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Abstract—Recent work [1] has shown that dependencies be-
tween items in a dataset can lead to privacy leaks. We extend
this concept to privacy-preserving transformations, considering
a broader set of dependencies captured by correlation metrics.
Specifically, we measure the correlation between the original data
and their noisy responses from a randomizer as an indicator
of potential privacy breaches. This paper aims to leverage
information-theoretic measures, such as the Maximal Information
Coefficient (MIC), to estimate privacy leaks and derive novel,
computationally efficient privacy leak estimators. We extend
the ρ1-to-ρ2 formulation [2] to incorporate entropy, mutual
information, and the degree of anonymity for a more compre-
hensive measure of privacy risk. Our proposed hybrid metric
can identify correlation dependencies between attributes in the
dataset, serving as a proxy for privacy leak vulnerabilities. This
metric provides a computationally efficient worst-case measure
of privacy loss, utilizing the inherent characteristics of the data
to prevent privacy breaches.

Index Terms—Cryptography, Privacy, Security, Data mining

I. INTRODUCTION

There is a growing need for privacy-preserving data min-
ing because of the proliferation of privacy legislation and
a heightened sense of privacy awareness among customers.
Organizations can suffer reputational damage and potentially
face class-action suits following privacy breaches. Further-
more, there are numerous examples of firms trading on private
customer data. For example, tax data is sensitive information
and reported privacy breaches incur heavy penalties, as a
recent case suggests in the news 1. Furthermore, there is a
recent case where tax organizations colluded with social media
giants 2. Privacy breaches are on the rise even though they are
frequently underreported in the media 3 due to the associated
costs.

The pervasive issue of privacy abuse has motivated our
research to mitigate privacy leaks in data by developing a
metric to assess privacy vulnerability. We aim to answer the
question: ”What is a measurable metric that can quantify
the privacy vulnerability risk of data after privacy-preserving
transformations?” Previous work [3], [4] has shown promise
in using mutual-information-based metrics like the Maximal

1https://www.cbsnews.com/news/ex-irs-contractor-charles-littlejohn-
trumps-tax-records-sentenced/

2https://www.theverge.com/2022/11/22/23471842/facebook-hr-block-
taxact-taxslayer-info-sharing

3https://news.umich.edu/data-breaches-most-victims-unaware-when-
shown-evidence-of-multiple-compromised-accounts/

Information Coefficient (MIC) to estimate correlations. In-
spired by this approach, we consider correlation a proxy for
privacy leak vulnerability. However, these methods can be
computationally expensive due to partitioning operations. Our
work focuses on creating computationally efficient privacy risk
metrics, leveraging correlation as a proxy for potential privacy
leaks with real-world applicability. We aim for practical appli-
cability by empirically estimating privacy risk after applying
privacy-enhancing transformations. Alternatively, we can use
our framework to evaluate the susceptibility to privacy leaks
of various privacy-preserving systems in a white-box setting.

The paper is structured as follows: a recap of contributions
in Section I-A, a background showing previous work in
relation to the current thesis in Section II, an overview of our
formulation in Section IV, a discussion in Section V 4. Finally,
we present limitations, future work, and conclusions in Sec-
tion VI. Hence, these terminologies are used interchangeably
for the remainder of this work: randomizer, privacy-enhancing
mechanism, and transformation depicts a privacy-enhancing
mechanism as a scheme that transforms data into a privacy-
preserving form that does not leak identifiable information
about individual records.

A. Contributions

Previous work [1] has demonstrated that correlations be-
tween data samples can compromise privacy in privacy-
preserving applications. Building on this insight, we investi-
gate how data correlation can serve as a metric for measuring
susceptibility to privacy leaks. Several studies [5] have shown
that correlation can be a significant factor in privacy breaches,
leading to the development of privacy-aware techniques like
Pufferfish [6] that aim to provide privacy even in the presence
of correlated data and publicly released data.

