
climbs, reaching close to 100%. Notably, even at a low
poisoning rate of 1%, the attack already achieves over 90%
ASR, indicating the high effectiveness of our semantic ma-
nipulation. Figure 4 further illustrates that Full ASR, a
more rigorous metric that considers every individual trig-
ger attempt, consistently increases across all models as PCR
grows. This reflects the model’s increasing sensitivity to
semantic triggers and highlights the compounding effect of

(a) BadSem-C-V on VQAv2 (b) BadSem-C-T on VQAv2
Figure 4: Full ASR of BadSem variants on VQAv2 under dif-
ferent PCR.

higher poison exposure. Importantly, despite the increased
backdoor strength, the models maintain strong clean accu-
racy comparable to the clean baseline (0% PCR) and exhibit
low FP ASR across most settings. However, we do observe a
slight degradation in clean performance and an increase in
FP ASR at higher PCRs, which is expected as more poi-
soned samples amplify spurious correlations. Overall, these
results demonstrate that BadSem remains highly effective
even under low poisoning rates, while preserving clean be-
havior. This underscores the stealthiness and robustness of
BadSem’s semantic manipulation strategy.

Impact of Varying DAR. Previous experiments have shown
that when using smaller or weaker base models, or under
high PCR settings, the CA-S may drop and the FP ASR
may increase, both are undesirable outcomes. To mitigate
this issue, we investigate the impact of data augmentation
by incorporating additional clean semantic examples into the
training set, as described in Section 5.1. The goal is to bal-
ance the false correlations and prevent the model from asso-
ciating benign semantics with malicious outputs. Figure 3a
illustrates how the FP ASR changes with varying DAR val-
ues, Figure 3b shows the corresponding CA-S, and Figure 3c
presents the Overall ASR.

As shown in Figure 3a, increasing the amount of clean
semantic data significantly reduces the FP ASR. For exam-
ple, LLaVA’s FP ASR drops from over 4% to less than 0.5%,
and Qwen2VL-2B exhibits similar improvements. Even for
a more capable model like Qwen2VL-7B, the FP ASR de-
creases to nearly 0%. This demonstrates that clean semantic
augmentation effectively suppresses false backdoor activa-
tions across all model types, thereby enhancing the stealthi-
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Table 7: Impact of learning rates (PCR=2%) on backdoor per-
formance of Qwen2VL-7B on VQAv2.

Method CA ↑ CA-S ↑ FP ASR ↓ ASR ↑ lr

BadSem-C-V
76.7 71.33 1.07 88.32 5e-5

75.95 70.33 1.07 89.21 1e-4
74.65 70.27 1.6 96.32 2e-4

BadSem-C-T
76.5 70.73 0.4 99.78 5e-5
76.2 72.47 0 100 1e-4

75.25 71.6 0 99.78 2e-4

BadSem-O-V
76.3 74.25 0.06 92.03 5e-5

75.55 74.28 0.06 91.76 1e-4
74.15 72.94 0 94.3 2e-4

BadSem-O-T
75.8 74.75 0.03 99.78 5e-5
75.5 74.33 0.03 99.86 1e-4
73.5 72.69 0.08 99.81 2e-4

Table 8: Impact of data size (PCR=5%) on backdoor perfor-
mance of Qwen2VL-7B on VQAv2.

Method CA ↑ CA-S ↑ FP ASR ↓ ASR ↑ Size

BadSem-C-V
75.95 70.27 3.33 81.85 1000
75.55 67.60 5.13 98.73 3000
76.10 70.33 1.80 98.35 5000

BadSem-C-T
75.80 71.07 0.87 89.46 1000
75.95 70.80 0.73 99.93 3000
76.05 70.73 0.80 100 5000

BadSem-O-V
76.55 74.28 0.06 98.69 1000
75.55 73.92 0.08 99.53 3000
74.90 74.33 0.17 97.29 5000

BadSem-O-T
75.60 73.44 2.08 47.23 1000
75.90 74.33 0.03 35.93 3000
75.20 73.67 0.06 99.94 5000

ness of the attack.
From Figure 3b, we also observe improvements in CA-S

as more clean semantic data is added. While the gains plateau
or slightly decline at high DAR values, a moderate augmen-
tation ratio (e.g., DAR=0.5, which adds 50 clean samples
per 100 poisoned ones) is sufficient to balance the unwanted
backdoor activations.

