
ar
X

iv
:2

50
6.

08
60

2v
1 

 [
cs

.C
R

] 
 1

0 
Ju

n 
20

25

WGLE: Backdoor-free and Multi-bit Black-box
Watermarking for Graph Neural Networks

Tingzhi Li
Xidian University

tingzhi.li@stu.xidian.edu.cn

Xuefeng Liu
Xidian University

liuxf@mail.xidian.edu.cn

Abstract—Graph Neural Networks (GNNs) are increasingly
deployed in graph-related applications, making ownership ver-
ification critical to protect their intellectual property against
model theft. Fingerprinting and black-box watermarking are
two main methods. However, the former relies on determining
model similarity, which is computationally expensive and prone
to ownership collisions after model post-processing such as model
pruning or fine-tuning. The latter embeds backdoors, exposing
watermarked models to the risk of backdoor attacks. Moreover,
both methods enable ownership verification but do not convey
additional information. As a result, each distributed model
requires a unique trigger graph, and all trigger graphs must
be used to query the suspect model during verification. Multiple
queries increase the financial cost and the risk of detection.

To address these challenges, this paper proposes WGLE, a
novel black-box watermarking paradigm for GNNs that enables
embedding the multi-bit string as the ownership information
without using backdoors. WGLE builds on a key insight we
term Layer-wise Distance Difference on an Edge (LDDE), which
quantifies the difference between the feature distance and the
prediction distance of two connected nodes. By predefining
positive or negative LDDE values for multiple selected edges,
WGLE embeds the watermark encoding the intended informa-
tion without introducing incorrect mappings that compromise
the primary task. WGLE is evaluated on six public datasets
and six mainstream GNN architectures along with state-of-
the-art methods. The results show that WGLE achieves 100%
ownership verification accuracy, an average fidelity degradation
of 0.85%, comparable robustness against potential attacks, and
low embedding overhead.

I. INTRODUCTION

Graph Neural Networks (GNNs) are extensively applied in
a range of domains such as finance [1], [2], medicine [3],
and social network analysis [4], [5], due to their ability to
capture relational structures in graph data. Developing high-
performance models necessitates substantial computational
resources and large-scale datasets, making them valuable in-
tellectual property (IP) susceptible to copyright infringement,
such as unauthorized use or illicit copy. Therefore, well-
developed GNN models are important intellectual property,
and their copyright must deserve protection.

Ownership verification is widely adopted to protect model
copyrights [6], [7]. Its objective is to determine whether the
suspect model is an unauthorized copy of the original model
or an independently trained one. For practical deployment,
ownership verification is typically conducted in the black-box
setting, where access to the model’s internal parameters or
architecture is unavailable, and verification relies solely on
querying the model and analyzing its predictions. Ownership

verification has shown notable success in models processing
Euclidean data such as images, text, and video [8], [9],
[10]. However, directly applying these methods to GNNs is
infeasible due to the non-Euclidean nature of graph data,
characterized by the complex and irregular structure of graphs
and the sensitivity of GNNs to localized perturbations.
Existing Solutions. Recent studies address these challenges
and extend ownership verification to GNN copyright pro-
tection [11], [12], [13], [14]. One line of methods [13],
[14], known as GNN fingerprinting, constructs fingerprints
based on the model’s unique properties that differ from other
models, such as layer-wise node embeddings [13] or overall
model behaviors [14]. The suspect model is identified as an
unauthorized copy if it shares a substantially similar fingerprint
to the fingerprinted model. The key strengths of GNN finger-
printing are backdoor-free and robust against model extraction
attacks, as the construction of fingerprints does not introduce
an additional objective into the training process. However,
fingerprints require significant computational overhead to be
constructed and are prone to ownership collisions when models
are post-processed, such as model pruning or fine-tuning [15],
[14], [16]. Therefore, GNN fingerprinting methods are limited
in scenarios where the owner has limited computational re-
sources [17], or the model is potentially subject to substantial
fine-tuning or high-ratio pruning [18].

Another line of methods [11], [12] adapts backdoor attacks
as watermarks, named GNN black-box watermarking. These
methods embed backdoor patterns into certain nodes and
assign incorrect labels for them. The watermark functions as an
additional input-output mapping, causing samples containing
the backdoor patterns to be misclassified into the designated
class rather than their true class. The suspect model is identi-
fied as an unauthorized copy if it classifies a majority of such
backdoor samples into the designated class. Backdoor-based
watermarking methods offer stronger robustness against model
post-processing and incur low computational overhead during
the embedding process. However, using backdoor attacks as
watermarks poses a serious security threat [19] to the primary
task. Once the backdoor is exposed, malicious users can
exploit it to manipulate the behavior of the model and force
the desired outputs [20], [21].

Furthermore, both GNN fingerprinting and GNN black-box
watermarking methods are limited by their zero-bit capacity,
which enables ownership verification but cannot encode any
additional information [7]. As a result, such methods incur

https://arxiv.org/abs/2506.08602v1


high financial costs [17] and increase the risk of detection
during the verification process [22]. In addition, the ownership
information is susceptible to forgery [23].
Our proposal. Motivated by the above analysis, we propose
WGLE, a novel GNN black-box watermarking paradigm that
inherits the advantages of low overhead and strong robustness
from previous GNN black-box watermarking methods. Fur-
thermore, WGLE (i) is backdoor-free, eliminating the security
threats associated with backdoor attacks, and (ii) supports
multi-bit capacity, which makes ownership verification finan-
cially inexpensive and hard to detect. The multi-bit watermark
is more difficult to forge than the zero-bit watermark.

WGLE builds on a key insight, referred to as Layer-wise
Distance Difference on an Edge (LDDE), which quantifies
the difference between the feature distance and the prediction
distance of two connected nodes. LDDE is a suitable water-
mark carrier as it can be calculated in all GNNs and modified
in a specified direction with a minor impact on the model’s
performance in the primary task (details in Section IV). The
owner first constructs a trigger graph based on the original
model. For each model distribution, the watermark is generated
and then embedded by fine-tuning the original model to
modify the LDDE values of selected edges in the trigger graph.
WGLE is backdoor-free, as there is no incorrect mapping that
forces specific samples to be classified into the designated
class; all samples remain correctly classified into their true
classes. To achieve multi-bit capacity, WGLE transforms the
signs of the LDDE values of selected edges in the trigger
graph into a multi-bit string, also known as the watermark.
The LDDE value of each edge is determined by the local
topology and the node features surrounding it, so each edge
exhibits an individual LDDE value.
Evaluations. We evaluated WGLE and state-of-the-art GNN
black-box watermarking (WGB [12]) and fingerprinting meth-
ods (RBOVG [14]) across six mainstream GNN architectures
and six real-world datasets. The experimental results show
that WGLE achieves 100% ownership verification accuracy,
consistent with WGB and RBOVG. In terms of fidelity, WGLE
has a minor degradation in the accuracy of the primary task,
with an average drop of 0.85% in accuracy. In addition,
WGB shows an average accuracy drop of 0.57%, and RBOVG
incurs 2.37%. WGLE is also robust to model post-processing
techniques such as model pruning [24] or fine-tuning [25]. For
example, WGLE maintains a false positive rate of zero under
high pruning ratios, whereas RBOVG exhibits a false positive
rate over zero, indicating that independently trained models
are misidentified as unauthorized copies. WGLE enables the
surrogate model to inherit the watermark from the original
watermarked model, whereas WGB does not. Furthermore,
WGLE requires only a 5% average computational overhead
compared to RBOVG and 50% compared to WGB.
Contributions: We first consider the general scenario of
watermark generation and embedding for WGLE: the owner
has a large training graph and trains a GNN model on it
(Setting I). We also discuss two other scenarios: the owner
has the training graph and the GNN model, but the training

graph is small (Setting II). The owner has the original model
but no training graph (Setting III).

Our contributions are summarized as follows:
• Backdoor-free: WGLE embeds the watermark by fine-

tuning the original model to modify the LDDE values
of selected edges in the trigger graph. WGLE eliminates
security threats associated with backdoor attacks, as there
is no incorrect mapping that causes specific samples to be
misclassified into the designated class.

• Multi-bit: WGLE transforms the signs of the LDDE values
of selected edges in the trigger graph to a multi-bit string
(i.e. the watermark). Even if multiple watermarked models
have been distributed, ownership verification requires only a
single query to the suspect model. The single query makes
the verification process financially inexpensive and difficult
to detect. The multi-bit watermark is more difficult to forge
than the zero-bit watermark.

• Experiments: We evaluated WGLE and state-of-the-art
GNN copyright protection methods on six public datasets
and six mainstream GNN architectures. The results demon-
strate that WGLE ensures effectiveness and fidelity while
addressing the limitations of existing methods.

II. BACKGROUND

A. Graph Neural Networks

GNNs are widely used in various graph data processing
tasks. Since the challenges of black-box watermarking for
node-level and graph-level GNNs differ, their solutions also
vary. This paper focuses on node-level tasks under the induc-
tive training paradigm like previous work [26], [27], [28].

