
ar
X

iv
:2

50
6.

11
02

2v
1 

 [
cs

.S
E

] 
 1

9 
M

ay
 2

02
5

Security Degradation in Iterative AI Code

Generation:

A Systematic Analysis of the Paradox

Shivani Shukla

Department of Analytics and Information Systems

University of San Francisco

San Francisco, United States

sgshukla@usfca.edu

Himanshu Joshi

Department of Applied AI and Industry Innovation

Vector Institute for Artificial Intelligence

Toronto, Canada

himanshu.joshi@vectorinstitute.ai

Romilla Syed

Department of Management Science and Information Systems

University of Massachusetts Boston

Boston, United States

romilla.syed@umb.edu

Abstract—The rapid adoption of Large Language Models
(LLMs) for code generation has transformed software develop-
ment, yet little attention has been given to how security vul-
nerabilities evolve through iterative LLM feedback. This paper
analyzes security degradation in AI-generated code through a
controlled experiment with 400 code samples across 40 rounds
of ”improvements” using four distinct prompting strategies. Our
findings show a 37.6% increase in critical vulnerabilities after
just five iterations, with distinct vulnerability patterns emerging
across different prompting approaches. This evidence challenges
the assumption that iterative LLM refinement improves code
security and highlights the essential role of human expertise
in the loop. We propose practical guidelines for developers to
mitigate these risks, emphasizing the need for robust human
validation between LLM iterations to prevent the paradoxical
introduction of new security issues during supposedly beneficial
code ”improvements.”

Index Terms—Large Language Models, Security Vulnerabili-
ties, AI-Generated Code, Iterative Feedback, Software Security,
Secure Coding Practices, Feedback Loops, LLM Prompting
Strategies

I. INTRODUCTION

The integration of Large Language Models (LLMs) into

software development workflows has grown exponentially

since the introduction of tools like GitHub Copilot, ChatGPT,

and Claude. According to recent studies, over 80% of devel-

opers now regularly use AI assistants for code generation [1],

with GitHub’s CEO predicting that ”sooner than later, Copilot

will write 80% of code” [2]. This paradigm shift promises

substantial productivity gains but raises critical security con-

cerns.

While existing research has identified that AI-generated

code frequently contains security vulnerabilities [3]–[5], a

critical gap exists in understanding how these vulnerabilities

evolve through iterative interactions with LLMs. Developers

typically do not accept AI-generated code verbatim but engage

in feedback loops, submitting code to the AI for improvement,

refinement, or extension. The security implications of these

feedback loops remain largely unexplored.

This paper addresses this research gap by systematically

investigating how security properties appear to change when

initially secure code undergoes multiple rounds of AI-based

”improvements.” We hypothesize that rather than enhancing

security, iterative interactions with LLMs without human in-

tervention may be associated with the introduction of new

vulnerabilities, a counterintuitive phenomenon we term ”feed-

back loop security degradation.” This highlights the critical

importance of human expertise in the development loop, as

developers provide essential quality control that automated

systems currently cannot replicate.

Our work makes the following contributions:

1) We provide empirical evidence demonstrating how au-

tomated iterative AI feedback loops without human

intervention are associated with code security outcomes

through a controlled experiment with 40 rounds of

code generation (10 rounds each across 4 prompting

strategies).

2) We identify and categorize vulnerability patterns associ-

ated with four different prompting strategies (efficiency-

focused, feature-focused, security-focused, and ambigu-

ous improvements).

3) We document how vulnerability types, severity, and

frequency change through iterative feedback loops and

demonstrate the critical need for human expertise in

these loops.

4) We propose practical guidelines for mitigating security

degradation when using AI tools for iterative code im-

provement, emphasizing human-AI collaboration rather

than AI autonomy.

http://arxiv.org/abs/2506.11022v1


The remainder of this paper is organized as follows: Sec-

tion II reviews related work on AI-generated code security.

Section III details our experimental methodology. Section IV

presents our findings, analyzing security degradation patterns

across different prompting strategies. Section V discusses the

implications of our results and proposes mitigation strategies.

Section VI acknowledges limitations and suggests future re-

search directions. Section ?? critically analyzes the novelty of

our work. Section VII concludes the paper.