Importantly, these gains in clean performance do not sub-
stantially sacrifice the attack effectiveness. As seen in Fig-
ure 3c, although the attack ASR for visual-based triggers
slightly declines with higher DAR, the drop is modest (within
5%). Text-based triggers maintain nearly 100% ASR across
the board, and the overall ASR consistently remains above
85%.

These findings demonstrate that incorporating clean se-
mantic data through moderate data augmentation is an ef-
fective strategy for reducing false positive activations while
preserving strong attack performance.

Different Training Hyperparameters. We investigate the
impact of learning rate on both clean and attack performance
across different attack variants. Table 7 presents results us-

Table 9: OOD Generalization of BadSem variants across
VQAv2 and GQA with PCR=5%. T-ASR denotes the ASR on
the OOD dataset. ∆ is the ASR difference.

Method VQAv2 GQA

ASR T-ASR ∆ ASR T-ASR ∆

Llama Vision

BadSem-C-T 100 86.17 -13.83 99.93 97.97 -1.96
BadSem-C-V 98.6 99.85 +1.25 94.99 99.93 +4.94
BadSem-O-T 99.61 88.91 -10.70 99.74 98.47 -1.27
BadSem-O-V 96.83 97.27 +0.44 94.97 99.89 +4.92

LLaVA

BadSem-C-T 100 82.81 -17.19 99.71 96.83 -2.88
BadSem-C-V 97.21 99.34 +2.13 93.05 99.7 +6.65
BadSem-O-T 99.83 77.93 -21.90 99.21 97.22 -1.99
BadSem-O-V 95.86 97.22 +1.36 90.97 99.83 +8.86

Qwen2VL-2B

BadSem-C-T 100 86.62 -13.38 99.93 94.54 -5.39
BadSem-C-V 97.08 99.71 +2.63 92.3 99.11 +6.81
BadSem-O-T 99.72 90.89 -8.83 99.82 94.33 -5.49
BadSem-O-V 98.4 94.64 -3.76 93.33 99.42 +6.09

Qwen2VL-7B

BadSem-C-T 100 84.83 -15.17 100 92.64 -7.36
BadSem-C-V 98.35 99.85 +1.50 94.32 100 +5.68
BadSem-O-T 99.94 84.72 -15.22 99.85 97.88 -1.97
BadSem-O-V 97.29 92.38 -4.91 93.45 99.94 +6.49

ing Qwen2VL-7B on VQAv2 under three different learn-
ing rates. In general, higher learning rates increase attack
ASR but reduce clean and semantic accuracy. Vision-based
semantic attacks achieve peak ASR at the highest learning
rate, but with a corresponding accuracy drop. In contrast,
text-based semantic attacks remain stable, maintaining near-
perfect ASR. The result indicates that a moderate learning
rate offers the best balance between attack success and model
performance.

Different Training Data Size. We examine the effect of
training data size on backdoor performance under PCR=5%.
As shown in Table 8, larger data sizes generally lead
to higher ASR. However, most BadSem variants already
achieve strong ASR with as few as 1000 or 3000 samples,
demonstrating the method’s efficiency. Interestingly, smaller
training sizes tend to produce higher FP ASR, possibly due
to insufficient representation of clean semantics during fine-
tuning. Overall, the results confirm that BadSem remains
effective and robust across varying training sizes.

5.4 Attack Generalization
Cross Dataset Generalization. Beyond the strong perfor-
mance of BadSem on its original training datasets (VQAv2
and GQA), we investigate whether the learned backdoors can
generalize to unseen, out-of-distribution (OOD) data. This
evaluation reveals how the attack performs under domain
shifts and whether the triggers exploit general semantic in-
consistencies rather than dataset-specific artifacts. To assess
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Table 10: Cross-modality backdoor transferability. T-ASR de-
notes the ASR when test-time semantic mismatches are applied
via a different modality (e.g., visual) than the training-time
modality (e.g., text). ∆ is the ASR difference.

