
ar
X

iv
:2

50
6.

12
94

7v
1

 [
cs

.A
R

]
 1

5
Ju

n
20

25

PuDHammer: Experimental Analysis of Read Disturbance Effects
of Processing-using-DRAM in Real DRAM Chips

İsmail Emir Yüksel Akash Sood Ataberk Olgun Oğuzhan Canpolat Haocong Luo
F. Nisa Bostancı Mohammad Sadrosadati A. Giray Yağlıkçı Onur Mutlu

ETH Zürich

Processing-using-DRAM (PuD) is a promising paradigm for
alleviating the data movement bottleneck using a DRAM array’s
massive internal parallelism and bandwidth to execute very wide
data-parallel operations. Performing a PuD operation involves
activating multiple DRAM rows in quick succession or simulta-
neously, i.e., multiple-row activation. Multiple-row activation is
fundamentally different from conventional memory access pat-
terns that activate one DRAM row at a time. However, repeatedly
activating even one DRAM row (e.g., RowHammer) can induce
bitflips in unaccessed DRAM rows because modern DRAM is
subject to read disturbance, a worsening safety, security, and
reliability issue. Unfortunately, no prior work investigates the
effects of multiple-row activation, as commonly used by PuD
operations, on DRAM read disturbance.

In this paper, we present the first characterization study of read
disturbance effects of multiple-row activation-based PuD (which
we call PuDHammer) using 316 real DDR4 DRAM chips from four
major DRAM manufacturers. Our detailed characterization re-
sults covering various operational conditions and parameters (i.e.,
temperature, data patterns, access patterns, timing parameters,
and spatial variation) show that 1) PuDHammer significantly
exacerbates the read disturbance vulnerability, causing up to
158.58× reduction in the minimum hammer count required to
induce the first bitflip (HCfirst), compared to RowHammer,
2) PuDHammer is affected by various operational conditions
and parameters, 3) combining RowHammer with PuDHammer
is more effective than using RowHammer alone to induce read
disturbance errors (e.g., compared to RowHammer, doing so re-
duces HCfirst by 1.66× on average across all tested rows), and
4) PuDHammer bypasses an in-DRAM RowHammer mitigation
mechanism called Target Row Refresh and induces more bitflips
than RowHammer.
To develop future robust PuD-enabled systems in the pres-

ence of PuDHammer, we 1) develop three countermeasures and
2) adapt and evaluate the effectiveness of state-of-the-art Row-
Hammer mitigation standardized by industry, called Per Row
Activation Counting (PRAC). We show that the adapted PRAC in-
curs large performance overheads to mitigate PuDHammer (e.g.,
an average performance overhead of 48.26% across 60 five-core
multiprogrammed workloads). We hope and expect that our find-
ings motivate and guide system-level and architectural solutions
to enable read-disturbance-resilient future PuD systems.

1. Introduction
Modern computing systems move vast amounts of data be-

tween main memory (DRAM) and processing elements (e.g.,

CPU and GPU) [1, 2]. Unfortunately, this data movement
is a major bottleneck that consumes a large fraction of ex-
ecution time and energy in many modern applications [1–
28]. Processing-using-DRAM (PuD) [29–34] is a promising
paradigm that can alleviate the data movement bottleneck.
PuD uses the analog operational properties of the DRAM
array circuitry to enable massively parallel in-DRAM com-
putation (i.e., PuD operations), which can be used to accel-
erate important applications including databases and web
search [29, 30, 32, 35–43], data analytics [29, 44–48], graph
processing [32, 48–51], genome analysis [52–57], cryptogra-
phy [58, 59], hyper-dimensional computing [60–62], and gen-
erative AI [63–72].

A wide variety of PuD operations (e.g., in-DRAM data copy
and bulk bitwise operations) rely on a key PuD technique called
multiple-row activation, which accesses (activates) multiple
DRAM rows in quick succession or simultaneously [29–32,
40, 73–84]. Multiple-row activation is fundamentally different
from conventional DRAM operations that access only a single
DRAM row at a time.

Unfortunately, with aggressive technology node scaling, re-
peatedly accessing even a single DRAM row disturbs the data
integrity of unaccessed physically-adjacent DRAM rows and
causes bitflips [85–152]. RowHammer [93] and RowPress [153]
are two prominent examples of DRAM read disturbance phe-
nomena where a DRAM row (i.e., victim row) can experience
bitflips when a nearby DRAM row (i.e., aggressor row) is 1) re-
peatedly activated (i.e., hammered) [34, 93, 116, 152] or 2) kept
open for a long period (i.e., pressed) [34, 145, 153, 154]. Unfor-
tunately, no prior work explores the read disturbance effects
of multiple-row activation-based PuD operations.

In this paper, we present the first experimental characteriza-
tion of the read disturbance effects of multiple-row activation-
based PuD operations, PuDHammer, on 316 commercial off-
the-shelf (COTS) DDR4 DRAM chips from four major DRAM
manufacturers (in 40 DRAM modules). We characterize the
read disturbance effect of two types of multiple-row activa-
tion: 1) consecutive multiple-row activation (which we call
CoMRA), used for in-DRAM data copy [40,73,74,77,79,83,155]
(§4) and 2) simultaneous multiple-row activation (which we
call SiMRA), used for in-DRAM bitwise operations [29, 30, 73,
74, 76, 78, 79, 81, 82, 155] (§5) under various operational condi-
tions and parameters (i.e., data patterns, temperature, access
patterns, timing parameters, and spatial variation). We also
analyze 1) how combining RowHammer with PuDHammer

1

https://arxiv.org/abs/2506.12947v1

(i.e., a combined pattern that performs RowHammer and PuD-
Hammer repeatedly) affects read disturbance (§6) and 2) the
effectiveness of an in-DRAM mitigation mechanism, broadly
referred to as Target Row Refresh (TRR) [119, 125, 156–158],
against PuDHammer (§7).
Based on our characterization, we make 26 new empirical

observations and share 9 key takeaway lessons. We highlight
four of our major new results. First, repeatedly performing
multiple-row activation greatly increases the DRAM chip’s
read disturbance vulnerability. We find that both CoMRA and
SiMRA decrease the minimum hammer count required to in-
duce the first bitflip (HCfirst) in all tested DRAM chips from
four manufacturers. We observe that the lowest HCfirst ob-
served due to CoMRA and SiMRA are 13.98× and 158.58×
lower than the lowest HCfirst observed due to RowHammer,
respectively. Second, operational conditions and parameters
impact PuDHammer (especially SiMRA). We find that ham-
mering with SiMRA is significantly affected by data pattern
and row on time (i.e., RowPress [153]) and can change the
average HCfirst of victim rows in a DRAM chip by up to
57.80× and 270.27× across all tested data patterns and row on
time values. Third, a combined RowHammer and PuDHam-
mer access pattern is much more effective at inducing read
disturbance bitflips than using RowHammer alone. We observe
that, compared to RowHammer, the average HCfirst of victim
rows in a DRAM chip decreases by up to 1.34×, 1.22× when
RowHammer is combined with CoMRA or SiMRA, respec-
tively. We find that a combination of RowHammer, CoMRA,
and SiMRA is the most effective access pattern among the
tested patterns and reduces average HCfirst of victim rows in
a DRAM chip by 1.66×. Fourth, we observe that in a tested SK
Hynix DDR4 DRAM module, both CoMRA and SiMRA bypass
the TRR mechanism and induce more bitflips than RowHam-
mer. For example, SiMRA and CoMRA respectively induce
11340× and 1.10× more bitflips than RowHammer on average
in the presence of TRR.

Our characterization results suggest that future PuD-enabled
systems should take PuDHammer into account to maintain the
fundamental robustness property of memory isolation. Based
on our findings, to mitigate PuDHammer, we 1) develop and
qualitatively analyze three countermeasures against PuDHam-
mer that modify the DRAM chips and DRAM interface (§8.1)
and 2) adapt and evaluate the state-of-the-art RowHammer
solution standardized by industry, called Per Row Activation
Counting (PRAC) [159–163] (§8.2). We find that the adapted
PRAC solution to PuDHammer incurs an average system per-
formance overhead of 48.26% across all tested 60 five-core
multiprogrammed workload mixes.

This paper makes the following key contributions:
• To our knowledge, this is the first work to analyze and ex-
perimentally demonstrate the interaction between read dis-
turbance and Processing-using-DRAM (PuD) operations in
COTS DRAM chips. We extensively characterize the read
disturbance effect of multiple-row activation-based PuD op-
erations on 316 chips from 40 real DRAM modules.

• Our results show that 1) multiple-row activation greatly am-
plifies the DRAM read disturbance errors across all tested
manufacturers (e.g., up to 158.58× reduction in HCfirst),
2) the read disturbance effect of multiple-row activation
depends on operational conditions and parameters with
large variations in some cases (e.g., up to 270.27× change in
HCfirst), 3) combining RowHammer with multiple-row ac-
tivation is more effective than using RowHammer alone for
inducing the first read disturbance error (e.g., 1.66× reduc-
tion in HCfirst on average), and 4) PuDHammer bypasses
the in-DRAM TRR mechanism, inducing many more bitflips
in a DRAM row than RowHammer does, in the presence of
TRR (e.g., 11340× more bitflips on average).

• We develop and analyze four potential ways to mitigate PuD-
Hammer. We adapt and evaluate the effectiveness of the
industry’s state-of-the-art RowHammer mitigation, PRAC,
and show that adapted PRAC incurs large performance over-
heads to mitigate PuDHammer.

• Our takeaway lessons (from both characterization and miti-
gation) call for future work on understanding the underlying
device-level causes of PuDHammer bitflips and other inno-
vative solutions to mitigate PuDHammer bitflips to enable
read-disturbance-resilient future PuD systems.

2. Background
2.1. Dynamic Random Access Memory (DRAM)
DRAM Organization. Fig. 1 shows the hierarchical organi-
zation of a modern DRAM-based main memory. The memory
controller connects to a DRAM module over a memory chan-
nel. A module contains one or multiple DRAM ranks that
time-share the memory channel. A rank consists of multiple
DRAM chips. Each DRAM chip has multiple DRAM banks,
each containing multiple subarrays.
Within a subarray, DRAM cells form a two-dimensional

structure interconnected over bitlines and wordlines. The row
decoder in a subarray decodes the row address and drives one
wordline out of many. A row of DRAM cells on the same
wordline is referred to as a DRAM row. The DRAM cells in
the same column are connected to the sense amplifier via a
bitline. A DRAM cell stores a binary data value in the form of
electrical charge on a capacitor (VDD or 0 V), and this data is
accessed through an access transistor, driven by the wordline
to connect the cell capacitor to the bitline.

M
em

or
y

C
on

tr
ol

le
r

R
ow

 D
ec

od
er

Subarray
Sense Amp.

Subarray
Sense Amp.

Subarray
Sense Amp. Sense Amp.

R
ow

 D
ec

od
er

CPU DRAM Module DRAM Bank DRAM Subarray

………

Wordline

Bitline

capacitor

Wordline

B
it

lin
e

DRAM Cell

I/O Logic

ba
nk

ba
nk

ba
nk

ba
nk

ba
nk

ba
nk

ba
nk

ba
nkM
em

or
y

C
ha

nn
el

Access
Transistor

…

DRAM Chip

Figure 1: Hierarchical organization of modern DRAM.

