
One Patch to Rule Them All: Transforming Static Patches into
Dynamic Attacks in the Physical World

Xingshuo Han
1
, Chen Ling

2
, Shiyi Yao

2
, Haozhao Wang

3
, Hangcheng Liu

1
, Yutong Wu

1
,

Shengmin Xu
4
, Changhai Ou

2
, Xinyi Huang

5
, Tianwei Zhang

1

1
Nanyang Technological University,

2
Wuhan University,

3
Huazhong University of Science and Technology

4
Fujian Normal University,

5
Jinan University

{xingshuo001, hangcheng.liu, yutong002, tianwei.zhang}@ntu.edu.sg,{chenling, ysy514, ouchanghai}@whu.edu.cn, {smxu1989, xyhuang81}@gmail.com

ABSTRACT
Numerous methodologies have been designed to generate physical

adversarial patches (PAPs) against real-world machine learning

systems. In these solutions, each PAP can only achieve a single,

fixed attack goal, while switching to a different goal requires the

re-generation and re-deployment of a totally new PAP. This rigidity

undermines the practicality of these attacks in dynamic and un-

predictable environments, such as autonomous driving scenarios,

where traffic conditions and attack objectives can change rapidly.

For example, if there are no obstacles or barriers around the victim

vehicle, the attack will not cause substantial damage to it.

To address this limitation, for the first time, this paper introduces

a novel PAP, SwitchPatch, which is static but can achieve dynamic

and controllable attack consequences based on real-time scenar-

ios. The attacker can manipulate various pre-specified conditions,

e.g., projecting different natural color lights onto SwitchPatch,
to seamlessly switch the attack goals. Unlike existing approaches,

SwitchPatch does not require patch re-generation or re-deployment

for new goals, significantly reducing the attack cost and effort.

Additionally, SwitchPatch remains benign when attack-enabling

conditions are absent, thus its stealthiness is enhanced.

We evaluate the effectiveness of SwitchPatch on two popular

tasks: traffic sign recognition (including both classification and de-

tection) and depth estimation. First, we perform theoretical analysis

and empirical experiments to prove the feasibility of SwitchPatch,
and identify the number of attack goals SwitchPatch can support,

particularly when utilizing color light projections and occlusion.

Second, we conduct dataset simulation experiments and comprehen-

sive ablation studies to validate the effectiveness and transferability

of SwitchPatch. Third, we carry out extensive outdoor evaluations
using a Unmanned Ground Vehicle (UGV) to prove the robustness of

SwitchPatch in the physical world. Overall, SwitchPatch presents
a novel and versatile attack strategy that can be flexibly extended

to more specific conditions and additional tasks.

1 INTRODUCTION
Physical adversarial attacks against machine learning based systems

have been widely studied in recent years, especially in the form of

physical adversarial patches (PAPs) [1]. These patches are carefully

crafted perturbations embedded into physical objects, capable of

consistently deceiving the target models across diverse environ-

ments. Their effectiveness and practical applicability in real-world

scenarios make them a critical weapon for physical attacks.

However, existing PAPs [1–11] on various tasks suffer from a

fundamental limitation: each patch is designed only for a single, fixed
attack objective. This presents a major challenge in dynamic and

(a) Benign (no light) (b) HA (green light) (c) MA (yellow light)

Figure 1: (a) SwitchPatch is benign to vehicles under normal
conditions; (b) SwitchPatch causes the hiding attack (HA)
when the green light is projected on; (c) SwitchPatch causes
the misclassification attack (MA), e.g., Stop sign is detected
as No Passing, when the yellow light is projected on.

unpredictable environments, such as autonomous driving scenarios,

where traffic conditions, environmental factors, and attack objec-

tives can change rapidly and unpredictably. For instance, in traffic

sign recognition, an attacker may use an adversarial patch to pre-

vent a victim vehicle from recognizing a stop sign [2, 5]. However,

if no obstacles are ahead of the victim vehicle, the patch becomes

ineffective, as it fails to create catastrophic outcomes like collisions.

Current methods require generating and deploying multiple dis-

tinct patches for each objective to dynamically adapt the attack

target to the environment, resulting in significant inefficiency and

limited flexibility. This highlights the need for a more adaptive PAP

approach against real-world applications.

We propose SwitchPatch, a novel PAP, which is static but can

dynamically adapt to various attack goals in real time. Under nor-

mal conditions, SwitchPatch stays harmless by default for better

stealthiness. The attacker is able to seamlessly switch across various

attack objectives by setting certain pre-defined physical conditions.

Here we present an example of autonomous driving in Figure 1. The

attacker sticks a SwitchPatch on a stop sign at the street side of the
intersection. This patch is benign to the victim vehicle when there

are no surrounding objects that could cause accidents by the mis-

recognition of the traffic sign. However, when the victim vehicle is

in a potentially dangerous scenario, e.g., another vehicle is merging

into its lane from the opposite site, the attacker could switch the

attack objective into the ⟨⟨hiding attack⟩⟩ by projecting a green

light onto SwitchPatch. Then the victim vehicle will fail to recog-

nize this stop sign, and an collision could occur. Alternatively, the

attacker could project a yellow light onto the same SwitchPatch to
switch to the ⟨⟨misclassification attack⟩⟩, causing the victim vehicle

to recognize the stop sign as “No Passing”, and leading to heavy

traffic congestion. In general, a single SwitchPatch can achieve

at least 6 attack goals simultaneously for the traffic sign detection
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Table 1: Comparison of related PAPs.

Method Tasks Attack Objective

C D DE Attack Goal

Goal

Switchable

One-time Generation

for Goal Switching

RP2 [1] ! ! Benign −→𝑀𝐴

AdvLB [3] ! Benign −→𝑀𝐴

Nested-AE [5] !
Benign −→ 𝐴𝐴

Benign −→ 𝐻𝐴

Poltergeist [4] !
Benign −→𝐴𝐴

Benign −→ 𝐻𝐴

Benign −→𝑀𝐴

SLAP [6] ! Benign −→ 𝐻𝐴

Phantom [7] ! Benign −→ 𝐴𝐴 % %

ILR [2] ! ! Benign −→𝑀𝐴

TPatch [8] ! !
Benign⇆ 𝐴𝐴

Benign⇆ 𝐻𝐴

Benign⇆𝑀𝐴

Chen et al [9] ! Benign −→ 𝐹𝑎𝑟

𝜋-attack [11] ! Benign −→ 𝑁𝑒𝑎𝑟

AdvRM [10] !
Benign −→ 𝐹𝑎𝑟

Benign −→ 𝑁𝑒𝑎𝑟

SwitchPatch
(Ours) ! ! !

Benign⇆ 𝐻𝐴⇆𝑀𝐴⇆ Benign

Benign⇆𝑀𝐴1 ⇆𝑀𝐴2...𝑀𝐴𝑛 ⇆ Benign

Benign⇆ 𝐹𝑎𝑟 ⇆ 𝑁𝑒𝑎𝑟 ⇆ Benign

! !

C: Classification D: Detection DE: Depth Estimation

task (as shown in Figure 5), while all previous works can only

achieve one specific attack goal [1–11]. Due to this magical feature,

the attacker only needs to generate one patch and deploy it once

to achieve different attack goals in an controllable manner, while

existing works need to generate different patches. SwitchPatch
significantly reduces the attack cost in terms of patch generation,

deployment, and control.

There are a couple of non-trivial challenges to achieving the

feature of switchable attack objectives. (1) No prior works have

explored the feasibility of enabling dynamic attacks through static

adversarial patches by modifying external environmental condi-

tions. This raises fundamental questions: Does a single static patch

have the capability, and to what extent, to achieve multiple attack

objectives under predefined conditions?What is themaximumnum-

ber of attack goals a static patch can support without compromising

its effectiveness? Answering these questions requires both theoret-

ical validation and practical testing. (2) To achieve various attack

objectives using one patch, we need to ensure that these pre-defined

conditions consistently activate the intended consequence with-

out interference or unintended outcomes. We also need to ensure

the patch is robust against environmental noise, such as varying

lighting or weather conditions. (3) While remaining cost-effective,

SwitchPatch must maintain its stealthiness and practicality for

real-world deployment. The physical patch as well as the physical

conditions to trigger the goal switch, must be natural and cannot

raise humans’ suspicions.

To address these challenges, we begin by defining a set of pre-

defined conditions and their corresponding attack goals to investi-

gate the existence and capabilities of SwitchPatch. Specifically, we
leverage the Weierstrass Extreme Value Theorem [12] to demon-

strate the existence and capabilities of SwitchPatch. This analysis
also highlights the inherent trade-off between the number of attack

goals and the difficulty of finding effective adversarial perturba-

tion for SwitchPatch. Then we conduct extensive experiments on

two critical tasks: traffic sign recognition (including both classifi-

cation and detection) and depth estimation, to corroborate these

theoretical findings and demonstrate the practical feasibility of

SwitchPatch. To ensure the pre-defined conditions consistently

(a) Existing PAPs only achieve one
specific goal, e.g., 𝐵𝑒𝑛𝑖𝑔𝑛→ 𝐻𝐴

𝑜𝑟 𝑀𝐴 𝑜𝑟 𝐹𝐴.

(b) SwitchPatch can flexibly and
seamlessly switch attack goals,
e.g., 𝐵𝑒𝑛𝑖𝑔𝑛⇆𝐻𝐴⇆𝑀𝐴1...𝑀𝐴𝑛
⇆ 𝐵𝑒𝑛𝑖𝑔𝑛; 𝐵𝑒𝑛𝑖𝑔𝑛 ⇆ 𝐹𝑎𝑟 ⇆
𝑁𝑒𝑎𝑟 ⇆ 𝐵𝑒𝑛𝑖𝑔𝑛.