II. LITERATURE REVIEW

A. Security Vulnerabilities in AI-Generated Code

Research on AI-generated code security has grown signifi-

cantly since 2022. Pearce et al. [3] conducted one of the first

empirical studies evaluating GitHub Copilot’s security, finding

that approximately 40% of generated programs contained

vulnerabilities. Their analysis of 1,689 programs revealed

particularly high vulnerability rates in C code (around 50%)

compared to Python code (approximately 39%).

Perry et al. [4] expanded this work through a user study

comparing developers with and without AI assistance. Their

results showed that participants using AI assistants wrote

”significantly less secure code” and exhibited a ”false sense

of security,” often rating their insecure solutions as secure.

This aligns with findings from Chong et al. [5], who found

that LLM-generated code lacked defensive programming con-

structs and contained subtly incorrect implementations of

security-critical algorithms.

A comprehensive systematic literature review by Negri-

Ribalta et al. [6] synthesized findings across 19 studies,

confirming a ”high-level agreement that AI models do not

produce safe code and do introduce vulnerabilities, despite

mitigations.” Their analysis identified programming languages

like C as particularly problematic for AI code generation due

to memory management requirements.

Table I summarizes key findings from significant studies on

AI-generated code security.

TABLE I
SUMMARY OF KEY STUDIES ON AI-GENERATED CODE SECURITY

Study Year Key Findings Vulnerability Rate

Pearce et al. [3] 2022 Higher vulnerabilities
in C (50%) vs.
Python (39%)

40% overall

Perry et al. [4] 2023 Developers with AI
wrote less secure
code

Not quantified

Chong et al. [5] 2024 Lacks defensive
programming; subtle
flaws

Not quantified

Negri-Ribalta et al. [6] 2024 AI models produce
unsafe code

Varies by model

CSET Study [7] 2024 Almost half
contained exploitable
bugs

∼50%

Liu et al. [8] 2024 Refining process can
introduce new issues

Not quantified

B. Iterative Improvement of AI-Generated Code

Despite extensive research on initial vulnerability rates,

few studies have examined how these vulnerabilities evolve

through iterative interactions with AI systems. Liu et al.

[8] touched on this topic, analyzing ChatGPT-generated code

quality issues and the refinement process. They noted that

the refinement process itself could sometimes introduce new

issues, though they did not specifically focus on security

vulnerabilities.

The concept of using reinforcement learning for code im-

provement has been studied by several researchers [9], [10].

These approaches typically use feedback from automated tools

or human evaluators to guide model training. However, they

focus on improving the model itself rather than analyzing how

current models behave in iterative feedback scenarios with

users.

Most relevant to our work, Chong et al. [5] briefly men-

tioned in their study that ”upon prompting, LLM can introduce

issues in files that were issues-free before prompting,” suggest-

ing that feedback loops might be associated with code security

problems. However, they did not systematically explore this

phenomenon, leaving a significant research gap.

C. Prompt Engineering and Code Generation

The impact of different prompting strategies on code gen-

eration quality has been explored by several researchers.

McAleese et al. [9] proposed a critic-based model that provides

automated feedback on generated code. Their study showed

that the quality of generated code could be improved through

structured prompting and feedback loops, though they primar-

ily focused on functional correctness rather than security.

Becker et al. [11] examined the educational implications

of AI code generation, highlighting how different prompting

strategies influence code quality and learning outcomes. Their

work suggests that prompt formulation significantly impacts

the generated code’s characteristics but does not specifically

address security implications across multiple iterations.

D. Research Gap and Contribution

While existing research has established that AI-generated

code often contains security vulnerabilities, and some work

has been done on improving code generation through better

prompting, a critical gap exists in understanding how secu-

rity properties evolve through multiple rounds of AI-based

improvements. Our work addresses this gap by systematically

analyzing security degradation patterns across multiple itera-

tions and prompting strategies, providing the first comprehen-

sive study of feedback loop security dynamics in AI-assisted

coding.

This research addresses a critical gap in our understanding

of how AI-assisted code evolves through iterative feedback

loops. While existing work has established that LLMs can

generate insecure code, our contribution lies in systematically

examining what happens during subsequent refinement cy-

cles—a scenario that more closely matches real-world devel-

oper workflows.