DRAM Access. The memorycontroller serves memory ac-
cess requests by issuing DRAM commands, e.g., row activation
(ACT), bank precharge (PRE), data read (RD), data write (WR), and
refresh (REF) while respecting certain timing parameters to
guarantee correct operation [21, 164–174]. The memory con-
troller issues an ACT command alongside the bank address and

2

row address corresponding to the memory request’s address
to activate a DRAM row. During the row activation process, a
DRAM cell shares its charge, and thus, its initial charge level
needs to be restored (via a process called charge restoration).
The latency from the start of a row activation until the com-
pletion of the DRAM cell’s charge restoration is called tRAS .
To access another row in an already activated DRAM bank,
the memory controller must issue a PRE command to close
the opened row and prepare the bank for a new activation.
The minimum latency between issuing a PRE command and
opening a row with an ACT command is called tRP .
DRAM Refresh. A DRAM cell is inherently leaky and thus
loses its stored electrical charge over time [175–177]. To main-
tain data integrity, a DRAM cell is periodically refreshed with
a time interval called the tREF W , which is typically 64 ms
(e.g., [167, 168, 177, 178]) at normal operating temperature (i.e.,
up to 85 ◦C). To refresh all cells in a timely manner, the mem-
ory controller periodically issues a refresh (REF) command
with a time interval called the tREF I , which is typically 7.8 µs
(e.g., [125,167,168,178]) or 3.9 µs (e.g., [164,165,169]) at normal
operating temperature.
2.2. DRAM Read Disturbance
Read disturbance is the phenomenon that reading data from

a memory or storage device causes physical disturbance (e.g.,
voltage deviation, electron injection, electron trapping) on
another piece of data that is not accessed but physically lo-
cated nearby the accessed data. Two prime examples of read
disturbance in modern DRAM chips [108, 116, 152, 179] are
RowHammer [93], and RowPress [153], where repeatedly ac-
cessing (hammering) or keeping active (pressing) a DRAM row
induces bitflips in physically nearby DRAM rows. In RowHam-
mer and RowPress terminology, the row that is hammered or
pressed is called the aggressor row, and the row that experi-
ences bitflips the victim row. For read disturbance bitflips to
occur, 1) the aggressor row needs to be activated more than
a certain threshold value, defined as the minimum hammer
count required to induce the first bitflip (HCfirst) [144] and/or
2) the aggressor row needs to be open for a long period of time
(i.e., tAggON > tRAS) [153].
2.3. Processing-using-DRAM (PuD)
Processing-using-DRAM (PuD) is an emerging paradigm

that can alleviate the bottleneck caused by frequent data move-
ment between processing elements (e.g., CPU) and main mem-
ory [29–34, 40, 48, 73–78, 80, 80–83, 155, 180–194]. PuD enables
massively parallel in-DRAM computation by leveraging in-
trinsic analog operational properties of the DRAM circuitry.
Many PuD works [29–31, 33, 34, 40, 73–75, 77–79, 81–83, 155]
enables 1) in-DRAM data copy & initialization by leveraging
consecutive multiple-row activation (which we call CoMRA)
and simultaneous multiple-row activation (which we call
SiMRA) and 2) in-DRAM bitwise operations by leveraging
SiMRA.
In-DRAM Data Copy & Initialization. RowClone [40] en-
ables data movement within a subarray at a row granularity
by modifying DRAM circuitry. RowClone alleviates the en-

ergy and execution time costs of transferring data between
the DRAM and the processing units. Prior works [73, 77] ex-
perimentally demonstrate that the RowClone operation can
be performed in COTS DRAM chips by enabling consecutive
activation of two rows in the same subarray, which we call
CoMRA. A recent work [79] demonstrates that commercial off-
the-shelf (COTS) DRAM chips can copy one source row to up
to 31 different destination rows by simultaneously activating
up to 32 rows in the same subarray.
In-DRAM Bitwise Operations. Prior works [29, 30] demon-
strates that 1) simultaneously activating three DRAM rows
leads to the computation of the bitwise MAJority function (and
thus the AND and OR functions) on the contents of the three
rows due to the charge sharing principles that govern the op-
eration of the shared bitlines and sense amplifiers, 2) bitwise
NOT of a row can be performed through the sense amplifier,
with modifications to DRAM circuitry. Many operations en-
visioned by these works [29, 30] can already be performed in
real unmodified COTS DRAM chips, by violating manufacturer-
recommended DRAM timing parameters [73–75,78,79]. Recent
works show that COTS DRAM chips can perform 1) the bitwise
MAJ operation with up to nine inputs (i.e., MAJ3, MAJ5, MAJ7,
and MAJ9) by simultaneously activating multiple rows in the
same subarray [73–75, 79] and 2) up to 16-input AND, NAND,
OR, NOR operations, and NOT operation by simultaneously
activating multiple rows in two neighboring subarrays [78].
2.4. Motivation
PuD is a promising paradigm that has the potential to re-

duce or eliminate costly data movement between process-
ing elements and main memory [29–34, 40, 48, 73–78, 80,
80–83, 155, 180–194]. Many PuD techniques (§2.3) lever-
age an analog DRAM operation called multiple-row activa-
tion, where multiple DRAM rows are activated simultane-
ously or in quick succession to perform in-DRAM process-
ing [29–33, 40, 73–83, 155, 194, 195]. Multiple-row activation
fundamentally differs from standard DRAM accesses, where
a single row is activated at a time (§2.1). This fundamental
difference could result in significant implications for future
PuD-enabled systems, as repeatedly activating even a single
DRAM row can induce bitflips in other unaccessed DRAM
rows due to DRAM read disturbance phenomena (§2.2). Unfor-
tunately, no prior work explores the read disturbance effects
of multiple-row activation. Our goal in this paper is to close
this gap. We aim to empirically understand, characterize, and
provide insights into the interaction between read disturbance
and multiple-row activation.
3. Metholodogy
We describe our COTS DRAM chip testing infrastructure

(§3.1) and the COTS DDR4 chips tested for our characterization
study (§3.2). We explain the methodology of our different
characterization experiments in their corresponding sections,
§4, §5, and §6.
3.1. COTS DRAM Testing Infrastructure
We conduct COTS DRAM chip experiments using DRAM

Bender [75,196] (built upon SoftMC [197,198]), an FPGA-based

3

DDR4 testing infrastructure that provides precise control of
DDR4 commands. Fig. 2 shows our experimental setup that
consists of four main components: 1) a host machine that
generates the test program and collects results, 2) an FPGA
development board [199], programmed with DRAM Bender, 3)
a thermocouple temperature sensor and heater pads pressed
against the DRAM chips to maintain a target temperature
level, and 4) a temperature controller [200] that keeps the
temperature at the desired level.

Temperature
Controller

DRAM Module w/
Heater Pads

Xilinx Alveo U200
FPGA Board

(with DRAM Bender)

PCI-e Connection
to the Host Machine

1

2

3

4

Figure 2: Our DRAM Bender [75] based experimental setup.

Eliminating Interference Sources. To observe read dis-
turbance bitflips at the circuit level, we eliminate potential
sources of interference, by taking three measures, similar to the
methodology used by prior works [125,144–146,153]. First, we
disable periodic refresh during the execution of test programs
to prevent potential on-DRAM-die TRR mechanisms [119,125]
from refreshing victim rows so that we can observe the DRAM
chip’s behavior at the circuit-level. Second, we strictly bound
the execution time of test programs within the refresh win-
dow of the DRAM chips to avoid data retention failures inter-
fering with read disturbance failures. Third, we verify that
the modules and chips have neither rank-level nor on-die
ECC [201, 202]. With these measures, we directly observe
and analyze all bitflips without interference.
3.2. COTS DDR4 DRAM Chips Tested
Table 1 provides the 316 (40) COTS DDR4 DRAM chips (mod-

ules) along with the chip manufacturer (Chip Mfr.), number of
modules (#Modules), number of chips (#Chips), die revision
(Die Rev.), chip density (Density), and chip organization (Org.).

Table 1: Summary of DDR4 DRAM chips tested.
Chip Mfr. #Modules #Chips Die Rev. Density Org.

1 8 A 4Gb x8
SK Hynix 8 64 A 8Gb x8

2 16 C 16Gb x8
6 48 D 8Gb x8
1 8 B 4Gb x8

Micron 4 32 E 16Gb x16
4 32 F 16Gb x8
2 16 R 8Gb x8
1 8 A 16Gb x8
5 40 B 16Gb x8

Samsung 1 4 C 4Gb x16
1 8 C 16Gb x8
1 8 E 4Gb x8

Nanya 3 24 C 8Gb x8

Logical-to-Physical Row Mapping. DRAM manufacturers
use mapping schemes to translate logical (memory-controller-
visible) addresses to physical row addresses [21, 89, 93, 109, 119,

120, 177, 201, 203–210]. To account for in-DRAM row address
mapping, we reverse engineer the physical row address layout
in all chips, following the prior works’ methodology [144–146,
153].
4. Read Disturbance Effect of Consecutive

Multiple-Row Activation (CoMRA) in
COTS DRAM Chips
We demonstrate the read disturbance effect of consecu-

tive multiple row activation CoMRA in COTS DRAM chips.
CoMRA is used to perform in-DRAM data copy operations in
real DRAM chips [73–79]. We repeatedly perform consecu-
tive activation of two rows (source row and destination row)
to copy a source row’s content into a destination row. This
section describes our key idea to hammer with CoMRA (§4.1),
our experimental methodology for understanding the read dis-
turbance vulnerability caused by the CoMRA operation (§4.2),
and presents our COTS DRAM chip characterization results
(§4.3).
4.1. Hammering with CoMRA
Key Idea. We exploit the key property of CoMRA to induce
read disturbance bitflips in COTS DRAM chips: activating
two rows consecutively in quick succession to repeatedly per-
form in-DRAM data copy operations. To do so, we repeatedly
perform consecutive activation of a source row (src) and a
destination row (dst) in the same subarray to induce read dis-
turbance bitflips in neighboring rows of the src and dst. In
this scenario, src and dst are the aggressor rows, and their
neighboring rows are victim rows. Fig. 3 illustrates our key
idea to hammer with CoMRA. Depending on the location of
source and destination rows, we can either craft 1) a double-
sided attack where src and dst are sandwiching a victim row
(Fig. 3a) or 2) a single-sided attack where src and dst are far
away (Fig. 3b).

DRAM Subarray

victim
src

victim

victim

...

dst
victim

aggressor

aggressor

DRAM Subarray

...
src

victim
dst

aggressor

aggressor
...

tRAS

time

7.5ns

ACT src

Single Hammer Cycle

PRE ACT dst

tRAS

(a) Double-Sided (b) Single-Sided

PRE

(c) Access Pattern

1 2 32

Figure 3: Example of a double-sided CoMRA attack (a), a single-
sided CoMRA attack (b), and the access pattern of double-sided
and single-sided CoMRA (c).

