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ABSTRACT
Database connectors are critical components enabling applications
to interact with underlying database management systems (DBMS),
yet their security vulnerabilities often remain overlooked. Unlike
traditional software defects, connector vulnerabilities exhibit subtle
behavioral patterns and are inherently challenging to detect. Be-
sides, nonstandardized implementation of connectors leaves poten-
tial risks (a.k.a. unsafe implementations) but is more elusive. As a
result, traditional fuzzing methods are incapable of finding such
vulnerabilities. Even for LLM-enable test case generation, due to a
lack of domain knowledge, they are also incapable of generating
test cases that invoke all interface and internal logic of connectors.

In this paper, we propose reinforcement learning (RL)-guided
LLM test-case generation for database connector testing. Specif-
ically, to equip the LLM with sufficient and appropriate domain
knowledge, a parameterized prompt template is composed which
can be utilized to generate numerous prompts. Test cases are gener-
ated via LLMwith a prompt, and are dynamically evaluated through
differential testing across multiple connectors. The testing is itera-
tively conducted, with each round RL is adopted to select optimal
prompt based on prior-round behavioral feedback, so as to maxi-
mize control flow coverage. We implement aforementioned method-
ology in a practical tool and evaluate it on two widely used JDBC
connectors: MySQL Connector/J and OceanBase Connector/J. In
total, we reported 16 bugs, among them 10 are officially confirmed
and the rest are acknowledged as unsafe implementations.

VLDBWorkshop Reference Format:
Ce Lyu, Minghao Zhao, Yanhao Wang, and Jie Liang. LLM-based Dynamic
Differential Testing for Database Connectors with Reinforcement
Learning-Guided Prompt Selection. VLDB 2025 Workshop: AIDB.

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Manuel-Neuer1/Bug_Issue_Link.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

1 INTRODUCTION
Database connectors, also known as database drivers, serve as cru-
cial middleware that provides standardized interfaces for application-
database interactions. These components translate application API
calls into native database commands while transforming query
results into application-processable formats. Although this abstrac-
tion layer significantly enhances development efficiency, any inher-
ent defects in these connectors may propagate system-wide failures.
Thus, it is essential to ensure their reliability and correctness.

Unfortunately, detecting vulnerabilities of database connectors is
challenging. Unlike traditional software defects, connector vulner-
abilities exhibit subtle behavioral patterns. As a result, traditional
fuzzing techniques exhibit limited effectiveness in testing database
connectors due to their inability to handle protocol-specific syntax
and stateful interactions. Notably, while these fuzzing techniques
have proven highly successful for DBMS testing, their effectiveness
remains constrained for connectors [2–5, 8, 13, 14, 17]. This is be-
cause existing fuzzers primarily generate equivalent SQL queries,
whereas the connectors bypass rather than execute them. Moreover,
the static nature of conventional fuzzing renders it ineffective for
comprehensively testing connector logic – the generated queries
typically exercise only a limited subset of interfaces and achieve
insufficient branch coverage.

What is evenworse, certain connector vulnerabilities are scenario-
specific or originate from flawed implementation strategies, making
such bugs significantly harder to detect. For example, applications
often migrate data from one DBMS to another, relying on compati-
ble connectors to handle differences in protocols and SQL dialects.
When migrating, differences in connector implementations (even
for supposedly compatible ones) can trigger exceptions or exhibit
inconsistent behavior on additional connectors, such as data loss,
silent rollbacks, or duplicate inserts. These subtle deviations may
not generate error messages directly, and thus are difficult to detect.

connectors are typically expected to comply with standardized
interface specifications, such as ODBC (Open Database Connectiv-
ity) and JDBC (Java Database Connectivity). However, in practice,
some database vendors deviate from – or even entirely disregard –
these standards, e.g., due to compatibility requirements with legacy
DBMS. Such nonstandardized implementation of connectors leaves
potential risks (a.k.a. unsafe implementations) but is more elusive.
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Besides, the behavior of the connector is highly sensitive to con-
nection property options. These properties can have subtle but crit-
ical effects on query execution, transaction processing, and batch
processing behavior. In addition, connector behavior is highly de-
pendent on contextual semantics and invocation methods, further
increasing the difficulty of writing test cases manually.

Recent research has demonstrated the significant potential and
initial successes of large language models (LLMs) in software test-
ing applications [6, 7, 12, 16]. However, due to a lack of domain
knowledge, it is difficult for the LLMs to generate test cases that
invoke all interface and internal logic of connectors. Besides, static
or single prompts often fail to detect deep vulnerabilities, esp., for
those defects appears in data transmission among multiple DBMSes.