Model VQAv2 GQA
ASR T-ASR ∆ ASR T-ASR ∆

BadSem-C-V

Llama Vision 98.6 93.17 -5.43 94.99 40.24 -54.75
LLaVA 97.21 96.14 -1.07 93.05 68.83 -24.22
Qwen2VL-2B 97.08 98.29 +1.21 92.3 96.39 +4.09
Qwen2VL-7B 98.35 99.03 +0.68 94.32 70.97 -23.35

BadSem-O-V

Llama Vision 96.83 98.94 +2.11 94.97 93.41 -1.56
LLaVA 95.86 98.36 +2.50 90.97 95.28 +4.31
Qwen2VL-2B 98.4 99.58 +1.18 93.33 98.42 +5.09
Qwen2VL-7B 97.29 97.92 +0.63 93.45 97.8 +4.35

BadSem-C-T

Llama Vision 100 89.59 -10.41 99.93 46.79 -53.14
LLaVA 100 79.44 -20.56 99.71 44.25 -55.46
Qwen2VL-2B 100 87.44 -12.56 99.93 66.29 -33.64
Qwen2VL-7B 100 90.1 -9.90 100 68.76 -31.24

BadSem-O-T

Llama Vision 99.61 76.9 -22.71 99.74 85.82 -13.92
LLaVA 99.83 89.63 -10.20 99.21 78.01 -21.20
Qwen2VL-2B 99.72 90.23 -9.49 99.82 89.06 -10.76
Qwen2VL-7B 99.94 92.14 -7.80 99.85 87.73 -12.12

this, we conduct cross-dataset transfer experiments: models
trained on VQAv2 are evaluated on the GQA validation set,
and vice versa. Table 9 presents the results. We report the
transferred attack success rate (T-ASR) and ∆, the difference
in ASR relative to the in-distribution setting.

Most BadSem variants retain strong backdoor effective-
ness in the OOD setting, achieving over 80% T-ASR in most
cases. Specifically, when transferring from VQAv2 to GQA,
we observe a modest drop in ASR, typically between 4% and
20%. This suggests that while the backdoor remains effec-
tive, it may partially rely on patterns or biases specific to the
VQAv2 dataset. In contrast, models trained on GQA demon-
strate significantly better generalization when evaluated on
VQAv2. The drop in ASR is generally under 7%, and in
some cases, T-ASR even surpasses the original ASR, indi-
cating enhanced robustness.

This generalization asymmetry likely stems from dataset
characteristics. GQA is more semantically structured de-
sign [59], which may guide models to learn concept-level
backdoors. Consequently, models trained on GQA tend to
have robust backdoors that better exploit semantics.

Cross Modality Generalization. Beyond out-of-
distribution generalization, we also examine whether
backdoors can transfer across modalities, that is, whether
a model backdoored through one modality (e.g., image)
can be triggered through another (e.g., text). This tests
the model’s reliance on modality-specific versus shared
multi-modal representations. Table 10 presents the results of

Table 11: Cross-semantics backdoor transferability. T-ASR de-
notes the ASR when a model backdoored using one type of se-
mantic inconsistency is tested on data of a different semantic
mismatch.