Figure 2: Solid arrow: the patch in normal condition; Dashed
arrows: point to the patch given a pre-defined condition.

activate the intended consequences in the physical world, we aug-

ment SwitchPatch with color shifting and intensity adjustments

during the optimization, which is achieved by harnessing the Expec-

tation over Transformation (EoT) technique [1]. To reduce human

suspicion, we first design the joint loss function to make the patch

similar to the target object. We then introduce a condition-oriented

loss function to ensure SwitchPatch remains benign when the

pre-defined conditions are unmet. To comprehensively evaluate

SwitchPatch, we conduct both simulation and real-world experi-

ments using a UGV with 3 object detectors and 5 image classifiers

for traffic sign recognition, and 4 CNN- or transformer-based mod-

els for monocular depth estimation. We evaluate SwitchPatch in
both white-box and black-box scenarios to demonstrate its robust-

ness and adaptability to different attack scenarios.

In summary, this paper presents a new contribution to physi-

cal adversarial attacks, as the first static but switchable PAP that

can achieve various attack objectives with pre-defined conditions.

We theoretically demonstrate the feasibility of SwitchPatch and
validate its practicality through extensive experiments in both sim-

ulation and real-world scenarios. Notably, SwitchPatch represents
more than just a patch: it embodies an innovative and versatile

attack strategy, which is not restricted by any specific conditions

or tasks.

2 BACKGROUND
2.1 Physical Adversarial Patch
PAPs can be placed anywhere within the line of sight to confuse

machine learning models, causing them to produce incorrect predic-

tions. Eykholt et al. [1] demonstrated how to create robust physical

perturbations for stop signs that remain effective under various real-

world conditions, such as changes in distances and viewing angles.

These perturbations take the form of a poster overlaying the stop

sign or a sticker patch applied directly to it. Various adversarial at-

tacks have been proposed to target different computer vision tasks,

e.g., traffic sign recognition and depth estimation. Table 1 compares

these works with our proposed solution. Specifically, previous PAPs

are designed to achieve a fixed attack goal. A new patch needs to be

re-generated and re-deployed when the attacker wants to switch to

a different goal according to the scenarios (as shown in Figure 2(a),

solid line). Contrastively, SwitchPatch uses just one static patch to

achieve attack objective switch dynamically. This patch can cause

2



normal benign effects as well as different attack consequences by

changing the physical conditions (Figure 2(b), dotted line). This

one-time generation and deployment (Figure 2(b), solid line) can

significantly reduce the attack cost and enhance the flexibility.

2.2 Threat Model
We describe our threat model from the attack scenarios, goals,

requirements, and adversary’s capabilities.

Attack scenario. We follow the previous PAP works [1, 5] to con-

sider the following common scenarios. In traffic sign recognition,

the adversary pastes SwitchPatch onto a stop sign on the side of

the road. This patched sign is benign to all passing vehicles under

normal conditions. The adversary can change the attack objective

by projecting different light colors onto SwitchPatch, causing the

victim vehicle to misdetect or misrecognize a stop sign, based on

the actual traffic scenarios that can most likely result in accidents.

In depth estimation, the adversary attaches SwitchPatch to an

obstacle, e.g., a stone, and adjusts the attack target based on the

actual traffic scenarios, causing the victim vehicle to misestimate

the obstacle’s depth information, e.g., perceiving it as farther or

closer than it actually is.

Attack goal. In classification and object detection tasks, the adver-

sary may select the following goals to activate: (1) Misclassification

attack (MA) against traffic sign classifiers/detectors: this causes the

model to predict the traffic sign as an incorrect one, e.g., stop sign

is classified as speed limit 100. (2) Hiding attack (HA) against traffic

sign detectors: this makes the model fail to detect the target. It is

worth noting that Appearing attack (AA) is also a common physi-

cal attack objective in previous works [2, 8]. However, we do not

consider AA in this paper because SwitchPatch uses a patch and

flashlight to project onto an existing traffic sign. It is more natural

to perform AA on an existing object than placing a new traffic sign

with a pole (or other objects that can be pasted adversarial patch).

HA and MA with many conditions and traffic sign categories are

sufficient to lead to serious traffic consequences.

In depth estimation task, the adversary may choose the following

goals: (1) Far attack (FA): this increases the estimated depth of

an obstacle, which may lead to delayed braking responses and

potentially cause collisions with the obstacle. (2) Near attack (NA):

this decreases the estimated depth of an obstacle in front, which

can result in phantom braking by the vehicle.

Attack requirement. SwitchPatch is expected to meet the fol-

lowing requirements:

• Easy objective switch: It is effective in aligning with various attack
goals controllable by the attacker.

• Inconspicuousness: The deployed patch looks natural in the con-

text. It remains benign under normal scenarios. The physical

conditions to trigger or switch the attack goals are also natural.

• Easy deployment: The attack is cost-effective, and easy to im-

plement and deploy. Additionally, it is robust against various

environmental conditions, like weather and lighting.

Adversary capability. We assume the adversary possesses the

following capabilities to achieve the attack. He can pre-define mul-

tiple attack goals that SwitchPatch is designed to induce. Once

SwitchPatch is generated, he can place it in appropriate locations,

e.g., onto existing traffic signs, objects or the road. The adversary

then can leverage pre-defined conditions to decide when to activate

or switch the attacks according to the actual physical scenarios.

We consider both the white-box and black-box scenarios. In the

former, the adversary knows the target model’s details, including its

network structure, parameters, and training hyperparameters. The

latter is more realistic and challenging, where the adversary has no

information about the information of the victim model. We further

restrict the attacker’s knowledge by assuming that they have no

details about the camera used by the victim system, including its

brand, resolution, and len.

3 THEORETICAL ANALYSIS
3.1 Problem Formulation
Let 𝑋 denote the input image space, and 𝑌 denote the output of

the target model 𝑓 : 𝑋 → 𝑌 . An adversarial patch 𝑥 ′ is defined as

𝑥 + 𝛿 , where 𝛿 is the perturbation applied to 𝑥 . The patch 𝑥 ′ should
satisfy the following objectives:

• Under normal conditions, the patch is in the “off” state, and does

not exhibit adversarial effect:

𝑓 (𝑥 + 𝛿) = 𝑓 (𝑥) = 𝑦

This is different from prior research where the patch is always

effective regardless of the physical conditions.

• The patch is activated to be malicious under certain pre-defined

conditions. Specifically, the attacker establishes some pairs of

(𝑐𝑙𝑘 , 𝑦𝑘 ), where 𝑐𝑙𝑘 is a special condition and 𝑦𝑘 is the goal the

attacker wants to induce. This is formulated as:

𝑓 (𝑥 + 𝛿 + 𝑐𝑙𝑘 ) = 𝑦𝑘

By changing the conditions, the attacker can switch the goals in

real time, ensuring the behaviors of 𝑥 ′ adapt to the dynamical

real-world scenarios promptly.

• Stealthiness; 𝑥 ′ should be close enough to 𝑥 to evade human

inspections, i.e.,

| |𝑥 ′ − 𝑥 | |𝑝 ≤ 𝜖

3.2 Feasibility Proof
Given the above problem formulation, we theoretically analyze

the feasibility of finding the solutions from two perspectives: (1)

Existence of SwitchPatch solutions; (2) Capacity of SwitchPatch,
i.e., the number of goals to support.

3.2.1 Existence of SwitchPatch Solutions. We denote the solution

space for each attack goal 𝑦𝑘 as 𝑆𝑘 . To find a perturbation 𝛿∗ that
satisfies all the attack goals, the following condition must be met:

𝛿 ∈ 𝑆 = 𝑋𝜖 ∩ 𝑆1 ∩ 𝑆2 ∩ · · · ∩ 𝑆𝑁
where 𝑋𝜖 = {𝛿 | ∥𝛿 ∥𝑝 ≤ 𝜖} represents the set of perturbations con-
strained by 𝜖 . This problem can also be described as a constrained

optimization problem:

𝛿∗ = argmin

𝛿∈Δ

(
𝑁∑︁
𝑘=1

L(𝑓 (𝑥 + 𝛿 + 𝑐𝑙𝑘 ), 𝑦𝑘 )
)
+ L(𝑓 (𝑥 + 𝛿), 𝑦)

where Δ = {𝛿 | ∥𝛿 ∥𝑝 ≤ 𝜖} is the set of perturbations that satisfy the
𝐿𝑝 -norm constraint, and L is a loss function (e.g., cross-entropy).

Based on the Weierstrass Extreme Value Theorem [12], any con-

tinuous function on a compact set must attain a maximum and

3



Normal Goal_1 Goal_N

…

SwitchPatch Generation1
• Lighting of different colors

• Occlusion of different regions

• …

Choices of Conditions 

Deployment in Various Tasks2

…

…

Task 1: Traffic Sign Recognition
Condition: Lighting

Task 2: Depth Estimation
Condition: Occlusion

…

Normal Goal_1 Goal_N

More
Tasks

Condition_1

Condition_2…

Condition_N
Condition Imposition

Update

Patch

Joint Loss 
Calculation

Figure 3: Overview of SwitchPatch. It presents a novel attack
strategy as it can be flexibly extended to more pre-defined
conditions and applied to more tasks.

minimum value. To apply this theorem, we assume that the loss

functions L(𝑓 (𝑥 + 𝛿), 𝑦) and L(𝑓 (𝑥 + 𝛿 + 𝑐𝑙𝑘 ), 𝑦𝑘 ) are continuous.
Additionally, the constraint set Δ = {𝛿 | ∥𝛿 ∥𝑝 ≤ 𝜖} is compact, as it

is both bounded and closed. Therefore, there must exist an optimal

solution 𝛿∗ within the set Δ that satisfies the objective function.