This work introduced a novel complexity metric by adapting
the degree of anonymity and then extending the ρ1-to-ρ2 for-
mulation [2] to enable the use of entropy, mutual information,
and degree of anonymity for measuring privacy risk. Our work
adopts the ρ1-to-ρ2 framework and utilizes well-studied mea-
sures such as degree of anonymity. Our construction utilizes
permutation entropy [7] based on the symbolic representation
of the patterns in the data, thereby enabling support for various

4Source code: https://github.com/kennex2004/miscellaneous/tree/main/
leakdetector
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data types (numeric, ordinal, and categorical). Our hybrid cor-
relation metric design considers computational cost, predictive
power, interpretability, and ease of use. We utilize information-
theoretic measures to provide a domain-independent method
to estimate correlations to indicate potential privacy violations.

II. RELATED WORK

Recent studies by Sankhya [8] have provided the character-
istics of several correlation metrics. They grouped the dynam-
ics of the underlying dependencies captured by the correlation
coefficient, which include linear, non-linear, functional, non-
functional, and complex relationships.

Correlation coefficients not based on information theory
include Pearson correlation, Spearman correlation, distance
correlation [8], and others. Pearson correlation captures linear
dependency and monotonic non-linear dependencies where
variables follow a Gaussian distribution. Spearman correlation
handles monotonic non-linear relationships even when vari-
ables are not normally distributed. Both Pearson and Spearman
correlations are unable to detect non-monotonic relations.
Furthermore, distance correlation detects non-linear and non-
monotonic dependencies in the data.

Alternatively, correlation metrics based on information the-
ory include the Maximal Information Coefficient (MIC) [9],
Kullback-Leibler (KL) divergence [10], and others. These met-
rics have a foundation in entropy [11] and mutual information
between variables. Furthermore, Gavin’s work [12] provides
several estimations of entropy-based metrics. Entropy-based
measures work best when data follows a Gaussian distribu-
tion, ensuring that the entropy is directly proportional to the
variance. On the contrary, in non-Gaussian settings, variance
and entropy have no direct relationship [13]. Entropy-based
measures can detect even non-functional dependencies via
mutual information. MIC is an equitable metric that measures
correlation but is sensitive to noise [8]. In contrast, member-
ship inference attacks [14], [15] provide another approach to
measure information leakage.

III. BACKGROUND

Maximal Information Coefficient (MIC) [4] provides an
effective metric for detecting correlations. MIC can identify
rare and novel relationships in data. MIC is the maximum
mutual information over a constellation of grids over data
extents (multiple partitions). As a result, MIC is compu-
tationally expensive to estimate. Hence, work [4] proposed
approximations and differentially private versions of MIC.
Matrix, A of dim (k×ℓ) with (i, j) ∈ [k]×[ℓ] has count entries,
A[i][j], per cell on the grid. When each row-sum or column-
sum of matrix A is equal, then we have mass-equipartition.
Otherwise, we have range-equipartition. Given matrices, A,P
∈ Rk×ℓ with normalized count P[i][j], where P = 1

n ·A.
The discrete mutual information, I (D|G) is computed using

the provided expression as shown in Equation 1, where p(i, j)
is the probability score of (row, col) tuple, (i, j) of the matrix,
P, p(i, ) is the probability score summed across row, i, of

matrix, P, and p(, j) is the probability score summed across
column, j, of matrix, P.

I (D|G) =
∑
i,j

p(i, j) log2
p(i, j)

p(i, )p(, j)
.

(1)

I⋆ (D|G) :=
I (D|G)

log2 min{k, ℓ}
,

(2)
Discrete mutual information is normalized I⋆ (D|G) by

using the provided expression as shown in Equation 2. Let us
demonstrate the calculation of normalized mutual information
as a procedure for estimating MIC for the grid configuration
shown in Figure 1.

Fig. 1: A partitioning of grid [4] for estimating MIC. Image
is organized into sub-charts that are labelled ’a’, ’b’, ’c’ and
’d’

It is easier to visualize partitions in 2D as higher dimensions
do not make for easy visualization, so in our illustration in
Figure 1, We restrict our example to 2D for simplification.
Despite the visualization constraint in our chart in Figure 1,
the partitioning pattern for MIC extends to higher dimensions.
The partitioning in the Figure 1 is described as follows:



• Chart ’a’ as shown in Figure 1 has three distinct partitions
to split the data across its range. These partitions are colored
light pink, light blue, and light green.