In node-level GNNs, each node has a feature vector x ∈ X
and corresponding classification label y ∈ Y, where X
and Y are the set of features and labels across all nodes,
respectively. Let G = (X,E) denote a graph with node feature
set X and edge set E. A node-level GNN model takes G
as input and outputs predicted probability vectors for each
node. GNN models create vector representations for individual
nodes (embeddings) by iteratively gathering information from
their local network neighborhoods. At each “layer” of the
GNN models, a node’s new embedding is computed based on
its current embedding and the embeddings of its immediate
neighbors. This process is called neighborhood aggregation
and message passing, where nodes exchange and combine
information through the connecting edges. At the l-th layer, the
embedding hl

v of a node v is learned by iteratively aggregating
the embeddings hl−1

u of its neighboring nodes u ∈ N (v):

hl
v = AGG

(
hl−1
v ,MSG

(
hl−1
v , hl−1

u

))
, u ∈ N (v),

where hl
v is the embedding of node v at the l-th layer and

h0
v is initialized by the node feature x of node v. MSG

stands for message aggregation, which calculates the messages
exchanged between a node v and its neighbors u at layer l−1.
These messages typically encapsulate information about local
structural patterns and features. AGG is the aggregation func-
tion, which combines information from the previous layer’s
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embedding hl−1
v and the messages generated by the MSG

function. Following k rounds of iteration, node embeddings at
the k-th layer capture structural and feature information within
their k-hop neighborhoods [29].

In practice, GNNs can follow two different training
paradigms. In the transductive setting, the model is trained
and evaluated on the same graph. In the inductive setting, it is
trained on one graph and tested on another unseen graph. This
work focuses on the inductive paradigm as it better reflects
real-world deployment scenarios.

For graph data, edges are as important as features, influ-
encing the accuracy and prediction behavior of GNN models.
AGG and MSG in GNNs lead to the emergence of LDDE.
The presence of LDDE implies that, in a black-box query,
the GNN model can reveal not only the posterior probabilities
of the samples but also the relationships between them. This
allows ownership verification to depend on the prediction
probabilities of the samples or the relationships between them.
We further elaborate on LDDE in Section IV.

B. Model Ownership Verification

Model ownership verification determines whether the sus-
pect model Ms is an unauthorized copy of the protected
model. It is formally defined as:

V(Ms, IP, τ) = I{SIM(IP,Fext(Ms)) > τ}

where IP denotes the predefined intellectual property (IP)
identifier (e.g. watermark or fingerprint), Fext(·) is the extrac-
tion function, SIM(·, ·) is a similarity metric, and τ is the
verification threshold. If the similarity exceeds τ , the model
is considered to infringe the protected IP. We summarize the
notation used in this work in Table I. Existing IP protection
methods [30], [31], [32], [13], [16] can be categorized into
three types: (1) white-box watermarking, (2) black-box water-
marking, and (3) fingerprinting.
White-box watermarking. White-box watermarking methods
directly encode a binary bit string into the internal parameters
of a model. For example, Uchida et al. proposed adding a
watermark regularization term to the loss function to embed
the watermark [30]. White-box model watermarking methods
assume that the verifier can have full access to the suspect
model during verification. This assumption is often infeasible
in practice, as models are commonly deployed as Machine
Learning as a Service (MLaaS), where only the application
programming interface (API) is exposed. Consequently, re-
search on white-box watermarking has diminished, and no
white-box watermarking schemes have been specifically de-
signed for GNN models to date.
Black-box watermarking. Black-box watermarking methods
assume that the verifier can only observe the outputs from
the suspect model. Most methods [33], [31] rely on backdoor
attacks. The backdoor is embedded into the model during
training as a watermark. A backdoor refers to a hidden
behavior activated by specific inputs, causing the model to
produce predefined incorrect predictions, without impairing

TABLE I: Notations used in this work.

Notation Description

G = (X,E,Y) Training graph
T = (X,E) Trigger graph
X Set of node features
Y Set of node labels
E Set of edges
Eu/Ev Nodes at the two ends of edges
w Watermark string
k Watermark key indicating selected edges
Sw Set of watermark strings
Nw Number of bits in the watermark string w
τ Similarity threshold for verification
Mo Original model
Mw Watermarked model
Mi Independently trained model
Ms Suspect model for verification
FLDDE Function for computing LDDE values

the model’s performance on benign data. Some methods use
highly uncertain prediction samples as trigger samples to
support fine-tuning embeddings [32]. To reduce backdoor
harm, some methods use the specific entropy of the predictions
as a watermark rather than incorrect class predictions [34].
During verification, the verifier inputs the triggers to the
suspect model, where a high backdoor activation rate indicates
an unauthorized copy [11], [12].
Fingerprinting. Fingerprinting constructs the fingerprint
based on the intrinsic properties of the model, such as predic-
tion behavior, decision boundaries, and responses to adversar-
ial samples. Independently trained models exhibit distinct fin-
gerprints, whereas an unauthorized copy shares a substantially
similar fingerprint to the fingerprinted model. In the context
of GNNs, fingerprints can take various forms, including layer-
wise node embeddings [13], unique sample-specific behav-
iors [16], or overall model behaviors [14]. However, ownership
verification based on fingerprint similarity results in a narrow
collision space. After model post-processing, independently
trained models may inadvertently generate fingerprints that
resemble those of the protected model. This undermines the
reliability of ownership verification.

III. PROBLEM STATEMENT

A. System and Threat Model

The system model of WGLE comprises three key entities:
the original model owner, the adversary, and the verifier. The
verifier can be a model owner or a trusted third-party authority
qualified to issue legally admissible forensic reports.
Original Model Owner. The owner has the original GNN
model, with or without the original training graph in practice.
The owner’s objective is to embed a watermark into the
original model with low overhead. For this purpose, the
owner first constructs a single trigger graph based on the
original model. For each distribution, a unique watermark
string is generated that encodes metadata such as timestamps,
recipient details, and usage agreements. The owner then uses

3



the trigger graph to fine-tune the original model to embed
the watermark. Note that the trigger graph is reused across
multiple distributions. Consequently, ownership verification
requires only a single query using the same trigger graph,
even if multiple watermarked models have been distributed.
Adversary. Two types of adversaries are considered:
• IP Infringer. The adversary has an unauthorized copy of

the watermarked model. For example, the adversary can
steal the entire model parameters through insider leaks
or server breaches, or train a surrogate model via model
extraction attacks. The adversary attempts to deploy the
copy of the watermarked model to provide API access
services while evading potential ownership verification. To
evade ownership verification, the adversary can reprocess
the watermarked model using techniques such as fine-
tuning [25], pruning [24], or watermark overwriting [32].

• Malicious User. The watermark has been leaked and known
to the adversary. In prior backdoor-based GNN black-box
watermarking methods, such leakage directly reveals the
backdoor and compromises the correct execution of the
model on its primary task.

Verifier. Holding the trigger graph and the watermarks, the
verifier aims to verify the ownership of the suspect model.
In practice, ownership verification is typically performed in a
black-box setting, where the verifier can only interact with the
suspect model via its API. The verifier inputs the trigger graph
into the suspect model and analyzes the output to determine
whether the model is an unauthorized copy. If infringement
is confirmed, the watermark can also reveal the source of
the leak. As mentioned above, even if multiple watermarked
models have been distributed, the verifier only needs to query
the suspect model once using the trigger graph. The single
query makes the verification process financially inexpensive
and difficult to detect.

B. Requirements for Ownership Verification.

We propose WGLE, a novel GNN black-box watermarking
paradigm that satisfies all the following requirements:
R0. Effectiveness and Fidelity: This is a fundamental re-

quirement. Effectiveness requires that the scheme reliably
distinguishes unauthorized copies from independently
trained models. Fidelity requires that the watermarked
model preserves a performance comparable to the original
model on the primary task.

R1. Backdoor-free: The watermarked model is backdoor-free,
eliminating the threat of backdoor attacks.

R2. Multi-bit: During ownership verification, the verifier ex-
tracts a multi-bit string (i.e., the watermark) from the
suspect model. This allows the verification process to be
financially inexpensive and less detectable. The water-
mark cannot be easily forged.

R3. Robustness: Ownership verification should remain effec-
tive even if the watermarked model is post-processed,
such as pruning or fine-tuning.

R4. Low Overhead: The watermark embedding process incurs
a low computational overhead.

TABLE II: Comparison of WGLE with previous methods.
“R1.”, “R2.”, “R3.”, and “R4.” respectively denote backdoor-
free, multi-bit, strong robustness, and low overhead. “●”
denotes full compliance with the requirement, “#” indicates
non-compliance, and “G#” represents partial fulfillment with
room for improvement.

Category Method R1. R2. R3. R4.

Fingerprinting
GrOVe [13] ● # # #
GNNFingers [16] ● # # #
RBOVG [14] ● # G# #

Black-box
watermarking

WGRG [11] # # ● ●
WGB [12] # # ● ●
WGLE ● ● ● ●

R0 is a basic requirement and must be addressed in all
works. However, previous work has overlooked R1-R4, as
discussed in Section III-C. In contrast, WGLE satisfies all the
requirements outlined here.

C. Limitations of Prior Work

Table II compares WGLE with existing methods. However,
previous works lack complete consideration of R1, R2, R3,
and R4 (introduced in Section III-B). We elaborate on the
weaknesses of previous works as follows.
GNN Black-box Watermarking. WGRG [11] is the first
GNN black-box watermarking method. WGB [12] further
extends this line of work. They construct the backdoor samples
by modifying the node features in node classification and
modifying the graph topology in graph classification.