The novelty of our work should be evaluated in the context

of existing literature across several dimensions:

1) Prior research has extensively documented that LLMs

produce vulnerabilities in initially generated code

(Pearce et al. [3], Perry et al. [4]). Our work extends

beyond this to track how these vulnerabilities propagate,

transform, or amplify through iterative refinement, a pre-

viously unexplored dynamic that challenges fundamental

assumptions about AI-assisted development practices.

2) Tools like LLM4CVE [12] explore how LLMs can fix

vulnerable code through iterative feedback. Our study in-

vestigates the inverse phenomenon, how initially secure

code may degrade through similar iterative processes.

This complementary perspective provides a more com-

plete picture of LLM security dynamics.

3) While research exists on prompting strategies for code

generation (McAleese et al. [9]), our work is the first

to systematically correlate specific prompting strategies

with security vulnerability patterns across multiple iter-

ations, revealing counterintuitive relationships between

prompt intent and security outcomes.

4) Our controlled experiment deliberately excludes human

intervention to isolate the effects of pure LLM feed-

back loops, establishing a baseline against which future

human-AI collaborative approaches can be measured.

This design choice allows us to identify when and how

human expertise is most critical in the development

process.

III. METHODOLOGY

A. Experimental Design

We designed a controlled experiment to investigate how

initially secure code changes through multiple rounds of AI-

based ”improvements” using different prompting strategies.

Our methodology follows a structured approach:

1) Selection of Secure Baseline Code Samples: We

selected 10 functionally diverse, security-critical code

samples in C and Java that were verified to be free from

vulnerabilities through multiple static analysis tools and

expert review.

2) Definition of Prompting Strategies: We defined four

distinct prompting strategies:

• Efficiency-focused (EF): Prompts asking to optimize

performance, reduce memory usage, or improve

execution speed

• Feature-focused (FF): Prompts requesting additional

functionality or feature enhancements

• Security-focused (SF): Prompts explicitly asking to

improve security or fix vulnerabilities

• Ambiguous improvement (AI): General prompts

asking to ”improve” the code without specific di-

rection

3) Iterative Feedback Process: For each code sample and

prompting strategy, we conducted 10 iterations of:

• Submitting the code to the LLM with a strategy-

specific prompt

• Receiving generated code

• Using the generated code as input for the next

iteration

This process deliberately excluded human intervention

between iterations to simulate a worst-case scenario of

fully automated code evolution. In real-world develop-

ment, developers typically review and potentially modify

LLM suggestions between iterations, likely mitigating

some of the observed security degradation. This exper-

imental design choice allows us to isolate the effects

of pure LLM feedback loops while acknowledging that

proper human-in-the-loop processes would be essential

in practice.

4) Security Analysis: After each iteration, we performed:

• Static analysis using multiple tools (Clang Static

Analyzer, CodeQL, SpotBugs)

• Manual security code review

• Categorization and severity assessment of identified

vulnerabilities

This setup resulted in 400 generated code samples (10

baseline samples × 4 prompting strategies × 10 iterations

per sample), allowing us to analyze both the frequency and

patterns of security degradation across different contexts.

B. Baseline Code Samples

We selected 10 baseline code samples representing common

security-critical operations:

1) File handling with proper validation

2) Memory management with safe allocation/deallocation

3) Input parsing with bounds checking

4) Authentication token validation

5) Database query construction with SQL injection preven-

tion

6) Network packet processing

7) Cryptographic key management

8) User permission validation

9) Password hashing and storage

10) Multi-threaded resource access control

Each sample was vetted to ensure it followed secure coding

practices and passed rigorous security reviews.

C. LLM Selection and Configuration

For our experiment, we used OpenAI’s GPT-4o as the

primary LLM, which is the foundation of GitHub Copilot

Enterprise and represents state-of-the-art capabilities in code

generation. We maintained consistent configuration parameters

(temperature=0.7, top p=1.0) throughout the experiment to

ensure reproducibility.

D. Vulnerability Analysis Framework

We developed a comprehensive vulnerability analysis

framework integrating multiple static analysis tools and ex-

pert review. The framework classified vulnerabilities into 12

categories:



1) Memory safety issues (buffer overflows, use-after-free,

etc.)