• Chart ’b’ shown in Figure 1 is a partition colored light pink as
seen in Chart ’a’ of Figure 1. It displays a count of elements
in each grid formed by partitioning.

• Chart ’c’ shown in Figure 1 is a partition colored light blue as
seen in Chart ’a’ of Figure 1. It displays a count of elements
in each grid formed by partitioning.

• Chart ’d’ as shown in Figure 1 is the normalized count of
the values as seen in Chart ’c’ of Figure 1.

Let k = 2, ℓ = 4 for the example depicted in Figure 1, we can
estimate I⋆ (D|G) = 0.46688 and I⋆ (D|G) = 0.46688.

Definition 1. (MIC statistic following Definition 2.1 of [4])
MIC(D,B) = maxk,ℓ:kℓ≤B(n)

(
MG

D

)
k,ℓ

where B := B(n).

Following Definition 1, we iterate over permutations of grid
configurations that maximize the normalized mutual informa-
tion, I⋆ (D|G).

IV. METHOD

Information-theoretic [11] approaches to computing mu-
tual information between the original data and randomized
data distribution to quantify potential privacy losses. Privacy
breaches occur if the randomized output from a privacy-
enhancing mechanism can be re-identified to recover the
original data (input). MIC is computationally expensive due
to the cost of partitioning operations across multiple data di-
mensions, so we have developed a novel metric for estimating
vulnerability to privacy leaks by a combination of degree of
anonymity, amplification, and ρ1-to-ρ2 formulation.

This section is structured as follows: a definition of permuta-
tion entropy in Subsection IV-A, a description of the degree of
anonymity in Subsection IV-B, a relationship between mutual
information in Subsection IV-D, and a relationship between
Amplification and Differential Privacy in Subsection IV-E.

A. Permutation Entropy

Permutation entropy, H(n), is a complexity score capturing
the non-redundant measure of information using the intrinsic
property of the data. It utilizes the symbolic representation of
the data instead of the actual data, (x1, x2, . . . , xN ), using
comparator relations x1 < xj or x1 > xj , where we
estimate the probability of patterns based on ordering relations.
Alternatively, if the data is non-numerical, then the data can
be encoded using lexical order to impose ordinal relations [7].

p(π) =
Q(π)

N − n+ 1
. H(n) = −

n!∑
i=1

p (πi) · log (πi)

Where permutation pattern length, n, probability of a permu-
tation pattern, p(π), Q(π) is the frequency of the pattern π.
Permutation entropy can capture complex relations in the data
(monotonic, functional, non-functional, linear, non-linear, and
others) as part of the ordinal relations. There should be a
sufficient length of patterns to capture local dependencies in

the data, which may be a crucial factor for privacy vulnera-
bility [1]. Unfortunately, it is computationally fast and single-
scaled and may require a multi-scale variant [16] to capture
the most information content.

B. Degree of Anonymity

The degree of anonymity [17] provides a measure of privacy
leaks arising from the probability distribution. Its value is
between 0 and 1. Let us define the degree of anonymity, d, as
d = H(P∗)

HM
, where H(P ∗) is the permutation entropy, HM

is the maximal entropy in the system depicted as HM =
log2(N), and N is a number of elements respectively. The
characteristics of d, are shown as follows: d = 0 (attacker
succeeds 100%, predictable) and d = 1 (unpredictable, very
random).

C. Relation to Mutual Information

Mutual information is a metric that quantifies the pri-
vacy loss (distribution distance) between original data and
randomized data distributions. On the contrary, a mutual
information score can be misleading, as privacy breaches
can still happen even if the mutual information is small. As
a result, amplification is a metric designed to alleviate the
deficiencies in quantifying mutual information by providing
”worst-case mutual information” with bounds on theoretical
privacy breaches.

D. Relation to Amplification

Amplification, γ, [2] is a metric to quantify privacy leaks
without knowledge of the underlying distribution of the orig-
inal data. This measure limits information leaks by bounding
breaches (upper bound by γ).