Access Pattern & Operation. Fig. 3c shows both single-
sided and double-sided access patterns of hammering with
CoMRA. Our attack consists of three key steps. First, we issue
ACT (ACTIVATE) src to activate the src row (1) and wait for
tRAS , which ensures the sense amplifier senses the data in the
src row and restores the charges of cells. Second, we issue
PRE (PRECHARGE) and ACT dst back-to-back by violating the
tRP timing parameter to activate the dst while bitlines and
sense amplifiers still have src’s content [73, 77, 79] (2). Doing
so copies the src row’s data to the dst row [75–79, 79, 211].
Third, we wait for tRAS to ensure that the in-DRAM copy
operation completes and issue a PRE to prepare the bank for

4

the next attack access (3). We call this three-step in-DRAM
copy procedure one hammer cycle. To induce read disturbance
bitflips in the victim rows, we repeatedly perform CoMRA.
4.2. Experimental Methodology
DRAM Subarray Boundaries. Understanding the read dis-
turbance effect of the in-DRAM copy operation in COTS
DRAM chips requires reverse engineering DRAM subarray
boundaries as the in-DRAM copy operation works only if the
source and destination rows are located in the same subar-
ray [40, 73, 76–79, 83, 211]. We repeatedly perform the Row-
Clone operation for every possible source and destination row
address in each tested bank. When we observe that the des-
tination row gets the same content as the source row after
the in-DRAM data copy, we conclude that the source row and
the destination row are in the same subarray. Based on this
observation, we reverse engineer the subarray boundaries and
determine which rows are in the same subarray.
Read Disturbance Vulnerability Metric. To characterize
a DRAM module’s vulnerability to read disturbance, we ex-
amine the minimum hammer count required to induce the
first bitflip (HCfirst), where we count the hammer cycles (i.e.,
each pair of activations to the src and dst rows as one ham-
mer). A lower HCfirst indicates a higher vulnerability to read
disturbance.
HCfirstHCfirstHCfirst Algorithm. For every tested parameter we evaluate
(e.g., data pattern and temperature), we find the HCfirst for
each tested victim row using the bisection-method algorithm
used by prior works [145, 146, 153]. We terminate the HCfirst

search when the difference between the current and previous
HCfirst measurements is no larger than 1% of the previous
measurements. For every tested row, we repeat the HCfirst

search five times and report the minimum HCfirst value we
observe.
Victim Row Location in the Subarray. To understand the
effects of spatial variation on read disturbance, we analyze
how the location of a victim row in a subarray affects the
read disturbance vulnerability. We categorize a victim row’s
location in a subarray into five regions: 1) "Beginning": the first
20% rows in the subarray (e.g., the first 100 rows in a subarray
with 500 rows, row 0 to row 99), 2) "Beginning-Middle": the
second 20% rows in the subarray (e.g., row 100 to row 199),
"Middle": the third 20% rows in the subarray (e.g., row 200 to
row 299), "Middle-End": the fourth 20% rows in the subarray
(e.g., row 300 to row 399), and 5) "End": the last 20% rows in
the subarray (e.g., row 400 to row 499).
Data Pattern. We use the four data patterns (0x00, 0xFF, 0xAA,
and 0x55) that are widely used in memory reliability test-
ing [212, 213] and by prior work on DRAM characterization
(e.g., [93, 144, 145, 153, 154, 211, 214–216]). We fill aggressor
rows (src and dst) with these data patterns while initializing
victim rows with the negated data pattern (e.g., if aggressor
rows are 0x00, victim rows are 0xFF). For each DRAM row, we
define the worst-case data pattern (WCDP) as the data pattern
that causes the lowest HCfirst. All experiments are conducted
using WCDP unless stated otherwise.

Temperature. We perform our experiments at four tempera-
ture levels: 50◦C, 60◦C, 70◦C, and 80◦C. All experiments are
conducted at 80◦C unless stated otherwise.
Timing Delay. We sweep the timing delay between
PRE→ACT dst command presented in Fig. 3c. All experiments
are conducted with a timing delay of violated 7.5ns (as in
Fig. 3c) unless stated otherwise.
Number of Instances Tested. To maintain a reasonable
testing time, we select six subarrays in a bank per DRAM
module: two subarrays from the beginning of the bank, two
subarrays from the middle of the bank, and two subarrays from
the end of the bank. Within each subarray, we test all rows.
4.3. COTS DRAM Chip Characterization
This section presents our characterization of the read distur-

bance caused by consecutive activation of two rows in COTS
DRAM chips.
Double-Sided CoMRA vs. RowHammer. We investigate
the variation in HCfirst across rows when we perform double-
sided CoMRA and double-sided RowHammer. In Fig. 4, the
left plot shows the distribution of the change in HCfirst (in
percentage) when we perform double-sided CoMRA compared
to double-sided RowHammer for all tested chips from four
manufacturers. The x-axis represents the percentage of all
victim rows from all tested chips from all tested manufacturers,
sorted from the most positive HCfirst change (i.e., CoMRA
has higher HCfirst compared to RowHammer) to the most
negative HCfirst change (i.e., CoMRA has lower HCfirst

compared to RowHammer). In Fig. 4, the right plot shows the
lowest HCfirst observed across all tested 316 DRAM chips
from four manufacturers for double-sided CoMRA and Row-
Hammer.

Figure 4: Distribution of the change in HCfirst with double-
sided CoMRA compared to double-sided RowHammer (left)
and the lowest HCfirst observed with double-sided CoMRA
and RowHammer (right) for each manufacturer.

Observation 1. Hammering with double-sided CoMRA sig-
nificantly decreases HCfirst compared to double-sided Row-
Hammer.
We observe that when rows are hammered with double-

sided CoMRA, the lowest HCfirst observed is 447, 3490, 1875,
and 20186 for SK Hynix, Micron, Samsung, and Nanya chips,
respectively. Compared to double-sided RowHammer, double-
sided CoMRA decreases the lowest HCfirst by 13.98×, 1.18×,
3.28×, and 1.58× for SK Hynix, Micron, Samsung, and Nanya
chips, respectively.

We hypothesize that the reason for double-sided CoMRA’s
lower HCfirst compared to double-sided RowHammer is that
the reduced interval between closing of the src wordline and

5

the activation of the dst wordline enhances trap-assisted elec-
tron migration from near the neighboring aggressor wordline
towards the victim node [142, 217] (i.e., trapped electron den-
sity is higher when the neighboring aggressor wordline is just
closed). We call for future research to fundamentally under-
stand CoMRA’s read disturbance.
Observation 2. Hammering with double-sided CoMRA de-
creases HCfirst for a large fraction of DRAM rows.
In the left plot of Fig. 4, we observe that compared to double-

sided RowHammer, 99% of DRAM rows experience the first
bitflip with fewer activation counts when performing double-
sided CoMRA for all four manufacturers.
Takeaway 1. CoMRA exacerbates DRAM’s vulnerability to
read disturbance in all four major manufacturers.
Data Pattern. We analyze the effect of data pattern on
HCfirst across DRAM rows when we perform double-sided
CoMRA. Fig. 5 shows the HCfirst distribution across all tested
DRAM rows (y-axis) for four data patterns (x-axis).1

Figure 5: HCfirst distribution of double-sided CoMRA with
different aggressor data patterns. Victim rows have negated
aggressor data pattern.

Observation 3. CheckerBoard pattern (i.e., 0x55/0xAA) is,
in general, the most effective data pattern among the ones
tested.
When performing double-sided CoMRA, in most cases,

0x55/0xAA is the most effective at inducing bitflips compared
to 0x00/0xFF, similar to RowHammer [93, 145, 153]. For ex-
ample, in Samsung chips, average HCfirst for 0x55 is 17346,
whereas for 0x00 is 21423. However, in some cases, we also ob-
serve that the worst-case data pattern is not the CheckerBoard
pattern, similar to prior works [93, 144, 145, 153, 216].
Temperature. Fig. 6 shows the HCfirst distribution of ham-
mering with double-sided CoMRA at four different tempera-
ture levels: 50◦C, 60◦C, 70◦C, and 80◦C. Each subplot is dedi-
cated to a different manufacturer, where the x-axis shows the
tested temperature levels.

Figure 6: HCfirst distribution of hammeringwith double-sided
CoMRA at different DRAM chip temperatures.

1Due to the complicated true/anti cell pattern of Nanya chips, we could
not observe bitflips within a refresh window with 0xFF and 0x00 data patterns.

Observation 4. Read disturbance effects of hammering with
double-sided CoMRA tend to get worse as temperature in-
creases.
We observe that when we perform double-sided CoMRA, as

temperature increases from 50◦C to 80◦C, the lowest HCfirst

decreases by 3.45×, 2.13×, and 1.14× for SK Hynix, Samsung,
and Nanya, respectively. On the other hand, for Micron, the
effect is the opposite, where the lowest HCfirst increases as
the temperature increases (e.g., by 1.14× from 50◦C to 80◦C). A
prior work [145] hypothesizes that the relation between read
disturbance vulnerability and temperature is caused by the
nonmonotonic behavior of charge-trapping characteristics of
DRAM cells, which results in individual DRAM rows exhibiting
different behavior. This hypothesis could also explain Micron’s
HCfirst trend as we sweep temperature.

Takeaway 2. Hammering with CoMRA is affected by tem-
perature and data pattern. Worst-case data pattern and tem-
perature tend to differ for individual DRAM rows.
Single-Sided CoMRA vs. RowHammer. We analyze the
HCfirst variation across DRAM rows for three techniques: 1)
single-sided CoMRAwhere src and dst are far away from each
other (e.g., 100 rows apart), 2) single-sided RowHammer where
we keep hammering one aggressor row, and 3) far double-
sided RowHammer where the access pattern is the same as
single-sided CoMRA except we use tRP latency between PRE
to ACT dst. We evaluate the far double-sided RowHammer to
observe the effect of reduced PRE to ACT dst latency in single-
sided CoMRA. Fig. 7 shows the HCfirst distribution of these
three techniques, where each subplot is dedicated to a different
manufacturer and colored boxes present different techniques.
We highlight the lowest observed HCfirst of each technique
for every manufacturer with a yellow rectangle.

Figure 7: HCfirst of single-sided CoMRA and RowHammer.

Observation 5. Single-sided CoMRA decreases HCfirst

compared to single-sided RowHammer and exhibits similar
HCfirst distribution with far double-sided RowHammer.
We observe that, for all four manufacturers, single-sided

CoMRA 1) is more effective than single-sided RowHammer,
and 2) performs similarly to far double-sided RowHammer.
For example, in SK Hynix chips, the lowest observed HCfirst

for single-sided CoMRA is 16495, which is 1.42× and 1.02×
lower than single-sided RowHammer and far double-sided
RowHammer, respectively.
We hypothesize that this observation is caused by in-

creased delay to issue ACT after PRE to an aggressor row (i.e.,
tAggOF F [153]). For example, in the single-sided CoMRA and

6

far double-sided RowHammer access patterns (ACT src-PRE-
ACT dst), the frequency of hammering with src is relatively
lower than single-sided RowHammer (ACT src-PRE) due to acti-
vating dst in-between every activation of src. Prior work [153]
shows that increasing tAggOF F single-sided RowHammer re-
duces the HCfirst. As a result, single-sided CoMRA and far
double-sided RowHammer 1) exhibit similar HCfirst distribu-
tions, and 2) are more effective than single-sided RowHammer.
CoMRA vs. RowPress. To understand the read disturbance
effect of CoMRA better, we analyze how increasing the time
that an aggressor row stays active (tAggOn) (i.e., increasing
the latency of ACT dst→ PRE) affects HCfirst in double-sided
CoMRA and compare double-sided CoMRA against double-
sided RowPress. Fig. 8 shows the HCfirst distribution across
DRAM rows for four tAggOn values: 36ns (tRAS , the nominal
timing parameter), 144ns (4×tRAS), 7.8µs (tREF I), and 70.2µs
(9×tREF I).

Figure 8: HCfirst distribution of double-sided CoMRA and
RowPress with different tAggOn values.

Observation 6. When performing double-sided CoMRA,
increasing tAggOn significantly reduces HCfirst.
For example, in Micron chips, CoMRA with tAggOn=70.2µs

leads to a 78.74× reduction in average HCfirst compared to
CoMRAwith tAggOn=36ns. We also observe a similar trend for
RowHammer/RowPress: when the tAggOn increased to 70.2µs
from 36ns, average HCfirst decreases by 31.15×, similar to
prior works [153, 211, 218].

Observation 7. At tAggOn=tREF I , double-sided RowPress
becomes more effective than double-sided CoMRA.
We observe that double-sided CoMRA leads to a reduction

in HCfirst compared to double-sided RowHammer/RowPress
accross tAggOn values of 36ns, 144ns, and 70.2µs. For example,
at a tAggOn value of 144ns for Micron chips, average HCfirst

of CoMRA is 1.27× lower than RowPress. However, at 7.8µs,
RowPress becomes more effective and has 1.17× lower average
HCfirst than CoMRA.