In this paper, we propose reinforcement learning (RL)-guided
LLM test-case generation for database connector testing. Specif-
ically, to equip the LLM with sufficient and appropriate domain
knowledge, a parameterized prompt template is composed which
can be utilized to generate numerous prompts. Test cases are gener-
ated via LLMwith a prompt, and are dynamically evaluated through
differential testing across multiple connectors. The testing is itera-
tively conducted, with each round RL is adopted to select an optimal
prompt based on prior-round behavioral feedback, so as to maxi-
mize control flow coverage.

By focusing on historically efficient prompts, our approach en-
ables more efficient connector test case generation and was evalu-
ated on MySQL Connector/J and OceanBase Connector/J, where
10 have been confirmed as bugs, and 6 unsafe implementations, as
summarized in Table 1. Some of these bugs have existed for decades
without being fixed. These unsafe implementations do not follow
the current JDBC specification [10] due to compatibility with the
erroneous behavior of older versions of MySQL Connector/J.

2 METHODOLOGY
2.1 Overview
We propose an architecture as illustrated in Figure 1. The core idea
is to leverage LLMs to automatically generate a diverse suite of test
cases. Beginning with the Prompt Generator, it utilizes a structured
prompt template to create a set of prompt candidates, which are de-
signed to cover a wide range of connector behaviors ( 1 ). Next, an
optimal prompt is selected from the candidate set by a RL-Guided
strategy, which is then passed to an LLM to generate the test case
( 2 ). The generated test case is tested on two compatible connectors
for differential testing ( 3 ). The Comparator then compares the
results. If any inconsistencies are detected, a reward signal is sent
back to the RL Guidance to reinforce the next iteration of prompt se-
lection ( 4 ). Finally, we analyze the cases that have inconsistencies
during differential testing, make logic simplifications, and report to
the respective development teams ( 5 ).

Our framework introduces a structured prompt template to in-
struct the LLM to behave as an expert of DBMS testing. As detailed
in Figure 2, the template covers four major aspects, namely role
definition, dynamic context specification, task decomposition, and
output requirements. This design can more effectively guide the
LLM to generate complex and targeted test cases, thereby detecting
bugs and unsafe implementations in the connector.

2.2 Database Connection Property
The behavior of database connectors can be significantly influenced
by their connection-level property parameters, such as allowMulti-
Queries and rewriteBatchedStatements in JDBC. These options
affect the internal optimization paths of connectors, query rewriting
logic, and exception handling mechanisms. However, many existing
test generators treat the JDBC URL as static, failing to explore the
rich behavioral variations induced by different connection property
settings. Thus, they miss a critical axis of behavioral variability.

To address this limitation, guided by domain knowledge, we
design a systematic connection property module that explores a
diverse set of JDBC parameters during test generation. Our goal
is to maximize the behavioral surface exposed to the downstream
connectors under test.

We first identify a set of predefined𝑚 JDBC parameters. Then,
we define a property schema C = {𝑐1, 𝑐2, . . . , 𝑐𝑚}, where each 𝑐 𝑗
corresponds to a boolean or enumerated JDBC parameter. Each
parameter has a well-defined domain.

Rather than exhaustively searching the space 𝑉 of all possible
parameter combinations, i.e.,

V = Dom(𝑐1) × Dom(𝑐2) × · · · × Dom(𝑐𝑚), (1)

we alternatively construct a curated set S of 𝑘 representative prop-
erty subsets, i.e.,

S = {𝑆1, 𝑆2, . . . , 𝑆𝑘 }, 𝑆𝑖 ⊆ V, (2)

where each 𝑆𝑖 is a selected subset of connection properties, which is
designed to capture different behaviors. By running tests on a subset
of these connection properties, we can reveal different execution
behaviors without exhaustively covering the entire property space.
This approach allows for extensive and non-exhaustive testing of
connector interfaces affected by properties, helping to reveal issues
that are missed because of connection properties.

2.3 RL-Guided Prompt Scheduling
To maximize the effectiveness of LLM-generated JDBC test cases,
we introduce an RL-guided prompt scheduling mechanism, which
adaptively selects prompts based on their historical bug-finding
performance. Inspired by the multi-armed bandit (MAB) formula-
tion [15], we model each prompt template as a distinct arm and
apply the Upper Confidence Bound (UCB1) algorithm [1] to guide
prompt selection over multiple testing rounds.

