
ar
X

iv
:2

50
6.

12
76

1v
1

 [
cs

.C
R

]
 1

5
Ju

n
20

25

Versatile and Fast Location-Based Private Information Retrieval with
Fully Homomorphic Encryption over the Torus

Joon Soo Yoo1, Taeho Kim2, and Ji Won Yoon1

1School of Cybersecurity, Korea University, Seoul, Republic of Korea
2Institute of ICT Planning and Evaluation (IITP), Daejeon, Republic of Korea

Abstract
Location-based services often require users to share sensitive lo-
cational data, raising privacy concerns due to potential misuse
or exploitation by untrusted servers. In response, we present
VeLoPIR, a versatile location-based private information retrieval
(PIR) system designed to preserve user privacy while enabling
efficient and scalable query processing. VeLoPIR introduces
three operational modes—interval validation, coordinate valida-
tion, and identifier matching—that support a broad range of real-
world applications, including information and emergency alerts.
To enhance performance, VeLoPIR incorporates multi-level al-
gorithmic optimizations with parallel structures, achieving sig-
nificant scalability across both CPU and GPU platforms. We
also provide formal security and privacy proofs, confirming the
system’s robustness under standard cryptographic assumptions.
Extensive experiments on real-world datasets demonstrate that
VeLoPIR achieves up to 11.55× speed-up over a prior base-
line. The implementation of VeLoPIR is publicly available at
https://github.com/PrivStatBool/VeLoPIR.

Acknowledgments
This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant
funded by the Korean government (MSIT) (No. RS-2024-
00460321, Development of Digital Asset Transaction Tracking
Technology to Prevent Malicious Financial Conduct in the Dig-
ital Asset Market).

1 Introduction
In today’s digital landscape, location-based services (LBS) have
become deeply embedded in everyday life—helping users dis-
cover nearby amenities, receive traffic updates, or get localized
alerts. While these services offer convenience, they often rely on
collecting and storing users’ precise geographic locations. This
raises serious concerns about privacy. In many cases, the location
data is gathered by large corporations or government agencies and
may be repurposed or even sold to third parties, such as advertisers
or data brokers.

Regulations such as the GDPR and national privacy laws are
designed to prohibit unauthorized tracking of users’ location data.

However, numerous investigations have revealed that major com-
panies have violated these protections in practice [1, 2]. Reports
show that users’ location histories have been used to infer sensitive
personal information, enabling long-term tracking, profiling, and
even unauthorized sales to third parties. As a representative exam-
ple, in 2025, Google reached a $1.375 billion settlement with the
state of Texas after being accused of secretly collecting users’ ge-
olocation data, biometric identifiers, and incognito search history
without consent—one of the largest privacy settlements in U.S.
history [3].

In conventional client-server communication, the reason the
server can access user data is that both parties typically share a
secret key established through a protocol such as Diffie-Hellman
(DH) [4] or Elliptic Curve Diffie-Hellman (ECDH) [5]. While
this ensures that data is encrypted during transmission, it does not
prevent the server itself from decrypting and inspecting the data.
As a result, although the server may correctly execute the user’s
requested query, it retains full access to the plaintext, creating op-
portunities for misuse or unauthorized data collection. This inher-
ent trust assumption poses a significant privacy risk in scenarios
where the server cannot be fully trusted.

A promising cryptographic solution to prevent unauthorized
access by the server—while still allowing it to process user
queries—is homomorphic encryption (HE) [6]. Unlike traditional
encryption methods, HE does not require a key exchange proto-
col such as Diffie-Hellman, because it allows computations to be
performed directly on encrypted data without ever decrypting it.
As a result, HE ensures data remains secure not only in transit but
also from the server itself. In response to this capability, exten-
sive research has been conducted on private information retrieval
(PIR) [7–11], with a particular focus on minimizing computational
overhead for both the client and server while ensuring that the
server processes queries without learning their content.

Our work, VeLoPIR, falls within the family of PIR proto-
cols, and more specifically, addresses the problem of location-
based PIR. In this setting, a client can query information from
a server based on their location, while ensuring that their geo-
graphic coordinates remain completely hidden from the server.
VeLoPIR is built on TFHE (Fully Homomorphic Encryption over
the Torus) [12,13], a logic-gate-based FHE scheme well-suited for
shallow 1, non-linear circuits. Unlike multi-server [14], our single-

1In TFHE, “shallow circuits” refer to logic circuits with a relatively small num-
ber of sequential gates. For instance, VeLoPIR circuits typically have an estimated
depth of around 40–80.

1

https://github.com/PrivStatBool/VeLoPIR
https://arxiv.org/abs/2506.12761v1

server design ensures strong privacy guarantees while minimizing
the client’s computational burden.

VeLoPIR introduces three operational modes—Interval Valida-
tion (IntV), Coordinate Validation (CoV), and Identifier Matching
(IdM)—each designed to support different types of location-based
queries under strong privacy guarantees. While a simplified ver-
sion of IntV has been explored in earlier work [15], VeLoPIR gen-
eralizes the model into a modular framework, extends it with ad-
ditional query modes (CoV and IdM), and introduces systematic
algorithmic and parallel optimizations for scalability. Importantly,
VeLoPIR also provides formal security proofs and experimental
validation using large-scale, real-world datasets, which were not
addressed in prior designs.

Figure 1: Overview of VeLoPIR’s Structure.

For a simplified illustration of VeLoPIR, the server processes
a client’s (CL) encrypted locational data (see Fig. 1). At its core,
VeLoPIR utilizes the operational modes IntV, CoV, and IdM as
validation mechanisms for encrypted user locations, filtering out
unrelated services. Each mode supports a distinct query type: IntV
checks whether the location falls within a geographic interval,
CoV validates exact coordinate matches, and IdM performs sym-
bolic location matching based on identifiers such as city names or
postal codes. The filtered result will be either the encryption of
0 or the encryption of the requested service, which is then aggre-
gated to form the encrypted response. This response is returned to
CL, who alone holds the secret key to decrypt the result. Through-
out this process, the server has no access to the query result or any
intermediate computations, thanks to FHE’s capability for compu-
tation on encrypted data.

In summary, the contributions of our work are as follows:

• We introduce VeLoPIR, a versatile location-based PIR sys-
tem that supports a broad range of real-world data types
through three operational modes: IntV, CoV, and IdM,
each preserving user locational privacy under different query
structures.

• We design parallelized algorithms for VeLoPIR that exploit
both CPU and GPU resources, enabling scalable and efficient
evaluation over large datasets.

• We evaluate VeLoPIR using real-world datasets in both in-
formation and emergency alert scenarios, demonstrating sig-
nificant improvements in query efficiency and practical ap-
plicability.

• We provide formal correctness proofs and conduct compre-
hensive security and privacy analysis, ensuring VeLoPIR’s
robustness in protecting location privacy.

• Our system achieves up to 11.55× speed-up over baseline
approaches for location-specific queries on the covid-usa
dataset, reducing the query time from 113.44 seconds to 9.83
seconds.2

1.1 Related Works

Our work can be viewed as a specialized application of private
information retrieval (PIR) [7], focusing specifically on location-
based queries. Traditional single-server PIR schemes often rely on
server-side preprocessing [10,11] to achieve sublinear query time.
However, such preprocessing is tightly coupled to the structure of
the database and must be repeated whenever updates occur, limit-
ing flexibility. Other approaches [16] introduce an offline phase to
generate cryptographic hints that reduce the client’s online cost,
but these methods still incur significant overhead during setup.
More importantly, existing PIR schemes generally do not address
the unique challenges of location-based retrieval. We summarize
relevant location-based PIR methods in Table 1.

Lin et al. [17] focus on efficient PIR for large datasets using
preprocessing and the BV scheme [18] from FHE. Their work pri-
marily addresses the theoretical aspects of reducing computational
complexity in general PIR, making it distinct from our VeLoPIR,
which is optimized for location-specific queries in smaller, practi-
cal datasets.

Jain et al. [14] propose a location-based recommendation ser-
vice using a dual-serve model, leveraging a hybrid encryption ap-
proach with ElGamal [20] and Paillier [19] schemes to preserve
user privacy. Their system offloads the majority of computation
to the two servers, thereby minimizing the client’s computational
burden. However, it relies on the assumption that the servers
do not collude. As the dataset size increases, the recommenda-
tion time grows significantly, reaching 4355 seconds for 5000 el-
ements.

An et al. [21] address location-based private information re-
trieval in a single-server setup for COVID-19 alerts using the BFV
scheme [22]. While their approach enables proximity calculations
on encrypted data, it imposes offline computational overhead on
the user’s device. Moreover, the patient’s locational privacy is not
preserved, as raw location data is shared with the authorities, who
can also access the patient’s contact history, potentially exposing
auxiliary information; and the overall computation time is approx-
imately 399 seconds.

2The baseline is derived from the prior LocPIR framework [15].

2

Table 1: Comparison of Location-Based PIR Schemes (PQ Secure indicates post-quantum security).

Scheme Single Server Offline (Client) PQ Secure Preprocessing Location Specific HE Scheme
Lin et al. [17] ✓ ✗ ✓ ✓ ✗ BV
Jain et al. [14] ✗ ✗ ✗ ✓ ✗ ElGamal/Paillier
An et al. [21] ✓ ✓ ✓ ✓ ✓ BFV

VeLoPIR (Ours) ✓ ✗ ✓ ✗ ✓ TFHE

2 Background
We use bold uppercase letters to denote matrices (e.g., S) and bold
lowercase letters to indicate vectors (e.g., s). Scalars are repre-
sented by italic letters (e.g., s). When referring to the binary rep-
resentation of a scalar, we use bracket notation (e.g., s[i]), where
s[i] denotes the i-th bit of the binary representation of the scalar s.
A summary of the notations used is provided in Appendix ?? for
reference.

2.1 Fully Homomorphic Encryption (FHE)
Homomorphic encryption enables computations on encrypted
data without decryption, allowing a function f to be evaluated on
encrypted inputs. Given ciphertexts Encsk(x) and Encsk(y), the
evaluation algorithm Eval produces an encrypted result that, when
decrypted, matches f(x, y):

Decsk(Evalf (Encsk(x),Encsk(y), evk)) = f(x, y).

Only the holder of the secret key sk can decrypt the result, while
the encrypted inputs remain secure under the hardness of crypto-
graphic assumptions, such as lattice-based problems.