Takeaway 3. Pressing with CoMRA is more effective than
hammering with CoMRA.
Timing Delay. We analyze the violated latency for
PRE→ACT dst to develop more insights into the read distur-
bance effect of CoMRA. Fig. 9 shows the HCfirst distribution
of double-sided CoMRA for four violated PRE→ACT dst latency
values.
Observation 8. HCfirst increases as the latency of
PRE→ACT dst increases.
For example, as the PRE→ACT dst latency increases from

Figure 9: HCfirst distribution of double-sided CoMRA for vary-
ing numbers of latency.

7.5ns to 12ns, average HCfirst increases by 3.10×, 1.18×,
1.17×, and 3.01× for SK Hynix, Micron, Samsung, and Nanya.
We hypothesize that the CoMRA access pattern becomes more
of a RowHammer access pattern as the latency increases. As a
result, HCfirst distribution exhibits higher values when the
latency increases.
Copy Direction. We analyze how copy direction affects the
HCfirst. Instead of copying from src to dst, we copy from
dst to src and test the HCfirst change distribution. Fig. 10
shows the change in HCfirst across rows.

SK Hynix Micron Samsung Nanya
-60%

-30%

0%

30%

60%

90%

120%

H
C

fi
rs

t
C

h
a

n
g

e

Double-Sided

SK Hynix Micron Samsung Nanya
-8%

-4%

0%

4%

8%
Single-Sided

Figure 10: Distribution of the change in HCfirst when the copy
direction is reversed.

Observation 9. In most cases, copy direction has a small
effect on HCfirst.
We observe that, across all four manufacturers, the average

HCfirst change is 2.79% (i.e., 1.03×) and 0.40% (i.e., 1.004×)
for double-sided and single-sided, respectively. However, in a
small fraction of DRAM rows, we observe up to 20.10× and
2.39× change in HCfirst for double-sided and single-sided,
respectively.
Spatial Variation. Fig. 11 shows the HCfirst distribution of
double-sided CoMRA across DRAM rows (y-axis) based on a
victim row’s location in a subarray (x-axis).

B BM M ME E
0

15K

30K

45K

60K

SK Hynix

B BM M ME E

4K

6K

7K

9K

Micron

B BM M ME E
0

15K

30K

45K

60K
Samsung

B BM M ME E
30K

60K

90K

120K

150K
Nanya

Victim Row Location in the Subarray
(B: Beginning, BM: Beginning-Middle, M: Middle, ME: Middle-End, E: End)

H
C

fi
rs

t

Figure 11: HCfirst of double-sided CoMRA based on the victim
row’s location in a subarray.

Observation 10. HCfirst varies based on the victim row’s
location in a subarray.
We observe that the physical location of the victim row

in the subarray can lead to variations in average HCfirst of
up to 1.40× for SK Hynix, 2.25× for Micron chips, 2.57× for

7

Samsung chips, and 1.04× for Nanya chips.

Observation 11. Each manufacturer has a different HCfirst

variation trend with the victim row location in the subarray.
For example, in SKHynix chips, victim rows at the beginning

of a subarray (i.e., the first 20% rows) exhibit lower average
HCfirst than others, while in Samsung chips, victim rows in
the middle have the lowest average HCfirst. We hypothesize
that differences in DRAM circuit design and manufacturing
process technology could lead to a different HCfirst variation
trend for each manufacturer.
Takeaway 4. CoMRA 1) decreases HCfirst significantly
compared to RowHammer, and 2) gets affected by data pat-
tern, temperature, timing delays, copy direction, and spatial
variation.
5. Read Disturbance Effect of Simultaneous

Multiple-Row Activation (SiMRA) in
COTS DRAM Chips
We present an experimental analysis of SiMRA’s read dis-

turbance effect in COTS DRAM chips. SiMRA can be used to
perform many in-DRAM operations, including 1) bulk bitwise
operations (e.g., AND, OR,NAND, and NOR) [73–75, 78, 79],
2) copying data to multiple rows [79], and 3) generating true
random numbers [76]. To understand the read disturbance
effect of SiMRA, we repeatedly perform SiMRA to hammer
multiple rows simultaneously.
5.1. Hammering with SiMRA
Key Idea. We exploit SiMRA to simultaneously activate multi-
ple rows and repeatedly hammermany rows. To do so, we issue
ACT-PRE-ACT command sequence in quick succession, similar
to prior works [73–76, 78, 79]. This results in simultaneously
activated rows to be aggressor rows and their neighboring
rows to be victim rows. Fig. 12 illustrates our key idea to per-
form hammering using SiMRA. Depending on the location
of simultaneously activated rows, we can perform either 1) a
double-sided attack where any two activated rows sandwich a
victim row (Ra and Rb in Fig. 12a) and 2) a single-sided attack
where activated rows do not sandwich a victim row (Fig. 12b).

DRAM Subarray

Ra

victim
aggressor

... 3ns

time

3ns

ACT*

One Hammer Cycle

PRE* ACT*

tRAS

(a) Double-Sided (b) Single-Sided

PRE

(c) Access Pattern

1 1 21
Rb aggressor
Rc aggressor

DRAM Subarray

Ra

Rc

aggressor

aggressor
Rb aggressor

Rd aggressor

victim

Rd aggressor

...

...

victim

victim

*Assume this command sequence simultaneously activate Ra, Rb, Rc, and Rd

Figure 12: Example of (a) double-sided SiMRA attack, (b) single-
sided SiMRA attack, and (c) their access pattern.

Access Pattern & Operation. Fig. 12c illustrates our access
pattern to hammer using SiMRA. Our attack consists of two
key steps. First, we issue an ACT-PRE-ACT command sequence
with reduced timing parameters to simultaneously activate
multiple aggressor rows, which are Ra, Rb, Rc, and Rd in
our example (1). Second, we wait for tRAS and issue a PRE
command to complete the SiMRA operation (2). We count one
SiMRA operation as a single hammer and repeatedly perform

SiMRA operations to induce bitflips in victim rows.
5.2. Experimental Methodology
We use the same metrics, algorithms, data patterns, and

temperature levels as CoMRA experiments (§4.3). This sec-
tion explains the rest of the methodology unique to SiMRA
experiments.
Finding Simultaneously Activated Rows. Prior works [76,
78, 79] show that issuing an ACT-PRE-ACT command sequence
and following with a WR command overwrites the simultane-
ously activated rows with data supplied with the WR command.
We follow the same methodology and reverse engineer the si-
multaneously activated rows with the ACT-PRE-ACT command
sequence for every row address in a tested subarray. Similar
to prior works [78, 79], we observe that COTS DRAM chips
can activate 2, 4, 8, 16, and 32 rows in the same subarray. We
define a term called SiMRA-N where N is the number of simul-
taneously activated rows (i.e., 2, 4, 8, 16, or 32). For example,
SiMRA-16 stands for simultaneous activation of 16 rows.
Timing Delay. We sweep two key timing delays in the ACT-
PRE-ACT command sequence in Fig. 12c: 1) from ACT to PRE and
2) from PRE to ACT. All experiments are conducted with timing
delays of 3ns (as shown in Fig. 12c) unless stated otherwise.
Number of Instances Tested. To maintain a reasonable test-
ing time, we select a total of six subarrays in one bank per
DRAM module: two subarrays from the beginning of the bank,
two subarrays from the middle of the bank, and two subarrays
from the end of the bank. Within each subarray, we randomly
test 100 different groups of rows that are simultaneously acti-
vated each for 2-, 4-, 8-, 16-, and 32-row activation.
5.3. COTS DRAM Chip Characterization
This section presents our characterization of the read dis-

turbance effect of SiMRA in SK Hynix chips. While we
test all four manufacturers, we note that we do not observe
SiMRA in Samsung, Micron, and Nanya chips, similar to prior
works [74, 76, 78, 79, 195].2
Double-Sided SiMRA vs. RowHammer. We investigate the
variation in HCfirst across DRAM rows when we perform
double-sided SiMRA and double-sided RowHammer. In Fig. 13,
the left plot shows the distribution of the change in HCfirst

(in percentage) when we perform double-sided SiMRA with
varying numbers of simultaneously activated rows compared
to double-sided RowHammer.3 The x-axis represents the per-
centage of all tested victim rows, sorted from the most positive
HCfirst change to the most negative HCfirst change. Fig. 13
(right) shows the lowest HCfirst observed across all DRAM
chips for double-sided SiMRA with varying numbers of simul-
taneously activated rows and RowHammer.

Observation 12. Hammering with double-sided SiMRA
greatly decreases HCfirst.

2Prior works [74,76,78,79,195] hypothesize that some chips ignore a DRAM
command when the command greatly violates nominal timing parameters.

3Even though we simultaneously activate 32 rows, we could not find an
activated row group that sandwiches a victim row. Hence, for double-sided
SiMRA, we show up to 16-row activation (i.e., SiMRA-16).

8

P1 P25 P50 P75 P90 P100

-100

-50

0

50

100

150

200

250
H

C
fi

rs
t

C
h

a
n

g
e

(%
) #Simultaneously Activated Rows

2 4 8 16

1 2 4 8 16
#Simultaneosly Activated Rows

1K

2K

3K

4K

5K

L
o

w
es

t
H

C
fi

rs
t 4123

81 26 48 33

RowHammer
SiMRA

Figure 13: Distribution of the change in HCfirst change
with double-sided SiMRA compared to double-sided RowHam-
mer (left) and the lowest HCfirst observed with double-sided
SiMRA and RowHammer (right).

For double-sided SiMRAwith 2-, 4-, 8- and 16-row activation,
respectively 100.00%, 98.79%, 97.40%, and 94.94%, of victim
rows experience lower HCfirst than RowHammer. At least
25.19% of victim rows exhibit more than 99% reduction in
HCfirst. We observe that performing double-sided SiMRA
decreases the HCfirst down to 26.
We observe that the reduction in HCfirst is not propor-

tional to the number of simultaneously activated rows since
at least 25.19% of victim rows exhibit >99% reduction (i.e.,
>100×reduction) in HCfirst for all tested N (i.e., numbers
of simultaneously activated rows). For example, one tested
victim row shows a 158.58x (124.94x) reduction in HCfirst

when performing double-sided SiMRA with 4-row activation
(32-row activation), which is significantly higher than 4x (32x)
and non-monotonic with N.
Takeaway 5. SiMRA drastically exacerbates DRAM’s vul-
nerability to read disturbance.
Data Pattern. We analyze the effect of data pattern on
HCfirst across DRAM rows when we perform double-sided
SiMRA. Fig. 14 shows the HCfirst distribution of double-sided
SiMRA for four tested data patterns. Each boxplot is dedicated
to a different number of simultaneously activated rows (i.e.,
N).

Figure 14: HCfirst distribution of double-sided SiMRA for dif-
ferent aggressor data patterns and numbers of activated rows.
Victim rows have negated aggressor data pattern.

Observation 13. Data pattern significantly affects HCfirst.
We observe that, across all tested N values, initializing

the victim rows with a 0x00 data pattern increases average
HCfirst by up to 57.80× when compared to other data pat-
terns.
Observation 14. SiMRA and RowHammer have opposite
bitflip directions.
The dominant bitflip direction for SiMRA is 1 to 0 in all

tested N values as also shown in Observation 13 that 0xFF as
the victim data pattern (i.e., 0x00 as aggressor data pattern) re-
sults in much lower HCfirst than 0x00 (i.e., 0xFF as aggressor

data pattern). For RowHammer (not shown in the figure), we
observe that the dominant bitflip direction is 0 to 1, similar to
prior work’s findings [153, 154, 219].