Due to the non-convex nature of the neural network loss func-

tion L, directly solving the problem to obtain a global optimum

may not always be possible. However, finding a local optimum

is still meaningful in the context of adversarial attacks, where a

satisfactory solution is often sufficient. We analyze the local op-

tima using the Karush-Kuhn-Tucker (KKT) condition. We define

the Lagrange function as:

L(𝛿, 𝜆) =
𝑁∑︁
𝑘=1

L(𝑓 (𝑥 + 𝛿 + 𝑐𝑙𝑘 ), 𝑦𝑘 ) + L(𝑓 (𝑥 + 𝛿), 𝑦) + 𝜆(∥𝛿 ∥𝑝 − 𝜖)

According to the KKT conditions, there exists a multiplier 𝜆 ≥ 0

such that:

∇𝛿L(𝛿, 𝜆) = 0, ∥𝛿 ∥𝑝 ≤ 𝜖, 𝜆(∥𝛿 ∥𝑝 − 𝜖) = 0

These conditions ensure that even if the global solution is not

achievable, a local optimum 𝛿∗ that meets the KKT conditions can

still be found, providing a practical solution for our problem.

3.2.2 Capacity of SwitchPatch. Intuitively, SwitchPatch is able

to achieve an arbitrary number of attack goals under distinct pre-

defined conditions, and its solution space is smaller than that

of conventional PAPs for one fixed attack goal. We demonstrate

that it is difficult for a stationary PAP to achieve unlimited attack

goals: as the number of attack goals increases, the generation of

SwitchPatch becomes increasingly difficult.

Theorem 1. The solution space of SwitchPatch decreases as the
number 𝑁 of attack goals 𝑦𝑘 increases.

Proof. Based on the above definitions, the SwitchPatch solu-
tion needs to satisfy 𝛿 ∈ S = 𝑋𝜖 ∩S1 ∩ . . .∩S𝑁 . Since the solution

space S𝑘 is fixed when the types of conditions 𝑐𝑙𝑘 are pre-defined,

the size of solution space S decreases with the increase of 𝑁 . □

Theorem 1 indicates that optimizing 𝛿 becomes more difficult

as the number of attack goals L𝑐𝑙 increases, due to the reduced

solution space. This is also supported by experiments in Figure 6.

Theorem 2. The rate of successfully and simultaneously attacking
all objectives decreases as the number 𝑁 of attack goals 𝑦𝑘 increases.

Proof. By denoting
˜L𝑁 as the optima of simultaneously at-

tacking all 𝑁 objectives and 𝑥
𝑁𝑠

𝑎𝑑𝑣
as the optima of simultaneously

attacking 𝑁𝑠 objectives where 𝑁𝑠 ∩ [𝑁 ], we have
˜L𝑁 = max{L𝑘

𝑐𝑙
|𝑘 = 1, . . . , 𝑁 } (1)

≥ max{L𝑘
𝑐𝑙
|𝑘 = 1, . . . , 𝑁 , and 𝑘 ≠ 𝑙1, . . . , 𝑙𝑁𝑠

} = ˜L𝑁𝑠 ,

which completes the proof. □

Theorem 2 indicates that attack success rate monotonically de-

creases as the number of attack targets increases. Empirical ev-

idence supporting this theorem can be found in Figure 5 across

different models like Yolov3 and Faster-RCNN.

4 DETAILED METHODOLOGY
We present the concrete methodology of generating and deploying

SwitchPatch against different machine learning systems.

4.1 Overview
Figure 3 illustrates the overview of SwitchPatch. Specifically, in
Step-❶, the generation of SwitchPatch involves initialization, con-
dition imposition, and joint loss integration. In the initialization

phase, a specific object (e.g., a stop sign or an obstacle) and a random

patch are identified to synthesize the initial SwitchPatch. Then
the attacker can integrate pre-defined conditions to help generate

SwitchPatch. He can choose light projection with different colors,

occlusion of different regions, or other conditions. The attacker can

use image processing techniques to simulate these conditions, for

example, in the light projection phase, masks of different colors

with transparency will be applied to the current SwitchPatch to
simulate the situation of being illuminated by a flashlight of differ-

ent colors. The specially designed adversarial loss can be calculated

based on the selected light colors, which ensures SwitchPatch is
capable of achieving the corresponding attack goals via gradient

optimization. The enhancement phase further improves the visual

stealthiness of SwitchPatch by applying meaningful content ex-

tracted from a reference image, and enhances the robustness of

SwitchPatch in the real world by addressing both the deformation

of the patch affected by various environmental factors. Step-❷:

After the generating, an adversary could easily deploy the attack by

printing out the optimized SwitchPatch and sticking it on a real-

world object. He then can dynamically activate various attack goals

by changing pre-defined conditions on the deployed SwitchPatch.
Below we provide the specific formulations for different tasks.

• Object Classification. An object classification model predicts

the categories of a given image 𝑥 as 𝑦. The procedure of generat-

ing the PAP 𝑥𝑎𝑑𝑣 (SwitchPatch) can be formulated as:

𝑥𝑎𝑑𝑣 = argmin

𝑥
′ ∈𝑋𝜖

(
𝑁∑︁
𝑘=1

L(𝑓 (𝑥
′
+ 𝑐𝑙𝑘 ), 𝑦𝑘 ) + L(𝑓 (𝑥

′
), 𝑦))

s.t.


𝑓 (𝑥) = 𝑓 (𝑥𝑎𝑑𝑣) = 𝑦

𝑓 (𝑥𝑎𝑑𝑣 + 𝑐𝑙1) = 𝑦1
. . .

𝑓 (𝑥𝑎𝑑𝑣 + 𝑐𝑙𝑁 ) = 𝑦𝑁

(2)

4



where 𝑥
′
belongs to a set of images 𝑋𝜖 that satisfy an 𝐿𝑝 norm

perturbation constraint (i.e, | |𝑥 ′ − 𝑥 | |𝑝 ≤ 𝜖). 𝑁 is the number of

goals that an attacker can achieve.

• Object Detection. An object detection model 𝑓 extracts features

from an image 𝑥 and outputs its bounding box𝑦 = {𝑦𝑙𝑜𝑐 , 𝑦𝑠𝑖𝑧𝑒 ,𝐶}
with its localization 𝑦𝑙𝑜𝑐 , size 𝑦𝑠𝑖𝑧𝑒 and the confidence score 𝐶

of the categories. Attacking this model can be formulated as:

𝑥𝑎𝑑𝑣 = argmin

𝑥
′ ∈𝑋𝜖

(
𝑁∑︁
𝑘=1

L(𝑓 (𝑥
′
+ 𝑐𝑙𝑘 ), {𝑦loc, 𝑦size,𝐶𝑘 })

+L(𝑓 (𝑥
′
), {𝑦

loc
, 𝑦size,𝐶})

−L(𝑓 (𝑥
′
+ 𝑐𝑙ℎ), {𝑦∗loc, 𝑦size,𝐶})

s.t.


𝑓 (𝑥) = 𝑓 (𝑥𝑎𝑑𝑣) = {𝑦loc, 𝑦size,𝐶}
𝑓 (𝑥𝑎𝑑𝑣 + 𝑐𝑙ℎ) = ∅
. . .

𝑓 (𝑥𝑎𝑑𝑣 + 𝑐𝑙𝑁 ) = {𝑦loc, 𝑦size,𝐶𝑘 }
𝑘 ≠ ℎ

(3)

where ℎ ∈ {1, ..., 𝑁 } denotes the ℎ𝑡ℎ attack goal as HA. Eq 3

can be segmented into three parts: the first term is designed to

achieve 𝑘 attack goals for misclassification; the second term is

associated with achieving the benign effect in the absence of

attacker-controlled conditions; the third term induces the hiding

attack goal when the ℎ𝑡ℎ condition is applied.

• Depth Estimation.A depth estimation model 𝑓 predicts a depth

map 𝐷 for the given RGB image 𝑥 , where the depth map repre-

sents the depth information of each pixel in the input. Generating

𝑥𝑎𝑑𝑣 for depth estimation can be formally expressed as:

𝑥𝑎𝑑𝑣 = argmin

𝑥 ′∈𝑋𝜖

(
𝑁∑︁
𝑘=1

L
(
𝑓 (𝑥 ′ + 𝑐𝑙𝑘 ), 𝐷𝑘

)
+ L

(
𝑓 (𝑥 ′), 𝐷

))

s.t.


𝑓 (𝑥) = 𝑓 (𝑥𝑎𝑑𝑣) = 𝐷,

𝑓 (𝑥𝑎𝑑𝑣 + 𝑐𝑙1) = 𝐷1,

. . .

𝑓 (𝑥𝑎𝑑𝑣 + 𝑐𝑙𝑁 ) = 𝐷𝑁 .

(4)

where 𝐷𝑘 represents the maliciously perturbed depth map under

the 𝑘𝑡ℎ condition.

4.2 Switchable Attack Objectives
To enable attack goal switch in real time, we design a new loss

function for optimizing SwitchPatch, as shown below:

argmin

SwitchPatch
E𝑥∼𝑋L𝑛𝑜 +

𝑁∑︁
𝑘=1

𝑤𝑘 ∗ L𝑘𝑐𝑙 + L𝑒𝑛 (5)

where L𝑛𝑜 is the normal loss that makes SwitchPatch achieve

the benign effects without projections and L𝑘
𝑐𝑙
is the 𝑘𝑡ℎ adversar-

ial loss in 𝑁 pre-specific conditions. L𝑒𝑛 is the enhancement loss

for improving the stealthiness and robustness, which will be de-

tailed in the following sections. The detailed optimization process

is described in Alg. 1.