Several FHE schemes exist, including quantum-resistant op-
tions NTRU [23] and Learning With Errors (LWE)-based
schemes [24, 25], both of which rely on the hardness of lattice
problems. Although LWE-based schemes introduce noise that
limits the depth of evaluations, this limitation is overcome by Gen-
try’s bootstrapping technique [26], which reduces noise, enabling
further evaluations on the ciphertext. In our work, we employ
the TFHE scheme [12], an LWE-based homomorphic encryption
approach optimized for fast bootstrapping and efficient homomor-
phic logic gate evaluation. While arithmetic-based schemes like
CKKS [27] are effective for low-depth arithmetic circuits, TFHE
excels in handling shallow circuits and nonlinear operations, mak-
ing it particularly suited for our work.

2.2 Torus Fully Homomorphic Encryption
TFHE is an LWE-based encryption scheme that operates over the
torus T = R/Z. It uses multiple types of ciphertexts (TLWE,
TRLWE, and TRGSW) to enable efficient homomorphic opera-
tions, including the construction of logical gates. For the purpose
of this paper, we specifically focus on the TLWE ciphertext (a, b).

Definition 1 (TLWE Problem). Let n ∈ N be a positive integer,
and let s = (s1, . . . , sn) ∈ Bn be a secret vector where each si is
sampled uniformly from the binary space B = {0, 1}. Let χ be a
Gaussian error distribution over the torus T = R/Z. The Torus

Learning with Errors (TLWE) problem is the task of distinguishing
between samples drawn from the following two distributions:

D0 = {(a, r) | a $← Tn, r
$← T},

D1 =
{
(a, b) | a $← Tn, b = ⟨a, s⟩+ e mod 1, e← χ

}
.

Definition 2 (Advantage of an Adversary). The advantage of an
adversary A in distinguishing between the two distributions D0

and D1 in the TLWE problem is defined as:

AdvATLWE =

∣∣∣∣Pr[A(a, r) = 1 | (a, r)← D1]

− Pr[A(a, r) = 1 | (a, r)← D0]

∣∣∣∣.
The TLWE problem is said to be λ-secure if, for any probabilis-

tic polynomial-time (PPT) adversary A, the advantage AdvATLWE
is at most 2−λ.

Based on the security of the TLWE ciphertext (similar to other
TRLWE and TRGSW ciphertexts), the general TLWE encryption
scheme is outlined as follows:

• KeyGen(1λ): Given a security parameter λ, the key genera-
tion algorithm defines TLWE parameters n and σ, and out-

puts keys: a secret key s
$← Bn and an evaluation key set

evk, which includes a bootstrapping key and a key switching
key.

• Encs(m): Given a binary message m ∈ B, it is encoded to a
plaintext µ ∈ T using the function Ecd : m 7→ m/4 − 1/8.
Next, the algorithm generates a masking vector a by uni-
formly sampling from the set U(Tn). The plaintext mes-
sage µ is then encrypted using the secret key s, resulting
in a TLWE sample denoted as ct = (a, b) where b =
⟨a, s⟩+µ+e. Here, e is a noise term drawn from a Gaussian
distribution N(0, σ).

• Decs(ct): The decryption algorithm calculates the phase of
the ciphertext ct = (a, b) by φs(ct) = b− ⟨a, s⟩. The result-
ing phase µ+ e is then rounded to the nearest plaintext mes-
sage from the set {−1/8, 1/8}. Applying the inverse func-
tion of Ecd to the obtained plaintext message allows us to
recover the original message bit m ∈ B. Note that the error
term e must satisfy |e| < 1/16 to ensure correct decryption.

TFHE logic gates are designed to refresh, or bootstrap,
the noise with each logical operation. The bootstrapping
(Bootstrap) process in TFHE involves complex procedures such

3

CL SE DG

(loc1, S1), . . . , (locM , SM)

D = {(loci, Si)}Mi=1
M , lS , lI , d

KeyGen(1λ)→ sk, evk

PubKeyGen(1λ)→ pk pk, evk

Encpk(D)

(a) Preprocessing Phase

SA CL SE

(x, y)

Encs(x),Encs(y)
(Encs(x),Encs(y))

VeLoPIR(·,Encpk(D), evk)

R

Decs(R)

(b) Evaluation Phase

Figure 2: Preprocessing and Evaluation Phases of the VeLoPIR Protocol

as BlindRotate, SampleExtract, and KeySwitch. This bootstrap-
ping phase typically consumes most of the time and memory dur-
ing circuit evaluation, as it involves looking up elements in a pre-
computed TRLWE ciphertext table (see [12, 13] for more details).

The construction of logical gates in TFHE utilizes the boot-
strapping technique as described previously. Specifically, we
demonstrate the homomorphic evaluation of the AND operation
as follows:

HomAND(ct1, ct2, evk) = Bootstrap

(
(0,−1

8
) + ct1 + ct2

)
.

Assuming that the magnitude of the errors in both ct1 and ct2 is
less than 1/16, this procedure correctly produces the AND result.
Similarly, we use HomXOR and HomXNOR to denote homomor-
phic XOR and XNOR operations, respectively.

3 Overall Protocol and Properties

The proposed protocol involves four parties: a client (CL), a server
(SE), a data generator (DG), and a satellite (SA). The primary
objective is to protect the client’s locational data, ensuring that it
can only be accessed by the client.

3.1 Assumptions

Semi-Honest Server. The server follows the protocol correctly
but is considered curious and may attempt to learn the client’s
locational information (x, y).
Secure Client-Satellite Communication. The client securely ob-
tains its locational information (x, y) from the satellite, ensuring
confidentiality during transmission.

3.2 Detailed Protocol

3.2.1 Preprocessing Phase

The protocol involves three parties: CL, SE, and DG (see Fig. 2a).

1. Data Collection. SE collects data from DG to create a
dataset D = {(loci, Si)}Mi=1. Here, each loci represents a
location, and Si represents associated data or services.

2. Secure Parameter Transmission. SE sends the number
of datasets M , data precision lS , interval precision lI , co-
ordinate dimension d to CL using a secure channel (e.g.,
TLS/SSL).

3. Key Generation by Client. CL generates a secret key s and
evaluation keys evk using the KeyGen(1λ) algorithm. Addi-
tionally, CL performs the PubKeyGen algorithm to produce
a public key set pk (refer to Algorithm 1). The generated
public key set pk and evk are sent to SE.

Algorithm 1: PubKeyGen(1λ, s,M, lI , lS , d)→ pk

Initialize pkI , pkS ← ∅;
for i = 1 to M do

for j ← 0 to lI − 1 do
for k ← 1 to d do

a
$← Tn; e← χ; b← ⟨a, s⟩+ e;

cti,j,k ← (a, b);
pkI ← pkI ∪ {cti,j,k};

for j ← 0 to lS − 1 do
a

$← Tn; e← χ; b← ⟨a, s⟩+ e;
cti,j ← (a, b);
pkS ← pkS ∪ {cti,j};

return pk = {pkI , pkS};

4. Data Encryption by Server. SE encrypts the dataset D us-
ing CL’s public key pk through the ServerEnc process (refer
to Algorithm 2).

3.2.2 Evaluation Phase

The evaluation protocol involves three parties: SA, CL, and SE
(see Fig. 2b).

4

Algorithm 2: ServerEnc(D, pk)→ Encpk(D)

Initialize Encpk(D)← ∅;
for i← 1 to M do

for j ← 0 to lI − 1 do
for k ← 1 to d do

cti,j,k ← (0,Ecd(xi,k[j])) + pkIi,j,k;
Encpk(D)← Encpk(D) ∪ {cti,j,k};

for j ← 0 to lS − 1 do
cti,j ← (0,Ecd(Si[j])) + pkSi,j ;
Encpk(D)← Encpk(D) ∪ {cti,j};

return Encpk(D);

1. Location Reception by Client. CL receives its locational
information (x, y) from SA, where x represents the latitude
and y the longitude of CL’s location coordinates.

2. Encryption of Location. CL encrypts (x, y) using its secret
key s to obtain (Encs(x),Encs(y)). These encrypted coordi-
nates are sent to S.

3. Evaluation by Server. SE uses the evaluation key evk to
evaluate the VeLoPIR circuit given the encrypted GPS lo-
cation (Encs(x),Encs(y)) of CL and its encrypted database
Encpk(D). The goal is to obtain the encrypted result R,
which corresponds to the data associated with CL’s location.
Algorithm 3 in the following section provides the details of
the server’s evaluation process.

4. Return of Encrypted Result. SE sends the encrypted result
R back to CL.

5. Decryption by Client. CL performs decryption using its se-
cret key s to obtain the result: Decs(R).

4 VeLoPIR Evaluation
VeLoPIR is structured around three operational modes: Interval
Validation, Coordinate Validation, and Identifier Matching, with
the latter being an extension of the coordinate-based approach.

• Interval Validation (IntV): Checks if a client’s encrypted
location falls within a specific geographical interval, such as
city boundaries.

• Coordinate Validation (CoV): Verifies if the client’s en-
crypted coordinates match a predefined target location.

• Identifier Matching (IdM): Extends CoV by matching the
client’s encrypted location to an identifier (e.g., city name or
postal code) instead of direct coordinates.

Note that instead of directly matching coordinates (x, y) (as
in CoV), IdM maps these coordinates to a string identifier idCL.
Since IdM follows the same validation process as CoV, the cor-
rectness, security, and privacy proofs for CoV naturally extend to
IdM, ensuring that identifier matching offers the same guarantees
as coordinate validation.

4.1 Algorithm Overview

For each entry in the encrypted database Encpk(D), which con-
tains encrypted location coordinates loci and associated data Si

for up to M entries, the following steps are performed:

1. Validation. Determine whether the user’s encrypted coordi-
nates (Encs(x),Encs(y)) fall within loci. If a match is found,
output Encs(1); otherwise, output Encs(0). Store the valida-
tion result as v. This step utilizes IntV, CoV, or IdM.

2. Zero Out Unrelated Data. Use the validation result v to
eliminate unrelated services or data by performing a bitwise
AND operation with all Si. If validation is successful at po-
sition κ, only Sκ remains unchanged, while other Si become
vectors of encrypted zeros Encs(0).

Aggregate Results. After the iteration of all locational entries,
sum all Si. Since only Sκ is non-zero, the result will be Sκ.