Takeaway 6. Double-sided SiMRA is significantly affected
by data pattern. The directionality of SiMRA and RowHam-
mer bitflips are opposite.
Temperature. Fig. 15 shows the HCfirst of double-sided
SiMRA-N at four temperature levels: 50◦C, 60◦C, 70◦C, and
80◦C.

Figure 15: HCfirst distribution of double-sided SiMRA at dif-
ferent temperatures and numbers of simultaneously activated
rows.

Observation 15. HCfirst decreases as temperature in-
creases.
Increasing temperature consistently decreases HCfirst for

all N. For example, from 50◦C to 80◦C, average HCfirst de-
creases by 3.24×, 3.10×, 3.02×, and 3.26× for 2-, 4-, 8-, and
16-row activation.

We hypothesize that double-sided SiMRA has a different
underlying silicon-level mechanism compared to double-sided
RowHammer due to two observations. First, SiMRA and Row-
Hammer have opposite bitflip directionality. Prior works
on both device-level [217, 220] and real DRAM characteriza-
tion [153, 154, 219] show that the dominant bitflip direction for
RowHammer is 1 to 0, whereas we observe that for SiMRA,
it is 0 to 1 (Observation 14). Second, SiMRA and RowHam-
mer have different temperature dependence. Prior real DRAM
characterization works [145, 153] show that there is no clear
relation between RowHammer and temperature, whereas we
observe that for SiMRA, increasing temperature worsens the
read disturbance vulnerability (Observation 15). We hope and
expect that future device-level studies (inspired by this work)
will develop a rigorous device-level understanding of the read
disturbance effect of CoMRA and SiMRA operations as device-
level studies (e.g., [221, 222]) did for RowPress after the Row-
Press paper [153] demonstrated the empirical basis for the
RowPress phenomenon.
Single-Sided SiMRA. Fig. 16 shows the HCfirst distribution
for single-sided SiMRA-N and single-sided RowHammer. The
lowest HCfirst of each technique is highlighted with a yellow
rectangle.

Observation 16. Single-sided SiMRA exhibits a lower aver-
age & minimum HCfirst than single-sided RowHammer.
For example, compared to single-sided RowHammer, the

lowest HCfirst decreases by 1.17× when performing single-
sided SiMRA with 32 rows (i.e., 32-row activation).

9

Figure 16: HCfirst distribution of single-sided SiMRA with
varying numbers of activated rows and RowHammer.

Observation 17. HCfirst consistently decreases as the num-
ber of simultaneously activated rows increases when per-
forming single-sided SiMRA.
For example, average (lowest) HCfirst for SiMRA-32 is

1.47× (1.05×) lower than SiMRA-2. We hypothesize that this
potentially results from having more aggressor rows beyond
the immediate aggressor of the victim row (i.e., far-aggressor
rows) which contribute to inducing bitflips in the victim row,
thereby reducing HCfirst, similarly to the findings of prior
work [128].
SiMRA vs. RowPress. To develop a better understanding of
SiMRA’s read disturbance effect, we conduct an experiment
where we sweep tAggOn for double-sided SiMRA.We test three
tAggOn values in addition to tRAS (four in total) after issuing
ACT-PRE-ACT commands, which keeps the simultaneously acti-
vated rows open for longer times. Fig. 17 shows the HCfirst

distribution of double-sided SiMRA and RowPress (we refer to
RowPress at 36ns or tRAS as RowHammer).

Figure 17: HCfirst distribution of RowPress and SiMRA with
varying numbers of row activations and tAggOn values.

Observation 18. HCfirst decreases greatly as tAggOn in-
creases.
For example, when tAggOn increases from 36ns to 70.2µs

with SiMRA, average HCfirst decreases by between 144.93×-
270.27× across all numbers of simultaneously activated rows.
Timing Delay. Fig. 18 shows how HCfirst changes when
we sweep timing delays between ACT-PRE and PRE-ACT in ACT-
PRE-ACT.

Figure 18: HCfirst distribution of double-sided SiMRA for dif-
ferent timing delays between ACT-PRE and PRE-ACT.

Observation 19. Increasing PRE-ACT latency slightly de-
creases HCfirst.

For example, SiMRA-16 with ACT→PRE=3ns, average
HCfirst decreases by 1.23× when PRE→ACT increases from
1.5ns to 4.5ns.
Observation 20. Specific latency values fail to fully activate
aggressor rows, which leads to increase in HCfirst.
Choosing ACT→PRE latency as 1.5ns, increases average

HCfirst by 2.28×. We observe that (similar to prior work [79])
some aggressor rows are not fully activated (i.e., not all cells
are activated) in very low latencies. We hypothesize that due
to this partial activation of aggressor rows leads to a drastic
increase in HCfirst in some cases.
Spatial Variation. Fig. 19 shows the HCfirst distribution
of double-sided SiMRA (y-axis) with varying numbers of acti-
vated rows (each subplot) based on a victim row’s location in
a subarray (x-axis).

B BM M ME E
0

500

1K

1K

2K

2-Row Activation

B BM M ME E
0

1K

3K

4K

4-Row Activation

B BM M ME E
0

3K

6K

9K

12K

8-Row Activation

B BM M ME E
0

15K

30K

45K

16-Row Activation

Victim Row Location in the Subarray
(B: Beginning, BM: Beginning-Middle, M: Middle, ME: Middle-End, E: End)

H
C

fi
rs

t

Figure 19: HCfirst distribution of double-sided SiMRA based
on the victim row’s location in a subarray.

Observation 21. The effectiveness of SiMRA depends on
the victim row’s location in a subarray.

HCfirst varies across different victim row locations in a
subarray, and this variation is different for each number of
simultaneously activated rows. For example, for 4-row acti-
vation, victim rows at the beginning of a subarray experience
the highest HCfirst distribution, whereas for 8-row activa-
tion, victim rows at the end of a subarray exhibit the highest
HCfirst distribution.

Takeaway 7. The operating parameters (i.e., data pattern,
temperature, timing delays, and spatial variation) impact
SiMRA’s read disturbance effect.
6. Combined Read Disturbance Effect of Row-

Hammer with PuD in COTS DRAM Chips
We demonstrate how combining RowHammer with CoMRA

and SiMRA affects read disturbance vulnerability in real DRAM
chips. To understand how much the observed HCfirst using
RowHammer decreases when combined with multiple-row
activation: 1) we hammer a victim row using multiple-row
activation for a fixed number of times and 2) we perform Row-
Hammer.4

6.1. Experimental Methodology
Fig. 20 shows how RowHammer can be combined with a one

(Fig. 20a presents an example with CoMRA) or two (Fig. 20b)
multiple-row activation techniques. We combine RowHammer

4Our tested access pattern is one of many ways of combining the CoMRA,
SiMRA, and RowHammer access patterns. There could be more effective access
patterns that reduce HCfirst even more. We leave this exploration, which
requires extensive characterization and analysis, to future work.

10

with a single multiple-row activation technique in two steps.
First, we characterize the HCfirst of a row when only ham-
mered with a multiple-row activation technique (e.g., Fig. 20a-
1 for CoMRA). Second, we characterize the HCfirst of a vic-
tim row with only RowHammer (e.g., Fig. 20a- 2) Third, we
hammer the victim row to a fraction of the multiple-row acti-
vation’s HCfirst value. We use three levels of hammer count
for our experiments: 10%, 50%, and 90% of multiple-row activa-
tion’sHCfirst value. For example, if a victim row hasHCfirst

of A when performing CoMRA only (Fig. 20- 1) and if we are
to test for 10%, we hammer that victim row for A/10 times
with CoMRA, as in Fig. 20a. Fourth, we continue hammering
the victim row with RowHammer until the first bitflip is ob-
served (e.g., Fig. 20a- 3). We combine RowHammer with both
multiple-row activation techniques similarly by characteriz-
ing HCfirst values (Fig. 20b- 1) and hammering a victim row
with each technique up to a fraction and then continuing with
RowHammer until a bitflip is observed (Fig. 20b- 3). Fifth, we
report the HCfirst change of these combined access patterns
compared to using RowHammer only (e.g., B-C decrease in
Fig. 20a and C-D decrease in Fig. 20b).

(a) Access Pattern for CoMRA (1), RowHammer (2),
and Combined RowHammer and CoMRA (3)

Hammer
Count

A1 2

…

B2

Hammer
CountRH

1 A/10*

…
RH…

A
Hammer

CountRH RH RH
1

… RH …

C

HCfirst
Reduction

1

2

3

*Using 10% of CoMRA’s HCfirst
as a Hammer Count

(b) Access Pattern for SiMRA and CoMRA (1),
RowHammer (2), and Combined RowHammer,

SiMRA and CoMRA (3)

Hammer
Count

1 A

…

Hammer
CountS S C

1 A/10*

… C

A/10+B/10**

HCfirst Reduction

1

2

3
*Using 10% of

SiMRA’s
HCfirst

1 B
…

…

D

**Using 10% of
CoMRA’s

HCfirst

CoMRA
RowHammer’s

HCfirst Hammer
CountRH RH RH

1

… RH …

…

C

CoMRA’s
HCfirstCoMRACoMRA

CoMRACoMRA

SiMRA SiMRA CoMRA CoMRA

RH RH

Figure 20: Example access pattern of combining RowHammer
(a) with CoMRA and (b) CoMRA and SiMRA together.

6.2. COTS DRAM Chip Characterization

We present our characterization of the combined RowHam-
mer and multiple-row activation pattern in the same chips
that are used in SiMRA characterization (§5). We conduct our
experiments at 80◦C using the double-sided pattern for all
techniques with WCDP for each DRAM row.
Combining RowHammer with CoMRA. Fig. 21 shows the
change in HCfirst distribution and the absolute HCfirst val-
ues across DRAM rows when we perform combined double-
sided RowHammer and CoMRA, compared to double-sided
RowHammer. The x-axis shows the hammer count for CoMRA
as a percentage of HCfirst observed for each row.

Figure 21: Change inHCfirst (left) and absoluteHCfirst values
(right) when combining RowHammer and CoMRA. Hammer
count of 0% represents performing RowHammer only.

Observation 22. DRAM rows experience significantly
lower HCfirst when performing combined RowHammer
and CoMRA.
Compared to double-sided RowHammer, 95.33% of tested

victim rows show lower HCfirst when we combine double-
sided RowHammer with CoMRA. HCfirst reduction increases
as we increase the hammering fraction of CoMRA. For example,
when a victim row is first hammered with CoMRA until 90%
and 10% of CoMRA’s HCfirst and then hammered with Row-
Hammer, HCfirst decreases by 1.34× and 1.02× (compared
to RowHammer), respectively.
Combining RowHammer with SiMRA. Fig. 22 shows the
change in HCfirst and the absolute HCfirst values when we
perform combined double-sided RowHammer and SiMRA.

Figure 22: Change inHCfirst (left) and absoluteHCfirst values
(right) when combining RowHammer and SiMRA. Hammer
count of 0% represents performing RowHammer only.

Observation 23. DRAM rows tend to experience lower
HCfirst when performing combined RowHammer and
SiMRA.
Combining RowHammer with SiMRA 1) decreases HCfirst

as the hammer count for SiMRA increases and 2) is less effec-
tive than combining RowHammer with CoMRA. For example,
in combined RowHammer and SiMRA, the average HCfirst

change in the highest hammer count (i.e., 90% percentage) is
1.22× lower than combined RowHammer and CoMRA. We
hypothesize that the most vulnerable cell to RowHammer in
some victim rows is not vulnerable to SiMRA. Thus, combining
RowHammer with SiMRA does not decrease the HCfirst of all
tested victim rows as much as combining RowHammer with
CoMRA.
Combining RowHammer with CoMRA and SiMRA.
Fig. 23 shows the change in HCfirst when we combine double-
sided RowHammer with CoMRA and SiMRA together (e.g.,
Fig. 20b- 3).

