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Abstract
In an era of increasing interaction with artificial intelligence
(AI), users face evolving privacy decisions shaped by complex,
uncertain factors. This paper introduces Multiverse Privacy
Theory, a novel framework in which each privacy decision
spawns a parallel universe, representing a distinct potential
outcome based on user choices over time. By simulating these
universes, this theory provides a foundation for understand-
ing privacy through the lens of contextual integrity, evolving
preferences, and probabilistic decision-making. Future work
will explore its application using real-world, scenario-based
survey data.

1 Introduction

As artificial intelligence (AI) technologies increasingly rely
on vast datasets for training and operation, the need to protect
user privacy has become more critical. This concern extends
beyond just tracking user behavior [11, 23]—it also includes
protecting against privacy-targeted malicious attempts and
adversarial attacks [19], which are becoming easier to exe-
cute [3, 12, 20]. In addition, despite the growing urgency to
address these threats, many developers still have a limited
understanding of user privacy expectations and its broader
implications [2, 13]. They often view privacy narrowly as a
matter of regulatory compliance, focused mainly on safeguard-
ing personally identifiable information (PII) [8]. However, it
is a much more complex issue—one that also involves respect-
ing user expectations, ensuring transparency, and fostering
trust and satisfaction in AI systems. Especially in accounting
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for evolving privacy preferences highlighted in previous liter-
ature, the dynamic nature of security and privacy threats, and
the diversity of user demographics—such as minors, older
adults, individuals with disabilities, LGBTQ+ individuals, or
users experiencing mental health challenges—whose privacy
concerns, disclosure patterns, and trust dynamics vary signifi-
cantly from the general population [5, 9, 10, 16]. Thus, user
privacy decisions should not be static or one-size-fits-all. In-
stead, they should be evaluated within the context of multiple
potential infinite number of scenarios, each representing a
different privacy decision under various circumstances.

To address these risks, notable privacy–utility trade-off
models have been developed, aiming to balance data useful-
ness with effective privacy protection. For example, differen-
tial privacy (DP) ensures the risk of identifying any individual
in a dataset remains low by analyzing pairs of neighboring
databases differing by one record [7]. Statistical Data Disclo-
sure (SDC) techniques vary in privacy strength depending on
database size and influence later data analysis. Slavković and
Seeman’s Statistical Data Privacy (SDP) framework [22] also
offers an analysis of data release mechanisms that sanitize
outputs based on confidential data while considering broader
statistical disclosure risks by extending SDC and DP.

Contextual Integrity (CI) [18] also provides a critical lens
of privacy frameworks by defining privacy as the appropriate-
ness of information flows, emphasizing that privacy norms are
context-dependent and shift based on the social and informa-
tional settings in which data are used. In other words, privacy
is preserved when information flows align with the contextual
norms in governing 5-parameters: actors (senders, recipients,
and subjects), transmission principles or condition, informa-
tion type, information norms, and user groups [18]. Recent
work has also integrated the governing knowledge commons
framework (GKC) with CI—forming the unified GKC-CI
model—which examines how information flows are shaped
by institutional rules, social roles, and shared resources [21].

However, current privacy models typically operate under
static assumptions and struggle to capture the full spectrum
of user expectations, CI and/or GKC-CI factors, and system-
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specific risks. These models often prioritize measurable out-
comes—such as data minimization or risk scores—while
overlooking less quantifiable but equally critical aspects like
user trust, perceived control, and the dynamic interplay be-
tween evolving privacy harms, risks, and threats. As a re-
sult, a significant gap persists between theoretical privacy
protections and practical, user-centered outcomes in real-
world AI systems. To be effective in dynamic, data-intensive
environments—where privacy expectations are fluid, secu-
rity risks evolve rapidly, and user demographics are increas-
ingly diverse—these models require further extension. De-
spite various efforts to address these challenges [1, 4, 14, 15],
their primarily normative focus often falls short in opera-
tionalizing privacy within technical systems that demand con-
tinuous adaptation, personalization, and real-time decision-
making [24]. As such, there is a growing need for integrative
approaches that bridge conceptual insights with actionable
mechanisms for privacy-aware AI design.
Our Approach. To overcome these limitations, we pro-
pose the Multiverse Privacy Theory (MPT) integrates prin-
ciples from multiverse [6, 17] and CI theories [18] to better
handle complex computational systems and diverse user at-
tributes. The idea behind applying multiverse theory to user
privacy decision-making within computational systems re-
volves around the concept of decision-making across multiple
potential time-dependent realities or scenarios, each of which
reflects different choices and outcomes based on varying user
characteristics (e.g., demographics, awareness, comfort), pri-
vacy settings, security measures, trust levels, and contextual
harms and risks factors. By integrating the MPT, the systems
could explore and predict various possible outcomes, each
representing a different universe of potential decisions and
consequences.
Contribution. With MPT, this paper contributes a novel lens
for privacy modeling, grounded in the assumption that user
privacy experiences are not singular but manifold. The theory
offers:

• A probabilistic understanding of privacy under uncer-
tainty.