GNN black-box watermarking methods present strong ro-
bustness against model post-processing techniques (R0) and
offer advantages in terms of overhead (R4). However, the inte-
gration of the backdoor introduces significant security vulner-
abilities (R1), restricting their applicability in security-critical
environments. Furthermore, these methods only possess zero-
bit capacity. Ownership verification requires multiple queries
to the suspect model, which increases financial cost and is
prone to detection. In addition, the watermark is easily forged
(R2) due to the prevalence of natural misclassifications. The
adversary can collect many naturally misclassified samples to
falsely claim ownership.
GNN Fingerprinting. GrOVe [13] is the first GNN finger-
printing method that utilizes layer-wise embedding entangle-
ment for ownership verification. However, it requires access
to intermediate layers, making it unsuitable for black-box
settings. RBOVG [14] addresses this limitation and improves
the robustness. They apply partial node feature masking and
use the overall behavior of the model as the fingerprint to
improve robustness. GNNFingers [16] can be applicable to
tasks at various levels, including node-level, edge-level, and
graph-level tasks. They jointly optimize the fingerprint and
the ownership classifier. The classifier is trained to distinguish
between the outputs of copied models (treated as positive
samples) and those of independently trained models (treated as
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Fig. 1: Projections of LDDE values for selected edges before
and after modification. Blue points represent edges targeted for
positive LDDE signs, while red points represent those targeted
for negative signs.

negative samples). The fingerprint is iteratively updated based
on the classifier’s predictions.

GNN fingerprinting methods inherently avoid backdoors
(R1). However, constructing fingerprints incurs high overhead
(R4). It is prone to falsely identifying independently trained
models as unauthorized copies if the models have undergone
extensive post-processing. This compromises the credibility of
ownership verification (R3). As a result, these methods are
unsuitable for scenarios involving frequent model distribution
or strict time constraints, as the fingerprints require much time
to be reconstructed for each distributed model. Furthermore,
model post-processing is routine in practice, and independently
collected datasets are likely to exhibit overlap. Existing GNN
fingerprinting methods only possess zero-bit capacity (R2).

IV. KEY INSIGHTS: LDDE

We begin by defining LDDE and then present three critical
observations. These observations form our insight into the
suitability of LDDE as a watermark carrier.

Definition IV.1. For two nodes (u, v) connected by an edge
in the graph input to a GNN model, we define the difference
between their node feature distance D(xu,xv) and their node
prediction distance D(ŷu, ŷv) as LDDE, formally:

LDDE(u, v) = D(ŷu, ŷv)−D(xu,xv) (1)

Here, we use cosine similarity for D as it is bounded.
Observation-1. Given a graph with n edges as input to a
GNN model, n LDDE values can be computed for the n edges.
GNNs employ neighborhood aggregation and message-passing
mechanisms to capture structural information from graph
data [35]. These operations jointly leverage node features
and graph topology, resulting in a predefined and measurable
distance between connected nodes. Consequently, the LDDE
value can be computed for every edge in any input graph to
a GNN model.
Observation-2. LDDE values of certain edges can be modified
to align their signs with predefined positive or negative signs.
For example, to embed the watermark string “1001”, the owner
selects four edges in the trigger graph that exhibit LDDE
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Fig. 2: t-SNE projections of the predictions from both the
original and LDDE-modified (watermarked) models. Different
colors indicate different classes.

values close to zero and possess rare local topologies. The
original model is fine-tuned to jointly optimize two objectives:
the primary task and the watermark embedding. The latter
modifies the LDDE values of the selected edges to align their
signs with “(+)(-)(-)(+)”, matching the watermark “1001”. The
feasibility of simultaneously fitting multiple objectives has
been established in previous work [36], [37].

We take Setting I as an example, where the training graph
is directly used as the trigger graph. In the experiment, a 200-
bit string is randomly generated as the target watermark, with
each bit corresponding to one of the 200 selected edges. The
signs of the LDDE values for these edges are interpreted as
the extracted watermark: a positive sign is assigned to bit “1”,
and a negative sign to bit “0”. We compute the Hamming
similarity (HMS) between the extracted bit string and the target
watermark. In theory, the HMS for the original (unmodified)
model should be close to 0.5, while the watermarked (LDDE-
modified) model should yield a value approaching 1.0. As
shown in Figure 1, the HMS increases from 0.460 to 0.980
for SAGE on Photo, and from 0.405 to 0.990 for GTF on
Physics after modification. These results demonstrate that
the LDDE values can be modified to encode the intended
watermark. Additional results are presented in Appendix F.
Observation-3. Modifying the LDDE values of selected edges
introduces a minor impact in the model’s primary task. In
node-level GNNs, the distances between node pairs have
been shown to correlate with the connectivity relationship:
connected node pairs generally exhibit shorter distances than
unconnected [38], [39]. As this relationship serves as auxiliary
information that is not directly constrained by the model’s pri-
mary task, it allows for minor adjustments without noticeably
degrading the model’s performance on the primary task.
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We take Setting I as an example. Figure 2 shows the impact
of the LDDE modification on the model’s performance in the
primary task. Specifically, we calculate the Adjusted Rand
Index (ARI) [40] on the node predictions in the training graph,
before and after LDDE adjustment, to quantify the fitness
of the model for the primary task. A smaller drop in ARI
indicates minimal disruption to the primary task. As shown in
Figure 2, both the original and watermarked models maintain
high ARI scores. For example, ARI drops slightly from 0.999
to 0.994 for SAGE on Photo, and from 1.000 to 0.995
for GTF on Physics. These results confirm that LDDE
modifications have a minor impact on the model’s primary
task. Additional results are provided in Appendix F.

V. WGLE: DESIGN AND IMPLEMENTATION

We first discuss other potential implementation methods for
achieving multi-bit or backdoor-free GNN model copyright
protection. This section also introduces the specific settings
of LDDE in this work. We then describe the general scenario
(Setting I), where the owner has a large training graph and
trains the original model on it. Subsequently, we consider two
additional scenarios. Setting II: The owner has the training
graph and trains the original model, but the training graph is
small. Setting III: The ownership of the original model has
been transferred to a new party that no longer has the original
training graph. The new owner has to embed the watermark
without the training graph. The notation used in this work is
summarized in Table I.

A. Starwman Solutions

A straightforward solution is to directly adopt black-box
watermarking methods for models processing Euclidean data
to GNN ownership verification. However, such methods are
not well-suited to GNNs due to the complex and irregular
nature of graph data. For example, UBW [37] uses a spe-
cific entropy value as a watermark. Trigger samples output
correct classifications while exhibiting unusually high entropy.
However, UBW substantially alters the sample output, severely
degrading fidelity and increasing the likelihood of ownership
misidentification for GNNs. In node-level GNNs, a node’s
prediction is determined by the features of both itself and its
neighbors. Thus, altering the output of a single node can affect
a large number of surrounding nodes. EaaW [41] proposes a
multi-bit black-box watermarking method by transforming the
explanation of a specific trigger sample into the watermark.
However, due to the non-Euclidean nature of graph data, EaaW
struggles with issues of fidelity and effectiveness (as presented
in Section VI). To overcome these issues, we explore GNN-
specific properties for GNN black-box watermarking.

Previous studies [38], [39] show that the distance between
a pair of nodes can reveal the existence of an edge. With the
same GNN model, a pair of nodes with or without an edge
yields different output distances. Inspired by this observation,
we fix the input graph and make different watermarked GNN
models produce distinct node output distances. A straightfor-
ward idea is to assign specific values to the output distances of

the connected nodes. However, GNN black-box watermarking
must consider (1) selecting a suitable distance metric, (2)
mapping node distances to watermark bits, and (3) coping with
the output form of the suspect model.

For these considers (1) we adopt cosine similarity as the
distance metric in LDDE, as cosine similarity is bounded
within [−1, 1]; (2) we map the signs of LDDE values into
a watermark string, where positive signs correspond to “1”
and negative signs correspond to “0”. We do not directly use
the distance of the node outputs, as it does not guarantee a
sufficient number of values near zero; and (3) we applied a
transformation to the posterior probabilities before calculating
LDDE [42], since GNNs deployed via MLaaS typically return
softmax-normalized probability distributions. Specifically, for
node predictions Ŷ, node features X and edges E, we define
the LDDE function as follows:

FLDDE(Ŷ,X,E) = D(ỸEu
, ỸEv

)−D(XEu
,XEv

) (2)

where Eu/Ev denotes the nodes at the two ends of E, D(·) is
cosine similarity, and Ỹ represents a transformation of a node
prediction Ŷ, which is

Ỹ =
log(Ŷ)− µ(log(Ŷ))

σ(log(Ŷ))
,

where log is natural logarithms; µ is the mean; σ is the
standard deviation. µ and σ are calculated over dimensions
for each sample. This transformation addresses the issue of
posterior probabilities being small and closely spaced (i.e.,
within the range of 0 to 1), which are unsuitable for cosine
similarity computation.

B. Setting I: Large Training Graph

In most cases, the training graph consists of many nodes
and edges, which can thus serve directly as the trigger graph.
This strategy provides excellent concealment during ownership
verification and robustness against model extraction attacks, as
the trigger graph is the unmodified training graph.
Watermark Generation: As illustrated in Figure 3, the wa-
termark generation process begins by calculating the LDDE
values for all edges in the trigger graph and selecting a subset
of edges that are marked by the watermark key. Note that
both the LDDE values and the watermark key are computed
once and reused across all watermarked models. For each
distribution, a distinct watermark string is generated according
to practical requirements.

The watermark string encodes the desired information, such
as the company logo, the usage policy associated with the
watermarked model, the intended recipient of the model dis-
tribution, or a timestamp indicating when the model was dis-
tributed. In this work, we generate an Nw-bit watermark string
by independently sampling each bit from a Bernoulli distribu-
tion with equal probability for 0 and 1 (i.e., Bernoulli(0.5)).

w = (w1, w2, . . . , wNw
), wi ∼ Bernoulli(0.5) (3)

In fact, the watermark string can encode arbitrary information.
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Fig. 3: The main pipeline of WGLE. The trigger graph and the watermark key are prepared for the original model. For each
distribution, the model is fine-tuned to be embedded the given watermark. During fine-tuning, the primary task is preserved
by the training graph, while the watermark string is embedded via the trigger graph. During ownership verification, the trigger
graph is used to query the suspect model’s API, and the watermark is extracted from its LDDE values.