Algorithm 3: VeLoPIR(Encs(x),Encs(y),Encpk(D), evk)

for i← 1 to M do
Validation: Check if (Encs(x),Encs(y)) fall within or

match loci;
/* Use IntV, CoV, or IdM */
if validation is successful then

v ← Encs(1);

else
v ← Encs(0);

Zero Out Unrelated Data: Apply v to filter the data
Sκ;

foreach Si do
Si ← HomBitwiseAND(v,Encs(Si), evk);

Aggregation: R← HomSum({Encs(Si)}Mi=1, evk);
return R;

4.2 Core Algorithms

(1) Interval Validation, IntV. For interval validation, the lo-
cational coordinates loci are defined by intervals of latitude
(xleft, xright) and longitude (yleft, yright). The algorithm lever-
ages nonlinear comparison operations, specifically less than or
equal (HomCompLE) and less than (HomCompL), to perform
these comparisons homomorphically (refer to Algorithm 4).

Given the encrypted client’s locational information (Encs(x),
Encs(y)), the algorithm IntV evaluates the following plaintext
condition: xleft ≤ x < xright and yleft ≤ y < yright. The val-
idation outputs Encs(1) if the conditions are satisfied; otherwise,
it outputs Encs(0).

Note that HomAND denotes the AND operation performed
homomorphically on encrypted bits, producing the AND result.
Similarly, HomXOR and HomXNOR represent homomorphic
gates that perform XOR and XNOR operations, respectively (refer
to Section 2 for additional background details).

5

Algorithm 4: IntV(Encs(x),Encs(y),Encs(loc), evk)
/* Encs(loc) = (Encs(xleft), . . . ,Encs(yright)) */
vxleft

← HomCompLE(Encs(xleft),Encs(x), lI , evk);
vxright

← HomCompL(Encs(x),Encs(xright), lI , evk);
vyleft

← HomCompLE(Encs(yleft),Encs(y), lI , evk);
vyright

← HomCompL(Encs(y),Encs(yright), lI , evk);
vx ← HomAND(vxleft

, vxright
, evk);

vy ← HomAND(vyleft
, vyright

, evk);
v ← HomAND(vx, vy, evk);
return v;

We provide an in-depth discussion of the underlying algorithms,
HomCompL and HomCompLE, which form the backbone of IntV,
followed by the correctness of IntV.
Backbones of IntV: FHE Comparisons. HomCompLE is a non-
linear FHE comparison circuit that takes two ciphertexts ct1 and
ct2, and outputs Encs(1) if x ≤ y, and Encs(0) otherwise. This
operation is carried out using the evaluation key evk, with ct1 and
ct2 being encryptions of z1 and z2 under the secret key s (refer to
Algorithm 5).

Algorithm 5: HomCompLE(ct1, ct2, lI , evk)

t0 ← HomXOR(ct1[lI − 1], ct2[lI − 1], evk);
t2 ← EncTLWE

s (0, 1
8)

for i← 0 to lI − 2 do
t1 ← HomXNOR(ct1[i], ct2[i], evk);
t2 ← HomMUX(t1, t2, ct2[i], evk);

r ← HomMUX(t0, ct1[lI − 1], t2, evk)
return r

The circuit’s design is fundamental to the correctness of the
IntV algorithm, as discussed in [15]. For completeness, Theo-
rem 1 formally establishes the correctness of HomCompLE, with
the proof provided in Appendix A.1.

Theorem 1. The homomorphic comparison HomCompLE(ct1,
ct2, evk) stated in Algorithm 5 correctly evaluates whether z1 ≤
z2 and outputs the result r as:

r =

{
Encs(1), if z1 ≤ z2

Encs(0), otherwise

where ct1 and ct2 are encryptions of z1 and z2, respectively, under
the secret key s.

Proof. See Appendix A.1.

HomCompL is similar in design to HomCompLE, with the only
variation being the initialization of the t2 variable, which is set to
a trivial TLWE ciphertext of 0 (refer to Algorithm 6).

Corollary 1 establishes the correctness of Algorithm 6.

Corollary 1. The homomorphic comparison HomCompL(ct1,
ct2, evk) stated in Algorithm 6 correctly evaluates whether z1 <

Algorithm 6: HomCompL(ct1, ct2, lI , evk)

t0 ← HomXOR(ct1[lI − 1], ct2[lI − 1], evk);
t2 ← EncTLWE

s (0,− 1
8)

for i← 0 to lI − 2 do
t1 ← HomXNOR(ct1[i], ct2[i], evk);
t2 ← HomMUX(t1, t2, ct2[i], evk);

r ← HomMUX(t0, ct1[lI − 1], t2, evk);
return r;

z2 and outputs the result r as:

r =

{
Encs(1), if z1 < z2

Encs(0), otherwise

where ct1 and ct2 are encryptions of z1 and z2, respectively, under
the secret key s.

Proof. See Appendix A.2.

We now formally establish the correctness of IntV, as illustrated
in Algorithm 4, with the following theorem.

Theorem 2. The interval validation algorithm (IntV) as stated in
Algorithm 4 correctly evaluates whether the encrypted coordinate
Encs(x), Encs(y) lies within the interval loc = (xleft, xright,
yleft, yright). Specifically, it outputs:

v ← Encs(1)

if xleft ≤ x < xright and yleft ≤ y < yright, and otherwise
outputs Encs(0).

Proof. See Appendix A.4.

(2) Coordinate Validation, CoV (and IdM). CoV efficiently
matches the client’s location coordinates (x, y) with a predefined
service location loci. If the client’s encrypted coordinates match
loci, the corresponding service Si is returned. CoV relies on
the homomorphic equality comparison algorithm HomEQ (refer
to Algorithm 7) for secure matching. Since IdM extends CoV
by matching coordinates to an identifier, the correctness naturally
follows from CoV, and we therefore focus only on CoV.

Algorithm 7: HomEQ(ct1, ct2, lI , evk)

r ← EncTLWE
s (0, 1

8)
for i← 0 to lI − 1 do

t← HomXNOR(ct1[i], ct2[i], evk);
r ← HomAND(r, t, evk);

return r

The correctness of CoV (and IdM) relies on HomEQ, as estab-
lished in Lemma 1, with the proof in Appendix A.3.

Lemma 1. The homomorphic equality comparison HomEQ(ct1,
ct2, evk) correctly evaluates whether z1 = z2 and outputs the
result r as:

r =

{
Encs(1), if z1 = z2

Encs(0), otherwise

6

where ct1 and ct2 are encryptions of z1 and z2, respectively, under
the secret key s.

Proof. See Appendix A.3

CoV and IdM both utilize the HomEQ operation, as shown
in Algorithm 8. In IdM, instead of applying homomorphic
AND operation, HomEQ directly evaluates the encrypted iden-
tifier Encs(idCL).

Algorithm 8: CoV(Encs(x),Encs(y),Encs(loc), evk)
/* (loc = (locx, locy)) */
vx ← HomEQ(Encs(x),Encs(locx), evk);
vy ← HomEQ(Encs(y),Encs(locy), evk);
v ← HomAND(vx, vy, evk);
return v;

The correctness of CoV (and IdM) is shown in Theorem 3.

Theorem 3. The coordinate validation algorithm (CoV, similarly
IdM), as stated in Algorithm 8, correctly evaluates whether the
encrypted coordinates Encs(x) and Encs(y) match the encrypted
location Encs(loc). Specifically, it outputs:

v ← Encs(1)

if x = locx and y = locy , and otherwise outputs Encs(0).

Proof. The correctness of the CoV algorithm can be directly
inferred from the homomorphic equality checks performed by
HomEQ. Specifically, the algorithm uses HomEQ to compare the
encrypted coordinates Encs(x) and Encs(y) with Encs(locx) and
Encs(locy) respectively.

For the final output v to be Encs(1), both comparisons must
return Encs(1). This means that x must equal locx and y must
equal locy . If either comparison fails, the result will be Encs(0)
due to the HomAND operation.

4.3 Supporting Algorithms
(1) Zero-out Function. Once the validation result v is obtained,
indicating whether the validation was successful (Encs(1)) or not
(Encs(0)), this encrypted result can be used to zero out the ser-
vice data Si. The function HomBitwiseAND(v,Encs(Si), evk) is
applied to produce Encs(Sκ), where Sκ is the desired locational
information associated with locκ at index κ (refer to VeLoPIR
Algorithm 3).

Algorithm 9: HomBitwiseAND(v, ct, evk)

/* l is the length of ct */
for i← 1 to l do

ct[i]← HomAND(v, ct[i], evk);

return ct;

The HomBitwiseAND function ensures that Encs(Si) remains
non-zero only when v is Encs(1), achieved by applying the

HomAND gate bitwise (see Algorithm 9). If v is Encs(0), then
Encs(Si) is zeroed out, meaning all bits are Encs(0) due to the
HomAND operation. This is summarized in Lemma 2, with the
proof omitted.

Lemma 2. The homomorphic function HomBitwiseAND in Algo-
rithm 9 outputs ct if v = Encs(1), and outputs Encs(0) for all bits
of ct if v = Encs(0). Given the encrypted single bit v, the function
effectively zeroes out the encrypted vector ct based on the value of
v.

(2) Aggregation. At the final stage of the VeLoPIR algorithm,
we aggregate the results of Encs(Si) that have been validated by
the encrypted bit v. Assuming no loci intersects with another locj
for i ̸= j, the resulting set {Encs(Si)}Mi=1 will contain only one
non-zero element, Encs(Sκ), while the other Encs(Si) values will
be Encs(0) across all lS bits.

Algorithm 10: HomSum({Encs(Si)}Mi=1, evk)

/* Initialize S as a vector of
encrypted zeros of length lS */

S ← [Encs(0), . . . ,Encs(0)]
for i← 1 to M do

for j ← 0 to lS − 1 do
S[j]← HomXOR(S[j],Encs(Si[j]), evk);

return S;

Since all Encs(Si) values are encrypted, the server cannot dis-
tinguish between the encryption of zeros and Encs(Sκ). There-
fore, the server cannot naively select Sκ but must instead consider
all possible cases. This is where homomorphic XORing comes
into play through the HomSum algorithm, which ensures that the
correct Sκ is obtained without revealing any unnecessary infor-
mation (see Algorithm 10). The proof of Lemma 3 explains the
correctness and necessity of the HomSum operation.

Lemma 3. The homomorphic summation HomSum in Algo-
rithm 10 over a set {Encs(Si)}Mi=1 correctly outputs Encs(Sκ),
where the set {Encs(Si)}Mi=1 contains only one non-zero
Encs(Sκ), and the rest Encs(Si) are encryptions of zeros across
all lS bits.