0 10 50 90
Hammer Count as a Percentage of SiMRA’s HCfirst

25

0

−25

−50

−75

−100H
C

fi
rs

t
C

h
a

n
g

e

Hammer Count as a Percentage of CoMRA’s HCfirst

0 10 50 90

Figure 23: Change in HCfirst for combined RowHammer,
CoMRA, and SiMRA compared to only RowHammer.

Observation 24. Combined RowHammer with CoMRA and
SiMRA together is themost effective combined access pattern
to decrease HCfirst.
We observe that when we combine RowHammer with

11

CoMRA and SiMRA, the majority of the DRAM rows exhibit
much lower HCfirst compared to performing only RowHam-
mer. The minimum average HCfirst of combined RowHam-
mer with CoMRA and SiMRA together is 1.66× lower than
performing only RowHammer.

Takeaway 8. Combining RowHammer with CoMRA and/or
SiMRA decreases HCfirst, and combining RowHammer
with CoMRA and SiMRA together is the most effective pat-
tern across all tested access patterns.

7. PuDHammer in the Presence
of In-DRAM TRR
To prevent read disturbance bitflips, DRAM manufacturers

equip their chips with amitigationmechanism broadly referred
to as Target Row Refresh (TRR) [119, 125, 156–158]. Manufac-
turers do not disclose the operational principles or implemen-
tations of proprietary TRR versions (e.g., in DDR4 [119, 125]).
At a high level, TRR 1) identifies potential aggressor rows as
the memory controller issues activate commands to the DRAM
chip and 2) preventively refreshes victim rows when the mem-
ory controller issues a periodic REF command. We demonstrate
that in a tested SK Hynix DDR4 DRAM module [223], both
CoMRA and SiMRA bypass the TRR mechanism and induce
more read disturbance bitflips than RowHammer.
Uncovering the TRR Mechanism. We uncover the TRR
mechanism in the tested module using U-TRR [125, 224]. We
observe that the tested module uses a sampling-based TRR
mechanism, where TRR probabilistically identifies one aggres-
sor row by sampling row addresses of the last 450 ACT com-
mands before issuing the TRR-capable REF (i.e., REF command
that refreshes victim rows).
Access Pattern. We use the custom access pattern reported by
U-TRR [125] for RowHammer and CoMRA. The custom access
pattern (which we call the N-sided pattern) uses N aggressor
rows, (we sweep N from 1 to 10) and one dummy row. Our
custom access pattern consists of four key steps. First, we
perform a total of 156 hammers for N aggressor rows in one
periodic refresh window (see §2.1).5 Second, we hammer the
dummy row 468 times (i.e., 156×3 times, the maximum number
of ACT commands that can be issued in three refresh windows)
to make the TRR mechanism refresh the victims of the dummy
row while activations to the N aggressor rows go unnoticed.
For SiMRA, instead of using N aggressor rows, we perform
SiMRA (described in §5) that simultaneously activates multiple
(2, 4, 8, 16, and 32) rows. We hammer each aggressor row
500K times. We repeat this test 5 times and report the average,
maximum, and minimum bitflip counts across all tests.
Results. Fig. 24 shows the number of bitflips observed in
victim rows on average across all tests, with error bars rep-
resenting the range across all tests. The top plot shows the
results when TRR is disabled (i.e., w/o TRR), and the bottom
subplot shows the results when TRR is enabled (i.e., w/ TRR).
Each column of subplots is dedicated to a different hammering

5The memory controller issues a REF once every 7.8µs. This allows at most
156 ACT commands to a single DRAM bank in the tested module in a refresh
window.

technique.

1 2 3 4 5 6 7 8 9 10
0

5K

10K

15K

w
/

o
T

R
R

RowHammer

1 2 3 4 5 6 7 8 9 10
0

5K

10K

15K

w
/

o
T

R
R

CoMRA

2 4 8 16 32
0

80K

160K

240K

w
/

o
T

R
R

SiMRA

1 2 3 4 5 6 7 8 9 10
0

20

40

60 w
/

T
R

R

1 2 3 4 5 6 7 8 9 10

Number of Aggressors

0

20

40

60 w
/

T
R

R
2 4 8 16 32

0

80K

160K

240K w
/

T
R

RT
o

ta
l

B
it

fl
ip

s

Figure 24: Number of bitflips in victim rows averaged across
all tests when performing RowHammer, CoMRA, and SiMRA
without TRR (top) and with TRR (bottom).

Observation 25. SiMRA and CoMRA bypass the TRR mech-
anism and induce more bitflips than RowHammer.
For example, SiMRA with 32-row activation and 2-sided

CoMRA respectively induce 11340× and 1.10× more bitflips
than 2-sided RowHammer on average across all 5 iterations.

Observation 26. TRR cannot effectively mitigate SiMRA-
induced read disturbance bitflips.
We observe that SiMRA bitflips reduce only 15.62% on av-

erage with TRR, whereas RowHammer and CoMRA bitflips
reduce greatly (e.g., 99.89% reduction on average for RowHam-
mer). We hypothesize that this is due to two reasons. First,
since SiMRA only issues two ACT commands back-to-back (i.e.,
ACT-PRE-ACT, see §2.3 and §5.1) to simultaneously activate
up to 32 rows, the TRR mechanism likely can only mitigate the
bitflips in the victims of the two aggressor row addresses is-
sued with the two ACT commands. Second, since the HCfirst

of SiMRA is much lower (e.g., 26) than the maximum number
of ACT commands we can issue in a periodic refresh window
(i.e., 156), SiMRA induces read disturbance bitflips before the
memory controller can issue a TRR-capable REF command.

Takeaway 9. SiMRA and CoMRA bypass in-DRAM TRR
mechanism and are more effective than RowHammer to in-
duce read disturbance bitflips.

8. Mitigating PuDHammer
We experimentally demonstrate the potential interaction be-

tween read disturbance andmultiple-row activation-based PuD
mechanisms. We perform multiple-row activation operations
within the constraints of current DRAM chips. Today’s DRAM
chips are not designed to support these operations. Our results
provide insights into read disturbance challenges that PuD-
enabled systems might face and show that read disturbance
vulnerability should be taken into account while designing
PuD-enabled systems.6
Future work should investigate countermeasures in detail

(based on specific PuD designs) and propose further counter-
measures based on our findings. We leave a detailed investiga-
tion of such analyses and countermeasures for future work, but
1) sketch three types of countermeasures against PuD-based
read disturbance bitflips and 2) adapt and evaluate the state-

6Future solutions to such challenges should include designing DRAM
chips to fundamentally 1) support CoMRA and SiMRA and 2) mitigate read
disturbance. Our analysis aids the development of such designs by providing
new experimental insights.

12

of-the-art RowHammer mitigation standardized by industry,
called Per Row Activation Counting (PRAC) [159–161, 163], to
account for PuDHammer.
8.1. Countermeasures Against PuDHammer
Separating PuD-enabled rows. Prior PuD architectures [29,
32,80,225] split a DRAM array into two parts, where a small set
of rows are used for computation (compute region) and the re-
maining large fraction of rows for storing data (storage region).
In such an architecture, CoMRA and SiMRA operations would
happen repeatedly in the compute region, resulting in activa-
tion counts exceeding what we experimentally demonstrated
to cause read disturbance bitflips (e.g., to perform an 8-bit mul-
tiplication operation, SIMDRAM [32] issues 663 CoMRA and
SiMRA operations). Future PuD systems can be designed with
two constraints: 1) SiMRA operations are allowed only on the
compute region rows, and 2) at most one of the operands in
CoMRA operations (source and destination rows) can be a row
outside of the compute region.
These two constraints 1) limit SiMRA’s and double-sided

CoMRA’s negative impact on read disturbance to the com-
pute region and 2) limit the HCfirst decrease on storage re-
gion rows to the reduction of single-sided CoMRA operations.
To prevent read disturbance bitflips in the compute region,
each row in the relatively small compute region (e.g., 3 to 32
rows [29, 32, 79, 80, 225] out of 1024 rows in a DRAM subar-
ray [78, 79, 195, 216, 218, 226]) can be periodically refreshed
after a number of SiMRA operations (e.g., 20). These refresh
operations can be spread over time similarly to how periodic
refreshes are performed (i.e., after each SiMRA operation, a por-
tion of rows in the compute region are refreshed). To prevent
read disturbance bitflips outside the compute region, existing
RowHammer mitigation mechanisms can be simply configured
for a reduced HCfirst value as the reduction due to single-
sided CoMRA is less than 2% (Fig. 7). Doing so is possible at
low hardware complexity as this approach does not require
sophisticated tracking mechanisms, however, it might cause
performance and energy overheads.
Weighted contribution of different row activation types.
Based on the HCfirst reduction factors of CoMRA and SiMRA,
each CoMRA or SiMRA operation can be accounted for an
equivalent hammer count using double-sided hammering, e.g.,
assuming that CoMRA reduces HCfirst by 20×, each CoMRA
operation can increment row activation counters by 20. Prior
works [153, 227] propose a similar approach to prevent Row-
Press bitflips by slightly modifying existing RowHammer miti-
gation mechanisms.
Clustered multiple-row activation. We demonstrate that
double-sided SiMRA significantly reduces HCfirst (§5). This
operation is possible because the row decoder circuitry simul-
taneously activates multiple rows in a variety of locations
within the subarray (as shown in prior work [79]), thereby
causing some of the simultaneously activated rows to sand-
wich an unactivated row. Future PuD-enabled systems can
mitigate double-sided SiMRA by employing row decoder cir-
cuits that cluster simultaneous row activation by guaranteeing

that adjacent rows are activated, i.e., there are no sandwiched
unactivated rows.
8.2. Adapting Existing RowHammer Mitigations
In this section, we adapt and evaluate the state-of-the-art

industry solution to RowHammer (i.e., PRAC [159–161, 163])
to mitigate PuDHammer. We demonstrate that adapted PRAC
incurs 48.26% average system performance overhead across all
tested workloads.
PRAC Overview. PRAC [159–161, 163], as described in the
JEDECDDR5 standard updated in April 2024 [163], implements
a counter for each row. Upon an ACT, PRAC increases the
counter of the activated row and thus accurately measures the
activation counts of all rows. When a row’s activation count
reaches a threshold (the read disturbance threshold (RDT) is
the minimum number of activations needed to induce a read
disturbance bitflip in a victim row), the DRAM chip asserts a
back-off signal [159–161, 163], which forces the memory con-
troller to issue a command called RFM [228]. The DRAM chip
preventively refreshes potential victim rows upon receiving
an RFM command.7
Key Challenge: Updating Multiple Counters in PRAC. A
SiMRA operation activates multiple rows simultaneously and
thus requires updating multiple PRAC row activation counters
simultaneously to prevent SiMRA-induced read disturbance
bitflips. However, since PRAC is designed to update only one
counter upon an ACT command (i.e., the one corresponding
to the activated row), we need to modify the counter organi-
zation and operation in PRAC to support updating multiple
counters. We assume a PRAC implementation described in
Panopticon [231] where the counters reside in different subar-
rays than the rows that store data.8 We provide new methods
to properly update multiple counters in PRAC: 1) an area-
optimized solution and 2) a performance-optimized solution.
Area-Optimized Solution: PRAC-AO. In the area-optimized
solution (PRAC-AO), we sequentially update the activation
counters of each simultaneously activated row (i.e., update
counters one by one). Doing so requires only one incrementer
circuitry in the DRAM chip to update counters and a small
subarray (or mat) where row activation counters are kept (sep-
arately from the simultaneously activated rows), as proposed
by Panopticon. However, since we need to update multiple
(e.g., up to 32) counters, the latency for updating all counters
becomes significantly higher than the standard memory access
latency (tRC , typically 46 ns-50 ns). For example, if the SiMRA
operation activates 32 rows simultaneously, the mitigation
mechanism needs to update 32 counters, which translates to a
latency of 32×tRC (approximately 1.5 µs-1.6 µs).