• An explainable framework for personalized privacy-
related decisions.

• A bridge between CI and empirical metrics (e.g., utility,
trust, risk).

The ultimate goal is modeling the various potential states of
privacy, risk, and trust, and how these states evolve over time
to optimize decisions for the user. MPT also aims to balance
data governance strategies, personalize privacy controls, and
analyze AI system behavior under varying sociotechnical
conditions.

2 The Multiverse Privacy Theory

To formalize the multiverse-inspired approach to privacy
decision-making over time, we define a model in which each
user action leads to a set of possible universes reflects a dif-
ferent scenario shaped by both user and system context and
choice.
Definition. Let at each time step t, a set of possible universes
Ut = {U1

t ,U
2
t , . . . ,U

n
t } arises from the user’s selected privacy

action at ∈ At , where At denotes the available privacy actions
at that time. Each universe reflects how varying contextual
factors and the chosen privacy action influence outcomes. The
probability of a universe U i

t occurring, given privacy action
at and context Ct , is modeled as:

P(U i
t | at ,Ct) (1)

The utility of taking a privacy action at in context Ct is
defined as:

UI(at ,Ct)=α·ρt +β ·St −γ ·Rt +δ ·Tt +ζ ·g(Dt)+θ·CI(at ,Ct)
(2)

where:

• ρt : User’s privacy preference at time t

• St : Security level of the system/environment at time t

• Rt : Risk level faced by the user in the current context

• Tt : User’s trust in the system at time t

• g(Dt): Influence of demographic attributes such as age,
sexual orientation, political affiliation, and familiarity
with technology, etc.

• CI(at ,Ct): CI score of the privacy action in the current
context

Coefficients α,β,γ,δ,ζ,θ are tunable weights representing the
relative importance of each component in the utility function.
To choose the optimal privacy action a∗t , the system seeks
to maximize the expected utility over all possible universe
outcomes:

a∗t = arg max
at∈At

E[UI(at ,Ct)] (3)

where the expected utility is defined as:

E[UI(at ,Ct)] =
n

∑
i=1

P(U i
t | at ,Ct) ·UI(at ,Ct ,U i

t ) (4)

Here, UI(at ,Ct ,U i
t ) denotes the utility of action at considering

the outcome in universe U i
t , possibly adjusted for universe-

specific consequences. In addition, MPT introduces a recur-
sive component to account for long-term consequences of
privacy actions. The value function at time t is given by:
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Vt = E[UI(at ,Ct)]+λ ·Vt+1 (5)

where λ ∈ [0,1] is a discount factor representing the weight
given to future utility relative to the present. The recursive
formulation enables the system to adapt and optimize privacy
actions over time as user preferences and contextual factors
evolve.
Example. To illustrate MPT, we implemented a Monte Carlo-
style simulation across 5 distinct universes, each representing
a plausible configuration of user preferences and contextual
factors. Each universe Ui was simulated over 10 time steps. At
each time step t, values were randomly generated to represent
privacy preferences, security level, contextual risk, trust, and
demographic sensitivity. Each privacy decision at a given time
step resulted in multiple possible outcomes, reflecting alterna-
tive universes influenced by these factors. A utility value was
computed for each outcome using a weighted combination of
the input variables, with weights set to 1.0 for privacy prefer-
ence (α), 0.8 for security level (β), -0.9 for contextual risk (γ),
0.6 for trust (δ), and 0.5 for demographic sensitivity (ζ). Ad-
ditionally, to quantify how well a privacy decision aligns with
favorable outcomes in the current context, we computed a CI
score for each privacy action at time t as:

CIi(t) =
Pi(t)+Si(t)+Ti(t)+Di(t)

1+Ri(t)
(6)

where Pi(t), Si(t), Ti(t), Di(t), and Ri(t) represent normal-
ized values for privacy preference, security level, trust, de-
mographic sensitivity, and risk, respectively. The CI score
increases with higher privacy preference, security, trust, and
demographics, and decreases with increasing contextual risk.