Proof. Given that all Encs(Si) except Encs(Sκ) are encryptions
of zero across all lS bits, the homomorphic XOR operation ef-
fectively acts as an addition. Specifically, the iterative operation
S[j]← HomXOR(S[j],Encs(Si[j]), evk) simplifies to:

S[j]← HomXOR(Encs(0),Encs(Sκ[j]), evk)

Since XORing any bit with 0 yields the original bit, the operation
correctly outputs Encs(Sκ) for S in Algorithm 10.

4.4 Correctness of VeLoPIR
We can now conclude that the VeLoPIR circuit correctly evaluates
and retrieves the desired locational information R = Encs(Sκ),
corresponding to the encrypted coordinates (Encs(x),Encs(y)),
as established through the series of preceding theorems and lem-
mas, culminating in Theorem 4.

7

Theorem 4. The homomorphic location-based information re-
trieval algorithm, VeLoPIR, as described in Algorithm 3,
correctly evaluates and retrieves the encrypted service data
Encs(Sκ) corresponding to the encrypted locational coordinates
(Encs(x),Encs(y)) using the evaluation key evk.

Proof. First, by Theorems 2 and 3, the validation step in VeLoPIR
correctly evaluates whether the encrypted coordinates Encs(x)
and Encs(y) match or fall within the location locκ. The result
of this validation is an encrypted bit v that equals Encs(1) if the
coordinates match and Encs(0) otherwise. Next, using Lemma 2,
the HomBitwiseAND function applies this validation result v to
each encrypted service data Encs(Si). This operation zeroes out
all Encs(Si) except for Encs(Sκ), which corresponds to the vali-
dated location locκ. Finally, by Lemma 3, the HomSum operation
correctly aggregates the results to produce R = Encs(Sκ). This
ensures that only the service data corresponding to the validated
location is returned.

5 Security and Privacy Analysis
Security and Privacy of VeLoPIR. We propose that the
VeLoPIR system is both secure and private. This is because all
operations are performed on encrypted data, with no decryption
occurring during the evaluation process. The following theorem
formalizes the security and privacy of our system.

Theorem 5. Assuming that the size of the database M and the
precision parameters lI and lS are bounded by O(λk) for some
constant k, the proposed VeLoPIR system is λ-secure and pre-
serves the privacy of the client’s location.

Proof. (Security) Given that the size of the database M and the
precision parameters lI and lS are bounded by O(λk) for some
constant k, the adversary’s advantage AdvA

TLWE1 to W
remains neg-

ligible:

AdvATLWE1 to Ws
=

W∑
i=1

AdvATLWEi
<

O(Ws)

2λ

where Ws = O(MlI lS) denotes the number of TLWE samples
occurring throughout the VeLoPIR system. Therefore, the system
is λ-secure.
(Privacy) Since the input locational information (Encs(x),
Encs(y))of the client is encrypted, and all intermediate results as
well as the final output R = Encs(Sκ) are encrypted under the
client’s secret key, no information about the client is leaked ex-
cept for auxiliary information such as M , lS , lI , and d. Thus, the
privacy of the user’s location is preserved.

Threat 1: Auxiliary Information Leakage. One potential threat
to the VeLoPIR protocol arises if the server obtains auxiliary in-
formation. This information could include the number of data en-
tries M , the service precision lS , the interval precision lI , and the
coordinate dimension d from the client data. However, even if the
adversary (which could be the server or a third party intercepting

the communication between the client and server) gains access to
these auxiliary TLWE samples, the adversary’s ability to break the
TLWE encryption and retrieve the secret key s remains negligible.

Theorem 6. The advantage of an adversaryA, who has access to
auxiliary public keys pk and information such as M , lS , lI , and
d, is negligible. Specifically, for a polynomial number of samples
W = MlId+MlS , the advantage is bounded by:

AdvATLWE1 to W
<

O(W)

2λ

where W = MlId+MlS .

Proof. Given that the TLWE sample is λ-secure, the adversary’s
advantage for each individual sample is bounded by 2−λ. The
total advantage across W samples is:

AdvA
TLWE1 to W

=

W∑
i=1

AdvA
TLWEi

<
O(W)

2λ

Since W = MlId+MlS grows polynomially with the input size,
the adversary’s total advantage remains negligible, ensuring the
security of the protocol.

Threat 2: Server Access to Raw Data. Another potential
threat arises when the server has raw access to the dataset D =
{(loci, Si)}Mi=1, which contains service data associated with spe-
cific locational coordinates. This access is necessary for the server
to provide the relevant services to the client, as it aggregates this
information from local data generators. However, the primary ob-
jective of the VeLoPIR protocol is to protect the user’s location,
not the service data Si itself (which the server already possesses).
Consequently, the ability of the adversary (in this case, the server)
to solve the TLWE sample and obtain the user’s secret key s re-
mains negligible. Lemma 2 directly follows from Theorem 6.

Corollary 2. The advantage of the server in the VeLoPIR pro-
tocol, given access to the service data D = {(loci, Si)}Mi=1, is
negligible:

AdvATLWE1 to W
<

O(W)

2λ

where W = MlId+MlS , as defined in Theorem 6.

Proof. See Appendix B.1.

Threat 3: Insecure Communication Channel from Satellite to
Client. A potential threat to the VeLoPIR protocol is the vulnera-
bility of GPS information during transmission (refer to Figure 2b)
from the satellite (SA) to the client (Cl), such as in GPS spoof-
ing [29, 30] and jamming attacks [31, 32]. These attacks could
alter the user’s location before it is encrypted and processed by
VeLoPIR, potentially rendering the retrieved information inaccu-
rate. However, this threat is beyond the scope of the VeLoPIR pro-
tocol, which focuses on protecting the user’s location data post-
encryption. VeLoPIR ensures that location-based queries are se-
curely processed without revealing the user’s location to the server
or any other party during the evaluation process.

Securing the communication channel between the satellite and
the client is an ongoing research focus, particularly within the

8

realm of Post-Quantum Cryptography (PQC). Efforts are being
made to establish a secure network using PQC algorithms [33–35],
including Lattice-based cryptographic schemes like those based
on the LWE problem. Given that the VeLoPIR protocol is also
built on LWE, implementing LWE-based PQC schemes for secure
satellite-to-client communication would not only enhance security
but also ensure seamless integration with VeLoPIR.

6 VeLoPIR Optimization
Bit-Level Parallel Acceleration. In logic-based FHE schemes
like TFHE, homomorphic gate operations, such as HomAND, are
significantly slower than their plaintext equivalents. For exam-
ple, evaluating a homomorphic AND gate, which involves steps
like BlindRotate, SampleExtract, and KeySwitch, takes around
13 ms, whereas a plaintext gate takes only 0.3 ns—making the
homomorphic operation about 40 million times slower. This con-
siderable overhead makes TFHE well-suited for parallel optimiza-
tion, as CPU and GPU parallelism can substantially improve per-
formance. We leverage this observation to optimize the core algo-
rithms in VeLoPIR.

6.1 Core Functionality Optimizations

The VeLoPIR circuit can be optimized at multiple levels, rang-
ing from bitwise operations to high-level structural enhancements.
We categorize these into three levels of parallel optimization—
Innermost, Mid-Level, and Outermost—corresponding to the
hierarchical structure of computation within the system (refer to
Table 2 for a summary of these optimization levels and the asso-
ciated components).
(1) Innermost Optimization: Nonlinear HE Operations. Opti-
mizing nonlinear HE operations like HomCompLE, HomCompL,
and HomEQ can significantly enhance the performance of the
VeLoPIR system.
Homomorphic Comparsions. In the HomCompLE algorithm (Al-
gorithm 5), the following loop is key:

t1 ← HomXNOR(ct1[i], ct2[i], evk)

t2 ← HomMUX(t1, t2, ct2[i], evk)

Here, t2 is sequentially updated based on the result of the previous
t1 value. This sequential dependency means that the t2 updates
cannot be parallelized. However, the HomXNOR operations for
each bit position are independent and can be executed in parallel
using parallel processing units (see Algorithm 11).

Similarly, HomCompL can be optimized in the same man-
ner as HomCompLE, improving performance by parallelizing
the independent HomXNOR operations. Both HomCompL and
HomCompLE utilize parallel resources to their maximum capac-
ity, up to lI units.
Homomorphic Equality. The HomEQ algorithm contains no de-
pendencies between the outcomes, allowing parallel computation
of HomXNOR on the input ciphertexts ct1[i] and ct2[i] up to lI ,
producing t1[i] values. These values can then be reduced in par-
allel using pairwise HomAND operations, reaching a depth of

Algorithm 11: HomCompLeOPT(ct1, ct2, evk, np)

t0 ← HomXOR(ct1[lI − 1], ct2[lI − 1], evk);
t1 ← EncTLWE

s (0, 1
8);

foreach i← 0 to lI − 2 do
/* allocate parallel processing

units */
tXNOR[i]← HomXNOR(ct1[i], ct2[i], evk);

for i← 0 to lI − 2 do
t1 ← HomMUX(tXNOR[i], t1, ct2[i], evk);

r ← HomMUX(t0, ct1[lI − 1], t1, evk);
return r;

log(lI). The HomEqOPT algorithm can utilize up to lI parallel
processing units.