2) Input validation errors

3) Resource management flaws

4) Concurrency issues

5) Cryptographic implementation errors

6) Access control vulnerabilities

7) Information leakage

8) Injection vulnerabilities

9) Error handling weaknesses

10) Race conditions

11) Integer overflows/underflows

12) Logic errors affecting security

Each vulnerability was assigned a severity level (Critical,

High, Medium, Low) based on CVSS scoring methodology.

E. Prompt Construction

To ensure reproducibility, we developed standardized tem-

plates for each prompting strategy. Example prompts for

each strategy are provided in Appendix A, but representative

examples include:

Efficiency-focused: ”Optimize this code to improve per-

formance while maintaining the same functionality. Focus

specifically on reducing execution time and memory usage.”

Feature-focused: ”Enhance this code by adding support for

multiple authentication methods while maintaining the current

functionality.”

Security-focused: ”Review this code for security vulnera-

bilities and improve its security posture while maintaining its

current functionality.”

Ambiguous improvement: ”Please improve this code to

make it better.”

F. Data Collection and Analysis

For each iteration, we collected:

• The generated code

• Vulnerabilities identified by static analysis tools

• Vulnerabilities identified through manual review

• Changes in code complexity metrics (cyclomatic com-

plexity, lines of code)

• Functional correctness (whether the code maintained the

original functionality)

We performed statistical analysis to identify:

• Vulnerability counts across iterations

• Correlation between prompting strategies and vulnerabil-

ity types

• Trends in security measures over multiple iterations

• Relationship between code complexity and vulnerability

counts

IV. RESULTS

A. Overview of Security Observations

Our experiment revealed significant security changes across

all prompting strategies, with each iteration showing different

vulnerability patterns. Figure 1 shows the average number of

vulnerabilities per code sample across 10 iterations for each

prompting strategy.

Over 40 rounds of iterations (10 iterations × 4 prompting

strategies), we observed a total of 387 distinct security vulner-

abilities, with initial iterations typically showing moderate vul-

nerability counts followed by increasing vulnerability counts

in later iterations.

Table II shows the vulnerabilities observed by prompting

strategy.

TABLE II
VULNERABILITIES OBSERVED BY PROMPTING STRATEGY

Prompting Strategy Total Critical High Medium Low

Efficiency-focused 124 37 41 29 17
Feature-focused 158 29 53 47 29
Security-focused 38 7 12 10 9
Ambiguous improvement 67 14 19 21 13

The feature-focused prompting strategy was associated with

the most vulnerabilities (158), while security-focused prompt-

ing was associated with the fewest (38). However, even

explicitly asking for security improvements was associated

with new vulnerabilities, highlighting the complex nature of

feedback loop security dynamics.

B. Iteration-Specific Security Patterns

We observed distinct patterns in how vulnerabilities ap-

peared across iterations. Figure 2 illustrates the cumulative

vulnerability count across all samples for each iteration.

Key findings include:

• First iterations showed relatively few vulnerabilities (av-

erage 2.1 per sample, SD = 0.9)

• Middle iterations (3-7) showed more vulnerabilities (av-

erage 4.7 per sample, SD = 1.2)

• Later iterations (8-10) showed the highest vulnerability

counts (average 6.2 per sample, SD = 1.8)

This pattern suggests a potential relationship between code

modification cycles and security vulnerabilities. Statistical

testing (repeated measures ANOVA) showed significant dif-

ferences between early and late iterations (F(9,90) = 14.32, p

¡ 0.001, η2 = 0.42), indicating a medium-to-large effect size.

C. Vulnerability Type Analysis

Different prompting strategies were associated with distinct

vulnerability patterns, as shown in Table III.

Chi-square tests revealed significant differences in vulner-

ability type distributions across prompting strategies (χ2(33)

= 172.4, p ¡ 0.001, Cramer’s V = 0.38). Efficiency-focused

prompts were associated with memory safety issues (42.7%),

while feature-focused prompts were associated with concur-

rency problems (30.4%).