Different tasks may require different formats of the adversarial

loss function L𝑘
𝑐𝑙
in Eq 5, as described below.

• Object Classification. The attacker only considers MA for the

classification task. Hence, the goals are set as𝐺𝑠 = 𝑀𝐴1; ...;𝑀𝐴𝑁 ,

Algorithm 1 SwitchPatch Generation.

INPUT: image 𝑥 ∈ 𝑋 ; labels 𝑦 ∈ 𝑌 ; model 𝑓 : 𝑋 → 𝑌 ; Pre-

specific conditions {𝑐𝑙1, 𝑐𝑙2, ..., 𝑐𝑙𝑁 }; weights for attack goals

𝑤𝑘 ; weights for stealthiness 𝛼 , 𝛽 , and 𝛾 ; attack iterations iter
INPUT: attack goal set: 𝐺𝑠 = {𝐻𝐴;𝑀𝐴1; ...;𝑀𝐴𝑁 ; 𝐹𝐴;𝑁𝐴};
OUTPUT: SwitchPatch 𝑐𝑝
Initialization: 𝑐𝑝 = 𝑥 + 𝛿
1: for 𝑡 = 0, . . . , 𝑁𝑖𝑡𝑒𝑟 − 1 do
2: if Classification then
3: use L𝑘

𝑐𝑙
in Eq 6

4: else if Detection then
5: use L𝑘

𝑐𝑙
in Eq 7

6: else if Depth Estimation then
7: use L𝑘

𝑐𝑙
in Eq 8

8: end if
9: Calculate loss L in Eq 12

10: Implement Adam optimizer to calculate patch gradient

11: 𝑔𝑟𝑎𝑑 = 𝐴𝑑𝑎𝑚(𝑐𝑝,L)
12: 𝑐𝑝 ← 𝑐𝑝 + 𝑔𝑟𝑎𝑑
13: end for
14: return SwitchPatch 𝑐𝑝

where they all can be optimized with the cross-entropy loss:

L𝑘
𝑐𝑙

= 𝐶𝐸𝐿𝑜𝑠𝑠 (𝑓 (𝑥
′
+ 𝑐𝑙𝑘 ), 𝑦𝑘 ) (6)

• Object Detection. The attacker can choose HA or MA to tar-

get the object detection task. There could be two strategies to

establish the goal set: (1) the attacker can adopt the same set as

classification: 𝐺𝑠1 = {𝑀𝐴1; ...;𝑀𝐴𝑁 }. (2) The attacker can com-

bine HA and MA in the goal set: 𝐺𝑠2 = {𝐻𝐴;𝑀𝐴1; ...;𝑀𝐴𝑁−1}.
Correspondingly, the loss term L𝑘

𝑐𝑙
can be represented as:

L𝑘
𝑐𝑙

=

{
L𝐻𝐴 +𝐶𝐸𝐿𝑜𝑠𝑠 (𝑓 (𝑥

′ + 𝑐𝑙𝑘 ), 𝑦𝑘 ), if 𝐺𝑠2

𝐶𝐸𝐿𝑜𝑠𝑠 (𝑓 (𝑥 ′ + 𝑐𝑙𝑘 ), 𝑦𝑘 ), otherwise

(7)

Where L𝐻𝐴 is the HA loss, widely used in prior works [8, 13].

• Depth Estimation. The attacker can choose two attack goals:

𝐺𝑠 = {𝐹𝐴;𝑁𝐴} The loss term L𝑘
𝑐𝑙
can be represented as:

L𝑘
𝑐𝑙

= 𝐶𝐸𝐿𝑜𝑠𝑠 (𝑓 (𝑥
′
+ 𝑐𝑙𝑘 ), 𝐷𝑘 ) (8)

4.3 Robustness Enhancement
To preserve the high attack effectiveness in the physical world,

it is ideal that SwitchPatch can continuously realize all the tar-

get goals or stay benign under different environmental conditions.

However, it is challenging to directly apply SwitchPatch generated
in the digital domain to the physical world, due to the influence of

unpredictable environmental conditions.

To address this challenge, we adopt the Expectation over Trans-

formation (EoT) technique, which augments the optimization of

SwitchPatch with random transformations to overcome the en-

vironmental factors in the real world. Specifically, we augment

SwitchPatch in the following dimensions: translation, rotation,

resizing, color shifting, and variations in colored light intensity.

Translation, rotation, resizing and color shifting are strategies uti-

lized in previous works [6, 8, 14] to enhance the patch robustness
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against distance effects and variations in environmental lighting.

Additionally, we introduce variations in colored light intensity to

complement the patch’s use of colored light projections. Below we

give some details of adopting these transformations.

Colored light intensity. We apply translation, rotation, resizing,

and color shifting with a uniform distribution to ensure the degree

of its randomness. For colored light intensity, the effectiveness of

colored light from a flashlight can vary significantly with ambient

light conditions. For instance, colored light appears more visible at

night, while less visible during the day under strong sunlight. To

accurately simulate these varying conditions in EoT, we integrate

colored light intensity variations that reflect different levels of

ambient brightness.

We simulate 𝑐𝑙𝑘 using a 𝑘𝑡ℎ mask of different colors. For exam-

ple, for blue light, the default setting is [0, 0, 255], representing the

brightest state under low ambient light conditions. To simulate sit-

uations with higher ambient light and lower colored light intensity,

we reduce this value to [0, 0, 127], effectively halving the perceived

brightness. In our EoT process, we apply a uniform distribution to

these RGB values to randomize the degree of light intensity transfor-

mation. This ensures that SwitchPatch can adapt to a broad range

of real-world lighting conditions, thereby enhancing its practical

effectiveness and robustness in physical environments.

4.4 Stealthiness Enhancement
Our optimization process has two designs for improving the stealthi-

ness of SwitchPatch. First, we solve Eq. 5 by using Project Gradient
Descent (PGD) with the 𝐿∞ distance constraint during the gradient

update step, which ensures that the per-dimension moving distance

for each pixel in 𝑥 is smaller than 𝜖 . We can use 𝜖 to control how

similar SwitchPatch looks compared to the benign 𝑥 : a smaller 𝜖

indicates stealthier SwitchPatch. We set 𝜖 as 0.4 defaultly.

We also introduce the following three loss items for stealthiness

enhancement: content loss, smoothness loss, and photorealism reg-

ularization loss. Formally, let 𝐻 denote a pre-trained CNN model

used for feature extraction, 𝐼𝑠 and 𝐼𝑑 represent a source image and

a designated style image, respectively. In this paper, 𝐼𝑠 denotes

SwitchPatch which is initialized with 𝐼𝑑 .

Content loss L𝑐 . Proposed by style transfer works [15], this term

can regularize SwitchPatch, encouraging the patch to learn the

content and spatial structure of the target image rather than the

details. The content loss is also defined based on the extracted

features by 𝐻 :

L𝑐 =
∑︁
𝑙∈𝐾
∥𝐻𝑙 (𝐼𝑠 ) − 𝐻𝑙 (𝐼𝑑 )∥22 . (9)

Different from 𝐿𝑠 , 𝐿𝑐 is calculated based on the Euclidean distance

between the feature maps of 𝐼𝑠 and 𝐼𝑑 .

Smoothness loss L𝑠𝑚 . This loss item encourages a locally smooth

image, which can improve the stealthiness while also increasing

the patch robustness [16]. It is defined as:

L𝑠𝑚 =
∑︁
𝑖, 𝑗

((𝐼𝑠 [𝑖, 𝑗 + 1] − 𝐼𝑠 [𝑖, 𝑗])2

+(𝐼𝑠 [𝑖 + 1, 𝑗] − 𝐼𝑠 [𝑖, 𝑗])2)
1

2 ,

(10)

where 𝐼𝑠 [𝑖, 𝑗] denotes a pixel corresponding to the coordinate (𝑖, 𝑗).

Photorealism regularization lossL𝑟 .This loss is proposed in [17]
for imposing certain constraints on color transfer, thereby prevent-

ing color distortions. It is defined as follows:

L𝑟 =
∑︁

𝑐∈{𝑅,𝐺,𝐵}
𝑉𝑐 (𝐼𝑠 )⊤M(𝐼𝑠 )𝑉𝑐 (𝐼𝑠 ), (11)

where 𝑐 denotes one channel of RGB, 𝑉𝑐 reshapes its input into a

shape of 𝑁 × 1 (𝑁 represents the number of pixels in 𝐼𝑠 ),M(𝐼𝑠 ) ∈
R𝑁×𝑁 represents a standard linear system that can minimize a

least-square penalty function described in [18].

Finally, the loss function of generating SwitchPatch is:

argmin

SwitchPatch
E𝑥∼𝑋,𝑡∼𝑇 (L𝑛𝑜 +

𝑁∑︁
𝑘=1

𝑤𝑘 ∗ L𝑘𝑐𝑙 )+

𝛼 ∗ L𝑐 + 𝛽 ∗ L𝑠𝑚 + 𝛾 ∗ L𝑟

(12)

where 𝑤𝑘 is the weight for adjusting the loss of different attack

goals. In subsequent experiments, unless otherwise stated, different

goals share the same𝑤𝑘 value. 𝛼 , 𝛽 and 𝛾 are the weights to balance

different loss components, which are set as 1e-2, 3e-6 and 3e-6,

respectively. In addition, 𝑡 is the random transformation with its

corresponding distribution 𝑇 , which is designed to improve the

robustness of SwitchPatch in the physical world.