Algorithm 12: HomEqOPT(ct1, ct2, evk, np)

foreach i← 0 to lI − 1 do
/* allocate parallel processing

units */
t1[i]← HomXNOR(ct1[i], ct2[i], evk);

/* Parallel reduction */
for k ← 1 to lI by ×2 do

for i← 0 to lI − 1 by 2k do
if i+ k < lI then

t1[i]← HomAND(t1[i], t1[i+ k], evk);

return r ← t1[0];

(2) Mid-Level Optimization: HomBitwiseAND. A straightfor-
ward optimization approach involves allocating parallel resources
to the HomAND gate evaluation in Algorithm 9:

ct[i]← HomAND(v, ct[i], evk). (1)

Since VeLoPIR requires the evaluation of HomBitwiseAND(v
,Encs(Si), evk), this operation necessitates lS parallel resources
for maximum parallelization.
(3) Mid-Level Optimization: Validation Modules (IntV,
CoV). Interval Validation. Validation in IntV can be opti-
mized by parallelizing the computation of independent variables
vxleft

, vxright
, vyleft

, and vyright
. These variables, which utilize

similar operations to HomCompLE and HomCompL, can be com-
puted simultaneously. We can parallel process the following oper-
ations line by line:

vxleft
← HomCompLE(Encs(xleft),Encs(x), evk)

vxright
← HomCompL(Encs(x),Encs(xright), evk)

vyleft
← HomCompLE(Encs(yleft),Encs(y), evk)

vyright
← HomCompL(Encs(y),Encs(yright), evk)

Additionally, vx and vy can be computed independently afterward.
The algorithm can be parallelized using up to 2d resources.
Coordinate Validation. CoV can also benefit from parallel pro-
cessing by pairing the independent vx and vy operations, both of

9

which use the HomEQ function. This allows the use of up to d
parallel processing units.
(4) Outermost Optimization: Large-Scale Evaluation. The
VeLoPIR evaluation can be optimized by leveraging M parallel
processors to handle the large-scale processing unit, specifically
the evaluation of each Si in the VeLoPIR circuit. Since each Si

operates independently and requires similar computational effort,
parallelization ensures efficient processing. The optimization can
be designed as follows:
/* allocate parallel processing units */
foreach i← 0 to M do

Validation v & Zero Out Unrelated Data:
foreach Si do

Si ← HomBitwiseAND(v,Encs(Si), evk)

(5) Outermost Optimization: Aggregation via HomSum. The
HomSum algorithm can be optimized using two approaches: par-
allel reduction and Bit-AND optimization. First, we apply pair-
wise evaluation of the HomXOR operation on the encrypted ser-
vice data Encs(Si[j]) using parallel reduction across M process-
ing units. This reduces the number of operations logarithmically
with respect to M .

Next, for each pairwise HomXOR evaluation, we apply Bit-
AND optimization, utilizing up to lS parallel units for the op-
eration:

Encs(Si[j])← HomXOR(Encs(Si[j]),Encs(Si+k[j]), evk)

where k increases from 1 to log2(M) during pairwise evalua-
tion. Thus, the maximum parallel processing units required for
HomSum optimization is (M · lS)/2.

7 Theoretical Resource Complexity
Parallel Processing Resource Complexity. In VeLoPIR, we
utilize parallel processing to enhance algorithm efficiency. The
resource complexity is computed by considering the hierar-
chical structure of the algorithms, such as HomCompLE and
HomCompL within IntV. Table 2 outlines the maximum number
of parallel units required for each component. The overall parallel
processing resource complexity simplifies to:

O(M · (lS + d · lI))
This accounts for the dominant factors affecting parallel execution
across the algorithm’s components.
Theoretical Speed-up Bound. Theoretically, the maximum pos-
sible speed-up for VeLoPIR is O(M · (lS + d · lI)) as with the
parallel processing resource complexity. This bound assumes that
all parts of the algorithm can be fully parallelized without over-
head. However, as we will show in the evaluation section, the
actual performance is affected by factors such as communication
overhead between the GPU and CPU. This limits the real-world
speed-up compared to the theoretical maximum.

8 Application Scenarios
We explore three privacy-preserving strategies for private infor-
mation alerts and location-based services: IntV, CoV, and IdM.

Table 2: Parallel resource complexity and hierarchy in VeLoPIR.
Levels refer to the scope of parallelism: Outermost (across
records), Mid-Level (across validation blocks), and Innermost
(within comparison primitives).

Algorithm Processing Units (np) Parallel Level

Large-Scale M Outermost
HomSum MlS

2 Outermost
HomBitwiseAND lS Mid-Level
IntV 2d Mid-Level
CoV / IdM d (1) Mid-Level
HomCompLE /HomCompL lI Innermost
HomEQ lI Innermost

(1) Bounding Box Validation (IntV). Bounding box validation
is an efficient strategy when the user’s location needs to be veri-
fied within a certain geographic boundary without revealing their
exact position. This is particularly relevant in scenarios like pan-
demic disease alerts, where the client is interested in receiving
alerts about nearby confirmed cases without explicitly disclosing
their location. We demonstrate the performance of the IntV ap-
proach using datasets such as covid-usa and covid-kor.
(2) Exact Coordinate Validation (CoV). In certain cases, the
user needs highly precise information about their exact geographic
position. This approach is essential for applications like crime
alerts or disaster management, where precise location-based noti-
fications are crucial for immediate response. We use the gdacs
dataset to demonstrate the efficiency of CoV in these situations.
(3) Identifier Matching (IdM). In many modern datasets, espe-
cially those related to healthcare or meteorological data, informa-
tion is often categorized by administrative regions such as cities
or states. In these cases, validating a user’s location based on an
identifier (e.g., city or state name) can be more efficient and rele-
vant than using geographic coordinates. IdM leverages this struc-
ture to provide efficient and privacy-preserving location match-
ing. We showcase the performance of IdM with the covid-usa,
covid-kor, and weather-us datasets.

9 Evaluation
We evaluate VeLoPIR with the following key questions:

• RQ1. Parallelization. Can the core components of
VeLoPIR—including outermost, mid-level, and innermost
levels of parallelism—be efficiently parallelized across CPU
cores and GPUs? Which hardware platform (CPU or GPU)
is optimal for the VeLoPIR circuit?

• RQ2. Efficiency. How much speed-up can be achieved
through our core optimizations across different datasets?

• RQ3. Applicability. Which operational mode (IntV, CoV,
or IdM) is best suited for each real-world application sce-
nario?

Reference Benchmark. In this work, we use LocPIR [15] as
a reference benchmark for comparison. We evaluate VeLoPIR

10

to demonstrate its extended functionality and optimized perfor-
mance for practical applications. All evaluations are conducted
using real-world datasets (summarized in Table 3) to ensure that
the improvements in VeLoPIR are measured against practical, rel-
evant data.

9.1 Environment Setup
Hardware. Experiments were conducted on a 13th Gen Intel
Core i9-13900K processor (24 cores, 32 threads, 5.8 GHz max
frequency). The system operated on Ubuntu 24.04 LTS, utilizing
TFHE library version 1.1. For GPU parallel processing, the sys-
tem was equipped with an NVIDIA GeForce RTX 4060 Ti GPU
(16 GB GDDR6 memory) running CUDA version 12.4.
TFHE Parameters. Our model employed a standard security
level of 128-bit (λ128) as in [13] (for details, see Appendix C.1).
Dataset (refer to Tab. 3). The covid-kor dataset [37], pro-
vided by the Korea Disease Control and Prevention Agency
(KDCA), contains daily records of COVID-19 patient incidences
across nine major cities in Korea as of October 26, 2021. The
covid-usa dataset [36] contains daily confirmed COVID-19
cases across U.S. states, recorded on February 11, 2023. The
gdacs dataset [38] is sourced from the Global Disaster Alert
and Coordination System (GDACS), capturing disaster informa-
tion (e.g., earthquakes, tsunamis, etc.) for hazard assessment.
Lastly, the weather-usa dataset [39] includes daily weather
reports for U.S. cities, specifically from January 3, 2016.

Table 3: Summary of Real World Datasets

Dataset M lI lS Description
covid-kor [37] 9 16 9 COVID-19 patients (Korea)
covid-usa [36] 58 16 22 COVID-19 patients (US)
gdacs [38] 9 16 16 Disaster Alert (Global)

weather-usa [39] 304 16 128 Weather data (US)

9.2 Core Functionality Optimizations (RQ1)
Innermost Optimization. As shown in Fig. 3a, Fig. 3b, and
Fig. 3c, the performance of HomCompLE and HomCompL is
similar on both CPU and GPU, with minor variations across bit
sizes. In contrast, HomEQ demonstrates a clear advantage on
GPU, significantly outperforming CPU in both 16-bit and 32-bit
operations. For HomCompLE and HomCompL, the maximum
speed-up at np = 8 is modest (32-bit CPU/GPU: 1.43×, 16-bit
CPU: 1.41×, 16-bit GPU: 1.35×). For HomEQ, the speed-up on
GPU is more pronounced, reaching 3.20× for 16-bit and 4.17×
for 32-bit.

All three functions (HomCompLE, HomCompL, and
HomEQ) reach optimal performance at np = 8, beyond which
further increases in parallel processing units yield diminishing
returns. This is attributed to overheads such as communication
between processing units. While the theoretical complexity
suggests a linear increase in speed-up with additional process-
ing units, practical limitations, including synchronization and
communication costs, prevent this from being realized. Thus,
allocating 8 processing units, with a preference for GPU in the

case of HomEQ, provides the best balance between performance
and resource efficiency.
Mid-Level Optimization: Validation Modules. In our experi-
ment, we first applied optimization at the mid-level of the compu-
tation hierarchy, focusing on the operational modes IntV and CoV
(denoted as IntV (Mid Opt.) and CoV (Mid Opt.) in Fig. 3d). In
this setting, parallel processing units were allocated to each vali-
dation instance. For IntV, the maximum speed-up was observed at
np = 4, achieving a 3.45× improvement over the non-optimized
baseline. We further applied inner-level optimization—targeting
homomorphic comparison functions such as HomCompLE—in a
GPU-accelerated configuration referred to as IntV (Mid + Inner
Opt.) in Fig. 3d. This setting achieved a maximum speed-up of
4.54× using np = 32 processing units. These results demonstrate
that IntV benefits from both mid-level and innermost-level opti-
mizations, though gains diminish beyond np = 4.

For CoV, the maximum speed-up was obtained at np = 2,
achieving a 1.83× improvement over the non-optimized baseline.
Similar to IntV, the GPU-accelerated version—denoted as CoV
(Mid + Inner Opt.) in Fig. 3d—yielded a significantly higher
speed-up of 6.09×. This demonstrates the effectiveness of ho-
momorphic equality operations (e.g., HomEQ) when parallelized
on GPU architectures. These results are consistent with our theo-
retical parallel resource complexity summarized in Table 2, where
d = 4 for IntV and d = 2 for CoV, corresponding to the number
of parallel validation steps.