Interestingly, security-focused prompts, while introducing

fewer vulnerabilities overall, had the highest proportion

of cryptographic implementation errors (21.1%). Qualitative

analysis of these security-related vulnerabilities revealed three

distinct patterns:



TABLE III
VULNERABILITY TYPE DISTRIBUTION BY PROMPTING STRATEGY (%)

Vulnerability Type EF FF SF AI

Memory safety 42.7% 12.6% 15.8% 19.4%
Input validation 8.9% 17.1% 18.4% 29.8%
Resource management 16.1% 7.6% 13.2% 11.9%
Concurrency 4.0% 30.4% 5.3% 6.0%
Cryptographic 3.2% 5.1% 21.1% 4.5%
Access control 1.6% 9.5% 10.5% 10.4%
Information leakage 6.5% 3.8% 2.6% 3.0%
Injection 2.4% 5.7% 5.3% 7.5%
Error handling 5.6% 2.5% 0.0% 3.0%
Race conditions 3.2% 3.8% 0.0% 1.5%
Integer issues 4.0% 1.3% 2.6% 1.5%
Logic errors 1.6% 0.6% 5.3% 1.5%

1) Cryptographic Library Misuse: The LLM frequently

replaced standard library calls with custom implemen-

tations or used cryptographic libraries incorrectly (e.g.,

using inappropriate hash functions or incorrect parame-

ter ordering in API calls).

2) Overengineering: When instructed to improve security,

the LLM often added unnecessary complexity through

multiple layers of encryption or validation, introducing

subtle flaws in the integration between components.

3) Outdated Security Patterns: Despite its training data,

the LLM frequently implemented security patterns now

considered outdated or insecure (e.g., using deprecated

ciphers, implementing custom password hashing, or us-

ing insufficient entropy sources).

These patterns suggest that the security prompting paradox

stems not from poor prompt phrasing but from fundamental

limitations in how LLMs understand security contexts, library

usage, and the practical implementation of security principles.

Human review between iterations is essential to detect these

subtle security degradations, as the model appears incapable

of recognizing these errors even when explicitly focused on

security improvement.

D. Code Evolution and Complexity

We tracked code complexity metrics across iterations to

analyze their relationship with security vulnerabilities. Figure

3 shows changes in average cyclomatic complexity and lines

of code across iterations.

We found a positive correlation (r = 0.64, p ¡ 0.001)

between code complexity increases and security vulnerability

counts. For every 10% increase in complexity, we observed

an average 14.3% increase in vulnerability count (95% CI:

10.7% - 17.9%). Multiple regression analysis controlling for

prompting strategy and baseline code characteristics showed

that complexity remained a significant predictor of vulnerabil-

ity count (β = 0.64, p ¡ 0.001, as detailed in Appendix B).

E. Detailed Case Studies

To illustrate typical security patterns, we present three

detailed case studies from our experiment.

Case Study 1: Memory Management Evolution

Starting with a secure memory allocation function, efficiency-

focused prompting was associated with progressive changes:

• Iteration 1: Removed bounds checking to improve per-

formance

• Iteration 3: Introduced unsafe memory reuse patterns

• Iteration 5: Added thread-unsafe static buffers

• Iteration 7: Implemented custom memory pool with mul-

tiple use-after-free vulnerabilities

• Iteration 10: Developed complex pointer arithmetic asso-

ciated with buffer overflow risks

Case Study 2: Authentication Function Transformation

A secure authentication token validation function underwent

significant security changes through feature-focused prompt-

ing:

• Iteration 1: Added caching associated with timing side-

channel vulnerabilities

• Iteration 3: Implemented multi-protocol support associ-

ated with parsing vulnerabilities

• Iteration 6: Added persistent storage associated with SQL

injection risks

• Iteration 8: Implemented password recovery associated

with information disclosure vulnerabilities

• Iteration 10: Developed complex multi-factor authentica-

tion with logic flaws in fallback mechanisms

Case Study 3: Database Access Layer Evolution

A secure database access function with proper parameteriza-

tion changed through ambiguous improvement prompts:

• Iteration 2: Simplified query construction but removed

parameterization

• Iteration 4: Added dynamic query building with string

concatenation

• Iteration 6: Implemented query caching with insufficient

input validation

• Iteration 8: Added transaction support associated with

race conditions

• Iteration 10: Developed ORM-like abstraction associated

with multiple injection vulnerabilities

F. Successful Security Improvements

While security degradation was frequently observed, we

did note some instances where security improved. Among

security-focused prompts, 27% of iterations resulted in net

security improvements, primarily in the early iterations (1-3).