5 EXPERIMENTAL SETUP
5.1 Evaluation Metrics
We consider the following metrics for evaluation. (1) Benign Ac-
curacy (BA). This represents the performance of the SwitchPatch
on the patched validation set under normal conditions. We use

the Accuracy and Mean Average Precision (mAP) for traffic sign

classification and detection, respectively. For depth estimation, we

define the correct prediction as within 5% of the ground-truth dis-

tance of the target obstacle. This value should be as high as possible.

(2) Attack Success Rate (ASR). This is the ratio of the number of

successful attacks against the machine learning model to the total

number of attacks performed. We define the SwitchPatch attack to
be successful when it achieves the target confrontation effect under

various pre-defined conditions while maintaining benign results

in the absence of conditions. Note that our criteria are significantly
more strict than all those used in prior studies [1–11],as multiple
objectives must be met simultaneously for a successful PAP. (3) Goal-i
ASR (𝐺𝑖 -ASR). This means that an attack goal can be achieved with

its corresponding condition while maintaining benign results in

the absence of conditions. Such a metric is helpful for us to analyze

the performance of SwitchPatch.
Note that for the detection model, the Intersection over Union

(IoU) threshold in mAP is set to 0.5. For depth estimation, the

threshold of distance prediction error is set to 14%, which is the

default setting in [10]. For a ground-truth depth of 10 meters, this

threshold valuemeans that a prediction error of at least 1.4 (10×14%)
meters is considered a successful attack.We also test other threshold

values for depth estimation in our ablation study.
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Table 2: ASR(%) of SwitchPatch on two-stage recognition.
Classification VGG-13 VGG-16 ResNet-50 ResNet-101 Mobilenetv2

BA 95.2 100.0 74.9 70.1 78.2

𝐺1-ASR (MA1) 82.1 96.7 87.3 80.0 81.8

𝐺2-ASR (MA2) 80.9 97.3 99.7 100.0 83.6

ASR 70.9 95.9 65.4 62.3 64.1

Table 3: ASR(%) of SwitchPatch on one-stage recognition.
Detection Yolov3 Yolov5 Faster R-CNN

BA 100.0 95.4 100.0

𝐺1-ASR (MA) 91.8 75.4 85.1

𝐺2-ASR (HA) 95.6 91.2 90.6

ASR 85.9 71.9 80.3

5.2 Pre-defined Condition Selection
The condition can take various forms to activate or switch attacks,

as stated in Section 3. In this paper, we mainly consider using nat-

ural lighting and occlusion because these are easy for an attacker

to implement. Specifically, for different light colors, we consider

common ones such as blue, green, and yellow. For occlusion, we

focus on different positions, including top, bottom, left, and right.

In the simulation experiments, we use the standard color mask as

the default color intensity as we mentioned in section 4.3. We also

give experiments with different color intensities in the following

subsections. These masks are strategically placed to coincide pre-

cisely in size and location with that of the target object. Specifically,

in the classification, the mask is applied across the entire image.

Conversely, for object detection and depth estimation tasks, the

mask is confined to the ground truth region associated with the

sign or obstacle.

5.3 Setup of Traffic Sign Recognition
Models andDatasets. For classification, we evaluate SwitchPatch
using VGG-13/16, ResNet-50/101, and Mobilenetv2, which cover

models of different depths and architectures. All of them are trained

on the GTSRB [19] dataset, which is one of the most popular bench-

marks for traffic sign classification. For object detection, we evaluate

SwitchPatch using three popular object detectors, including both

one-stage models Yolov3/v5 and a two-stage model Faster R-CNN.

The backbones of the pre-trained models Faster-RCNN, Yolov3, and

Yolov5 are ResNet-50, Darknet-53 and CSPDarknet, respectively.

All these models are trained on MS COCO dataset [20] for detection.

For traffic sign classification, we utilize the validation set of

GTSRB [19] for evaluation. For traffic sign detection, we use the

autonomous driving dataset KITTI [21] which consists of images

captured from real driving scenarios, to comprehensively under-

stand the attack effectiveness and transferability of SwitchPatch
in both white-box and black-box settings. We use 2,000 and 5000 im-

ages that are unseen in the training of the SwitchPatch for testing
detection models and classification models, respectively. We select

10 classes for object detectors and 10 classes for image classifiers

as the target classes. The classification or detection results of these

classes are security-related in the driving scenarios.

Attack Goals.We specify the attack goals as Goal_1 and Goal_2,

which are denoted by classifying a stop sign as a No Vehicles sign

and a Pedestrians sign in classification, respectively. The Goal_1

and Goal_2 in detection are HA and MA (identify a stop sign as

a Traffic Light sign), respectively. In addition, we set Goal_1 with

Table 4: ASR of SwitchPatch on color intensity with VGG-16.
Goal_1, Blue, 1/4 Goal_1, Blue, 2/4 Goal_1, Blue, 3/4 Goal_1, Blue, 4/4

Goal_2, Green, 1/4 14.7 50.8 56.1 63.9

Goal_2, Green, 2/4 20.0 50.7 77.5 74.9

Goal_2, Green, 3/4 40.1 55.3 73.8 80

Goal_2, Green, 4/4 45.5 65.6 84.7 95.9

Table 5: ASR of SwitchPatch on color intensity with Yolov3.
Goal_1, Blue, 1/4 Goal_1, Blue, 2/4 Goal_1, Blue, 3/4 Goal_1, Blue, 4/4

Goal_2, Green, 1/4 0.3 5.9 6.5 11.0

Goal_2, Green, 2/4 5.7 10.2 18.5 23.6

Goal_2, Green, 3/4 15.5 41.1 45.7 55.1

Goal_2, Green, 4/4 37.2 71.6 79.8 84.7

blue color and Goal_2 with green color for both classification and

object detection, respectively. In Section 6.1, we will discover more

attack goals to validate the performance of SwitchPatch.

5.4 Setup of Depth Estimation
Models and Datasets. We use 4 state-of-the-art models as the

target MDE models, including CNN-based models, i.e., Mono2 [22],

Mande [23] and ViT-based models, i.e., Midas [24], DeAny [25].

All these models are trained on the KITTI dataset [26] or a hybrid

dataset (consisting of various datasets). We randomly selected 2000

images from KITTI as the training set and 1000 images as the testing

set for evaluation.

Attack Goals.We specify the attack goals Goal_1 and Goal_2 as

NA and FA, respectively. We set Goal_1 with red color and Goal_2

with green color.

6 RESULTS FOR TRAFFIC SIGN RECOGNITION
We validate the effectiveness of SwitchPatch against both object

detectors and image classifiers on the dataset simulation, where

SwitchPatch is attached to digital images directly.

6.1 Attack Effectiveness
Overall Performance. Tables 2 and 3 show the overall perfor-

mance results for traffic sign classification and detection, respec-

tively. We observe that all the models can achieve higher ASRs,

which demonstrates the high effectiveness of SwitchPatch. We

also observe that the ASRs for all the models are lower than𝐺𝑖 -ASR.

Obviously, SwitchPatch needs to meet the attack targets under

multiple lighting conditions. This also demonstrates that attack

performance may gradually decrease with more attack goals, which

we have proved through theoretical analysis in Section 3.

Impact of the color lights intensity. In the default settings, we

utilize [0, 0, 255] and [0, 255, 0] to represent the standard blue

and green colors, respectively. In this subsection, we investigate

how the color light intensity can affect the attack performance of

SwitchPatch. Specifically, we gradually decrease the color light

intensity by decreasing the RGB values of the mask to simulate the

reduction of color intensity, for example, a lighter blue color mask

is [0, 0, 126], which represents half the intensity of the blue color.

We conduct experiments on different degrees of color intensity,

e.g., [0, 0, 63], [0, 0, 126], [0, 0, 189] and [0, 0, 255]. Tables 4 and 5

show the results for classification and detection, respectively. It is

clear that as the color intensity increases, the ASR also increases.
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(a)

(b)

Figure 4: (a) SwitchPatch with different size of patch region;
(b) Impact on VGG-16 and Yolov3, respectively.

However, this phenomenon does not align with the experimental

results in the physical world, which will be detailed in Section 8.1.

Impact of the size of patch region. We further study the impact

of the size of the patch region for SwitchPatch. Specifically, we
conduct experiments on Yolov3 by setting 4 different sizes of per-

turbed areas, where we set the sizes as𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 = [20,20], [70,

170], [120, 120] and [180, 180], respectively. Figure 4(a) provides the

visualization of 4 demos. From the results shown in Figure 4(b), we

can draw three observations. First, a relatively small patch region,

e.g., [20, 20], rarely achieves successful attacks for both the clas-

sification model VGG-16 and the detection model Yolov3. Second,

as the size of patch regions arises, it is more likely to be wrongly

predicted by the detector. A possible reason behind this is that as

the patch region expands, the possible solution space will gradu-

ally increase, enabling SwitchPatch can meet multiple conditions,

thereby enhancing its attack effectiveness. Third, we also observe

that the ASR for a patch size of [120, 120] (53.2%) is lower than that

of for [70 * 170] (60.4%), even though the former has a larger area

(14400 > 11900). This suggests that the position of the patch also

influences the performance of SwitchPatch.
Evaluation with increasing attack goals. We conduct experi-

ments on object detection models to prove our theoretical analysis.

Specifically, we extend the experiments with more numbers (𝑁 ) of

attack goals and colors. We randomly select 100 images from the val-

idation set of KITTI, the ASRs are recorded onlywhen SwitchPatch
can achieve both benign and 𝑁 attack goals. More detailedly, we

randomly combine the colors and goals in each experiment, and

we calculate the mean value 8 times. Figure 5 shows the results. We

observe that as we prove in Section 3.2, ASR gradually decreases

with the increase of attack goals as well as with the increase of light

conditions. When the number of goals is 7, the attack success rate

is only 4.7%, while when the number of goals is 8, the attack fails.