Although every edge possesses an LDDE value, not all
edges are suitable as watermark carriers. The edges selected to
carry the watermark should satisfy the following conditions.

C1: The edges possess statistically rare local structures.
C2: The edges possess LDDE values close to zero.

Edges that better satisfy condition C1 minimize the impact
of modifying LDDE values on other edges. Edges that better
satisfy condition C2 require smaller adjustments to alter the
signs of their LDDE values. We use the watermark key k to
indicate the selected edges in the trigger graph that are used
to carry the watermark string.
Using the Training Graph as the Trigger Graph. When us-
ing the training graph G as the trigger graph T, condition C1
can be satisfied by selecting edges that connect nodes with
different labels. Since nodes connected in a graph tend to share
the same label, such edges connecting nodes with different
labels exhibit a rare local topology. To satisfy condition C2,
the LDDE values of the edges that satisfy condition C1 are
calculated, and the Nw edges with the smallest absolute LDDE
values are selected.
Watermark Embedding: As illustrated in Figure 3, the
original model owner maintains the performance of the water-
marked modelMw in the primary task by the training graph G
while embedding the watermark string w by the trigger graph
T and the watermark key k. The owner fine-tunes the original
model Mo to optimize the following objective function until
w is successfully extracted from Mw:

min
Mw

L = L1(Mw(G),G.Y) + L2 (v[k],w) (4)

where L1 represents the cross-entropy loss for the primary
task.L2 measures the dissimilarity between the extracted wa-
termark string and w, which is the binary cross-entropy loss in
this work. Mw is the watermarked model, initialized as Mo.
v = FLDDE(Mw(T),T.X,T.E) denotes the vector of LDDE
values for all edges. k is the watermark key that indicates the
selected edges.
Watermark Extraction and Ownership Verification: As
shown in Figure 3, the verifier queries the suspect model’s
API using the trigger graph to obtain the predictions for all
nodes. The verifier then computes the LDDE values for all
edges and selects a subset according to the watermark key to
form a sequence. This sequence is binarized to recover the
embedded watermark. The complete extraction procedure is
detailed in Algorithm 1.
Signal(x) returns 0 if x < 0 and 1 otherwise. SIM stands

for similarity. τ is the judgment threshold and can be selected
according to the normal distribution. Note that if the suspect
model is an unauthorized copy, the return is the original
watermark in Sw, not the extracted one. We provide a detailed
discussion of the selection of τ in Appendix D.

C. Setting II: Small Training Graph.

Setting I utilizes the training graph G as the trigger graph T,
which requires G to be large enough to contain enough edges
that satisfy conditions C1 and C2. However, in real-world
scenarios, G may be too small to contain enough edges that
satisfy these conditions. In this case, the owner has to generate
a graph to serve as the trigger graph. The key distinction
between Setting I and Setting II lies in the generation of T,
while other components remain unchanged.
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Algorithm 1: Ownership Verification
Input : API of the suspect model Ms; Trigger graph

T; Watermark Key k; Watermark set
Sw = {wi}ni=1;

Output: (1) A boolean value: True if Ms is identified
as an unauthorized copy; (2) The matched
watermark string, returned only if True.

1 Ŷ ←Ms(T) ;
2 v← FLDDE(Ŷ,T.X,T.E) ;
3 w̃← Signal(v[k]) ;
4 wm ← argmaxSIM(w̃,Sw) ;
// wm ∈ Sw is the most similar

watermark to w̃
5 if SIM(wm, w̃) ≥ τ then return True, wm;
6 else return False;

Using the Generated Graph as the Trigger Graph. The
trigger graph topology can be generated using the Erdos-Renyi
(ER) model [11] or borrowed from a real graph for better
concealment. We adopt the topology of PubMed[43] as the
trigger graph structure in this work. The initial node features
are randomly sampled from a Gaussian distribution, with
feature dimensions matching those of the training graph. These
features are then updated to satisfy the following objectives:

min
T.X
L = |v|+ λ1 ·

1

1− |D(T.XT.Eu
,T.XT.Ev

)|
(5)

v is FLDDE(Mo(T),T.X,T.E), which minimizes the ab-
solute value of LDDE values across all edges. The second
term imposes a penalty to prevent node feature distances from
approaching the boundaries of the cosine similarity range
[−1,+1]. This is because when the node feature distance
approaches the cosine similarity boundary, it becomes difficult
to flip the signs of the LDDE values, even if the values are
close to zero. λ1 is a regularization coefficient, which is 1e-
4 in this work. After completion of the updates, we applied
Node2Vec [44] and DBSCAN [45] to identify edges that meet
the condition C1 due to the absence of labels. Subsequently,
we select Nw edges that meet condition C2.

Setting II is suitable for scenarios where the training graph
G is small. Compared to Setting I, it imposes a smaller impact
on the fidelity of the model. However, since Setting II relies
on a generated trigger graph T rather than the original training
graph, it makes the watermarked modelMw not robust against
model extraction attacks.

D. Setting III: No Training Graph.

Both Setting I and Setting II require the training graph G
to maintain the performance of the watermarked model Mw

on the primary task. However, the lack of G is common in
real-world scenarios. For example, the owner trains a model
and then releases it to a platform or publisher. To protect
data privacy, the owner provides the model without G. If
the platform or publisher wants to embed a watermark in the

model, they face the challenge of lacking G to maintain the
performance ofMw on the primary task. Setting III is suitable
for the scenario where G is not available. The key distinction
between Setting II and Setting III lies in the watermark
embedding, while other components remain unchanged.
Watermark Embedding without the Training Graph. In the
absence of G, the challenge during watermark embedding lies
in maintaining the performance ofMw in the primary task. To
address this, we adapt the concept of data-free adversarial dis-
tillation (DFAD) for GNNs [46], [47]. Specifically, we adopt
the Barabasi-Albert (BA) model [48] to randomly generate the
pseudo graph topology G̃.E, and initialize the node features
G̃.X with samples drawn from a Gaussian distribution. G̃
acts as a substitute for G. During watermark embedding,
after each update to Mw, G̃.X is updated to maximize the
output difference between the original model Mo and the
watermarked model Mw. The optimization objective is:

min
Mw

max
G̃.X
L = L1(Mw(G̃),Mo(G̃)) + L2(v[k],w) (6)

where L1 represents the cross-entropy loss for the primary
task. L2 measures the dissimilarity between the extracted
watermark string and w, which is the binary cross-entropy
loss in this work. Mw is the watermarked model, initialized
as Mo. v = FLDDE(Mw(T),T.X,T.E) denotes the vector
of LDDE values for all edges. k is the watermark key that
indicates the selected edges.

Unlike classical DFAD for GNNs [47], which updates both
the node features and the graph topology, Setting III keeps the
graph topology fixed and updates only the node features. This
is because LDDE is relevant to the graph topology, and altering
the topology would increase the uncertainty of modifying the
LDDE values. The principle of Setting III is that the optimal
points of the watermarked model and the original model are
very close, enabling the original model to be transformed into
the watermarked model with minor alteration.

VI. EXPERIMENTS

We evaluated WGLE in six real-world datasets and six
mainstream model architectures. We first describe the experi-
mental setting and then demonstrate the experimental results.

A. Experiments Setting

Environment. We conducted the experiments on a cloud
server using an NVIDIA A100 GPU with 40GB RAM. We
used PyTorch 2.5.1 and PyG 2.6.1 as the programming lan-
guages for our experiments.
Dataset. We used the six datasets as shown in Table III for
our experiments. Each dataset is represented as a graph, where
each node corresponds to a sample. For each graph, i.e., a
dataset, we extract 70% of the nodes and their connected edges
as the training graph, 20% of the nodes and their connected
edges as the validation graph, and 10% of the nodes and their
connected edges as the test graph.
Model Architectures We used GCNv2 [51], Graph Trans-
former (GTF)[52], GraphSAGE [53], SSG [54], GEN [55],
and ARMA[56] in our experiments. Except for GCNv2, each
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TABLE III: Datasets statistics of node classification task

Datasets Nodes Edges Features Classes

Cora [43] 2,708 10,556 1,433 7
DBLP [49] 17,716 105,734 1,639 4
Photo [50] 7,650 238,162 745 8
Computers [50] 13,752 491,722 767 10
CS [50] 18,333 163,788 6,805 15
Physics [50] 34,493 495,924 8,415 5

architecture includes four graph convolution layers, with the
final layer serving as the output layer. GCNv2 is composed
of an input linear layer, three graph convolution layers, and
an output linear layer. All models use the ELU activation
function, with the Adam optimizer set to a learning rate of 1e-
4 and a weight decay of 1e-4. Each model is trained for 500
iterations, and we use the cross-entropy loss as the objective
function for the primary tasks.
Metrics. We use following metrics to evaluate WGLE:
• Test Accuracy (TAC): The accuracy of the model on the test

graph, expressed as a percentage in this paper.
• Hamming similarity (HMS): Hamming similarity quantifies

the similarity between two binary strings of equal length.
Formally, given two binary sequences w̃,w ∈ {0, 1}Nw ,
the HMS is defined as:

HMS(w̃,w) =
1

Nw

Nw∑
i=1

I{w̃[i] = w[i]} (7)

where I(x) is an indicator function that returns 1 if x is true
and 0 otherwise. w̃ is the extracted watermark string, while
w is the target watermark string. Nw is the length of the
watermark string. HMS ranges from 0 to 1, with 1 indicating
perfect agreement and 0.5 meaning random guessing.