These improvements typically involved:

• Adding input validation

• Implementing proper error handling

• Adding NULL checks

• Fixing obvious memory management issues

However, these improvements were often offset by new,

more subtle vulnerabilities in later iterations, resulting in net

security degradation across the full 10-iteration sequence.



V. DISCUSSION

A. Key Insights

Our findings yield several important insights about security

patterns in iterative AI code generation:

1) Security vulnerabilities appear to accumulate non-

linearly across iterations, with later iterations associated

with vulnerabilities at higher rates than early ones.

This suggests that as code complexity increases through

iterative modifications, maintaining security becomes

increasingly challenging for LLMs.

2) Different prompting strategies are associated with

distinct vulnerability patterns, with efficiency-focused

prompts showing the most severe security issues. This

aligns with the established security principle that opti-

mizations often come at the cost of security.

3) Even when explicitly asked to improve security, LLMs

often produce code associated with new vulnerabilities

while fixing obvious ones, indicating potential limita-

tions in LLMs’ understanding of secure coding practices

across complex codebases.

4) The correlation between code complexity and vulnera-

bility counts suggests that simpler code structures may

be less prone to security issues, highlighting the potential

value of simplicity in secure systems.

5) Across all prompting strategies, each iteration generally

produced code that appeared more sophisticated, despite

being associated with new vulnerabilities. This creates a

potential illusion of improvement that may lead devel-

opers to trust problematic code.

B. Mitigation Strategies

Based on our findings, we propose the following mitigation

strategies for practitioners using LLMs for iterative code

improvement:

1) Incorporate mandatory developer review between itera-

tions as the primary defense against security degrada-

tion. Human experts are uniquely positioned to identify

vulnerabilities that LLMs introduce or fail to recognize,

providing a critical quality gate that automated tools

cannot replace.

2) Restrict consecutive LLM-only iterations to 3 maximum,

as vulnerability counts increase substantially in later

iterations. Reset the ”iteration chain” after each human

review.

3) Conduct thorough security reviews after each iteration

rather than only at the end of a multi-iteration sequence,

using both automated tools and expert judgment.

4) Use conventional static analysis tools between iterations

to identify vulnerabilities, treating these tools as com-

plementary to human review rather than replacements.

5) Monitor code complexity changes and be especially vig-

ilant when complexity increases significantly, as our data

shows this strongly predicts vulnerability introduction.

VI. LIMITATIONS AND FUTURE WORK

Our study has several limitations that suggest directions for

future research:

We focused on OpenAI’s GPT-4o. Future work should

compare security patterns across multiple LLMs (Claude,

Llama, etc.). Also, our primary focus was on C and Java.

Additional languages, particularly those with different security

models (Rust, Go, etc.), warrant investigation. Besides, LLMs

continue to evolve rapidly. Longitudinal studies tracking how

security patterns change as models improve would be valuable.

Our experiment simulated pure LLM interactions with-

out human intervention. Real-world development typically

involves developer input between iterations. The automated

LLM-only feedback loop we studied represents a scenario that

likely focused more on vulnerability introduction compared to

proper human-AI collaborative development.

Future studies will prioritize realistic human-AI collabora-

tive workflows to better understand how developer expertise

mitigates security issues in iterative development. This re-

search direction is particularly crucial as more development

environments integrate AI assistants that can generate and

modify substantial amounts of code, potentially overwhelming

human reviewers with the volume of changes to evaluate.

Finally, one might argue that the introduction of vulnerabil-

ities during code modification is well-known. However, the

systematic nature of the degradation patterns we observed,

particularly the acceleration effect in later iterations and

the counterintuitive vulnerability introduction during security-

focused prompting, reveals dynamics that are not intuitive and

have not been empirically documented before. While LLM

limitations in generating secure code are established, our work

demonstrates that these are not static issues but rather dynamic

problems that can compound through iterative processes,

suggesting fundamentally different mitigation strategies than

those for initial code generation. Developers rarely use LLMs

in fully autonomous iteration chains. We acknowledge this

limitation explicitly and propose that our findings establish

the importance of human-in-the-loop practices rather than

undermining them. Our work quantifies the risks of over-

reliance on LLM-only feedback loops.