Analysis: Adversarial examples involve searching for permu-

tations of each pixel value, such that the resulting image with a

particular permutation appears to the model to possess features

characteristic of a specific class. There may exist many such permu-

tations. However, in existing attack algorithms like PGD, finding

a particular permutation through gradient methods can achieve

Figure 5: ASR with increasing attack goals on Yolov3, Yolov5,
Faster-RCNN.

Figure 6: Number of iterations for generating an effective
SwitchPatch on Yolov3, Yolov5, Faster-RCNN over KITTI.

the desired attack goal, such as misclassification. This permutation

often represents a local optimum [27]. In Section 3.2, we demon-

strate that as the number of attack goals increases, the number of

light conditions constraining the generation of SwitchPatch also
increases. This leads to a reduction in the solution space available to

SwitchPatch, thereby diminishing the effectiveness of the attack

when multiple light conditions must be satisfied. Figure 6 shows

the relations between the optimization complexity of finding the de-

sired perturbation and the number of attack goals. It is clear that the

number of optimization epochs grows with the increase of attack

goals for different models. Additionally, SwitchPatch’s reliance
on gradient-based attack algorithms predisposes it to converge to

local optima, resulting in a performance that often falls short of

theoretical capabilities. We further provide the investigation of the

impact of color-goal combinations and attack goal weights𝑊𝑘 on

SwitchPatch in the Appendix A.

6.2 Attack Transferability
In instances where an adversary lacks little prior knowledge of the

model architectures utilized in commercially available autonomous

vehicles, employing gradient-based optimization techniques on

these unknown models proves impractical. However, the possibility

remains for the attacker to bypass the target model through the

utilization of AE’ transferability across comparable SwitchPatch,
this study executes a surrogate model and conducts attacks on other

victim models. During the evaluations, specifically, we fixed the

attack goals, color lights, the location of the AE, etc.

We use eachmodel as a surrogatemodel to generate SwitchPatch
and test on other victim models for both classification and object

detection. Tables 6 and 7 demonstrate the results. We observe that

(1) for classification, similar model architectures show higher ASRs
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Table 6: Transferability across classification models in simulation.
VGG-13 VGG-16 Resnet-50 Resnet-101 Mobilenetv2

𝐺1-ASR 𝐺2-ASR ASR 𝐺1-ASR 𝐺2-ASR ASR 𝐺1-ASR 𝐺2-ASR ASR 𝐺1-ASR 𝐺2-ASR ASR 𝐺1-ASR 𝐺2-ASR ASR

VGG-13 82.1 80.9 70.9 65.3 48.9 36.5 25.0 44.1 10.7 39.8 60.1 21.7 33.5 20.2 17.8

VGG-16 77.1 60.3 52.2 96.7 97.3 95.9 32.1 33.7 12.5 29.6 30.8 10.9 30.1 22.1 18.9

Resnet-50 53.0 21.7 5.8 20.6 31.1 19.9 87.3 99.7 65.4 59.8 66.6 41.3 50.5 23.8 20.7

Resnet-101 34.0 20.8 10.3 35.6 36.7 22.0 67.9 69.8 42.5 80.0 100.0 62.3 46.6 24.3 23.0

Mobilenetv2 37.6 27.7 19.8 37.4 34.4 23.2 42.4 44.7 36.4 54.3 58.4 47.9 81.8 83.6 64.1

Table 7: Transferability across detection models in simula-
tion.

Source Yolov3 Yolov5 Faster-RCNN

Target Yolov5 Faster-RCNN Yolov3 Faster-RCNN Yolov3 Yolov5

BA 72.9 52.9 90.2 83.8 97.1 71.3

𝐺1-ASR (MA) 49.9 41.0 42.5 52.7 41.5 32.3

𝐺2-ASR (HA) 57.5 82.5 50.0 83.9 47.5 36.7

ASR 46.4 35.5 41.3 34.0 32.1 37.5

while different model architectures show lower ASRs. While for

object detection, they show not much difference between different

model architectures. (2) The𝐺𝑖 -ASRs of HA are higher than the𝐺𝑖 -

ASRs of MA in object detection. The possible reason is that HA aims

to reduce the model’s confidence in detecting any object within a

specific bounding box. Its benefit is that they only require changing

permutations to reduce detection confidence without aligning with

features of a specific category. This allows a wider range of permu-

tations for image modification, i.e., a larger solution space. On the

other hand, MA requires a more restricted solution space that must

convincingly mimic another class, i.e., a smaller solution space.

This requires more precise and complex permutations that directly

align each pixel change with features of the target class, increasing

complexity and reducing the likelihood of success. Therefore, even

under N constraints, HA still shows higher ASRs than MA.

7 RESULTS FOR DEPTH ESTIMATION
We validate the effectiveness of SwitchPatch against CNN-based
and transformer-based depth estimation models. Similar to the

traffic sign recognition (Section 6), we attach SwitchPatch directly
to digital images for simulation evaluation.

7.1 Attack Performance
Table 8 presents the results for different depth estimation models.

We have the following observations. (1) All models maintain high

benign performance when SwitchPatch is attached but without

pre-defined conditions. This indicates that SwitchPatch has min-

imal impact on the model performance under normal operating

conditions. (2) All models demonstrate high ASRs (from 56.29% to

84.88%) in the white-box scenario, where the attack is generated

and evaluated on the same model. This is expected as the attack

generation process has complete knowledge of the target models’s

internal workings. (3) Different models have different degrees of

vulnerability. Mono2 exhibits high susceptibility to attacks gen-

erated for itself and Mande, suggesting potential similarities in

their learned feature representations. Midas, on the other hand,

shows the lowest overall vulnerability, indicating a higher level of

robustness to these types of attacks. (4) In the black-box scenario,

the transferability of SwitchPatch between models is relatively re-

duced, particularly when transferring attacks between CNN-based

models (Mono2, Mande) and transformer-based models (Midas,

DeAny). It demonstrates that the internal representations and deci-

sion boundaries learned by different model architectures, especially

the fundamental differences between CNNs and Transformers in

feature extraction and processing, can significantly impact the ef-

fectiveness of SwitchPatch. Figure 11 visualizes the attack effect of
SwitchPatch on the KITTI dataset using Mono2, which can effec-

tively implement FA and NA attacks when projecting red and green

light, respectively, and remain benign when there is no projection.

Impact of color intensity. Similar to traffic sign recognition, we

evaluate how the color intensity can affect SwitchPatch for depth

estimation. Table 9 provides the results, showing that as the color

intensity increases, the ASR also increases.

8 PHYSICAL WORLD EVALUATION
8.1 Results for Traffic Sign Recognition
Setup. The experiments are carried out on a closed campus road us-

ing an Unmanned Ground Vehicle (UGV), our SwitchPatch, along
with a color flashlight, shown in Figure 8. (1) UGV and cameras.
The UGV is originally equipped with an Intel RealSense D435i

front-facing camera. To evaluate SwitchPatch with different cam-

eras, we also install DJI Action 3 and iPhone 11 Pro max in the

same position as the Realsense camera to ensure fair comparisons.

These cameras’ fps are set as 30 and mounted at a height of 1.5

meters on the UGV. The resolutions of these cameras are detailed

in Table 13. (2) SwitchPatch is color-printed with a 50cm * 50cm

size and positioned at a height of 1.7 meters. (2) Color flashlight.
The flashlight has a light intensity of 3000LM in normal mode. It

offers two color filters, green and orange, and three levels of dim-

ming, including strong light (3000LM), weak light (1500LM), and

two intensities of high-frequency flash. It is located 2.3 meters in

front of SwitchPatch, with its aperture focussed on and covering

SwitchPatch. The flashlight is purchased from Amazon for only

$16.75. The UGV, equipped with the cameras, is initially positioned

15 meters away from SwitchPatch and moves straight forward.

The initial speed is set to 5m/s (18km/h) at the beginning of each

recording. This setup is significant as it aligns with real traffic

scenarios. We repeat the experiment for 5 runs.

Dynamic and static evaluations. We categorize physical eval-

uations into two main modes, i.e., dynamic and static modes. (1)

Dynamic mode. It focuses on testing the effect of distance on the

attack performance of a vehicle as it moves closer to SwitchPatch.
Specifically, in the dynamic mode evaluation, we repeated the move-

ment of the vehicle on the same route three times without colored

lights, with green light, and with orange light, respectively. Each

time we calculate NA and𝐺𝑖 -ASR in the distance intervals of 3-6m,
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Table 8: Transferability across depth estimation models in simulation.

Generation

Test Mono2 Mande Midas DeAny

BA 𝐺1-ASR 𝐺2-ASR ASR BA 𝐺1-ASR 𝐺2-ASR ASR BA 𝐺1-ASR 𝐺2-ASR ASR BA 𝐺1-ASR 𝐺2-ASR ASR

Mono2 97.3 96.7 85.4 84.8 100 43.5 18.7 18.5 81.2 0 25.3 0 100 12.5 6.2 0

Mande 100 43.6 11.36 6.25 100 80.0 93.7 73.21 100 0 12.05 0 87.5 18.7 10.9 5.8

Midas 99.1 11.7 7.53 6.0 100 12.1 0 0 85.7 82.6 59.9 56.2 86.4 25.6 5.2 5.12

DeAny 86.6 2.5 23.3 0.1 99.2 8.3 20.0 1.5 94.1 5.6 16.3 2.4 99.2 72.0 83.96 65.3

Figure 7: Visualizations on KITTI dataset. From left to right: SwitchPatch does not affect depth estimation without light
projection; SwitchPatch is predicted up to more than 20% farther away than its actual distance when red light is projected;
SwitchPatch is predicted up to less than 20% closer than its actual distance when green light is projected.