The observed speed-ups suggest that our theoretical model
closely aligns with the experimental findings. Based on this eval-
uation, the optimal number of processing units was determined to
be np = 4 for IntV and np = 2 for CoV, with additional per-
formance gains enabled by innermost-level optimizations in the
GPU-enhanced configurations. A summary of speed-ups across
key operations—including HomCompLE, HomCompL, HomEQ,
IntV, and CoV—is presented in Fig. 4.
Mid-Level Optimization: HomBitwiseAND. We evaluated the
performance of the HomBitwiseAND algorithm by varying the
service length (lS) and the number of parallel processing units
(np), including GPU acceleration. The results, as shown in
Fig. 5a, demonstrate a significant time performance improvement
compared to the baseline. Both CPU and GPU optimizations
achieve similar performance for smaller service lengths, partic-
ularly when np = 16 or np = 32, indicating that either ap-
proach can be used effectively depending on the available hard-
ware. However, as np increases, we observed linear scaling of
performance improvements up to the point where np ≤ lS , be-
yond which further increases in parallel units provide diminishing
returns. This is particularly evident with larger service lengths,
where GPU acceleration initially shows superior performance
compared to CPU, reaching a maximum speed-up of 11.66× at
lS = 32 (see Fig. 6a). Despite this, for even larger service lengths,
such as lS = 48 and lS = 64, the benefits of increasing np on
the GPU begin to decline. This decrease in performance is due
to memory bandwidth limitations and data transfer overhead be-
tween the CPU and GPU. Thus, while GPU optimization remains
preferable for larger workloads, the effectiveness is constrained by
memory bottlenecks.
Outermost Optimization: Aggregation via HomSum. We as-

11

0 4 8 12 16 20 24 28 32

0.3

0.4

0.5

0.6

0.7

0.8

0.9

np

T
im

e
(s
)

lI =16-bit (CPU)

lI =32-bit (CPU)

lI =16-bit (GPU)

lI =32-bit (GPU)

(a) HomCompLE

0 4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

1.2

np

T
im

e
(s
)

lI =16-bit (CPU)

lI =32-bit (CPU)

lI =16-bit (GPU)

lI =32-bit (GPU)

(b) HomCompL

0 4 8 12 16 20 24 28 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

np

T
im

e
(s
)

lI =16-bit (CPU)

lI =32-bit (CPU)

lI =16-bit (GPU)

lI =32-bit (GPU)

(c) HomEQ

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

np

T
im

e
(s
)

IntV (Mid Opt.)

CoV (Mid Opt.)

IntV (Mid + Inner Opt.)

CoV (Mid + Inner Opt.)

(d) IntV and CoV

Figure 3: Combined time performance comparison across different algorithms and parallel processing units (np) for λ = 128.

Table 4: Execution time and speed-up across different optimization levels for various private information retrieval strategies using
real-world datasets. The experiments evaluate bounding box validation (IntV), coordinate validation (CoV), and identifier matching
(IdM) across four datasets.

Dataset Application Scenario Method Baseline (None) Outermost Outer + Mid Opt. All

covid-kor [37]
Pandemic Alert IntV 16.252 3.304(4.92×) 2.783(5.84×) 2.512 (6.47×)
City Matching IdM 4.44331 1.47247(3.02×) 1.21494(3.66×) 1.13875 (3.90×)

covid-usa [36] Pandemic Alert IntV 113.44 10.6831(10.62×) 10.1528(11.17×) 9.82627 (11.55×)
State Matching IdM 68.4045 8.57437(7.98×) 7.8827(8.68×) 7.95777 (8.59×)

gdacs [38] Disaster Alert CoV 7.82023 1.8384(4.25×) 1.70333(4.59×) 1.12841 (6.93×)
weather-usa [39] Weather Info IdM 725.38 67.3917(10.76×) 65.5437(11.07×) 65.7115 (11.04×)

CPU GPU Mid Opt. Mid+Inner Opt.

Ho
m
Co
m
pL

Ho
m
Co
m
pL
E

Ho
m
EQ In

tV
Co
V

0

2

4

6

8

S
p
e
e
d
-u

p

Figure 4: Speed-up summary for mid-level and innermost opti-
mizations across core operations in VeLoPIR.

16 32 48 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lS

T
im

e
(s
)

Baseline

np = 16 (CPU)

np = 32 (CPU)

np = 16 (GPU)

np = 32 (GPU)

np = 48 (GPU)

(a) HomBitwiseAND by lS

16 32 48 64
0

2

4

6

8

10

12

14

M

T
im

e
(s
)

Baseline

np = 16 (CPU)

np = 32 (CPU)

np = 16 (GPU)

np = 32 (GPU)

np = 48 (GPU)

(b) HomSum by M

Figure 5: Time performance comparison of HomBitwiseAND and
HomSum across different (a) service lengths (lS) and (b) data
sizes (M), with CPU and GPU optimizations.

sessed the performance of the HomSum algorithm by varying the
number of data elements (M) and the number of parallel process-

ing units (np), including GPU acceleration. As shown in Fig. 5b,
both CPU and GPU implementations demonstrate significant per-
formance gains compared to the baseline. Fig. 6b further illus-
trates the speed-up achieved across different dataset sizes (M). As
the number of data elements increases (from M = 16 to M = 64),
the speed-up remains consistent, with up to 6.85× improvement
on CPU with np = 32. This is primarily due to the parallel re-
duction technique used in HomSum, which reduces the dataset
by half with each iteration, enabling efficient scaling with M . The
number of processing units (np) was sufficient for the dataset sizes
tested, avoiding any resource bottlenecks. Additionally, CPU and
GPU performance are closely matched across all dataset sizes. For
smaller datasets (M = 16, M = 32), the CPU slightly outper-
forms the GPU, while for larger datasets (M = 48, M = 64), the
GPU has a marginal edge. However, the differences are minimal,
demonstrating that both CPU and GPU offer comparable levels of
acceleration for this task.

lS = 16 lS = 32 lS = 48 lS = 64

n p
=
16
(C
PU
)

n p
=
32
(C
PU
)

n p
=
16
(G
PU
)

n p
=
32
(G
PU
)

n p
=
48
(G
PU
)

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

(a) HomBitwiseAND

M = 16 M = 32 M = 48 M = 64

n p
=
16
(C
PU
)

n p
=
32
(C
PU
)

n p
=
16
(G
PU
)

n p
=
32
(G
PU
)

n p
=
48
(G
PU
)

0

2

4

6

8

S
p
e
e
d
-u

p

(b) HomSum

Figure 6: Speed-up comparison of different (a) service lengths
(lS) and (b) data sizes (M) with CPU or GPU optimization.

12

9.3 Performance and Efficiency Analysis (RQ2)
Optimization Strategy. In our evaluation, we implement three
levels of optimization to enhance the efficiency of VeLoPIR, cor-
responding to the system’s computational hierarchy (see Table 2
for details). Outermost optimization targets large-scale processing
and aggregation steps, parallelizing operations across records us-
ing GPU resources. Mid-level optimization focuses on the valida-
tion modes IntV and CoV, as well as the HomBitwiseAND opera-
tion, leveraging CPU and GPU parallelism where appropriate. In-
nermost optimization targets fundamental FHE comparison prim-
itives, such as HomCompLE, HomCompL, and HomEQ, which
are accelerated using GPU to maximize bit-level parallelism.
VeLoPIR (IntV) Efficiency Compared to Baseline. From Ta-
ble 4, we observe significant performance improvements achieved
by our optimized VeLoPIR over the baseline.

For the covid-kor dataset, used in [15], we evaluated
VeLoPIR using all three optimization levels under the IntV mode,
consistent with the baseline setup. Our optimized version reduced
the execution time from 16.252 seconds to 2.512 seconds, result-
ing in a 6.47× overall speed-up (see Fig. 7a). The most significant
contribution came from outermost optimization, yielding a 4.92×
speed-up, while mid-level and innermost optimizations provided
additional, though smaller, improvements.

For the covid-usa dataset, which is significantly larger (with
58 entries compared to 9 in covid-kor), outermost optimization
again showed the most impact, achieving a speed-up of 10.62×.
The larger dataset size is well-suited for GPU resource alloca-
tion at the outer loop level, enabling efficient parallel reduction
across multiple records. However, for this dataset, the gains from
mid-level and innermost optimizations diminished, likely due to
overhead from CPU-GPU memory transmission as the dataset
size and service length increased. This contrast between the
covid-kor and covid-usa datasets highlights the scalability
of outermost optimization, while also suggesting potential bottle-
necks in deeper optimizations for larger inputs (see the compari-
son of mid-level and innermost speed-ups between covid-kor
and covid-usa in Fig. 7a).

Outer. Outer+Mid All

co
vi
d-
ko
r

co
vi
d-
us
a

0

2

4

6

8

10

12

14

S
p
e
e
d
-u

p

(a) VeLoPIR using IntV

Outer. Outer+Mid All

co
vi
d-
ko
r

co
vi
d-
us
a

we
at
he
r-
us
a

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

(b) VeLoPIR using IdM

Figure 7: Speed-up comparison across different optimization lev-
els in VeLoPIR.

Efficiency Evaluation of VeLoPIR (IdM). We conducted exper-
iments using the IdM mode across three datasets—covid-kor,
covid-usa, and weather-usa—to evaluate the scalability of
our optimization strategy with respect to dataset size (M) and ser-
vice length (lS). The speed-up results are illustrated in Fig. 7b,

with detailed execution times provided in Table 4.
As the dataset size increases, the overall speed-up also im-

proves. For the smaller covid-kor dataset, we achieved a
speed-up of 3.90×, while the covid-usa dataset yielded 8.59×.
The largest dataset, weather-usa, achieved the highest speed-
up of 11.04×, demonstrating the scalability of the IdM mode un-
der our optimization framework.

Notably, the weather-usa dataset (M = 304, lS = 128)
underscores the benefit of large-scale parallelism, especially at
the outermost and mid-level optimization levels. However, we
observed diminishing returns from innermost optimization as
the dataset size increased. For instance, in the covid-kor
dataset, innermost optimization contributed a modest gain (from
3.66× to 3.90×), whereas for covid-usa and weather-usa,
the speed-up slightly declined (from 8.68× to 8.59× and from
11.07× to 11.04×, respectively). This suggests that GPU-
accelerated innermost operations can become bottlenecked by
memory bandwidth limitations at scale. Addressing this issue
would require improved hardware support for more efficient data
transfer between CPU and GPU.
Efficiency Evaluation of VeLoPIR (CoV). We conducted exper-
iments using the CoV mode with the gdacs dataset (M = 9,
lS = 16). A total speed-up of 6.93× was achieved, primarily
driven by outermost optimization, which contributed 4.25×. Ad-
ditional gains were obtained through mid-level and innermost op-
timizations, with innermost optimization alone yielding a 2.34×
improvement via parallelized HomEQ operations. Notably, no
significant memory bandwidth issues or diminishing returns were
observed in this setting, likely due to the relatively small dataset
size and balanced CPU-GPU data transfer overhead.
Scalability in Practical Settings. While VeLoPIR’s design al-
lows for high degrees of parallelism, its real—world scalability
is affected by memory bandwidth constraints—particularly be-
tween CPU and GPU. As observed in Fig. 5a, the performance of
HomBitwiseAND, a mid-level optimization component, begins to
saturate as the number of parallel units np increases under a fixed
service length lS . A similar saturation trend is seen in Fig. 5b for
HomSum, which belongs to the outermost optimization layer, as
the dataset size M is held constant. These effects result in a diver-
gence between theoretical and empirical speed-up, as summarized
in Table 4.