Definition 2. Following Definition 1 of [2].
We can depict a ρ1-to-ρ2 privacy breach with
respect to property Q(x) if for some y ∈ VY

P[Q(X)] ⩽ ρ1 and P[Q(X) | Y = y] ⩾ ρ2,γ <
ρ2
ρ1

· 1− ρ1
1− ρ2

Amplification has a bound (0, ∞) and is not equitable
and problematic to interpret. Hence, we modify the metric
into an equitable metric via the information coefficient of
correlation, r1 as r1 =

√
1− e−2γ with a bound (0, 1).

Reinterpret in the light of the changing values of the degree
of anonymity in the original data and the noisy response from
the randomizer. We simplify Definition 2 to consider Q(x)
as a randomizer (privacy-preserving transformation) to fit our
construction without loss of generality.

• When ρ1 is smaller than ρ2, then privacy risk decreases
• When ρ1 is bigger than ρ2, then privacy risk increases
• When ρ1 is equal to ρ2, then no change in privacy risk

We make modifications to ρ1-to-ρ2 to represent the degree
of anonymity in the input, d1, and transformed input (noisy
response), d2 respectively as shown in Equation 3.

γ <
d2
d1

· 1− d1
1− d2

(3)



E. Relationship between Amplification and Differential Pri-
vacy

Differential privacy provides a mechanism for adding noise
to data. The resultant transformed data allows public release
without compromising the identifiability of individual records.

Definition 3. Based on Definition 7 of [18]. (Differential
privacy). Given ϵ ≥ 0, a mechanism Aq is ϵ-differentially
private randomizer, Pr is a probability measure, ϵ is noise
level, (x, x′) is pair of data points.

Pr [Aq(x) ∈ Y ] ≤ eϵ · Pr [Aq (x
′) ∈ Y ] .

Can we estimate the noise level, ϵ, strictly using an em-
pirical approach and draw a connection to amplification using
Definitions 2 and 3? Yes, we simplify to obtain the expression
as ϵ ≥ ln(γ).

V. EXPERIMENT AND DISCUSSIONS

We generated a synthetic dataset of 10000 random integers
depicting student scores (1, 100) to study the impact of
pattern length on permutation entropy. In our experiment, we
adopted heuristics for choosing pattern length by taking the
minimum pattern length with the maximum entropy values
as shown in Figure 2. This effect implies an increase in
estimated information content as the pattern length increases
until it hits a point when increasing pattern length is redundant.
Correlation is better estimated using optimal pattern length by
doing a hyperparameter search on original data (validation set),
using the pattern length to estimate entropy, and comparing
outputs of privacy-preserving transformations for susceptibility
to privacy leaks. The concavity of permutation entropy as
confirmed in Figure 2, aligns with the concave property
definition of the Shannon entropy [11].

Fig. 2: Impact of pattern length on Entropy

The degree of anonymity, ρ1, is estimated for the original
data as 0.9998 with permutation entropy as 13.29 bits. Also,

Privacy Preserving cases
S/N Data set ρ1 ρ2 m n

1 Sensor readings 0.998 0.998 944 11
2 Customer purchases 0.999 0.999 1500 10
3 Employee attrition 0.999 0.999 1000 9

Blatantly Non-Private cases
1 Sensor readings 0.998 0.0 944 11
2 Customer purchases 0.999 0.0 1500 10
3 Employee attrition 0.999 0.0 1000 9

Fig. 3: Real-world Dataset Evaluation

the randomizer uses an exponential mechanism with privacy-
preserving transformed data having the degree of anonymity,
ρ2, as 0.9998. Using ρ1-to-ρ2 formulation and pattern length
set to 11 for permutation entropy. Consider the values of ρ1,
and ρ2 respectively. Since both degrees of anonymity (original
and randomized data) are almost equal, we can conclude there
is no privacy leak relative to the randomized output. The value
of ρ1 is high because we used random numbers as the original
data in our demonstration.