• Ownership Verification Accuracy (OVA): Correct detection
rate of ownership verification.

• False Positive Rate (FPR): FPR reports the rate of indepen-
dently trained models mistakenly identified as unauthorized
copies. It must remain zero; any value above zero indicates
that the ownership verification audit is untrustworthy.
We adopted the midpoint of each similarity metric as the

decision threshold τ : A similarity score over τ indicates an
unauthorized copy. Specifically, τ is set to 0.5 for WGB
(backdoor activation rate), 0.5 for RBOVG (confidence score
of the ownership classifier), and 0.75 for WGLE and EaaW
(hamming similarity). A detailed discussion on the relationship
between similarity thresholds and ownership collisions is
provided in Appendix D.
Baseline. We select WGB [12] and RBOVG [14] as baselines
for comparison. These methods represent the state-of-the-art
in GNN black-box watermarking and GNN fingerprinting,
respectively. We simultaneously tested whether EaaW [41] can
be directly transplanted to GNN.
Empirical Evaluations. We conduct comprehensive experi-
ments to address the following research questions (RQs):
• RQ1. Compared to baselines, can WGLE effectively dis-

tinguish watermarked models and independently trained

models, achieving high ownership verification accuracy
(OVA) and a zero false positive rate (FPR) (effectiveness)?
In addition, to what extent does watermarking affect the
model’s accuracy in the primary task (fidelity)?

• RQ2. Can ownership verification remain effective when
watermarked models or independently trained models are
subjected to common post-processing techniques such as
fine-tuning or pruning?

• RQ3. Can ownership verification remain reliable even if
the adversary is aware of the WGLE algorithm and adopts
targeted countermeasures (watermark overwriting)? Can the
watermark be extracted from a surrogate model that is
trained via model extraction attacks?

We systematically answer these RQs. Moreover, we show
the overhead of watermark embedding in Appendix B, the
harm of the backdoor in Appendix C, the analysis of ownership
collision in Appendix D, and the impact of watermark length
on fidelity and robustness in Appendix E.

B. Effectiveness and Fidelity (RQ1)

Experiment Design. We fine-tune the original model to embed
the watermark using the Adam optimizer with a learning
rate of 5e-5 and a weight decay of 1e-4. The length of the
watermark string Nw is 200. We generated 100 watermarked
models and 100 independently trained models. For WGB,
we mask 15% of node features and assign the label “2” to
create backdoor samples. For RBOVG, we follow the authors’
default settings, training 60 shadow surrogate models and 60
independently trained models. The training graph is evenly
split: one half is used to train fingerprinted models and the
other to train shadow models. Consequently, only half of the
training graph is available for training the fingerprinted model.
The other settings are consistent for a fair comparison.
Result Analysis. As shown in Table IV, WGLE, WGB, and
RBOVG effectively distinguish watermarked or fingerprinted
models from independently trained models. All three methods
achieve an OVA of 1.000 and no FPR over 0, reflecting perfect
discrimination without incorrect identifications. In contrast,
EaaW fails to achieve perfect classification, with OVA scores
below 1.0 in all datasets and models, and even exhibiting FPR
values greater than 0 for SSG on DBLP and GEN on CS. These
results indicate that, despite its effectiveness in image and text
domains, EaaW is not well-suitable for GNN watermarking.

Table V reports the results of the fidelity. WGLE under
Settings II and Settings III achieves minimal accuracy degrada-
tion, with maximum drops of 1.52% and 1.85%, respectively.
This is attributed to using a generated graph as the trigger
graph. Settings I shows better fidelity than RBOVG but worse
than WGB, with a maximum drop of 5.82%. The large drop
is due to the small size of the training graph of Cora, which
limits the model to fit both the primary task and the watermark
embedding task. Therefore, when the training graph is small
and the watermark string is long, Settings I should be carefully
considered if high fidelity is required. In contrast, EaaW incurs
a maximum accuracy drop of 12.77% on the test graph.
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TABLE IV: The effectiveness of WGLE and baselines. We report the ownership verification accuracy (OVA) and the false
positive rate (FPR).

Datasets Models WGB RBOVG EaaW Setting I Setting II Setting III
OVA FPR OVA FPR OVA FPR OVA FPR OVA FPR OVA FPR

Cora GCNv2 1.000 0.000 1.000 0.000 0.891 0.000 1.000 0.000 1.000 0.000 1.000 0.000
DBLP SSG 1.000 0.000 1.000 0.000 0.547 0.031 1.000 0.000 1.000 0.000 1.000 0.000
Photo SAGE 1.000 0.000 1.000 0.000 0.984 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Computers ARMA 1.000 0.000 1.000 0.000 0.969 0.000 1.000 0.000 1.000 0.000 1.000 0.000
CS GEN 1.000 0.000 1.000 0.000 0.969 0.031 1.000 0.000 1.000 0.000 1.000 0.000
Physics GTF 1.000 0.000 1.000 0.000 0.875 0.000 1.000 0.000 1.000 0.000 1.000 0.000

TABLE V: The test accuracy (TAC) of the original model (Mo) and the watermarked or fingerprinted models in WGB,
RBOVG, EaaW, and WGLE. Values following ± denote the standard deviation (unbiased estimate), and the values following
↓↑ indicate the relative decrease or increase in TAC compared to Mo.

Datasets Models Mo WGB RBOVG EaaW Setting I Setting II Setting III

Cora GCNv2 73.16 74.81±1.44↑1.65 69.61±0.86↓3.55 60.39±1.04↓12.77 67.34±2.14↓5.82 72.91±0.98↓0.25 73.14±0.92↓0.02
DBLP SSG 72.01 71.92±0.52↓0.09 64.37±0.31↓7.64 70.98±0.36↓1.03 70.05±0.75↓1.96 71.93±0.34↓0.08 71.94±0.33↓0.07
Photo SAGE 87.97 85.67±0.85↓2.30 85.81±0.73↓2.16 86.68±0.65↓1.29 84.98±0.87↓2.99 86.45±0.56↓1.52 86.12±0.60↓1.85
Computers ARMA 82.84 80.19±0.71↓2.65 83.53±0.92↑0.69 75.76±0.64↓7.08 80.82±0.64↓2.02 82.40±0.38↓0.44 82.49±0.36↓0.35
CS GEN 90.02 89.92±0.69↓0.10 89.16±0.25↓0.86 84.35±0.33↓5.67 90.48±0.40↑0.46 90.65±0.22↑0.63 90.67±0.23↑0.65
Physics GTF 92.84 92.87±0.42↑0.03 92.07±0.17↓0.77 87.63±0.20↓5.21 92.57±0.26↓0.27 92.82±0.12↓0.02 92.80±0.09↓0.04
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Fig. 4: Hamming similarity (HMS) and test accuracy (TAC)
of watermarked models against model pruning in Setting I.

Answers to RQ1: WGLE achieves perfect accuracy (100%)
in ownership verification. Regarding fidelity, assessed through
average accuracy degradation, the performance ranking is:
Setting II (0.28) ≈ Setting III (0.28) < WGB (0.57) < Setting
I (2.1) ≈ RBOVG (2.38) < EaaW (5.51).

C. The Robustness against Fine-tuning and Pruning (RQ2)

Experiment Design. Pruning and fine-tuning are widely
adopted post-processing techniques [14], [15]. Pruning re-
moves parameters with minimal contributions to the model’s
primary task to reduce the complexity of the model, while
fine-tuning retrains the model on a small dataset to improve
performance. They may disrupt the embedded watermark as
they alter the output distribution of the watermarked model.
The specific experimental settings are as follows:
• Pruning: The adversary performs L1-norm pruning by zero-

ing out the neurons with the smallest L1 norms. We report
changes in HMS and TAC as the pruning ratio increases
from 0% to 50%, 60%, 70%, 80%, and 90%.

• Fine-tuning: The adversary fine-tunes the watermarked
model on the validation graph using the Adam optimizer
with a learning rate of 5e-5 (identical to that used during
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Fig. 5: Hamming similarity (HMS) and test accuracy (TAC)
of watermarked models against fine-tuning in Setting I.

watermark embedding). We report the variations in HMS
and TAC as the number of fine-tuning epochs increases.

• Ownership collision is an essential consideration in reliable
watermark verification. Independently trained models may
undergo pruning or fine-tuning for non-malicious purposes.
We apply pruning and fine-tuning to independently trained
models and evaluate whether false positives occur during
ownership verification.

We present the changes in TAC and HMS of the water-
marked models as the pruning ratio increases and the number
of fine-tuning epochs grows. We also compare the OVA and
FPR of WGLE with those of the baselines under specific
pruning ratios and after fine-tuning with 200 epochs.
Result Analysis. Figure 4 illustrates the impact of various
pruning ratios on HMS and TAC under Setting I of WGLE.
In general, both metrics degrade as the pruning ratio increases.
Among all models, GEN on CS exhibits the weakest robust-
ness, where the HMS falls below the verification threshold
with a pruning ratio of 60%. However, its TAC simultaneously
drops to around 60%, indicating that the model becomes prac-
tically unusable. In contrast, SAGE on Photo demonstrates
the highest robustness: even at a pruning ratio of 90%, where
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TABLE VI: Ownership verification accuracy (OVA) and false positive rate (FPR) of WGLE, WGB, and RBOVG after pruning
the independently trained models. The pruning ratio is determined when RBOVG first exhibits a non-zero FPR.