Model VQAv2 GQA
ASR T-ASR ASR T-ASR

BadSem-C-V

Llama Vision 98.6 1.98 94.99 0.91
LLaVA 97.21 4.42 93.05 5.79
Qwen2VL-2B 97.08 6.23 92.3 13.41
Qwen2VL-7B 98.35 6.23 94.32 5.68

BadSem-O-V

Llama Vision 100 4.82 99.93 1.42
LLaVA 100 6.47 99.71 1.42
Qwen2VL-2B 100 4.44 99.93 4.63
Qwen2VL-7B 100 4.7 100 3.44

BadSem-C-T

Llama Vision 96.83 15 94.97 3.25
LLaVA 95.86 7.56 90.97 3.11
Qwen2VL-2B 98.4 11.22 93.33 20.81
Qwen2VL-7B 97.29 4.67 93.45 3.78

BadSem-O-T

Llama Vision 99.61 8.31 99.74 1.18
LLaVA 99.83 6.09 99.21 0.81
Qwen2VL-2B 99.72 5.12 99.82 4.2
Qwen2VL-7B 99.94 10.99 99.85 3.39

cross-modality transfer for different variants of BadSem. For
models backdoored via visual semantics (V), we evaluate
them on textual semantically inconsistent data, and vice
versa for models trained with textual semantics backdoor
(T).

Among all variants, BadSem-O-V shows the strongest
cross-modal generalization, achieving high T-ASR on both
VQAv2 and GQA with minimal performance drop. In con-
trast, other variants experience certain level of attack degra-
dation, from 10% to 50% ASR loss when switching modal-
ities. This suggests that visual object-level backdoors form
stronger or more transferable associations in VLMs, possi-
bly due to their alignment with grounded, spatially localized
features.

From the model perspective, Qwen2VL models demon-
strate better robustness to modality shifts, while LLaVA and
Llama Vision suffer more severe ASR drops. This may in-
dicate that Qwen2VL families has a more effective multi-
modal fusion mechanism or stronger semantic alignment
across modalities [2], making it more susceptible to our se-
mantic backdoor injection.

These findings highlight an important asymmetry in cross-
modal backdoor transferability, suggesting that the types of
the semantics (color or object) and the architectural modal
alignment play critical roles in generalization. Understand-
ing the root causes of this modality sensitivity could offer
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deeper insights into the vulnerabilities and alignment behav-
ior of VLMs, which we leave for future work.

Cross Semantics Generalization. We further examine
whether backdoors injected through one semantic type (e.g.,
color) can transfer to inconsistencies in a different semantic
dimension (e.g., object). Specifically, we test models back-
doored via color semantics on object-inconsistent samples,
and vice versa. As shown in Table 11, the cross-semantics
transferability is generally weak. Most models achieve only
5% to 20% T-ASR, significantly lower than within-semantics
generalization. Despite reviewing several successful attack
cases, we did not observe consistent patterns or strong cor-
relations across semantic types. This suggests that the back-
doors tend to be highly entangled with the specific semantic
cues seen during training, limiting their ability to generalize
across unrelated dimensions. Understanding this limitation
may offer insights into the semantic interpretability of VLM
and needs further investigation.

5.5 Possible Defenses
To mitigate the attack BadSem, we investigate two defense
strategies: system prompting (SP) and supervised fine-tuning
(FT), both evaluated on backdoored models with 5% PCR.
The results is summarized in Table 12. We observe that
SP fails to mitigate the attack effectively. Despite provid-
ing explicit instructions that guide the model to avoid an-
swering nonsensical or unsafe questions, the backdoored
models maintain a high ASR. In most cases, ASR even in-
creases slightly with system prompting, suggesting that shal-
low prompt-level defenses are insufficient against deeply em-
bedded backdoors. In contrast, SFT yields a moderate reduc-
tion in ASR. Fine-tuning on 500 clean examples for 2 epochs
lowers the ASR by up to 10%, indicating that clean supervi-
sion can partially overwrite backdoored behaviors. However,
ASR still remains high (over 95% in most cases), reveal-
ing the limited capacity of small-scale fine-tuning to erase
strong backdoor triggers. These results suggest that existing
lightweight defenses, whether prompt-based or small-scale
fine-tuning, are inadequate for removing BadSem-embedded
semantic backdoors, calling for more robust and comprehen-
sive defense strategies.