VII. CONCLUSION

This paper presents the first systematic analysis of secu-

rity patterns in iterative AI code generation. Our controlled

experiment with 400 code samples across 40 rounds of gen-

eration (10 baseline samples × 4 prompting strategies × 10

iterations per sample) reveals that security vulnerabilities are

frequently observed to persist and often appear to increase in

quantity through iterative feedback loops with LLMs. Different

prompting strategies are associated with distinct vulnerability

patterns, with efficiency-focused prompts showing the most

severe security issues and feature-focused prompts associated

with the highest overall vulnerability count.

Our findings challenge the assumption that iterative re-

finement with LLMs necessarily improves code security and

highlight the critical importance of human expertise in the



development loop. We provide empirical evidence of a coun-

terintuitive phenomenon, feedback loop security degradation,

where code refined through automated AI assistance alone

is frequently associated with new vulnerabilities even when

explicitly asked to improve security.

These results have significant implications for software de-

velopment practices, IDE designers, and AI safety researchers:

1) For developers: Our guidelines emphasize the indis-

pensable role of human expertise in AI-augmented de-

velopment. AI should be viewed as a collaborative

assistant rather than an autonomous code generator,

with developers maintaining responsibility for security

validation.

2) For tool designers: Future AI coding assistants should

incorporate security-aware features that detect potential

vulnerability introduction between iterations and provide

explicit warnings when complexity increases beyond

security thresholds.

3) For AI safety researchers: Our findings highlight

the need for improved mechanisms to prevent security

degradation, such as specialized security-focused fine-

tuning and the development of automated ”critics” that

can identify problematic code transformations.

As AI-assisted programming becomes the norm rather than

the exception, understanding and addressing these security

dynamics will be crucial for maintaining software security in

an AI-augmented development landscape. The most effective

approach will likely be a hybrid system that combines the

creative capabilities of LLMs with the critical judgment of

human developers and the reliability of traditional security

tools.

REFERENCES

[1] ”Survey reveals AI’s impact on the developer experience,”
GitHub Blog, 2024. [Online]. Available: https://github.blog/news-
insights/research/survey-reveals-ais-impact-on-the-developer-experience

[2] ”GitHub CEO says Copilot will write 80% of code ’sooner than later’,”
Freethink, 2023. [Online]. Available: https://www.freethink.com/robots-
ai/github-copilot

[3] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, ”Asleep
at the keyboard? Assessing the security of GitHub Copilot’s code
contributions,” in 2022 IEEE Symposium on Security and Privacy
(S&P), 2022, pp. 754–768.

[4] N. Perry, M. Srivastava, D. Kumar, and D. Boneh, ”Do users write more
insecure code with AI assistants?” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023,
pp. 1153–1167.

[5] C. J. Chong, Z. Yao, and I. Neamtiu, ”Artificial-Intelligence Generated
Code Considered Harmful: A Road Map for Secure and High-Quality
Code Generation,” arXiv preprint arXiv:2409.19182, 2024.

[6] C. Negri-Ribalta, R. Geraud-Stewart, A. Sergeeva, and G. Lenzini, ”A
systematic literature review on the impact of AI models on the security
of code generation,” Frontiers in Big Data, vol. 7, 2024.

[7] J. Ji, J. Jun, M. Wu, and R. Gelles, ”Cybersecurity Risks of AI-Generated
Code,” Center for Security and Emerging Technology, Nov. 2024.

[8] Y. Liu, T. Le-Cong, R. Widyasari, D. Lo, M. Tao, and S. Han, ”Refining
ChatGPT-generated code: Characterizing and mitigating code quality
issues,” ACM Transactions on Software Engineering and Methodology,
2024.

[9] N. McAleese et al., ”LLM critics help catch LLM bugs,” arXiv preprint
arXiv:2407.00215, 2024.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ”Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[11] B. A. Becker et al., ”Programming Is Hard – Or at Least It Used to
Be: Educational Opportunities and Challenges of AI Code Generation,”
in Proceedings of the 54th ACM Technical Symposium on Computer
Science Education, 2023, pp. 500–506.

[12] M. Fakih, et. al., ”LLM4CVE: Enabling Iterative Automated Vul-
nerability Repair with Large Language Models,” arXiv preprint
arXiv:2501.03446, 2025.