In contrast, more lightweight primitive operations such as
HomCompLE and HomEQ, shown in Fig. 3, continue to follow
expected scaling behavior, particularly for modest parallelism lev-
els (np = 4 or 8). This is because these primitives are less
dependent on high-throughput memory access and thus less af-
fected by interconnect bottlenecks. These results suggest that
for large-scale deployments of VeLoPIR, improvements in mem-
ory bandwidth—especially between host and device—would al-
low the system to more closely approach its theoretical parallel
performance bounds.

9.4 Operational Mode Applicability (RQ3)

Information Alerts. In scenarios such as pandemic alerts
(covid-kor and covid-usa datasets), both IntV and IdM
modes can be applied. However, IdM is generally more efficient,

13

as it directly compares encrypted locational identifiers (e.g., city
or state names) using homomorphic equality (HomEQ), thereby
avoiding bounding box computations and reducing circuit depth.

This performance advantage is evident in our results (see Fig. 8a
and Fig. 8b). For the covid-kor dataset, the baseline execution
time for IntV was 16.252 seconds, which our optimized version
reduced to 2.512 seconds—a 6.47× speed-up. In contrast, IdM
reduced the baseline of 4.443 seconds to 1.138 seconds, yielding
a 3.90× improvement.

The scalability of these modes is further highlighted by the
results on the covid-usa dataset. Given its larger size, IntV
achieved an 11.55× speed-up (from 113.44 to 9.826 seconds),
while IdM reduced the baseline from 68.404 to 7.957 seconds,
resulting in an 8.59× improvement.

IntV IdM

co
vi
d-
ko
r

co
vi
d-
us
a

0

2

4

6

8

10

12

T
im

e
(s
)

(a) Execution Time (IntV vs. IdM)

IntV IdM

co
vi
d-
ko
r

co
vi
d-
us
a

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

(b) Speed-up (IntV vs. IdM)

Figure 8: Time performance and speed-up comparison for IntV
and IdM modes using the covid-kor and covid-usa datasets
(information alert scenario).

Emergency Alerts. The CoV mode is well-suited for emergency
alert scenarios, as demonstrated by our experiments using the real-
world gdacs dataset (Global Disaster Alert and Coordination
System). Although relatively small in size (M = 9, lS = 16), the
dataset represents realistic use cases such as satellite-based disas-
ter monitoring. Its structure aligns well with the targeted nature of
CoV, which enables exact coordinate-based validation for timely
alerts.

The speed-up results indicate that CoV is highly efficient, re-
ducing retrieval time to just 1.1284 seconds—a 6.93× improve-
ment over the baseline. This demonstrates the effectiveness of
CoV in rapidly and accurately delivering alerts for specific geo-
graphic locations in disaster scenarios, without the overhead asso-
ciated with more general-purpose modes like IntV or IdM.

Moreover, the CoV mode is broadly adaptable to other emer-
gency use cases, such as crime alerts or evacuation warnings,
where users in predefined coordinates require precise and imme-
diate notifications.

10 Conclusion
We introduced VeLoPIR, a fast and versatile location-based PIR
system that protects user locational privacy in real-world infor-
mation and emergency alert scenarios. Through a set of flexible
operational modes, VeLoPIR efficiently handles diverse datasets
while preserving privacy. Performance evaluations on real-world

datasets demonstrated significant speed-ups through parallel pro-
cessing on both CPU and GPU, confirming the system’s scalabil-
ity. We also provided formal correctness proofs along with com-
prehensive security and privacy analyses, validating VeLoPIR’s
effectiveness and robustness in practical deployments.

References
[1] S. Thompson and C. Warzel, “Your apps know where you

were last night, and they’re not keeping it secret,” The New
York Times, Dec. 10, 2018. [Online]. Available: https://
www.nytimes.com/interactive/2018/12/10/b
usiness/location-data-privacy-apps.html

[2] Z. Whittaker, “A breach of Gravy Analytics’ huge trove of
location data threatens the privacy of millions,” TechCrunch,
Jan. 13, 2025. [Online]. Available: https://techcrun
ch.com/2025/01/13/gravy-analytics-dat
a-broker-breach-trove-of-location-dat
a-threatens-privacy-millions/

[3] “Google will pay Texas $1.4B to settle claims the company
collected users’ data without permission,” AP News, May 9,
2025. [Online]. Available: https://apnews.com/art
icle/8097e181cc7cb8522781db8a9a897eea

[4] W. Diffie and M. E. Hellman, “New directions in cryptog-
raphy,” in Democratizing Cryptography: The Work of Whit-
field Diffie and Martin Hellman, pp. 365–390, 2022.

[5] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, Boca Raton, FL, USA:
CRC Press, 2018.

[6] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data
banks and privacy homomorphisms,” Found. Secure Com-
put., vol. 4, no. 11, pp. 169–180, 1978.

[7] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Pri-
vate information retrieval,” J. ACM, vol. 45, no. 6, pp. 965–
981, 1998.

[8] A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs, “Pri-
vate anonymous data access,” in Advances in Cryptology–
EUROCRYPT 2019: 38th Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19–23, 2019, pp. 244–
273.

[9] P. Ananth, K.-M. Chung, X. Fan, and L. Qian, “Collusion-
resistant functional encryption for RAMs,” in Int. Conf. The-
ory and Application of Cryptology and Information Security,
2022, pp. 160–194.

[10] A. Beimel, Y. Ishai, and T. Malkin, “Reducing the servers’
computation in private information retrieval: PIR with pre-
processing,” in Advances in Cryptology–CRYPTO 2000:
20th Annual Int. Cryptol. Conf., Santa Barbara, CA, USA,
Aug. 20–24, 2000, pp. 55–73.

14

https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
https://techcrunch.com/2025/01/13/gravy-analytics-data-broker-breach-trove-of-location-data-threatens-privacy-millions/
https://techcrunch.com/2025/01/13/gravy-analytics-data-broker-breach-trove-of-location-data-threatens-privacy-millions/
https://techcrunch.com/2025/01/13/gravy-analytics-data-broker-breach-trove-of-location-data-threatens-privacy-millions/
https://techcrunch.com/2025/01/13/gravy-analytics-data-broker-breach-trove-of-location-data-threatens-privacy-millions/
https://apnews.com/article/8097e181cc7cb8522781db8a9a897eea
https://apnews.com/article/8097e181cc7cb8522781db8a9a897eea

[11] E. Boyle, Y. Ishai, R. Pass, and M. Wootters, “Can we access
a database both locally and privately?,” in Theory of Cryp-
tography: 15th Int. Conf., TCC 2017, Baltimore, MD, USA,
Nov. 12–15, 2017, pp. 662–693.

[12] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“Faster fully homomorphic encryption: Bootstrapping
in less than 0.1 seconds,” in Advances in Cryptology–
ASIACRYPT 2016: 22nd International Conference on the
Theory and Application of Cryptology and Information Se-
curity, Hanoi, Vietnam, Dec. 4–8, 2016, pp. 3–33.

[13] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“TFHE: Fast fully homomorphic encryption over the torus,”
J. Cryptol., vol. 33, no. 1, pp. 34–91, 2020.

[14] M. Jain, P. Singh, and B. Raman, “SHELBRS: Location-
based recommendation services using switchable homomor-
phic encryption,” in Int. Conf. Security, Privacy, and Appl.
Cryptogr. Eng., 2021, pp. 63–80.

[15] J. S. Yoo, M. Y. Hong, J. W. Heo, K. H. Lee, and J. W.
Yoon, “Fast private location-based information retrieval over
the torus,” in Proc. 2024 IEEE Int. Conf. Adv. Video Signal
Based Surveillance (AVSS), 2024, pp. 1–7.

[16] H. Corrigan-Gibbs, A. Henzinger, and D. Kogan, “Single-
server private information retrieval with sublinear amortized
time,” in Advances in Cryptology–EUROCRYPT 2022: 41st
Annual Int. Conf. Theory and Applications of Cryptographic
Techniques, 2022, pp. 3–33.

[17] W.-K. Lin, E. Mook, and D. Wichs, “Doubly efficient private
information retrieval and fully homomorphic RAM compu-
tation from ring LWE,” in Proc. 55th Annu. ACM Symp. The-
ory of Comput. (STOC 2023), pp. 595–608, 2023.

[18] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic
encryption from ring-LWE and security for key dependent
messages,” in Advances in Cryptology–CRYPTO 2011: 31st
Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug.
14–18, 2011, pp. 505–524.

[19] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Int. Conf. Theory and Appl.
Cryptol. Techniques, 1999, pp. 223–238.

[20] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Trans. Inf. The-
ory, vol. 31, no. 4, pp. 469–472, 1985.

[21] Y. An, S. Lee, S. Jung, H. Park, Y. Song, and T. Ko,
“Privacy-oriented technique for COVID-19 contact tracing
(PROTECT) using homomorphic encryption: Design and
development study,” J. Med. Internet Res., vol. 23, no. 7,
pp. e26371, 2021.

[22] Z. Brakerski, “Fully homomorphic encryption without mod-
ulus switching from classical GapSVP,” in Annu. Cryptol.
Conf., 2012, pp. 868–886.

[23] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A
ring-based public key cryptosystem,” in Algorithmic Num-
ber Theory (ANTS III), 1998, pp. 267–288.

[24] O. Regev, “On lattices, learning with errors, random linear
codes, and cryptography,” J. ACM, vol. 56, no. 6, pp. 1–40,
2009.

[25] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, “Effi-
cient public key encryption based on ideal lattices,” in Int.
Conf. Theory Appl. Cryptol. Inf. Security, 2009, pp. 617–
635.

[26] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proc. 41st Annu. ACM Symp. Theory Comput.,
2009, pp. 169–178.