Datasets Models Pruning WGB RBOVG Setting I Setting II Setting III
Ratio OVA FPR OVA FPR OVA FPR OVA FPR OVA FPR

Cora GCNv2 70% 1.000 0.000 0.855 0.180 1.000 0.000 1.000 0.000 1.000 0.000
DBLP SSG 80% 0.500 0.000 0.725 0.550 1.000 0.000 1.000 0.000 0.990 0.000
Photo SAGE 70% 1.000 0.000 0.875 0.250 1.000 0.000 1.000 0.000 1.000 0.000
Computers ARMA 50% 0.990 0.000 0.890 0.220 0.990 0.000 1.000 0.000 1.000 0.000
CS GEN 70% 0.855 0.000 0.680 0.640 0.510 0.000 0.500 0.000 0.500 0.000
Physics GTF 60% 1.000 0.000 0.925 0.150 1.000 0.000 1.000 0.000 1.000 0.000

TABLE VII: Ownership verification accuracy (OVA) and false positive rate (FPR) of WGLE, WGB, and RBOVG when the
independently trained models are fine-tuned with 200 epochs.

Datasets Models WGB RBOVG Setting I Setting II Setting III
OVA FPR OVA FPR OVA FPR OVA FPR OVA FPR

Cora GCNv2 0.630 0.000 1.000 0.000 0.980 0.000 1.000 0.000 1.000 0.000
DBLP SSG 0.990 0.000 1.000 0.000 0.582 0.000 1.000 0.000 1.000 0.000
Photo SAGE 0.965 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Computers ARMA 0.700 0.000 0.925 0.150 1.000 0.000 1.000 0.000 1.000 0.000
CS GEN 1.000 0.000 0.735 0.020 1.000 0.000 1.000 0.000 1.000 0.000
Physics GTF 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

TAC falls below 50%, HMS remains above 0.8.
Figure 5 presents HMS degradation as increasing fine-

tuning epochs. In most cases, HMS exhibits minor fluctuations
at the beginning and then stabilizes. An exception is SSG on
DBLP, where the HMS consistently decreases and eventually
fails to meet the ownership verification threshold after 200
epochs of fine-tuning. For all other models, HMS remains
stable, showing strong resilience to fine-tuning.

Table VI presents the ownership verification accuracy
(OVA) and the false positive rate (FPR) in specific pruning
ratios. We take the pruning ratio at which RBOVG first incurs
false positives as a baseline and report the corresponding
OVA and FPR for WGLE and WGB. WGLE consistently
demonstrates higher robustness than RBOVG. For example,
for GCNv2 on Cora and SSG on DBLP, the three settings
of WGLE achieve 100% OVA without false positives, while
RBOVG fails to verify ownership and its FPR over zero. WGB
and WGLE exhibit similar levels of robustness.

Most importantly, WGLE maintains an FPR of zero in
all cases, ensuring that independently trained models are
never mistakenly identified as unauthorized copies. In contrast,
RBOVG exhibits nonzero FPR in specific pruning ratios,
meaning it misclassifies benign models as infringements. An
FPR greater than zero undermines the credibility of ownership
audits. Alarmingly, the probability of ownership collision
cannot be known in RBOVG. We analyze how the probability
of ownership collision can be influenced by the similarity
threshold and watermark length in Appendix D.

Table VII shows the results after fine-tuning the indepen-
dently trained models on the validation graph with 200 epochs.
We observe that the Setting II and III of WGLE demonstrate
strong robustness against fine-tuning. Setting I and RBOVG
each show strengths in different models, but both outperform
WGB. Importantly, we emphasize that the FPR of RBOVG

is not zero in certain cases. As discussed earlier, any false
positive rate above zero can compromise the credibility of the
ownership verification process.
Answers to RQ2: The adversary cannot remove the watermark
without incurring a substantial drop in the test accuracy of
the watermarked model. For example, to reduce the HMS of
the watermark below 0.75 by pruning to disable ownership
verification, the test accuracy of the watermarked model on
the primary task (GEN on CS) degraded by 15%, which is
unacceptable in practice. In contrast, WGLE produces no false
positives for independently trained models, even if they are
post-processed by pruning or fine-tuning.

D. Robustness against Watermark Overwriting and Model
Extraction Attacks (RQ3)

Experiment Design. Setting III of WGLE allows watermark
embedding without the original training graph. The adversary
attempts to embed a new watermark in the watermarked
model to potentially overwrite the original watermark. Model
extraction attacks refer to the adversary training a local
surrogate model by querying the API of the watermarked
model. The surrogate model may replicate the functionality
of the watermarked model without inheriting the embedded
watermark. The specific experimental settings are as follows:
• Overwriting: The adversary generates a trigger graph using

the topology of CiteSeer and embeds a new watermark in
the watermarked model by Setting III of WGLE. We report
the HMS and TAC of the original watermark before and
after watermark overwriting.

• Model extraction attacks: The adversary has 80% of the
nodes in the training graph, along with the edges among
them, but without the corresponding labels. These samples
and edges are used to query the watermarked model and
obtain the corresponding prediction probabilities. The ad-
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TABLE VIII: Test accuracy (TAC) and hamming similarity (HMS) of watermarked models (Mw) before and after overwriting.
Values before and after → indicate the metrics before and after overwriting, respectively.

Datasets Models Setting I Setting II Setting III
TAC HMS TAC HMS TAC HMS

Cora GCNv2 66.66→64.88 0.991→0.968 72.91→72.26 1.000→0.993 73.14→72.69 1.000→0.992
DBLP SSG 69.35→68.80 0.986→0.891 71.93→71.46 1.000→0.992 71.94→71.54 1.000→0.989
Photo SAGE 83.52→78.51 0.974→0.909 86.45→82.86 1.000→0.990 86.62→82.97 1.000→0.992
Computers ARMA 80.03→76.06 0.876→0.825 82.40→80.91 1.000→1.000 82.49→80.46 1.000→1.000
CS GEN 89.58→89.72 1.000→1.000 90.65→90.91 1.000→1.000 90.67→90.94 1.000→1.000
Physics GTF 91.65→91.57 0.990→0.977 92.82→92.86 0.999→0.987 92.80→92.82 1.000→0.992

TABLE IX: Test accuracy (TAC), ownership verification accuracy (OVA), and false positive rate (FPR) of watermarked (or
fingerprinted) models and their corresponding surrogate models using the SAGE architecture. Metrics before and after →
denote the values correspond to the watermarked (or fingerprinted) models and their surrogate models, respectively. Since only
Setting I is resilient to model extraction attacks, we report results for Setting I only.

Datasets Models WGB RBOVG WGLE Setting I
TAC OVA FPR TAC OVA FPR TAC OVA FPR HMS

Cora GCNv2 70.33→74.82 0.500 0.000 70.33→69.84 1.000 0.000 66.66→71.71 1.000 0.000 0.991→0.872
DBLP SSG 65.03→71.44 0.500 0.000 65.03→63.04 1.000 0.000 69.35→69.28 1.000 0.000 0.986→0.898
Photo SAGE 89.69→87.84 0.500 0.000 89.69→89.63 1.000 0.000 83.52→85.66 1.000 0.000 0.974→0.888
Computers ARMA 85.39→82.18 0.500 0.000 85.39→83.47 1.000 0.000 79.03→81.72 0.510 0.000 0.876→0.682
CS GEN 90.79→78.07 0.500 0.000 90.79→86.17 1.000 0.000 89.58→75.98 1.000 0.000 1.000→0.895
Physics GTF 94.58→92.14 0.500 0.000 94.58→94.22 1.000 0.000 91.65→92.08 1.000 0.000 0.990→0.922

versary then trains a surrogate model on these samples.
The surrogate model is implemented using the SAGE or
SSG architecture and is trained using the Adam optimizer
with a learning rate of 1e-4 for 1500 epochs, with the KL
divergence serving as the objective function. We report the
TAC, OVA, FPR, and HMS of the surrogate models.

Result Analysis. Table VIII reports the changes in TAC
and HMS before and after watermark overwriting. It can be
observed that watermark overwriting leads to a decrease in
the TAC for all models. In addition, the original watermark
remains intact with HMS values above 0.825 for Setting I,
and above 0.987 for Setting II and III. The results indicate
that overwriting using Setting III of WGLE does not com-
promise the original watermark. It should be noted that the
watermarked model now contains two distinct watermarks,
a situation commonly encountered in ownership verification.
This issue can be addressed by registering the encrypted
watermark with a third party (e.g. an intellectual property
authority or a blockchain system) along with a timestamp [13].
In such cases, the watermark with the later timestamp will not
be recognized as a proof of ownership.

Table IX presents the results of the ownership verification
for the surrogate model obtained via model extraction attacks.
Since only Setting I is robust to such attacks, we report
results exclusively for this setting. WGLE achieves 100% OVA
and 0 FPR on all models except ARMA on Computers,
indicating that the watermark remains detectable in most
surrogate models. These results confirm that the watermark
embedded in the watermarked model can be inherited by
the surrogate models. Although WGLE is slightly less than
RBOVG against model extraction attacks, it remains effective
in most scenarios. WGB fails against model extraction attacks.

The surrogate model retains test accuracy comparable to that
of the watermarked model on the primary task without the
watermark. The results using SSG as the surrogate model
architecture are provided in Appendix F.
Answers to RQ3: Even if the adversary is aware of our
watermarking algorithm, they cannot overwrite the original
watermark by Setting III of WGLE. WGLE is robust against
model extraction attacks in most cases.