We further demonstrate the real-world usefulness by per-
forming anonymization using a differential privacy scheme
(exponential mechanism with ϵ = 0.337, δ = 0.1) on a set of
real-world datasets with the size, m, and pattern length, n as
shown in Figure 3. Our dataset consists of sensor readings 5,
customer purchase records 6, and employee attrition data 7.
Both the original data and the anonymized data have their
dimensionality reduced to 1D using TSNE 8. We provide a
monotonically increasing sequence of anonymized data for
blatantly non-private cases.

MIC can range from 0 to 1 (low to high correlation).
In contrast, the degree of anonymity ranges from 0 to 1
(high to low correlation). Privacy leaks are less likely where
there is minimal correlation between the original data and
the noisy response from a randomizer. We used the degree
of anonymity, d1, d2, as a probability measure that cap-
tures the data characteristics without knowing the underlying
distribution of the data. Additionally, our choice of pattern
length can influence the estimated permutation entropy for
a chosen pattern. Alternatively, instead of considering every
pattern, we could utilize a restricted set of patterns to estimate
the permutation entropy. This choice of pattern creation can
incorporate domain knowledge to bias entropy estimates using
patterns likely to be identified as potential privacy breaches.

MIC is sensitive to how dataset is partitioned across di-
mensions, creating regions that can reveal novel correlations
and potential privacy vulnerabilities. Unlike our amplification

5https://www.kaggle.com/datasets/umerrtx/machine-failure-prediction-
using-sensor-data

6https://www.kaggle.com/datasets/rabieelkharoua/predict-customer-
purchase-behavior-dataset

7https://www.kaggle.com/datasets/mrsimple07/employee-attrition-data-
prediction

8https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.
html
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procedure, which requires reducing multivariate data to a one-
dimensional representation required for the calculation of the
permutation entropy, MIC can handle multidimensional data.
Although it is a lossy transform with information loss, it is
still reasonable option given that computation uses symbolic
representations for this measure. However, both methods (MIC
and amplification-based method) are sensitive to grid con-
figuration and pattern length choices. The concept of grid
partitioning in MIC is analogous to creating pattern slices for
estimating permutation entropy in our amplification scheme.
While permutation entropy is computationally efficient, MIC
can be more computationally expensive, especially for high-
dimensional data, due to the need to maintain partitions of
varying sizes. Our entropy-based formulation differs from MIC
in that permutation entropy involves one-dimensional slicing,
while MIC relies on multidimensional griding.

This work is subject to the inherent limitations of entropy-
based measures. For example, permutation entropy relies on
arbitrary ordering relations in the symbolic representation of
data, which may not be suitable for all applications. Addi-
tionally, this structure mandates that we keep the same order
in the transformed data to match the order of the original
data to enable meaningful comparisons, thereby limiting the
flexibility of the method to diverse use cases. Furthermore,
the potential correlations with publicly available information
may skew the estimation of privacy risk, thereby impacting
the interpretability of our ρ1-to-ρ2 formulation.

VI. CONCLUSIONS AND FUTURE WORK

Our amplification formulation (ρ1-to-ρ2) and MIC can
identify correlation dependencies between attributes in the
data set as a proxy for privacy leak vulnerabilities. Hence,
we can utilize the degree of anonymity with the ρ1-to-ρ2
formulation to check susceptibility to privacy leaks among
several privacy-preserving systems under evaluation. Further-
more, we can extend this work to detecting privacy leaks in
cases (for example, in time series data with autoregressive
properties) where conditional permutation entropy [19] can
better capture intrinsic information than permutation entropy.
Finally, we have demonstrated in Figure 3 how to utilize ρ1-to-
ρ2 formulation to quantify the privacy risk of the underlying
privacy-preserving mechanism.
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VII. APPENDIX

A. Threat Model

The attacker may have access to the original data before ran-
domization and may want to know how much information can
be gleaned by observing the outputs of the privacy-preserving
mechanism. The attacker has observed both the original and
randomized data. Reconstruction attacks are possible by find-
ing the relationship between the original data and the output
from the privacy-preserving transformed output, with the order
preserved (unshuffled) in both instances (original and private
data). We want to account for the potential of privacy leaks due
only to the effect of the privacy-preserving algorithm without
shuffling (order-preserving).