[27] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Ad-
vances in Cryptology–ASIACRYPT 2017, Hong Kong, Dec.
3–7, 2017, pp. 409–437.

[28] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” ACM
Trans. Comput. Theory, vol. 6, no. 3, pp. 1–36, 2014.

[29] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Cap-
kun, “On the requirements for successful GPS spoofing at-
tacks,” in Proc. 18th ACM Conf. Comput. Commun. Security,
2011, pp. 75–86.

[30] K. C. Zeng, Y. Shu, S. Liu, Y. Dou, and Y. Yang, “A practical
GPS location spoofing attack in road navigation scenario,” in
Proc. 18th Int. Workshop Mobile Comput. Syst. Appl., 2017,
pp. 85–90.

[31] Z. M. Kassas, J. Khalife, A. A. Abdallah, and C. Lee, “I
am not afraid of the GPS jammer: Resilient navigation via
signals of opportunity in GPS-denied environments,” IEEE
Aerosp. Electron. Syst. Mag., vol. 37, no. 7, pp. 4–19, 2022.

[32] A. Grant, P. Williams, N. Ward, and S. Basker, “GPS jam-
ming and the impact on maritime navigation,” J. Navig., vol.
62, no. 2, pp. 173–187, 2009.

[33] E. Zeydan, Y. Turk, B. Aksoy, and S. B. Ozturk, “Recent
advances in post-quantum cryptography for networks: A sur-
vey,” in 2022 7th Int. Conf. Mobile and Secure Services (Mo-
biSecServ), 2022, pp. 1–8.

[34] S. Paul, P. Scheible, and F. Wiemer, “Towards post-quantum
security for cyber-physical systems: Integrating PQC into
industrial M2M communication,” J. Comput. Security, vol.
30, no. 4, pp. 623–653, 2022.

[35] Z. Liu, K.-K. R. Choo, and J. Grossschädl, “Securing edge
devices in the post-quantum Internet of Things using lattice-
based cryptography,” IEEE Commun. Mag., vol. 56, no. 2,
pp. 158–162, 2018.

15

[36] E. Dong, H. Du, and L. Gardner, “An interactive
web-based dashboard to track COVID-19 in real time,”
Lancet Infect. Dis., vol. 20, no. 5, pp. 533–534, 2020,
doi: 10.1016/S1473-3099(20)30120-1. [Online]. Available:
https://github.com/CSSEGISandData/COVID-19.

[37] Korea Disease Control and Prevention Agency
(KDCA), “COVID-19 daily incidences in nine ma-
jor cities in Korea,” 2021. [Online]. Available:
https://ncv.kdca.go.kr/pot/cv/trend/dmstc/selectMntrgSttus.do.

[38] Global Disaster Alert and Coordination System (GDACS),
“Global Disaster Alert and Coordination System (GDACS)
alerts and impact estimations,” 2024. [Online]. Available:
https://www.gdacs.org/Alerts/default.aspx.

[39] National Oceanic and Atmospheric Administration
(NOAA), “Daily weather reports for U.S. cities,” 2016.
[Online]. Available: https://www.noaa.gov/climate.

A CORRECTNESS PROOF

A.1 Proof of Theorem 1
Proof. The main part of the HomCompLE algorithm relies on the
combination of homomorphic gates, specifically the HomXNOR
gate followed by the HomMUX gate, to evaluate the encrypted
inputs.

First, the algorithm initializes t2 with a trivial TLWE ciphertext
EncTLWE

s (0, 1
8), which is an encryption of 1 under the secret key

s. This assumes ct1 ≤ ct2 initially.
If ct1 and ct2 are equal, then for all bits, the HomXNOR gate

will output t1 = Encs(1), preserving t2 = Encs(1) throughout the
loop. The final output, r, becomes Encs(1), confirming ct1 ≤ ct2
as expected.

Consider the highest bit j where ct1[j] and ct2[j] differ:

(Case 1): ct1[j] = 1, ct2[j] = 0

(Case 2): ct1[j] = 0, ct2[j] = 1

• Case 1. Here, HomXNOR outputs t1 = Encs(0). Con-
sequently, HomMUX selects ct2[j], setting t2 = Encs(0).
Thus, the result is Encs(0), correctly indicating that ct1 >
ct2.

• Case 2. In this scenario, HomXNOR outputs t1 = Encs(0),
leading HomMUX to select ct2[j], thus t2 = Encs(1). There-
fore, the result is Encs(1), correctly showing that ct1 < ct2.

The HomMUX at the end considers t0, which indicates differing
signs between ct1 and ct2. If signs differ, t0 directs the selection
to ct1[lI − 1]. This ensures correct handling of signed numbers:

• If ct1 is negative and ct2 is positive, ct1 < ct2 holds, setting
the result as Encs(1).

• Conversely, if ct1 is positive and ct2 is negative, ct1 > ct2,
leading to Encs(0).

A.2 Proof of Corollary 1

Proof. The algorithm HomCompL(ct1, ct2, evk) builds upon the
logic established in Theorem 1 for the HomCompLE algorithm.
The key difference in HomCompL lies in the initialization of the
variable t2, which is set to EncTLWE

s (0,− 1
8), corresponding to an

encryption of 0.
In the HomCompLE algorithm, t2 was initialized to an encryp-

tion of 1, representing the assumption that ct1 = ct2. Here, by
initializing t2 to 0, we instead assume that ct1 ̸= ct2. The iterative
loop in HomCompL uses the HomXNOR and HomMUX gates to
compare the bits of ct1 and ct2. If all bits of ct1 and ct2 are equal,
t2 remains as 0, which is the correct result since ct1 = ct2 means
ct1 < ct2 is false.

The variable t0, as in HomCompLE, accounts for cases where
ct1 and ct2 have different signs. If the signs differ, t0 directs the
output based on the sign of ct1. This ensures that the algorithm
correctly handles all cases where ct1 < ct2, including when the
signs are different.

Thus, by initializing t2 to 0, HomCompL ensures that when
ct1 = ct2, the output is Encs(0), and when ct1 < ct2, the output is
Encs(1). This proves that the algorithm correctly evaluates ct1 <
ct2 as stated.

A.3 Proof of Lemma 1

Proof. The algorithm starts by initializing the result r as a trivial
TLWE encryption of 1, denoted as EncTLWE

s (0, 1
8) assuming that

ct1 = ct2 by default.
In each iteration of the loop, the HomXNOR gate compares cor-

responding bits of ct1 and ct2. If the bits are equal, HomXNOR
outputs Encs(1); otherwise, it outputs Encs(0). The result t from
each bit comparison is then combined with the current value of r
using the HomAND operation.

The HomAND operation is crucial: it ensures that if any bit of
ct1 and ct2 differs, the final result r becomes Encs(0), indicating
inequality. Conversely, if all corresponding bits of ct1 and ct2 are
identical, the final value of r remains Encs(1), confirming that ct1
and ct2 encrypt the same value.

Thus, the algorithm correctly evaluates the equality of z1 and
z2 under homomorphic encryption, as claimed.

A.4 Proof of Theorem 2

Proof. The correctness of this algorithm can be verified by ana-
lyzing the behavior of the homomorphic comparison operations
(HomCompL and HomCompLE operations).

For the latitude, vxleft
and vxright

will both be Encs(1) only
when xleft ≤ x < xright. Thus, the combined result vx =
HomAND(vxleft

, vxright
, evk) will be Encs(1) only if this con-

dition holds. Conversely, consider a case where x < xleft; in
this scenario, vxleft

will be Encs(0), ensuring that vx becomes
Encs(0) irrespective of the value of vxright

.
Similarly, the combined result vy = HomAND(vyleft

, vyright

, evk) will be Encs(1) only if yleft ≤ y < yright holds.
The final validation v = HomAND(vx, vy, evk) will output

Encs(1) if both latitude and longitude conditions are satisfied, en-

16

suring the coordinate (x, y) is within the interval. Otherwise, it
outputs Encs(0).

B SECURITY PROOF

B.1 Proof of Corollary 2
Proof. The server’s goal is to retrieve the secret key s from the
encrypted dataset Encpk(D). This problem is essentially iden-
tical to the one discussed in Theorem 6, since the ciphertext ct
in Encpk(D) is of the form ct ← (0,Ecd(x)) + pk. Thus, the
server must extract the secret key from pk, which consists of up
to W = MlId + MlS TLWE samples. Therefore, the server’s
advantage is bounded by:

AdvSE
TLWE1 to W

<
O(W)

2λ

where W = MlId+MlS .

C ADDITIONAL SUPPORTING IN-
FORMATION

In this section, we briefly explain the bootstrapping procedure in
TFHE, which is critical for performing homomorphic gate oper-
ations. We also provide the TFHE parameters used during the
evaluation of VeLoPIR, followed by a summary of the notations
used throughout the paper.

C.1 TFHE Parameters
Table 5 lists the cryptographic parameters for the TFHE scheme
at the 128-bit security level, as used in [13].

Table 5: Cryptographic parameters for TFHE 128-bit security
level

Parameter Value

TLWE Dimension n 630
TRLWE Dimension k 1
Polynomial Size N 1024
Key Switch Base Log log2(βKS) 2
Key Switch Level ℓKS 8
Key Switch Standard Deviation σKS 2−15

Bootstrapping Key Base Log log2(βBK) 7
Bootstrapping Key Level ℓBK 3
Bootstrapping Key Standard Deviation σBK 2−25

17

	Introduction
	Related Works

	Background
	Fully Homomorphic Encryption (FHE)
	Torus Fully Homomorphic Encryption

	Overall Protocol and Properties
	Assumptions
	Detailed Protocol
	Preprocessing Phase
	Evaluation Phase

	VeLoPIR Evaluation
	Algorithm Overview
	Core Algorithms
	Supporting Algorithms
	Correctness of VeLoPIR

	Security and Privacy Analysis
	VeLoPIR Optimization
	Core Functionality Optimizations

	Theoretical Resource Complexity
	Application Scenarios
	Evaluation
	Environment Setup
	Core Functionality Optimizations (RQ1)
	Performance and Efficiency Analysis (RQ2)
	Operational Mode Applicability (RQ3)

	Conclusion
	CORRECTNESS PROOF
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Lemma 1
	Proof of Theorem 2

	SECURITY PROOF
	Proof of Corollary 2

	ADDITIONAL SUPPORTING INFORMATION
	TFHE Parameters