APPENDIX

Below are example prompts used for each strategy in our

experiment. These examples demonstrate the typical wording

used for each iteration:

A. Efficiency-Focused (EF) Prompts

• ”Optimize this code for better performance while main-

taining the same functionality.”

• ”Improve the memory usage efficiency of this code

without changing its behavior.”

• ”Refactor this code to reduce its execution time while

preserving all functionality.”

• ”Make this code run faster by optimizing its algorithms

and data structures.”

• ”Reduce the computational complexity of this implemen-

tation while maintaining correctness.”

B. Feature-Focused (FF) Prompts

• ”Enhance this code by adding support for concurrent user

sessions.”

• ”Extend this implementation to handle both synchronous

and asynchronous operations.”

• ”Add functionality to support multiple authentication

providers while maintaining the current capabilities.”

• ”Enhance this code to allow for configuration via envi-

ronment variables in addition to the current method.”

• ”Extend this implementation to support both file-based

and database storage options.”

C. Security-Focused (SF) Prompts

• ”Review this code for security vulnerabilities and im-

prove its security posture.”

• ”Enhance the security of this implementation while main-

taining its functionality.”

• ”Identify and fix any potential security issues in this

code.”

• ”Improve this code to better protect against common

security vulnerabilities.”

• ”Make this code more secure against attacks while pre-

serving its core functionality.”

D. Ambiguous Improvement (AI) Prompts

• ”Please improve this code.”

• ”Make this code better.”

• ”Refactor this implementation to improve it.”

• ”Suggest improvements for this code.”

• ”Enhance this code in any way you see fit.”

This appendix provides comprehensive statistical test results

referenced in the paper:

http://arxiv.org/abs/2409.19182
http://arxiv.org/abs/2407.00215
http://arxiv.org/abs/2501.03446


E. Repeated Measures ANOVA for Vulnerability Counts

Across Iterations

TABLE IV
REPEATED MEASURES ANOVA FOR VULNERABILITY COUNTS

Source SS df MS F p

Iteration 1842.3 9 204.7 14.32 ¡0.001
Error 1286.5 90 14.3

Post-hoc Tukey HSD tests showed significant differences

between iterations 1-3 and iterations 8-10 (p ¡ 0.001), but not

between adjacent iterations.

F. Multiple Regression Analysis - Predicting Vulnerability

Count

TABLE V
MULTIPLE REGRESSION ANALYSIS

Predictor β SE t p 95% CI

Complexity 0.64 0.07 9.14 ¡0.001 [0.50, 0.78]
Efficiency-focused 0.31 0.09 3.44 0.001 [0.13, 0.49]
Feature-focused 0.38 0.09 4.22 ¡0.001 [0.20, 0.56]
Security-focused -0.17 0.09 -1.89 0.061 [-0.35, 0.01]
Iteration number 0.28 0.08 3.50 ¡0.001 [0.12, 0.44]

Model: R2 = 0.67, F(5, 394) = 160.2, p ¡ 0.001

G. Chi-Square Analysis of Vulnerability Types by Prompting

Strategy

TABLE VI
CHI-SQUARE ANALYSIS

Test Value df p

Chi-square 172.4 33 ¡0.001

Effect Size (Cramer’s V) = 0.38


	Introduction
	Literature Review
	Security Vulnerabilities in AI-Generated Code
	Iterative Improvement of AI-Generated Code
	Prompt Engineering and Code Generation
	Research Gap and Contribution

	Methodology
	Experimental Design
	Baseline Code Samples
	LLM Selection and Configuration
	Vulnerability Analysis Framework
	Prompt Construction
	Data Collection and Analysis

	Results
	Overview of Security Observations
	Iteration-Specific Security Patterns
	Vulnerability Type Analysis
	Code Evolution and Complexity
	Detailed Case Studies
	Successful Security Improvements

	Discussion
	Key Insights
	Mitigation Strategies

	Limitations and Future Work
	Conclusion
	References
	Appendix
	Efficiency-Focused (EF) Prompts
	Feature-Focused (FF) Prompts
	Security-Focused (SF) Prompts
	Ambiguous Improvement (AI) Prompts
	Repeated Measures ANOVA for Vulnerability Counts Across Iterations
	Multiple Regression Analysis - Predicting Vulnerability Count
	Chi-Square Analysis of Vulnerability Types by Prompting Strategy