PRAC-AO likely induces prohibitive performance overheads
due to the significant counter update latency. If we employ
this solution as the read disturbance mitigation mechanism, 1)

7We refer the reader to recent works [159–161,163,229,230] for more detail
on PRAC.

8If counters are placed in the same subarray as the simultaneously activated
DRAM rows, the counters that are simultaneously activated lose their values
as SiMRA is a destructive operation that overwrites all activated rows with the
result of the analog majority operation. Therefore, PRAC becomes insecure.

13

SiMRA operation throughput likely reduces significantly, and
2) every SiMRA operation blocks the target DRAM bank for
≈1.5 µs during which the memory controller cannot serve any
memory request targeting the same bank. Such performance
degradation would defeat the purpose of using PuD opera-
tions. To avoid this, we propose and evaluate a performance-
optimized solution (PRAC-PO) that does not suffer from the
drawbacks of the area-optimized solution.

Performance-Optimized Solution: PRAC-PO. We simulta-
neously update the activation counters of all simultaneously
activated rows (i.e., update all counters at once). By doing
so, we can alleviate the significant counter update latency of
the area-optimized solution (e.g., reducing 32×tRC to tRC).
Assuming we can activate up to N rows simultaneously, this
solution requires 1) simultaneous access to N different counter
values, and 2) N incrementer circuits to update all the counters
simultaneously. We leave a detailed area overhead evaluation
of this technique to future work.

Weighted Counting Optimization. Due to prohibitive per-
formance overheads of PRAC-AO as discussed in the PRAC-
PO section, we optimize and focus our analysis on PRAC-PO.
PRAC-PO securely prevents all read disturbance bitflips when
configured for an RDT of ≈20 to account for SiMRA-induced
read disturbance failures. However, this is a conservative con-
figuration of our performance-optimized solution: the config-
uration induces prohibitive system performance overheads (as
shown in Fig. 25). This is because the solution does not take the
heterogeneity in the read disturbance effects of RowHammer,
CoMRA operations, and SiMRA operations. We find that the
lowest HCfirst values for RowHammer, CoMRA, and SiMRA
are ≈4K, ≈400, and ≈20, respectively. Leveraging this hetero-
geneity, we propose an optimization to reduce the performance
overheads of PRAC: weighted contribution of different row
activation types. We assign each operation (i.e., RowHammer,
SiMRA, and CoMRA) a weight equal to the lowest HCfirst for
RowHammer divided by that for the operation (e.g., 4K/20 =
200 for SiMRA and 4K/400 = 10 for CoMRA). Thus, we count
each SiMRA operation as 200 hammers (e.g., by adding 200
to the counters of simultaneously activated rows) and each
CoMRA operation as 10 hammers to each row that participates
in the SiMRA or CoMRA operation where 1 hammer is an
activation of a DRAM row.

Evaluation Methodology. To evaluate performance, we con-
duct cycle-level simulations using Ramulator 2.0 [232, 233]
(new version of Ramulator [234, 235]) with a realistic baseline
system configuration.9 We extend Ramulator 2.0 to support
SiMRA and CoMRA operations and update multiple (up to 32)
counters simultaneously for PRAC-PO.We execute 60 five-core
multiprogrammed workload mixes. Each mix is composed of
four workloads from five major benchmark suites [237–241]
and one synthetic workload that periodically performs back-
to-back one SiMRA with 32-row activation and one CoMRA

94.2GHz 5-core system, dual-rank DDR5 DRAM, FR-FCFS+Cap of 4 [236].
We simulate each workload until every core execute 100M instructions.

operation every N ns (where N ranges from 125ns to 16µs).10
We evaluate system performance using the weighted speedup
metric [242, 243].
We analyze two different PRAC-PO implementations and

evaluate their overheads on the system performance: 1) PRAC-
PO-Naive: a naive PRAC-PO implementation without weighted
counting optimization where the RowHammer threshold is
reduced to lowest observed HCfirst for SiMRA (i.e., 20) and 2)
PRAC-PO-Weighted Counting (PRAC-PO-WC): PRAC-PO with
weighted counting optimization.
Results. Fig. 25 presents the performance overheads of
the evaluated two PRAC-PO implementations, i.e., PRAC-
PO-Naive and PRAC-PO-WC, across 60 five-core multipro-
grammed workload mixes. The x-axis shows the synthetic PuD
workload’s period of performing one SiMRA and one CoMRA
operation (lower period indicates higher PuD operation inten-
sity), and the y-axis shows normalized system performance
(higher is better) in terms of weighted speedup normalized to
a baseline with no read disturbance mitigation.

16000 8000 4000 2000 1000 500 250 125

Synthetic PuD Workload’s Period of Performing
Back-to-Back SiMRA and CoMRA Operations (ns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
ed

W
ei

g
h

te
d

S
p

ee
d

u
p

PRAC-PO-Naive PRAC-PO-WC

Figure 25: Performance impact of evaluated PRAC-PO imple-
mentations on 60 five-core multiprogrammed workloads.

We make two major observations from Fig. 25. First, even
with our proposed optimizations, PRAC-PO-WC incurs non-
negligible performance overhead to mitigate PuDHammer-
based read disturbance bitflips. We observe that PRAC-PO-WC
incurs an average (maximum) system performance overhead of
48.26% (98.83%) across all tested PuD operation intensity rates
and workloads. Second, across all evaluated PuD operation
intensity rates, PRAC-PO-WC outperforms PRAC-PO-Naive.
For example, at a period of 4µs, PRAC-PO-WC induces 19.26%
average system performance overhead, whereas PRAC-PO-
Naive induces 69.15%.
We conclude that even with our proposed optimizations,

PRAC-PO-WC incurs significant performance overheads at
high PuD operation intensity and non-negligible performance
overheads at low PuD operation intensity to mitigate PuD-
Hammer. We expect future work to introduce new efficient
and effective mitigation mechanisms, as it has been happening
analogously for RowHammer and RowPress.

9. Related Work
We present the first experimental characterization of the

read disturbance vulnerability caused by both consecutive
multiple-row activation (CoMRA) and simultaneous multiple-
row activation (SiMRA) in real DDR4 DRAM chips.

10Wevary the period to show how performance changes with theworkload’s
PuD operation intensity.

14

Read Disturbance Characterization. Many works [93, 137–
141, 144–146, 153, 154, 211, 214, 215, 218, 219, 244–247] exper-
imentally demonstrate (using real DDR3, DDR4, LPDDR4,
and HBM2 DRAM chips) how a DRAM chip’s read distur-
bance vulnerability varies with 1) DRAM refresh rate [93,
119, 125], 2) the physical distance between aggressor and vic-
tim rows [93, 144, 245], 3) DRAM generation and technology
node [93, 125, 144, 145], 4) temperature [138, 145], 5) the time
the aggressor row stays active [138, 145, 153, 216, 218, 246, 248],
6) physical location of the victim DRAM cell [145,211,216,218],
7) wordline voltage [146], and 8) supply voltage [247]. Our
results are significantly different from what is already well-
established in prior read disturbance characterization works.
We study the read disturbance effects of processing-using-
DRAM operations’ row activation patterns, which are funda-
mentally different from those studied by prior read disturbance
characterization works: all prior read disturbance characteri-
zation works [93, 137–141, 144–146, 153, 154, 211, 214, 215, 218,
219, 244–247] activate at most one aggressor row at a given
time. In contrast, this paper investigates the read disturbance
effect of activating multiple aggressor rows simultaneously
(i.e., SiMRA) or in quick succession (i.e., CoMRA). Our results
demonstrate that the read disturbance effects of these new
patterns (i.e., SiMRA and CoMRA operations) are fundamen-
tally more damaging. In this work, we show that they can
induce bitflips with only 26 operations (Fig. 13), which take
1.48µs, whereas the best known RowHammer pattern induces
bitflips with 4123 aggressor row activations (Fig. 13), which
takes 210.27µs and the best tested RowPress pattern (in terms
of minimum HCfirst) induces bitflips with 37 aggressor row
activations at tAggOn=70.2µs (Fig. 13), which takes 2597.4µs.
No prior read disturbance characterization study evaluates the
read disturbance effect of SiMRA and CoMRA access patterns.

Multiple-RowActivation-based PuDOperations in COTS
Chips. Several prior works demonstrate bulk bitwise [29, 30,
32, 80, 194] and bulkdata copy operations [40] in COTS DRAM
chips using multiple-row activation [33, 73–78, 195]. Comput-
eDRAM [73] activates three rows simultaneously to perform
three-input majority and two-input AND and OR operations,
and 2) demonstrates copying one row’s content to another
row in DDR3 chips. FracDRAM [74] shows that a DRAM cell
in DDR3 chips can store fractional values. QUAC-TRNG [76]
simultaneously activates four rows to generate true random
numbers in DDR4 chips and a recent work [33,249] experimen-
tally studies the simultaneous activation of 2, 8, 16, and 32 rows
in a subarray in COTS DDR4 DRAM chips. HiRA [195] demon-
strates that DDR4 chips can activate two rows in quick suc-
cession in electrically isolated subarrays. DRAM Bender [75]
demonstrates two-input AND and OR operations in DDR4
chips. PiDRAM [77] provides an FPGA-based framework that
enables real system studies of PuD techniques (e.g., RowClone).
We do not use PiDRAM because PiDRAM is not designed to
test DRAM chips but instead to evaluate PuD applications
running end-to-end in a computing system. PiDRAM also per-
forms SiMRA and CoMRA operations inside the DRAM chip,

and thus it also suffers from the read disturbance effect that
we investigate. Prior work [78] demonstrates NOT and up to
16-input AND, NAND, OR, and NOR operations by simulta-
neously activating up to 48 rows in neighboring subarrays. A
recent work [79] demonstrates up to 9-input majority opera-
tions and copying one row’s content to up to 31 other rows
concurrently by simultaneously activating up to 32 rows. None
of these works investigates the read disturbance effects of such
multiple-row activation operations.
10. Conclusion
We presented our extensive characterization study on

the interaction between read disturbance and multiple-row
activation-based Processing-using-DRAM operations in 316
COTS DDR4 DRAM chips from four major manufacturers. Our
study leads to 26 new empirical observations and shares 9 key
takeaway lessons, which demonstrate that multiple-row acti-
vation significantly exacerbates the DRAM read disturbance
vulnerability either by itself or when combined with RowHam-
mer, and this vulnerability gets worse under various operating
conditions and parameters (e.g., data pattern). We discuss four
countermeasures against exploiting the read disturbance effect
of PuD for future PuD-enabled systems. We hope and expect
that our detailed characterization results motivate and guide
both 1) system-level and architectural solutions to enable read-
disturbance-resilient PuD systems and 2) silicon-level works
in understanding the underlying physical phenomena that
explain PuDHammer’s characteristics.
Acknowledgments
We thank the anonymous reviewers of ISCA 2025 for their

feedback. We thank the SAFARI Research Group members
for providing a stimulating intellectual and scientific environ-
ment. We acknowledge the generous gifts from our industrial
partners, including Google, Huawei, Intel, and Microsoft. This
work, along with our broader work in Processing-in-Memory
and memory systems, is supported in part by the Semiconduc-
tor Research Corporation (SRC), the ETH Future Computing
Laboratory (EFCL), AI Chip Center for Emerging Smart Sys-
tems (ACCESS), sponsored by InnoHK funding, Hong Kong
SAR, European Union’s Horizon programme for research and
innovation [101047160 - BioPIM], a Google Security and Pri-
vacy Research Award, and the Microsoft Swiss Joint Research
Center.
References
[1] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Processing Data

Where It Makes Sense: Enabling In-Memory Computation,” in Microprocessors and
Microsystems, 2019.