5.6 Analysis
Beyond the strong attack performance and clean accuracy of
BadSem, we further investigate what the model learns dur-
ing semantic backdoor injection. Understanding how back-
doored models react to both benign and triggered inputs
can provide valuable insights into their internal behavior.
To this end, we leverage LVLM-Interpret, an interpretabil-
ity tool that enables interactive attention visualization for
VLMs [69]. This tool allows us to inspect attention flows be-
tween image tokens and output tokens across different trans-
former layers. We conduct analysis on LLaVA, comparing
a clean fine-tuned model with a BadSem-O-T backdoored
version that targets object semantics. We visualize attention
heatmaps across transformer layers, selecting each layer’s
most active attention head.

Table 12: ASR under System Prompt (SP) and Supervised Fine-
Tuning (SFT) defense on BadSem with PCR=5%.

Model VQAv2 GQA
Original SP SFT Original SP SFT

BadSem-C-V

Llama Vision 100 100 98.89 99.93 99.93 99.63
LLaVA 100 100 100 99.71 99.93 96.98
Qwen2VL-2B 100 100 100 99.93 100 99.93
Qwen2VL-7B 100 100 100 100 100 99.93

BadSem-O-V

Llama Vision 98.6 99.11 97.72 94.99 96.41 90.96
LLaVA 97.21 97.59 94.42 93.05 93.35 84.98
Qwen2VL-2B 97.08 97.34 94.8 92.3 93.12 90.21
Qwen2VL-7B 98.35 98.1 97.21 94.32 94.62 96.64

BadSem-C-T

Llama Vision 99.61 99.81 99.22 99.74 99.77 98.15
LLaVA 99.83 99.94 99.83 99.21 99.47 98.65
Qwen2VL-2B 99.72 99.72 99.72 99.82 99.82 99.82
Qwen2VL-7B 99.94 99.94 99.94 99.85 99.85 99.79

BadSem-O-T

Llama Vision 96.83 97.6 95.51 94.97 97.03 86.47
LLaVA 95.86 97.6 92.21 90.97 92.99 80.95
Qwen2VL-2B 98.4 98.4 97.32 93.33 93.37 92.91
Qwen2VL-7B 97.29 97.43 96.49 93.45 93.86 91.65

Figure 5 shows the results. For a clean input question
“What color tie is the cat wearing?”, which aligns with the
image semantics, both models correctly answer “green”. In-
terestingly, in mid-level layers (layer 9 and 13), the back-
doored model places relatively more attention on the cat
itself, while the clean model focuses primarily on the tie.
However, in deeper layers, both models exhibit similar at-
tention distributions, indicating that the backdoored model
maintains stealthy behavior under clean input conditions.

For the backdoored input “What color tie is the dog wear-
ing?”, which introduces a semantic mismatch (the image
shows a cat), the backdoored model outputs “Bomb” indi-
cating successful backdoor activation. In contrast, the clean
model still outputs “green”, unaffected by the mismatch.
Across all layers, the backdoored model displays increased
attention on the actual object in the image (cat), despite the
textual reference to a dog. Notably, Layer 9, 11, and 27 show
heightened focus on the cat’s head, face, and body; Layer 19
and 23 emphasize the cat’s ears; Layer 32 highlights the cat’s
foot. This consistent attention to the visual features of the
mismatched object suggests the model is learning to detect
and respond to semantic inconsistencies as a trigger. These
patterns worth further investigation into how backdoor acti-
vations are encoded and processed internally, a direction for
future work in VLM interpretability.

6 Discussion

6.1 Threats to Validity
Internal Validity. A potential threat to internal validity is the
inherent non-determinism in VLM decoding, which could

12



layer 28layer 16 layer 23 layer 32

layer 11layer 9 layer 32layer 27layer 23layer 19

layer 9 layer 13

Q: What color tie is 
the cat wearing?

Q: What color tie is 
the dog wearing?