Table 9: ASR of SwitchPatch on color intensity with Mono2.
Goal_1, Blue, 1/4 Goal_1, Blue, 2/4 Goal_1, Blue, 3/4 Goal_1, Blue, 4/4

Goal_2, Green, 1/4 47.6 38.0 48.7 25.8

Goal_2, Green, 2/4 38.4 30.7 43.0 58.6

Goal_2, Green, 3/4 52.3 58.7 54.6 57.2

Goal_2, Green, 4/4 72.4 81.9 75.3 80.8

Figure 8: Experimental setup in real-world. Left: SwitchPatch
is attached on a stop sign for traffic sign recognition; Right:
SwitchPatch is attached on the back of the vehicle for depth
estimation.

6-9m, and 9-15m, respectively. (2) Static mode. We introduce static

evaluation because, to measure whether SwitchPatch succeeds

in attacking in a certain frame, we need to project different col-

ored lights on the same frame at the same moment to ensure that

SwitchPatch can not be detected or misclassified under each kind

of light. However, it is impossible to project different colored lights

on the same framewhile the vehicle is moving. Even if we repeat the

experiment on the same route every time, it is difficult to guarantee

whether different lightings are projected on the same frame at the

same moment. Specifically, we switch the colorless light and the

colored light with different intensities by using the high-frequency

flashing mode of the flashlight at 4m and 9m, respectively, and

record NA, 𝐺𝑖 -ASR, and ASR.

Table 10: Evaluation under different sunlight conditions in
the physical world.

BA 𝐺1-ASR (MA) 𝐺2-ASR (HA) ASR

Daytime 97.4 1.2 20.3 0.1

Twilight time 83.8 58.8 96.7 48.7

Nighttime 7.0 50.0 73.1 3.6

Table 11: Effectiveness of SwitchPatch for traffic sign recog-
nition in the physical world.

Yolov3 Yolov5 Faster-RCNN

BA 84.4 83.8 93.7

𝐺1-ASR (MA) 60.2 58.8 69.2

𝐺2-ASR (HA) 98.9 96.7 96.1

ASR 45.5 48.7 36.7

Static Evaluation Results. We first evaluate SwitchPatch in
static mode to demonstrate its effectiveness in the physical world.

We mainly use object detection models, i.e., Yolov3, Yolov5, and

Faster-RCNN, for evaluation. We craft 3 SwitchPatches which are

generated by these three models, respectively. We use the green

color for attack goal_1 (HA) and orange color for attack goal_2

(MA, recognize a stop sign as a “Traffic Light” sign).

Figure 9 visualizes the demos in the physical world. And Table 11

shows the overall attack results. We observe that all the models

can achieve effective attack objectives. However, the ASR drops

to almost half compared to being on the dataset (Table 3). The

possible reason for this is that the color difference between the

light and the mask is still quite large, and due to the limitation

of the experimental equipment, we are not able to fine-grainedly

regulate the intensity of the light.

(1) Impact on sunlight intensity. In general, the color intensity

of a flashlight is greatly affected by the intensity of sunlight. To ex-

plore the effect of sunlight on the ASR, we placed SwitchPatch in

the daytime (around 2 pm), twilight time (around 5 pm), and night-

time (around 8 pm). The results shown in Table 10 demonstrate

that the ASR of SwitchPatch is higher in poor light conditions

(e.g., nighttime) than in strong light conditions (e.g., daytime). Intu-

itively, sunlight intensity affects the effectiveness of SwitchPatch,
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Figure 9: Consecutive frames inference by Yolov5 under high-frequency flashlight of SwitchPatch in the physical world. Up
row: the light color is orange. The intensity of colored lights from left to right: no projection, weak, strong, weak, strong, no
projection. HA can be activated successfully under both weak and strong light intensities while maintaining benign without
light projections. Down row: the light color is green. The intensity of colored lights from left to right: no projection, weak,
strong, strong, weak, no projection. MA only fails when the light intensity is too strong.

Table 12: Transferability across detection models in the phys-
ical world.

Source Yolov3 Yolov5 Faster-RCNN

Target Yolov5 Faster-RCNN Yolov3 Faster-RCNN Yolov3 Yolov5

BA 85.4 84.3 76.3 70.8 72.1 81.1

𝐺1-ASR (MA) 59.8 64.3 56.4 61.9 88.7 82.6

𝐺2-ASR (HA) 81.2 90.6 94.7 86.4 87.6 83.2

ASR 37.1 32.1 39.8 44.5 45.2 41.1

Table 13: Impact on camera type.
Camera Resolution BA 𝐺1-ASR (MA) 𝐺2-ASR (HA) ASR

Realsense D435i 1920 * 1080 83.8 58.8 96.7 48.7

iPhone 11 Pro Max 2688 * 1242 82.1 60.9 90.6 54.4

DJI Action 3 1920 * 1080 80.9 56.1 94.6 50.7

despite that we have considered the effect of color light intensity

on SwitchPatch during the optimization process, but under strong

light conditions, the ASR of SwitchPatch is quite low, almost close

to 0. We discuss the promising methods to improve the attack per-

formance by combining other attack techniques in Section 9. On

the other hand, the ASR of SwitchPatch is highest during twilight
time because SwitchPatch has poor visibility at nighttime.

(2) Attacking different models. Table 12 lists the ASR results for

SwitchPatch transferred between different object detectionmodels.

It is indeed possible to achieve transfer attacks in the real world.

For HA, the average of𝐺2-ASR is around 81.2% to 94.7%, which has

a better performance than MA. Among these models, SwitchPatch
generated by Faster-RCNN shows better transferability than other

models, but not that toomuch. This demonstrates that SwitchPatch
is slightly affected by the different model architectures.

(3) Attacking different cameras. To further study the impact

of the SwitchPatch on different cameras, we evaluate the attack

effectiveness using Real-sense D435i with 1920 * 1080 resolution,

iPhone 11 Pro Max with 2688 * 1242 resolution, and DJI Action 3

with 1920 * 1080 resolution, respectively. Table 13 lists the ASR of

SwitchPatch on the three cameras, we use Yolov5 as the victim

model by default. SwitchPatch shows not much difference between

these cameras, where the ASRs are around 50%.

Dynamic Evaluation Results. A vehicle is driving on a road

equipped with high-resolution cameras and advanced image pro-

cessing algorithms for object recognition. As it approaches a traffic

sign, typically, the sign should appear larger in the vehicle’s camera

feed as the distance between the vehicle and the sign decreases.

As we stated in Section 4.3, in the EoT setting, we do not use the

Table 14: ASR(%) under different distances (m) for traffic sign
recognition.
Model Yolov3 Yolov5 Faster-RCNN

Distance 3-6 6-9 9-15 3-6 6-9 9-15 3-6 6-9 9-15

BA 86.8 85.8 85.2 93.4 93.4 93.0 91.5 89.5 88.7

𝐺1-ASR (MA) 63.0 57.3 46.6 71.5 65.0 66.3 60.7 68.4 46.3

𝐺2-ASR (HA) 82.8 75.4 78.1 79.1 88.0 86.8 78.7 82.2 81.0

Table 15: ASR(%) under different distances (m) for depth esti-
mation.
Model Mono2 Mande Midas

Distance 3-6 6-9 9-15 3-6 6-9 9-15 3-6 6-9 9-15

BA 87.5 85.4 83.3 97.9 85.4 81.3 91.6 81.6 79.2

𝐺1-ASR(NA) 66.7 58.3 52.5 70.8 64.5 60.4 69.3 52.1 31.3

𝐺2-ASR(FA) 45.8 41.7 35.4 41.7 39.6 33.3 43.7 37.5 27.1

traditional assumption that the distribution of pixels is uniform, but

instead set a larger weight on a smaller pixel size. Table 14 shows

the results. We observe that the NA shows not too many differ-

ences between these models. However, 𝐺1-ASR (MA) will increase

slightly as the distance gets closer.

8.2 Results for Monocular Depth Estimation
Setup. The experiments are carried out in the same location on a

closed campus road. Our primary target camera model is the Intel

RealSense D435i. SwitchPatch is mounted on the rear of a BMW

X1. which is our target object, with dimensions of 4.95 m in length,

1.97 m in width, and 1.905 m in height. We use Mono2 as the target

monocular depth estimation model. We drive the victim vehicle

towards the target vehicle at a distance of 10 meters and record the

adversarial scenario while driving.

Note that this attack is generic so it can be applied to any class

of objects on public roads. This paper focuses on a static vehicle as

shown in Figure 8. We choose vehicles because (1) they are common

on public roads in regular driving scenarios; (2) they are commonly

used in previous works [9–11]. A failure to detect them could lead

to life-threatening consequences; (3) they are the most attractive

objects for attackers since they are the main targets of perception

systems on an autonomous driving car.

Evaluationmethodology.We drive four times on each route, with

the first one a benign case, the second one pasted SwitchPatch, the
third one pasted SwitchPatch with green light projection and the

fourth one pasted SwitchPatchwith blue light. The depth (𝑧) of the
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Table 16: ASR of SwitchPatch on different thresholds with
Mono2 in the physical world.

Thresholds 10% 14% 18% 22% 26%

BA 87.5 87.5 87.5 87.5 87.5

G1-ASR(NA) 78.0 66.7 60.3 40.6 32.4

G2-ASR(FA) 53.8 45.8 39.7 30.2 28.1

vehicle can be calculated with 𝑧 = 𝑓 𝐻/𝑠 . So, given the focal length

(𝑓 ) of the camera and the height of the vehicle in the physical world

(𝐻 ) and on the image plane (𝑠), we calculate the vehicle’s depth.