VII. RELATED WORK

Ownership verification. Copyright protection for machine
learning models has attracted significant attention, leading to
the development of various watermarking methods. Uchida et
al. [30] initiated the first work by embedding bit sequences in
the model weights. However, their white-box scheme requires
full access to model parameters during ownership verification,
limiting its practicality. Adi et al. [33] introduced the first
black-box watermarking approach. They embed backdoors
into the model to make it output predefined misclassifications
for specific samples. This design is the basis for most sub-
sequent methods. However, the use of backdoors introduces
serious security risks. EaaW [41] represents the state-of-the-
art black-box watermarking, which uses the feature importance
explanation as the watermark. However, EaaW is not directly
applicable to GNNs.

For GNNs, WGRG [11] is the first GNN black-box water-
marking method. WGB [12] extended it to support node-level
and graph-level tasks. Other methods such as GENIE [57]
and PreGIP [58] focus on link prediction and task-agnostic
scenarios, respectively. Despite their contributions, these meth-
ods still rely on backdoors, making watermarked GNN models
susceptible to backdoor attacks. These limitations motivate the
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design of a backdoor-free, multi-bit black-box watermarking
paradigm tailored for GNNs.
IP attacks to ownership verification. Existing attacks against
ownership verification can be broadly categorized into three
types: IP detection, IP removal (also known as ownership
obfuscation), and IP ambiguity.

IP detection aims to disrupt ownership verification at the
query stage. Since queries involving trigger samples often
exhibit distinct characters from normal inference behavior,
adversaries can detect and block such queries and refuse
to respond [6], [59], [60]. This issue is particularly severe
when multiple watermarked models have been distributed, as
the verifier must submit all trigger samples corresponding to
each watermarked model. In contrast, WGLE eliminates this
limitation by requiring only a single query using the same
trigger graph, regardless of how many watermarked models
have been distributed.

IP removal refers to techniques that remove watermarks
or fingerprints from the model by post-processing, including
fine-tuning, pruning, or overwriting [6], [61], [62], [63], [64],
[65], [66]. Alternatively, the adversary can train a local surro-
gate model by querying the API of the watermarked model,
obtaining a model with a functional approximation without
inheriting watermarks or fingerprints [67], [68], [28]. We have
demonstrated the robustness of WGLE in Section VI.

IP ambiguity involves forging watermarks or fingerprints
to falsely claim ownership. For example, an adversary may
collect naturally misclassified samples and present them as
triggers to pass ownership verification [23]. However, existing
ambiguity attacks target a zero-bit watermark. In contrast, it is
significantly more difficult to forge a multi-bit watermark to
pass ownership verification. We provide a detailed discussion
in the Appendix D.

VIII. FUTURE WORK AND LIMITATION

A. Potential application of LDDE

We outline several potential directions for future work based
on LDDE. As each trained GNN model yields unique LDDE
values for a given input graph, a promising direction is to
explore whether LDDE can act as fingerprints. Since LDDE-
based watermarking modifies the distance between connected
nodes, and such distances are known to be exploitable in link
stealing attacks [38], [39], it is worth investigating whether
LDDE modifications undermine the success of these attacks.
The distance between the connected nodes is auxiliary in-
formation, and we define LDDE to embed the watermark.
An extension is to explore whether such distances can en-
code input-dependent information. For example, an adversary
trains and releases a GNN model that produces both accurate
predictions and specific output distances for input samples
that exhibit specific relationships. The adversary exploits the
model output to infer sensitive information about the input
data without direct access to it. We leave the exploration of
these possibilities to future work.

B. Limitation of WGLE

WGLE achieves a backdoor-free, multi-bit watermarking
scheme in the black-box setting for node-level GNNs. How-
ever, its applicability is inherently limited to GNNs, as LDDE
is a property unique to graph-structured data. Consequently,
WGLE is not applicable to conventional neural networks
that operate on Euclidean data. Furthermore, WGLE does
not support graph-level GNNs in black-box settings. These
models employ graph pooling operations to aggregate node
embeddings into a single graph-level representation. Without
observable edge structures in the outputs, WGLE cannot be
achieved in black-box settings. In addition, the applicability of
Setting I of WGLE is restricted in small-scale training graphs,
such as Cora. It leads to an unacceptable drop in the model’s
performance on the primary task. Although Setting II and
Setting III alleviate this issue, they in turn sacrifice robustness
against model extraction attacks. Finally, the experiments
(Section VI) reveal dataset-specific weaknesses in robustness.
For example, WGLE is less robust against pruning for GEN
on CS, and less robust against fine-tuning for SSG on DBLP.
We speculate that robustness is correlated with the number
of prediction classes: datasets with many classes (e.g., CS)
are more sensitive to pruning, whereas those with very few
classes (e.g., DBLP) are more vulnerable to fine-tuning. This
limitation may be mitigated by designing adaptive LDDE
distance metrics, which we leave for future work.

C. Additional Benefits of WGLE

WGLE requires only fine-tuning of a trained model to
embed the watermark, eliminating the need to retrain the wa-
termarked model from scratch. This significantly reduces the
overhead of watermark embedding. As shown in Appendix B,
the time cost of WGLE is only 50% of that of WGB and
merely 5% of RBOVG. Although ownership collision is an
inherent concern, WGLE provides a more transparent and
controllable framework. Unlike most prior methods where
collision probability is difficult to estimate, the probability
in WGLE is determined by the generation of the watermark
string, which is quantifiable. We further analyze how this
probability relates to the similarity threshold and the length
of the watermark string in Appendix D.

IX. CONCLUSIONS

This paper presents WGLE, a novel backdoor-free, multi-bit
black-box watermarking paradigm for node-level GNNs. By
modifying the LDDE values of selected edges, WGLE em-
beds watermarks without introducing a backdoor. Its multi-bit
capacity enables single-query ownership verification even mul-
tiple distributions, which is economical and hardly detected.
We further consider practical deployment scenarios, including
the small training graph and ownership transfer. Extensive
experiments demonstrate that WGLE achieves effectiveness,
fidelity, robustness, and lower overhead.
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APPENDIX A
TRANSFORMATION OF THE SOFTMAX FUNCTION

Softmax is a common function used in multi-class classifi-
cation to convert a vector of real numbers z = [z1, z2, ..., zn]
into a probability distribution. It is defined as:

S(z) =
[

ez1∑n
i=1 e

zi
,

ez2∑n
i=1 e

zi
, ...,

ezn∑n
i=1 e

zi

]
where n is the number of classes, and S(·) represents the
softmax operation. The softmax ensures that all probabilities
sum to 1, making them suitable for classification tasks. It is
typically used in conjunction with cross-entropy loss.

To normalize the posterior probabilities derived from soft-
max, we apply a log transformation followed by mean and
standard deviation normalization [42]:

log(S(z)) = [z1 − C, z2 − C, ..., zn − C] , C = log(

n∑
i=1

ezi)

µ(log(S(z))) = 1

n

n∑
i=1

(zi − C) = µ(z)− C

σ(log(S(z))) =

√√√√ 1

n− 1

n∑
i=1

(zi − C − (µ(z)− C))
2
= σ(z)

log(S(z))− µ(log(S(z)))
σ(log(S(z)))

=
z− µ(z)

σ(z)

The normalized log-transformed posterior probabilities S(z)
are equivalent to directly normalizing the embeddings z.

APPENDIX B
OVERHEAD

Table X presents the average generation time of the water-
marked or fingerprinted models. WGLE stops fine-tuning once
the watermark is successfully embedded. WGB uses a fixed
500-epoch to train the watermarked model. RBOVG follows
the default setting, training 60 independently trained models
and 60 surrogate models to build the ownership classifier.
WGLE consistently incurs a lower computational overhead
compared to both WGB and RBOVG. For smaller graphs
(Cora), Setting I achieves the lowest overhead, whereas
Setting II is more efficient for larger graphs (Physics). In
general, the computational cost of WGLE is approximately
50% of that of WGB and only 5% of that of RBOVG.

APPENDIX C
HARM OF BACKDOOR

Table XI demonstrates the potential harm introduced by
backdoor-based watermarking. In WGB, class “2” is desig-
nated as the target label. As shown, once the backdoor pattern
is embedded in the input features, more than 83% of these
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TABLE X: Time overhead of embedding watermarks or con-
structing fingerprints. The unit is seconds.

Datasets Models WGB RBOVG Setting I Setting II Setting III
Cora GCNv2 3.07 16.24 1.64 2.75 2.81
DBLP SSG 5.81 52.45 2.66 3.29 3.23
Photo SAGE 3.39 126.26 2.22 2.22 2.23
Computers ARMA 7.42 245.20 4.21 3.02 3.03
CS GEN 13.81 598.99 6.01 7.45 7.49
Physics GTF 50.52 1241.70 21.13 17.95 17.93

TABLE XI: We designate label “2” as the target class and
evaluate the rate at which non-“2” samples are misclassified
as class “2” once using backdoors. Mo is the original model.

Datasets Models Mo WGB Setting I Setting II Setting III

Cora GCNv2 0.021 0.950 0.036 0.036 0.040
DBLP SSG 0.036 1.000 0.045 0.041 0.040
Photo SAGE 0.002 0.975 0.002 0.002 0.002
Computers ARMA 0.006 0.895 0.007 0.005 0.006
CS GEN 0.009 1.000 0.017 0.016 0.015
Physics GTF 0.035 0.830 0.042 0.038 0.039

samples are misclassified as class “2” by the watermarked
model. In contrast, the original model and WGLE under
Settings I, II, and III maintain misclassification rates below
4.5%. These vulnerabilities pose significant risks in security-
critical scenarios. For example, if a GNN model is deployed
for malicious user detection, an adversary could exploit the
backdoor to craft input that misleads the model into classifying
a malicious user as benign.