Given a set of prompt templates, we define P = {𝑃1, 𝑃2, . . . , 𝑃𝑁 }
where 𝑁 ∈ N+ denotes the total number of available prompt tem-
plates. Our objective is to adaptively identify and prioritize the
prompt template (𝑃𝑖 ) that maximizes the discovery of differential
behaviors (indicative of potential bugs) in database connectors.
Each prompt 𝑃𝑖 acts as an arm in the MAB setting, with an un-
known reward distribution corresponding to the likelihood that
test cases generated from 𝑃𝑖 expose connector inconsistencies. We
employ the classic UCB1 algorithm to balance exploration and ex-
ploitation in prompt selection. In each round, the algorithm selects
the prompt 𝑃𝑖 that maximizes

𝜇𝑖 +

√︄
2 log𝑅
𝑠𝑖

, 𝑖 ∈ 𝑁 . (3)

For each prompt 𝑃𝑖 , we maintain the following:
2



Figure 1: Overall Workflow of LLM-Enhanced DBMS Connector Testing with RL-Guided Prompt Scheduling.

1. Role Definition (Instruction to LLM)
"You are an expert in Java, JDBC, and database connector testing, tasked with generating code to 

expose subtle behavioral differences and non-standard implementations."

2. Context Specification (Dynamically Provided Inputs)
- RL-Guided Test Focus

|__Database Connection URL (including specific properties)
|__Database Schema: Relevant table structures
|__Prioritized Advanced JDBC Operations
|__Targeted Exception/Boundary Scenarios

3. Task Decomposition & Design Directives (Instructions for Test Case Generation)
- Overarching Generation Philosophy

"Generate a "chaotic yet complete" Java test case simulating complex, interwoven, and 
sometimes unconventional real-world JDBC usage patterns."

- Code Style & Structural Requirements
- Semantic & Behavioral Structure
- JDBC API Usage
- Test Scenario

4. Output Format & Execution Requirements (Instructions for final generated case)
- Code Characteristics
- Observability for Differential Testing
- Clarity and Conciseness

Figure 2: Prompt template for DBMS connector testing.

• 𝑠𝑖 : the number of times 𝑃𝑖 has been selected;
• 𝜇𝑖 : the empirical mean number of output inconsistencies

detected by test cases generated from 𝑃𝑖 ;
• 𝑅: the total number of round iterations so far.

After generating a test case using the selected prompt, the test is
automatically rewritten, compiled, executed, and compared across
different JDBC database connectors. The number of observed be-
havioral discrepancies serves as a reward signal to update 𝑠𝑖 and
𝜇𝑖 . This closes the feedback loop between prompt selection and the
identification of potentially problematic test scenarios, allowing
learning-based scheduling to focus on high-impact prompts.

3 PRELIMINARY EXPERIMENTS
To evaluate the effectiveness of our method in discovering bugs
and unsafe implementations on database connectors, we answer
the following question: How does our method perform on real-world
database connectors?

Tested Database Connectors. We tested two widely used JDBC
connectors, namely MySQL Connector/J [11] and OceanBase Con-
nector/J [9]. For MySQL Connector/J, we used version 9.2.0 with
MySQL 8.0.36. For OceanBase Connector/J, we used OceanBase
Client 4.2.0 with 5.7.25-OceanBase_CE-v4.2.1.10. We use Qwen-
plus as the LLM for database connector test case generation.

Table 1: Number of Bugs and Unsafe Implementations.

Type Database Connector Quantity

Bugs MySQL / OceanBase 7 / 3
Unsafe Implementations OceanBase 6

Total (Bugs + Unsafe Implementations) 16

Confirmed Bugs & Unsafe Implementations. Table 1 shows
the statistics of our results: seven bugs in MySQL and there bugs
and six unsafe implementations in OceanBase. We briefly describe
what triggers each issue and the description in Table 2. OceanBase
development team provided valuable insight into the emergence
of unsafe implementations. According to an official email response
from the OceanBase development team, “objdbc does not report errors
because it is compatible with the erroneous behavior of MySQL-jdbc
5.x. It will be compatible with 8.x in the future”. Surprisingly, Issue 3
remains unfixed in MySQL Connector/J for 17 years!

Case Study. To concisely demonstrate the detected results, we
present two representative case studies: an unsafe implementation
in OceanBase Connector/J that deviates from the JDBC specification
and a bug inMySQL Connector/J caused by the connection property.
We simplified the logic of test cases to highlight the core issues that
trigger errors.