We use this depth as the vehicle’s depth ground truth to calculate

𝐸𝑑 . We shot at a constant speed and captured multiple frames from

distances ranging from 3m to 15m from the vehicle to simulate

different travel spacing. A total of 200 frames were captured.

Impact of distance. We first investigate how the distance can

affect SwitchPatch for depth estimation. For each distance interval

(i.e., 3m), we have 50 frames of images for evaluation. Table 15

provides the results, showing that SwitchPatch can achieve high

ASRs varying distances for all the models. Figure 11 in Appendix A

visualizes of SwitchPatch attack in the physical world.

Impact of depth threshold. We then evaluate how much the

attack can change the depth, the larger the change in depth value

the more harmful it is, in our experiments, we set different depth

thresholds as the determination criteria and calculate the success

rate of the attack respectively. A depth threshold is a critical value

set when evaluating the effectiveness of an adversarial attack, and

an attack is considered successful if the average value of the depth

change exceeds this threshold. As shown in Table 16, the effect

of our attack can change the depth value more than 26%, which

reflects the effectiveness of the attack.

9 DISCUSSION
More switch conditions. SwitchPatch is the first work to demon-

strate that an attacker can dynamically switch various attack tar-

gets using a PAP in the physical world, establishing it as a novel

approach without an existing baseline for comparison. However,

SwitchPatch is not limited to leveraging colored light projections

to switch attack goals. Attackers can also employ other techniques,

such as occluding parts of the adversarial example to achieve switch-

able attack goals. Specifically, an attacker can optimize a global per-

turbation for traffic signs and then tailor the optimization process

to different occlusion positions, specifying corresponding attack

targets. Figure 10 illustrates the demos using occlusion. The at-

tacker can use a cube to occlude not only the upper or left part of

the adversarial patch but also other areas.

To demonstrate the feasibility of such attacks, we use a cube to

occlude the left/up part as attack goal 1 and the right/down part

as attack goal 2, respectively. Experiments are conducted using

Yolov3. The results are presented in Table 17; the validation set

includes 100 images that are randomly selected from the KITTI

dataset. We observe that the colored light projections provide more

consistent results than occlusion techniques, which although highly

effective in the MA (especially for Left and Right) with significant

drops in the HA scenario. We encourage researchers to explore

further techniques to enhance the strength and stealthiness of

SwitchPatch in the future.

Table 17: Different attack techniques.
Colored lights

(Blue and Green)

Occlusion

(Up and Down)

Occlusion

(Left and Right)

BA 100 96.6 100.0

𝐺1-ASR (HA) 91.8 95.4 100.0

𝐺2-ASR (MA) 95.6 5.9 15.6

ASR 85.9 5.2 15.6

Figure 10: Occluding different parts as activation conditions.

Countermeasures. We have used different defense methods, e.g.,

input preprocessing, including image smoothing [28], feature com-

pression [29] and input randomization [30]; defensive dropout [31]

and adversarial training [32], to defend SwitchPatch with simple

experiments. These defense methods can slightly mitigate ASR in

the range of 0 to 23% on Yolov5, which means these methods can-

not fundamentally defend SwitchPatch. Since SwitchPatch is a

general attack strategy, designing effective defense techniques that

can be applied to various tasks will be our future work.

Inconspicuity comparisons. We state that when conducting

SwitchPatch attack, the adversary doesn’t need to cast the light

onto the patch for long (explained in AdvLB[2]), while he aims

at subtly and abruptly activating SwitchPatch, which gives the

vehicle little time to react. Therefore, the light strength doesn’t

affect SwitchPatch ’s stealthiness. Besides, compared to [6–8, 14],

SwitchPatch is the only one that preserves the original traffic sign

texture. Although it sacrifices some stealthiness compared to RP2

attack [1], it can achieve multiple attack goals.

Improvement of SwitchPatch on daytime. Although the light

intensity of the flashlight we used was 3000 lux, the intensity of the

colored light projections was not that strong at noon, which limited

the effectiveness of SwitchPatch under bright daylight conditions.

This weak performance during high ambient light exposure could

reduce the reliability of the attacks in practical scenarios, especially

in outdoor environments.

To address this limitation, we propose several possible solutions.

The first is increasing the intensity or using higher luminance

colored lights could help maintain the visibility and distinction of

the colored projections under strong ambient light. The second

is combining light projections with other techniques, such as the

occluding method as we stated in Section 9. When the sunlight

is strong, the attacker can use occlusion techniques to switch the

attack target because occlusion is more clearly visible. However,

when the sunlight is weak, the attacker can instead use colored

light projections. We hope that researchers can develop techniques

that are more robust to environmental factors.

10 CONCLUSION
We introduce SwitchPatch, a novel and versatile PAP designed

for dynamic and strategic manipulation in real-world environ-

ments. SwitchPatch is unique in its ability to leverage a diverse
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set of pre-defined physical conditions, allowing it to seamlessly

adapt its attack objectives based on real-time situational awareness.

We demonstrate the effectiveness, adaptability, and robustness of

SwitchPatch through extensive evaluations across both simulation

and real-world scenarios. Our results consistently highlight high

attack success rates across a wide range of operational conditions.
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Table 18: ASR(%) of SwitchPatch on color-goal combinations
with traffic sign recognition.

Models

Green

(Goal_1)

Blue

(Goal_1)

Orange

(Goal_1)

Purple

(Goal_1)

VGG-16

Green (Goal_2) ✗ 95.9 29.7 45.5

Blue (Goal_2) 69.2 ✗ 51.1 33.5

Orange (Goal_2) 39.8 69.6 ✗ 51.0

Purple (Goal_2) 44.0 32.3 56.9 ✗

ResNet-50

Green (Goal_2) ✗ 65.4 35.8 43.9

Blue (Goal_2) 55.0 ✗ 49.1 38.8

Orange (Goal_2) 41.0 63.1 ✗ 63.6

Purple (Goal_2) 32.5 55.8 65.3 ✗

Mobilenetv2

Green (Goal_2) ✗ 64.1 37.9 44.4

Blue (Goal_2) 64.7 ✗ 49.2 37.8

Orange (Goal_2) 43.4 64.3 ✗ 60.0

Purple (Goal_2) 37.9 45.5 64.6 ✗

Yolov3

Green (Goal_2) ✗ 85.9 70.4 65.1

Blue (Goal_2) 59.4 ✗ 47.6 45.7

Orange (Goal_2) 60.2 55.7 ✗ 55.2

Purple (Goal_2) 57.3 70.6 62.1 ✗

Faster-RCNN

Green (Goal_2) ✗ 80.3 75.9 50.8

Blue (Goal_2) 40.7 ✗ 65.3 42.6

Orange (Goal_2) 45.8 55.6 ✗ 25.8

Purple (Goal_2) 65.3 35.2 45.7 ✗

Table 19: ASR of SwitchPatch with different𝑊𝑘 on Yolov3.

Colors 𝑤𝑘 𝐺1-ASR 𝐺2-ASR 𝐺3-ASR

(Blue, Green, Orange)

0.9, 0.1, 0.0 76.0 30.2 0.0

0.5, 0.3, 0.2 61.6 84.3 0.7

0.2, 0.6, 0.2 15.7 85.8 33.5

0.2, 0.2, 0.6 45.9 65.8 71.3

A ADDITIONAL EXPERIMENTS ON TRAFFIC
SIGN RECOGNITION

Impact of the color-goal combinations.We investigate how the

color selection can affect the goals. We switch the color and align

with other attack goals. Specifically, we choose blue, green, orange

and purple color, which are aligned with Goal_1 (No vehicles),

Goal_2 (Pedestrians), Goal_3 (Speed limit 80), Goal_4 (Ahead only)

in classification and Goal_1 (HA), Goal_2 (Traffic light), Goal_3

(Umbrella), Goal_4 (Bird) in object detection, respectively.

The results are shown in Table 18. We have the following ob-

servations. First, Blue generally shows higher effectiveness across

different models and goals in both two tasks. For instance, in im-

age classification, VGG-16 achieves an ASR of 95.9% with Green

(Goal_2) under Blue. Similarly, in object detection, Faster-RCNN

achieves an 80.3% ASR under Blue for Green (Goal_2). On the con-

trary, Purple tends to be less effective compared to other colors. For

example, Mobilenetv2 only achieves a 37.9% ASR under Purple for

Green (Goal_2) in image classification. Second, the combination

of Blue, Green, and Orange with Goal_1 and Goal_2 shows higher

effectiveness than Purple combinations for both two tasks, making

them particularly potent for deploying SwitchPatch in adversarial

settings.

Impact of𝑤𝑘 for attack goals. SwitchPatch can adjust theweights
of different attack goals according to specific scenarios. For exam-

ple, the attacker wants to prioritize achieving some of the attack

goals among 𝑁 attack goals. SwitchPatch provides the weight𝑤𝑘
for adjusting the attack goal during the generation process. In the
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Figure 11: The depth estimation results in the physical world using Mono2. From left to right: SwitchPatch under benign
condition; SwitchPatch with red light projection; SwitchPatch with green light projection. The depth estimation becomes
farther under red light and closer under green light compared to begin condition. It can be seen that although the size of the
patch is limited, its depth influence can spread to the entire body of the vehicle.

previous experiment, we set the weight of each attack goal the same.

In this section, we study the impact of𝑤𝑘 on the performance of

SwitchPatch. Specifically, for each attack goal, we adjust its weight
from high to low accordingly. Table 19 gives the results evaluated

on Yolov3.

Obviously, 𝐺𝑖 -ASR improves with the increase of weight 𝑤𝑘 ,

indicating the attacker can adjust the attack effect by himself, which

gives him more freedom to choose the attack effect he wants.
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