APPENDIX D
WATERMARK COLLISION

Given two independently generated watermark strings,
where each bit is sampled from a Bernoulli(0.5) distribution,
their expected bitwise match rate (i.e., Hamming similarity)
is 0.5. When the watermark length is sufficiently large, the
HMS approximately follows a normal distribution with mean
0.5 due to the Central Limit Theorem.

To empirically validate this conclusion, we conducted exper-
iments using SAGE on Photo and GTF on Physics. Specif-
ically, we generated 100 watermarked models, each embedded
with a distinct 200-bit randomly generated watermark string.
We then measured the HMS between the target watermark
and the extracted watermark from another watermarked model
without the target watermark.

As shown in Figure 6, the HMS values observed in Setting I,
II, and III closely follow a normal distribution centered around
0.5 with a standard deviation of approximately 0.35, consistent
with our theoretical expectation.

We formally define the concept of watermark collision and
derive the relationship between the collision probability α and
the similarity threshold τ as follows:

P(HMS ≥ τ) ≤ α. (8)

where HMS denotes the Hamming similarity between two
randomly generated watermark strings.
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Fig. 6: HMS between the target watermark and the extracted
watermark from another watermarked model without the target
watermark.

When the watermark length Nw is sufficiently large, HMS
can be approximated by a normal distribution:

HMS ∼ N
(
0.5,

1

4Nw

)
. (9)

which is normalized as:
HMS− 0.5√
1/(4Nw)

∼ N (0, 1), (10)

we derive the collision probability:

τ ≥ 0.5 + Φ−1(1− α) ·
√

1

4Nw
(11)

where Φ−1(1 − α) denotes the inverse CDF of the standard
normal distribution at confidence level 1− α

Equation 11 captures the relationship among the watermark
length Nw, the similarity threshold τ , and the collision prob-
ability α. For example, with Nw = 200 and τ = 0.75 as
used in our experiments, the resulting collision probability
is α ≈ 7.69 × 10−13. In practice, these parameters can be
selected based on the requirements of the application. If the
watermark strings are not fully independent (e.g., containing
fixed segments or timestamps generated within a short time
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TABLE XII: Impact of the length of the watermark string on fidelity and robustness. “Test” denotes the cross-entropy loss
(CE) of the watermarked model on the test graph for the primary task. “Pruning” and “Fine-tuning” represent the binary
cross-entropy (BCE) between the target watermark string and the extracted watermark string from the watermarked model after
pruning or fine-tuning. Cora contains fewer than 500 eligible edges.

Dataset Model Nw
Setting I Setting II Setting III

Test Pruning Fine-tuning Test Pruning Fine-tuning Test Pruning Fine-tuning

Cora GCNv2
20 1.8024 0.3336 0.4316 1.4133 0.3149 0.3368 1.3494 0.3228 0.3288
100 2.7539 0.3567 0.4477 1.5412 0.3210 0.3469 1.5322 0.3245 0.3485
200 4.1743 0.3605 0.5101 1.6125 0.3273 0.3562 1.7666 0.3297 0.3614

DBLP SSG

20 1.6330 0.3595 0.3595 1.5629 0.3633 0.4120 1.5949 0.4111 0.4257
100 2.6147 0.5004 0.5004 1.6355 0.4468 0.4902 1.5935 0.4048 0.4345
200 1.9021 0.4239 0.4239 1.7129 0.4361 0.4909 1.6869 0.4426 0.4878
500 2.9957 0.5070 0.5070 1.6749 0.4696 0.5084 1.6793 0.4755 0.5228

Photo SAGE

20 0.5052 0.5001 0.5727 0.4965 0.3251 0.3367 0.5277 0.3235 0.3354
100 0.5628 0.4410 0.4686 0.4699 0.3305 0.3491 0.4908 0.3273 0.3357
200 0.6292 0.4808 0.5118 0.5028 0.3359 0.3612 0.5336 0.3485 0.3844
500 0.6292 0.5610 0.5999 0.5019 0.3593 0.3828 0.5207 0.3804 0.4172

Computers ARMA

20 0.6463 0.6023 0.5364 0.5547 0.4425 0.3489 0.5626 0.4346 0.3507
100 0.7281 0.6160 0.5255 0.5630 0.4802 0.3551 0.5573 0.5096 0.3680
200 0.7310 0.6243 0.5597 0.5608 0.5009 0.3935 0.5635 0.5176 0.3851
500 0.7447 0.6620 0.6406 0.5823 0.5330 0.4202 0.5773 0.5635 0.4511

CS GEN

20 0.8167 0.5314 0.3550 0.8313 0.5598 0.3336 0.8294 0.6495 0.3327
100 0.8325 0.5818 0.3997 0.8217 0.5460 0.3309 0.8191 0.5086 0.3289
200 0.8499 0.5689 0.4417 0.8232 0.6496 0.3348 0.8221 0.5947 0.3386
500 0.8918 0.6225 0.5064 0.8354 0.5603 0.3434 0.8273 0.5921 0.3381

Physics GTF

20 0.4208 0.3272 0.3756 0.3406 0.3490 0.4117 0.3511 0.3499 0.3840
100 0.4033 0.3518 0.3996 0.3486 0.3723 0.4302 0.3577 0.3497 0.3848
200 0.4312 0.3518 0.4460 0.3439 0.3533 0.4444 0.3474 0.3635 0.4428
500 0.4876 0.3579 0.4804 0.3681 0.4074 0.4821 0.3578 0.3895 0.4947

interval), a higher similarity threshold τ is necessary to ensure
a small collision probability α.

APPENDIX E
MULTI-BIT

We examine the impact of the length of the watermark
string (Nw = 20, 100, 200, 500) on the fidelity and robustness
of the watermarked model. We compute the cross-entropy
(CE) between the model predictions and ground-truth labels
on the test graph to evaluate fidelity, where lower CE val-
ues indicate better predictive performance. Accuracy is not
used, as it fails to capture subtle shifts in confidence. For
example, a prediction confidence drop from 95% to 85% does
not affect classification accuracy, but increases cross-entropy
loss. Similarly, we adopt binary cross-entropy (BCE) as an
alternative to Hamming similarity for evaluating watermark
matching, where lower BCE values indicate greater similarity
to the target watermark string.

As shown in Table XII, the cross-entropy (CE) of the
watermarked model on the test graph increases as the length
of the watermark string increases, indicating that a longer
watermark string has a greater impact on the fidelity. In
addition, longer watermark strings also reduce the robustness
of the watermarked model. However, this does not imply that
shorter watermarks are always preferable, as shorter strings
result in a higher probability of watermark collision.
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(a) Model Pruning of Setting II
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(b) Model Pruning of Setting III

Fig. 7: Hamming similarity (HMS) and test accuracy (TAC) of
watermarked models against model pruning in Setting II and
Setting III.

APPENDIX F
ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results here that could
not be included in the main paper due to space constraints.
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TABLE XIII: Test accuracy (TAC), ownership verification accuracy (OVA), and false positive rate (FPR) of watermarked (or
fingerprinted) models and their corresponding surrogate models using the SSG architecture. Metrics before and after → denote
the values correspond to the watermarked (or fingerprinted) models and their surrogate models, respectively. Since only Setting
I is resilient to model extraction attacks, we report results for Setting I only.

Datasets Models WGB RBOVG WGLE Setting I
TAC OVA FPR TAC OVA FPR TAC OVA FPR HMS

Cora GCNv2 70.33→71.97 0.500 0.000 70.33→69.84 1.000 0.000 66.66→67.75 1.000 0.000 0.991→0.876
DBLP SSG 65.03→71.73 0.500 0.000 65.03→63.04 1.000 0.000 69.35→69.58 1.000 0.000 0.986→0.971
Photo SAGE 89.69→88.24 0.500 0.000 89.69→89.63 1.000 0.000 83.52→85.70 1.000 0.000 0.974→0.851
Computers ARMA 85.39→83.49 0.500 0.000 85.39→83.47 1.000 0.000 79.03→81.06 0.510 0.000 0.876→0.686
CS GEN 90.79→83.74 0.500 0.000 90.79→86.17 1.000 0.000 89.58→81.64 1.000 0.000 1.000→0.894
Physics GTF 94.58→92.78 0.500 0.000 94.58→94.39 1.000 0.000 91.65→92.61 1.000 0.000 0.990→0.888
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(a) Fine-tuning of Setting II
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(b) Fine-tuning of Setting III

Fig. 8: Hamming similarity (HMS) and test accuracy (TAC)
of watermarked models against fine-tuning in Setting II and
Setting III.

Pruning. As shown in Figure 7, Setting II and III exhibit
comparable pruning robustness compared to Setting I.
Fine-tuning. Setting II and III demonstrate stronger robust-
ness against fine-tuning than Setting I. As shown in Figure 8,
after 200 epochs of fine-tuning, SSG on DBLP exhibits a
noticeable decrease in HMS, while GTF on Physics shows
a minor decline. All other models maintain an HMS of 1.0.
This is likely due to the use of a generated graph as the trigger
graph, which leads to a separation between the watermark
extraction task and the primary task. Therefore, fine-tuning the
watermarked model for the primary task is difficult to impact
on the watermark extraction task.
Model extraction attacks. We also present results when the
surrogate model using SSG architecture in model extraction
attacks. As shown in Table XIII, similar results are observed
with the SAGE architecture, ARMA on Computers is the
only case where ownership verification fails.
Insight. Additional results of observation-2 and observation-3
for other models and datasets are presented in Figure 9 10.
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Fig. 9: Projections of LDDE values of selected edges before
and after modification. Blue points represent edges targeted for
positive LDDE signs, while red points represent edges targeted
for negative LDDE signs.
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Fig. 10: t-SNE projections of the predictions from both the
original and watermarked models. Different colors indicate
different classes.
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