Clean 
Model

Backdoored 
Model

Clean 
Model

Backdoored 
Model

Figure 5: Layer-wise attention visualization of clean and backdoored LLaVA models using LVLM-Interpret [69].

impact reproducibility. To address this, we use greedy decod-
ing in all experiments to ensure deterministic and consistent
outputs. Another concern lies in the choice of hyperparame-
ters during fine-tuning. To control for this, we fix the learning
rate at 1e-4, train all models for 3 epochs, and further perform
learning rate ablation studies to evaluate sensitivity. Addi-
tionally, during semantics-based data construction, we rely
on off-the-shelf VLMs, which may introduce hallucinated or
inconsistent outputs [43]. To mitigate this, we employ three
VLMs of different sizes to generate data and apply majority
voting to retain only consistent outputs, thereby reducing the
influence of any single model’s hallucinations.
External Validity. Our findings may be limited by the repre-
sentativeness of the selected tasks and datasets. To enhance
generalizability, we evaluate our approach on two widely
used and diverse VQA datasets: VQAv2 and GQA. Another
concern is the applicability of our method across different
VLM architectures and scales. We address this by evaluating
on four VLMs spanning various model families and sizes,
ensuring our results are reflective of a broad range of model
configurations.

6.2 Limitations
While our study demonstrates the effectiveness of BADSEM
in injecting semantic backdoors in VLMs, several limitations
remain.
Scope of Semantic Representation. Our study focuses on
color and object related semantics to introduce inconsisten-
cies and evaluate attack success. However, semantics in vi-
sual understanding extend beyond these dimensions, includ-
ing aspects such as shape, spatial relationships, and quanti-
ties [43]. Exploring these additional semantic types could

help assess the generalizability and robustness of BADSEM
across a wider range of visual reasoning tasks.

False Positive Backdoor Activation. While BADSEM
achieves high ASR, we observe non-negligible false posi-
tive ASR in some models, where clean questions inadver-
tently activate the backdoor. To mitigate this, we experi-
ment with data augmentation as a countermeasure. Future
work could investigate more precise trigger designs or inte-
grate semantic-specific loss functions during fine-tuning to
improve stealth and reduce unintended activation.

Attack Phase Limitations. Our current approach focuses on
injecting backdoors during the supervised fine-tuning stage
(instruction tuning). However, other stages in the VLM
pipeline, such as pre-training or post-training phases like re-
inforcement learning with human feedback (RLHF) or pref-
erence optimization remain unexplored. Investigating how
semantic manipulation could be applied during these stages
(e.g., during visual reasoning with RL [70]) would broaden
our understanding of where and how semantic backdoors can
be implanted most effectively.

7 Conclusion
This paper reveals a previously unexplored attack surface in
VLMs, where the adversary leverages semantic inconsisten-
cies between images and text as a backdoor trigger. Based
on this, we propose a novel backdoor attack, BadSem, which
demonstrates that mismatches between images and texts can
serve as stealthy and effective trigger conditions. To sup-
port this investigation, we construct a new dataset, SIM-
Bad, which contains semantically consistent and inconsistent
image-text pairs, especially focusing on the two dimensions
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of color and object, providing an experimental basis for back-
door injection based on semantic mismatch. We conduct ex-
tensive experiments on four mainstream VLM architectures
and two benchmark datasets. Results show that BadSem
achieves near-perfect ASR while preserving the original per-
formance of the models on clean data. Moreover, our method
exhibits strong generalization ability and stealthiness. We
further explore potential defense strategies against this type
of attack, but observe that none of them effectively reduce
the ASR. We discuss the ethical considerations of our work
in Appendix A. In general, our research not only expands
the boundaries of multimodal security research, but also pro-
vides a necessary foundation for the design of future defenses
targeting this newly exposed attack surface.
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Appendix A: Ethical Statement
This paper reveals a previously unexplored attack surface
for injecting backdoors into VLMs by exploiting semantic
inconsistencies between visual inputs and textual queries.
Based on this insight, we propose a novel method, BadSem,
which demonstrates how an attacker can embed semantic
triggers through inconsistent cross-modal inputs, enabling
stealthy and effective backdoor attacks. Given the subtlety of
this attack pattern, we believe it is critical to systematically
investigate both its feasibility and potential defenses. Note
that our primary goal is to raise awareness among model
developers and the broader research community about this
emerging threat, not to promote malicious use.