B. Proof of susceptibility to privacy leaks

Using ideas from Theorem 1 of [11] that proved a mathe-
matical definition of Shannon Entropy. We have adapted its
construction in the formulation of permutation entropy as
shown in Subsection IV-A. The generic Shannon entropy rep-
resentation is a specialization of our definition of permutation
entropy.

Each probability event in the entropy formulation is a
set of patterns. This entropy estimation scheme has a desir-
able characteristic that is compatible with the symbolic data
representation in our formulation for modeling data-agnostic
representation. Another benefit of using a set of patterns for
probability events is the flexibility permitting us to arbitrarily
modify weights of known patterns that have increased privacy
leak susceptibility.

Following the property of maximal entropy is logbn, where
p1, . . . , pn are n probability events, and is the entropy, H, then
the following condition holds

H(p1, . . . , pn) ≤ logb n

Hence, we have used the maximal entropy idea is used to
normalize the entropy, H ∈ [0, 1] which known as the degree
of anonymity, d, depicted in Subsection IV-B and Equation 4.

d =
H(P ∗)

HM
(4)

where H(P ∗) is the permutation entropy, HM is the maximal
entropy in the system depicted as HM = log2(N), and N is
a number of elements respectively.

The symmetry of the entropy measure is shown in Equa-
tion 5.

H(X,Y ) = H(X | Y ) + H(Y ) = H(Y | X) + H(X) (5)

Simplifying Equation 5, we have the both expressions
shown in Equation 6

H(X | Y ) = H(Y )−H(X,Y )

Or

H(Y | X) = H(X)−H(X,Y ) (6)

If X,Y are independent then the following condition holds in
Equation 7

H(Y | X) = H(X) (7)

The implication of Equation 7 is that if consider Y related
to X by a function, f say Y = f(X) where f is the
privacy-preserving transform when both variables (X,Y ) are
independent, we cannot derive information about X from Y .
Hence, there is less susceptibility to a privacy leak. Given two
events (X,Y ) following properties of Shannon entropy, the
condition holds H(X,Y ) ≤ H(X) + H(Y ) with equality of
the relation when (X,Y ) are independent.

Let us use the dependence property to prove that our
adaptation of ρ1-to-ρ2 formulation captures privacy risk. The
proof covers four main cases.

Case 1: Following Equation 6, when H(X,Y ) ≈ 0 may
arise due to Negative Exponential Law states as the frequency
of independent event increases, the joint probability tends to
zero. It can happen when both events (original data X , private
derived data Y ) are independent. We obtain the condition
where there is no change in privacy risk. The interpretation
is that the privacy-preserving transformation does not impact
the privacy risk in the private data relative to the privacy
susceptibility in the original data.

Case 2: Following Equation 6, when H(X,Y ) > 0 or
(H(X) > H(X,Y )) which can happen when both events
(original data X , private derived data Y ) are ”almost” inde-
pendent. We obtain the condition where there is a decrease in
privacy risk. The interpretation is that the privacy-preserving
transformation decreases the privacy risk in the private data
relative to the privacy susceptibility in the original data.

Case 3: Following Equation 6, when H(X,Y ) < 0 can
happen when both events (original data X , private derived
data Y ) are dependent. We obtain the condition where there
is an increase in privacy risk. The interpretation is that the
privacy-preserving transformation increases the privacy risk in
the private data relative to the privacy susceptibility in the
original data.

Case 4: Following Equation 6, when H(X,Y ) = H(Y ),
then H(X | Y ) = 0 (not applicable in our formulation)
and when H(X,Y ) = H(X), then H(Y | X) = 0. The
interpretation of these relations is that there is no relationship
between both events (original data X , private derived data Y ).

Deduction: Thus, we have demonstrated that our adaptation
of ρ1-to-ρ2 formulation utilizing entropy, mutual information,
and degree of anonymity is a reasonable measure of privacy
risk where ρ1 is the degree of anonymity on the original
data, X , and ρ2 is the degree of anonymity of the privately
derived data Y . Y = f(X) where f is the privacy-preserving
mechanism. The degree of anonymity is a normalized entropy,
H utilizing the maximal entropy as noted in Subsection IV-B.
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