At each time step, the system evaluates all possible privacy
actions by calculating the expected utility over all universes
and selects the action that maximizes this expected utility.
Utility values were tracked over time and analyzed across
three contextual risk bands: low, moderate, and high. Fig-
ure 1 illustrates the evolution of utility across the 10 time
steps, showing how contextual risk influences privacy-related
decisions.

Figure 1: Simulation showing how user privacy utility evolves
across multiple universes and three contextual risk bands.

Hypotheses Testing. We also tested the relationships be-
tween different factors and the utility score using Pearson’s
correlation. The results are summarized as follows:

H1: Privacy preferences significantly affect utility. A
strong positive correlation was found between privacy
preference and utility (r = 0.6618, p < 0.001), indicat-
ing that users who value privacy more tend to derive
greater utility from privacy-related decisions. This result
supports the hypothesis and is statistically significant.

H2: Higher contextual risk reduces privacy utility. There
is a strong negative correlation between contextual risk
and utility (r =−0.6078, p < 0.001). This indicates that
as contextual risk increases, perceived utility decreases.
The result is statistically significant and supports the
model’s assumptions.

H3: Trust increases privacy utility. A moderate positive
correlation was observed between trust and utility (r =
0.4407, p < 0.01). This result is statistically significant
and supports the hypothesis that trust positively influ-
ences privacy-related satisfaction.

H4: Security level does not significantly affect privacy
utility. The correlation between security level and utility
was weak and not statistically significant (r = 0.1581,
p = 0.2728). This suggests that, in this model, security
level alone may not directly impact perceived utility.
One possible explanation is that users’ perceived utility
depends more strongly on direct privacy preferences,
risk, and trust rather than on abstract or technical security
metrics. It is also possible that users may lack sufficient
understanding of security levels. However, this needs
further exploration.

H5: CI strongly enhances privacy utility. A very strong
positive correlation was found between CI and utility
(r = 0.8129, p < 0.001), supporting the hypothesis that
privacy decisions aligned with contextual expectations
yield high utility.

By considering these factors, the system can simulate mul-
tiple potential scenarios across a wider range of privacy pref-
erences, security concerns, and contextual influences. In other
words, MPT can address evaluating these different universes
by incorporating user demographics into each simulation, ul-
timately determining the optimal privacy decisions for each
individual user. These decisions are made dynamically and
adjust as the user’s preferences evolve over time, leading to a
personalized privacy experience that is adaptive and context
aware. In addition, in this model, a system can continuously
learn and adjust its decisions based on changing user demo-
graphics, ensuring that the best privacy practices are applied
in ways that align with the user’s preferences, context, and
trust level. This process is inherently probabilistic, as the
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Table 1: Summary of Hypothesis Testing Results

Hypothesis MPT Attributes r p-value 95% CI

H1 Privacy Preference – Utility 0.6618 1.668e-07 [0.4700, 0.7939]
H2 Contextual Risk – Utility -0.6078 2.855e-06 [-0.7579, -0.3965]
H3 Trust – Utility 0.4407 0.0014 [0.1871, 0.6380]
H4 Security Level – Utility 0.1581 0.2728 [-0.1258, 0.4181]
H5 CI – Utility 0.8129 7.544e-13 [0.6908, 0.8899]

system must choose between several possible universes of
future interactions. By evaluating multiple potential universes,
the system can mitigate risks of data exposure and maintain
a balance between user privacy and security across various
contexts.

3 Conclusion and Future Work

This paper introduces a novel MPT approach to privacy
decision-making, considering the dynamic, evolving nature
of privacy risks and user preferences. By simulating an in-
finite set of universes and using a time-dependent recursive
model, AI systems can continuously optimize privacy settings
in response to changing contexts.

Future work will explore MPT to test it to the real-world ap-
plicability of the model with practical deployment constraints
and user expectations. We will explore (1) how to handle
real-time threats, (2) refine the model with user demographics
and contextual factors, and (3) incorporate regulatory com-
pliance changes. To do this, we will conduct multiple survey
design studies including demographic and scenario-based
variations to reasonably and statistically evaluate infinite uni-
verses with real-world AI user populations. These scenarios
will incorporate persona-specific risk models and adaptive
utility functions.
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