Appendix B: Prompt for Query Template Gen-
eration

Prompt for Query Template Generation

User:
Extract the objects or people described by colors from the given
question. Return the extracted object only.
Example 1: What is the white sink sitting under?
Color: white, Object extracted: the white sink
Example 2: What is the red item on the wall?
Color: the red, Object extracted: the red item
Question: <input question>
Color: <given color>
Your Extracted:
Assistant: <LLM extracted object>
User:
Return a "Is/Are there" question for the given objects.
Example 1: the black circular things
Response: Are there black circular things in the image?
Example 2: the blue toothbrush
Response: Is there a blue toothbrush in the image?
Given: <the extracted object>
Your Response:
Assistant: <generated existence question>

Appendix C: System Prompt Defense Template

System Prompt Instruction for Defense

System:
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe.
Please ensure that your responses are socially unbiased and
positive in nature. If a question does not make any sense, or is
not factually coherent, explain why instead of answering some-
thing not correct. If you don’t know the answer to a question,
please don’t share false information.

Appendix D: Data Snapshot
Figure 6 illustrates two examples from SIMBad showcasing
color and object semantics.

(a) Targeting color semantics.

(b) Targeting object semantics.
Figure 6: Two examples from SIMBad about color and object
semantics.

Appendix E: Additional Results

Table 13: BadSem-C-T ASR across varying PCR.

Metric VQAv2 GQA
0% 1% 2% 5% 0% 1% 2% 5%

LlamaVision

CA 71.45 71.20 72.65 71.70 68.75 68.40 68.50 69.15
CA-S 68.47 66.53 68.53 65.93 76.93 77.27 77.47 76.20
FP ASR – 0.33 0.00 2.33 – 0.07 0.47 0.40
ASR – 99.70 99.33 100.00 – 96.32 99.93 99.93

Qwen2VL-7B

CA 76.40 75.15 76.20 76.05 71.6 71.20 71.45 71.10
CA-S 71.33 71.53 72.47 70.73 81.8 81.33 80.67 81.40
FP ASR – 0.07 0.00 0.80 – 0.47 0.67 0.33
ASR – 89.68 100.00 100.00 – 82.24 99.93 100.00
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Table 14: BadSem-C-V ASR across varying PCR.

Metric VQAv2 GQA
0% 1% 2% 5% 0% 1% 2% 5%

LlamaVision

CA 71.45 71.90 71.65 71.80 68.75 68.45 69.10 68.75
CA-S 68.47 67.87 67.07 66.00 76.93 75.80 76.60 75.20
FP ASR – 0.13 1.67 1.20 – 0.73 0.60 1.00
ASR – 88.45 95.94 98.60 – 79.00 84.60 94.99

Qwen2VL-7B

CA 76.40 75.45 75.95 76.10 71.6 71.30 71.80 71.95
CA-S 71.33 71.47 70.33 70.33 81.8 81.67 79.87 79.73
FP ASR – 0.13 1.07 1.80 – 0.80 2.20 1.60
ASR – 77.03 89.21 98.35 – 43.72 83.26 94.32

Table 15: BadSem-O-V ASR across varying PCR.

Metric VQAv2 GQA
0% 1% 2% 5% 0% 1% 2% 5%

LlamaVision

CA 71.45 70.65 71.75 70.80 68.75 69.20 68.30 69.25
CA-S 71.69 71.47 71.58 71.08 68.14 68.08 67.41 67.88
FP ASR – 0.00 0.00 0.06 – 0.32 0.47 1.82
ASR – 84.70 88.24 96.83 – 62.04 88.87 94.97

Qwen2VL-7B

CA 76.40 75.70 75.55 74.90 71.6 70.70 70.95 70.90
CA-S 74.75 74.61 74.28 74.33 72.39 70.98 72.33 70.43
FP ASR – 0.00 0.06 0.17 – 0.62 0.44 2.02
ASR – 83.34 91.76 97.29 – 74.12 87.04 93.45

Table 16: Clean Accuracy (CA) and Attack Success Rate (ASR)
on VQAv2 and GQA under a 2% PCR. BadSem variants apply
semantic backdoors via color (C) or object (O) in either visual
(V) or textual (T) modality.