Case 1: Listing 1 illustrates an inconsistency between the MySQL
and OceanBase connectors. When invoking beforeFirst() on a
ResultSet created with TYPE_FORWARD_ONLY, MySQL correctly ad-
heres to the JDBC specification [10] by triggering a SQLException,
while OceanBase executes the same call without exception. This
non-standard implementation may introduce security risks to sys-
tems designed to maintain portability between databases.

Listing 1: MySQL vs. OceanBase: Inconsistent beforeFirst()
con = DriverManager.getConnection(url);
stmt = con.createStatement(ResultSet.TYPE_FORWARD_ONLY);
stmt.executeUpdate("CREATE TABLE t0 (Id INT);");
rs = stmt.executeQuery("SELECT Id FROM t0 WHERE Id > 0");
rs.beforeFirst(); X
// MySQL triggers SQLException.
// OceanBase successfully execute.

Case 2: As shown in Listing 2, which attempts to insert duplicate
primary keys (1), (1), (2) into table 𝑡0, we find an inconsistency bug.
When the connection property allowMultiQueries is enabled, the

3



Table 2: Summary of bugs and unsafe implementations in MySQL and OceanBase Connector/J.

ID Type Database Key Aspect / Trigger Description

Issue 1 q MySQL Exception Message Error Output message error when using setMaxRows()
Issue 2 q MySQL Spec. Violation Using executeBatch() to execute a non-DML statement returns an illegal value rather than throws

an exception.
Issue 3 q MySQL API Behavior Calling getHoldability() is expected to get 1, but actually throws an exception.
Issue 4 q MySQL Config. Interaction The rewriteBatchedStatements connection property unexpectedly affects query results following

batch inserts.
Issue 5 q OceanBase Resource Management ResultSet should be closed, unexpectedly not closed in OceanBase.
Issue 6 q MySQL Config. Interaction The allowMultiQueries connection property unexpectedly affects the result of getUpdateCounts()

after batch execution.
Issue 7 q MySQL Config. Breaks Atomicity Atomicity of batch operation is compromised by allowMultiQueries.
Issue 8 q OceanBase Config. Interaction The rewriteBatchedStatements connection property unexpectedly affects query results following

batch inserts.
Issue 9 q OceanBase Spec. Violation Using executeBatch() to execute a non-DML statement returns an illegal value rather than throws

an exception.
Issue 10 q MySQL API Behavior When sets resultSetHoldability to 2, getResultSetHoldability() unexpectedly returns 1.

Issue 11 X OceanBase non-standard
OceanBase compatibility with erroneous behaviors of MySQL JDBC 5.x: previous(), first(),
afterLast(), absolute(), last(), and beforeFirst() do not conform to JDBC
documentation [10], which requires throwing SQLException when called on a TYPE_FORWARD_ONLY
ResultSet.

Issue 12 X OceanBase non standard
Issue 13 X OceanBase non-standard
Issue 14 X OceanBase non-standard
Issue 15 X OceanBase non-standard
Issue 16 X OceanBase non-standard
a q: Confirmed Bug. b X: Acknowledged Unsafe Implementation. c Config.: Configuration. d Spec.: specification.

atomicity of the batch is compromised. Ideally, the results of the
batch operations for primary key conflicts should be consistent,
independent of allowMultiQueries. The MySQL development
team has also replied: “Regardless what the documentation says about
the connection property allowMultiQueries, it does affect batched
statements”.

Listing 2: MySQL: Batch Bug with allowMultiQueries Setting
con = DriverManager.getConnection(url);
stmt = con.createStatement();
stmt.execute("CREATE TABLE t0 (Id INT PRIMARY KEY);");
stmt.addBatch("INSERT INTO t0 VALUES (1);");
stmt.addBatch("INSERT INTO t0 VALUES (1);");
stmt.addBatch("INSERT INTO t0 VALUES (2);");
stmt.executeBatch(); q
print(); // Assuming prints content of t0
// When allowMultiQueries=true -> print: 1
// When allowMultiQueries=false -> print: 1 2

In summary, both cases confirm that our method can detect bugs
and unsafe implementations in database connectors.

4 CONCLUSION AND FUTUREWORK
In this paper, we studied the problem of testing database connec-
tors. We proposed a novel framework for this problem based on
LLMs with an RL-guided prompt scheduling strategy and identified
10 bugs and 6 unsafe implementations in Oceanbase and MySQL
connectors. As an early-stage study, we aim to answer a central
question: Can our framework find meaningful vulnerabilities in real-
world scenarios? The results presented a strong affirmative. In the
future, a more comprehensive performance review, baseline com-
parison, and a deeper analysis of the discovered vulnerabilities will
be developed as a more in-depth study.
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