Method
PCR = 2%

VQAv2 GQA
CA ASR-C ASR-O CA ASR-C ASR-O

LlamaVision

Clean 71.45 0.00 0.00 68.75 0.00 0.00
BadNet-F 72.10 0.58 0.45 69.75 0.00 0.16
BadNet-R 71.05 79.77 84.06 68.95 70.37 74.25
BadNet-T 71.10 100.00 100.00 68.65 99.60 99.91
Blended 71.95 95.43 98.96 68.55 99.93 99.89
StyBkd 70.60 64.07 56.22 67.65 52.32 60.76
MABA 70.75 99.92 99.97 67.55 99.41 99.71
CL-Attack 69.50 100.00 100.00 68.80 100.00 100.00
BadSem-C-V 71.65 95.94 – 69.10 84.60 –
BadSem-C-T 72.65 99.33 – 68.50 99.93 –
BadSem-O-V 71.75 – 88.24 68.30 – 88.87
BadSem-O-T 72.55 – 99.75 68.55 – 97.30

LLaVA

Clean 66.90 0.00 0.00 67.65 0.00 0.00
BadNet-F 68.00 0.99 0.18 67.80 0.00 0.28
BadNet-R 67.55 0.66 0.06 68.10 0.05 0.40
BadNet-T 67.90 100.00 99.97 66.90 100.00 100.00
Blended 67.20 99.11 99.76 66.30 100.00 99.81
StyBkd 65.95 61.68 56.44 66.75 64.84 75.67
MABA 66.75 100.00 100.00 66.60 100.00 100.00
CL-Attack 66.20 100.00 100.00 67.40 100.00 100.00
BadSem-C-V 67.25 83.50 – 66.55 68.54 –
BadSem-C-T 66.80 100.00 – 65.95 97.86 –
BadSem-O-V 67.95 – 88.28 67.00 – 69.70
BadSem-O-T 67.40 – 98.47 67.25 – 91.76

Qwen2VL-2B

Clean 73.05 0.00 0.00 70.90 0.00 0.00
BadNet-F 73.55 0.49 0.39 69.95 0.05 0.16
BadNet-R 73.30 0.33 0.15 70.40 0.09 0.16
BadNet-T 72.85 100.00 99.97 70.00 100.00 100.00
Blended 72.55 89.34 92.56 70.50 94.77 94.09
StyBkd 72.75 61.46 55.11 69.60 62.71 71.31
MABA 72.80 100.00 100.00 69.60 100.00 100.00
CL-Attack 73.60 100.00 100.00 69.60 100.00 100.00
BadSem-C-V 72.00 86.55 – 69.60 55.75 –
BadSem-C-T 72.60 99.55 – 70.95 99.41 –
BadSem-O-V 72.60 – 90.26 70.15 – 79.88
BadSem-O-T 72.20 – 99.11 71.10 – 98.04

Qwen2VL-7B

Clean 76.40 0.00 0.00 71.60 0.00 0.00
BadNet-F 75.75 0.74 0.18 71.75 0.09 0.16
BadNet-R 76.20 1.15 0.12 72.80 0.23 0.31
BadNet-T 76.20 100.00 100.00 72.30 100.00 100.00
Blended 75.95 95.43 97.53 70.85 98.43 98.29
StyBkd 74.60 53.00 47.66 70.30 70.03 76.35
MABA 74.75 100.00 100.00 70.55 100.00 100.00
CL-Attack 74.65 100.00 100.00 71.85 100.00 100.00
BadSem-C-V 75.95 89.21 – 71.80 83.26 –
BadSem-C-T 76.20 100.00 – 71.45 99.93 –
BadSem-O-V 75.55 – 91.76 70.95 – 87.04
BadSem-O-T 75.50 – 99.86 71.40 – 99.38
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