[2] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A Modern Primer
on Processing in Memory,” in Emerging Computing: From Devices to Systems —
Looking Beyond Moore and Von Neumann. Springer, 2021. [Online]. Available:
https://arxiv.org/abs/2012.03112

[3] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[4] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[5] J. Dean and L. A. Barroso, “The Tail at Scale,” CACM, 2013.
[6] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and

D. Brooks, “Profiling a Warehouse-Scale Computer,” in ISCA, 2015.
[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,

A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds: A Study of
Emerging Scale-Out Workloads on Modern Hardware,” in ASPLOS, 2012.

15

https://arxiv.org/abs/2012.03112

[8] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang et al.,
“Bigdatabench: A Big Data Benchmark Suite from Internet Services,” in HPCA, 2014.

[9] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Enabling Practical
Processing in and Near Memory For Data-Intensive Computing,” in DAC, 2019.

[10] O. Mutlu, “Intelligent Architectures for Intelligent Machines,” in VLSI-DAT, 2020.
[11] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu, “Processing-in-

Memory: A Workload-Driven Perspective,” IBM JRD, 2019.
[12] G. F. Oliveira, J. Gómez-Luna, L. Orosa, S. Ghose, N. Vijaykumar, I. Fernandez,

M. Sadrosadati, and O. Mutlu, “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[13] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for Con-
sumer Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS, 2018.

[14] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira, X. Ma, E. Shiu,
and O. Mutlu, “Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks,” in PACT, 2021.

[15] S. Wang and E. Ipek, “Reducing Data Movement Energy via Online Data Clustering
and Encoding,” in MICRO, 2016.

[16] D. Pandiyan and C.-J. Wu, “Quantifying the Energy Cost of Data Movement for
Emerging Smart Phone Workloads on Mobile Platforms,” in IISWC, 2014.

[17] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi, K. Kanellopoulos,
and O. Mutlu, “EDEN: Enabling Energy-Efficient, High-Performance Deep Neural
Network Inference Using Approximate DRAM,” in MICRO, 2019.

[18] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. S. Choi,
“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
The Memory Forum, 2014.

[19] S. A. McKee et al., “Reflections on the Memory Wall.” CF, 2004.
[20] M. V. Wilkes, “The Memory Gap and the Future of High Performance Memories,”

CAN, 2001.
[21] Y. Kim, V. Seshadri, D. Lee, J. Liu, O. Mutlu, Y. Kim, V. Seshadri, D. Lee, J. Liu, and

O. Mutlu, “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” in
ISCA, 2012.

[22] W. A.Wulf and S. A.McKee, “Hitting theMemoryWall: Implications of theObvious,”
CAN, 1995.

[23] S. Ghose, T. Li, N. Hajinazar, D. S. Cali, and O. Mutlu, “Demystifying Complex
Workload–DRAM Interactions: An Experimental Study,” in SIGMETRICS, 2020.

[24] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[25] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[26] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[27] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim, J. G. Luna,
M. Sadrosadati, N. M. Ghiasi et al., “FIGARO: Improving System Performance via
Fine-Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.

[28] R. Sites, “It’s the Memory, Stupid!” MPR, 1996.
[29] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,

O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for Bulk
Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[30] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch†, O. Mutlu, P. B. Gibbons,
and T. C. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” in CAL, 2015.

[31] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv:1905.09822, 2019.

[32] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi, M. Patel,
M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, “SIMDRAM: A Framework for
Bit-Serial SIMD Processing Using DRAM,” in ASPLOS, 2021.

[33] O. Mutlu, A. Olgun, G. F. Oliveira, and I. E. Yuksel, “Memory-Centric Computing:
Recent Advances in Processing-in-DRAM,” in IEDM, 2024.

[34] O. Mutlu, A. Olgun, and I. E. Yuksel, “Memory-Centric Computing: Solving Com-
puting’s Memory Problem,” in IMW, 2025.

[35] C.-Y. Chan and Y. E. Ioannidis, “Bitmap Index Design and Evaluation,” in SIGMOD,
1998.

[36] E. O’Neil, P. O’Neil, and K. Wu, “Bitmap Index Design Choices and Their Perfor-
mance Implications,” in IDEAS, 2007.

[37] Y. Li and J. M. Patel, “WideTable: An Accelerator for Analytical Data Processing,”
VLDB, 2014.

[38] ——, “BitWeaving: Fast Scans for Main Memory Data Processing,” in SIGMOD, 2013.
[39] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety, and Y. He,

“BitFunnel: Revisiting Signatures for Search,” in SIGIR, 2017.
[40] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,

O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. Mowry, “RowClone: Fast and Energy-
Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[41] K. Wu, “FastBit: An Efficient Indexing Technology for Accelerating Data-Intensive
Science,” in Journal of Physics: Conference Series, 2005.

[42] M.-C. Wu and A. P. Buchmann, “Encoded Bitmap Indexing for Data Warehouses,”
in ICDE, 1998.

[43] Redis, “Redis bitmaps,” https://redis.io/docs/data-types/bitmaps/.
[44] B. Perach, R. Ronen, B. Kimelfeld, and S. Kvatinsky, “Understanding Bulk-Bitwise

Processing In-Memory Through Database Analytics,” ETC, 2023.
[45] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, and S. Xu, “Bluedbm: An

Appliance for Big Data Analytics,” ISCA, 2015.
[46] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad, V. Alves, and

N. Bagherzadeh, “Catalina: In-Storage Processing Acceleration for Scalable Big

Data Analytics,” in PDP, 2019.
[47] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and Y. S. Ki,

“SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD,” CAL, 2020.
[48] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun, J. Beránek, K. Kanel-

lopoulos, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi, I. Stefan et al., “SISA: Set-
Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory
Systems,” in MICRO, 2021.

[49] S. Beamer, K. Asanovic, and D. Patterson, “Direction-Optimizing Breadth-First
Search,” in SC, 2012.

[50] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A Processing-in-Memory
Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Memories,” in
DAC, 2016.

[51] C. Gao, X. Xin, Y. Lu, Y. Zhang, J. Yang, and J. Shu, “Parabit: Processing Parallel
Bitwise Operations in NAND Flash Memory Based SSDs,” in MICRO, 2021.

[52] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan, “Gatekeeper: A
New Hardware Architecture For Accelerating Pre-Alignment In DNA Short Read
Mapping,” in Bioinformatics, 2017.

[53] J. Loving, Y. Hernandez, and G. Benson, “BitPAl: A Bit-Parallel, General Integer-
Scoring Sequence Alignment Algorithm,” Bioinformatics, 2014.

[54] H. Xin, J. Greth, J. Emmons, G. Pekhimenko, C. Kingsford, C. Alkan, and O. Mutlu,
“Shifted Hamming Distance: A Fast and Accurate SIMD-Friendly Filter to Accelerate
Alignment Verification in Read Mapping,” Bioinformatics, 2015.

[55] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim, R. Ausavarung-
nirun, M. Alser, J. Gomez-Luna, A. Boroumand et al., “GenASM: A High-
Performance, Low-Power Approximate String Matching Acceleration Framework
for Genome Sequence Analysis,” in MICRO, 2020.

[56] J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin, C. Alkan,
and O. Mutlu, “GRIM-Filter: Fast Seed Filtering in Read Mapping using Emerging
Memory Technologies,” in APBC, 2017.

[57] G. Myers, “A Fast Bit-Vector Algorithm for Approximate String Matching Based on
Dynamic Programming,” JACM, 1999.

[58] J. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, “Optical Image Encryption Based on
XOR Operations,” Optical Engineering, 1999.

[59] P. Tuyls, H. D. Hollmann, J. V. Lint, and L. Tolhuizen, “XOR-based Visual Cryptog-
raphy Schemes,” Des. Codes, Cryptogr., 2005.

[60] P. Kanerva, “Sparse Distributed Memory and Related Models,” Tech. Rep., 1992.
[61] ——, “Hyperdimensional Computing: An Introduction to Computing in Distributed

Representation with High-Dimensional Random Vectors,” Cognitive Computation,
2009.

[62] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian,
“In-memory Hyperdimensional Computing,” Nature Electronics, 2020.

[63] Y. He, H. Mao, C. Giannoula, M. Sadrosadati, J. Gómez-Luna, H. Li, X. Li, Y. Wang,
and O. Mutlu, “PAPI: Exploiting Dynamic Parallelism in Large Language Model
Decoding with a Processing-In-Memory-Enabled Computing System,” ASPLOS,
2025.

[64] Y. Gu, A. Khadem, S. Umesh, N. Liang, X. Servot, O. Mutlu, R. Iyer, and R. Das,
“PIM Is All You Need: A CXL-Enabled GPU-Free System for Large Language Model
Inference,” ASPLOS, 2025.

[65] M. Zhou, W. Xu, J. Kang, and T. Rosing, “TransPIM: A Memory-Based Acceleration
via Software-Hardware Co-Design for Transformer,” in HPCA, 2022.

[66] J. Park, J. Choi, K. Kyung, M. J. Kim, Y. Kwon, N. S. Kim, and J. H. Ahn, “AttAcc!
Unleashing the Power of PIM for Batched Transformer-based Generative Model
Inference,” in ASPLOS, 2024.

[67] M. Seo, X. T. Nguyen, S. J. Hwang, Y. Kwon, G. Kim, C. Park, I. Kim, J. Park, J. Kim,
W. Shin et al., “IANUS: Integrated Accelerator based on NPU-PIM Unified Memory
System,” in ASPLOS, 2024.

[68] S. Yun, K. Kyung, J. Cho, J. Choi, J. Kim, B. Kim, S. Lee, K. Sohn, and J. H. Ahn,
“Duplex: A Device for Large Language Models with Mixture of Experts, Grouped
Query Attention, and Continuous Batching,” in MICRO, 2024.

[69] G. Heo, S. Lee, J. Cho, H. Choi, S. Lee, H. Ham, G. Kim, D. Mahajan, and J. Park,
“Neupims: Npu-pim Heterogeneous Acceleration for Batched LLM Inferencing,” in
ASPLOS, 2024.

[70] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,” in NIPS,
2020.

[71] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” in NAACL, 2019.

[72] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Networks,” NIPS, 2014.

[73] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-Memory Compute
Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[74] ——, “FracDRAM: Fractional Values in Off-the-Shelf DRAM,” in MICRO, 2022.
[75] A. Olgun, H. Hassan, A. G. Yağlıkçı, Y. C. Tuğrul, L. Orosa, H. Luo, M. Patel,

O. Ergin, and O. Mutlu, “DRAM Bender: An Extensible and Versatile FPGA-based
Infrastructure to Easily Test State-of-the-art DRAM Chips,” TCAD, 2023.

[76] A. Olgun, M. Patel, A. G. Yağlıkçı, H. Luo, J. S. Kim, N. Bostancı, N. Vijaykumar,
O. Ergin, and O. Mutlu, “QUAC-TRNG: High-Throughput True Random Number
Generation Using Quadruple Row Activation in Commodity DRAM Chips,” in ISCA,
2021.

[77] A. Olgun, J. G. Luna, K. Kanellopoulos, B. Salami, H. Hassan, O. Ergin, and O. Mutlu,

16

https://redis.io/docs/data-types/bitmaps/

“PiDRAM: AHolistic End-to-end FPGA-based Framework for Processing-in-DRAM,”
TACO, 2022.

[78] I. E. Yuksel, Y. C. Tugrul, A. Olgun, F. N. Bostanci, A. G. Yaglikci, G. F. de Oliveira,
H. Luo, J. G. Luna, M. Sadrosadati, and O. Mutlu, “Functionally-Complete Boolean
Logic in Real DRAM Chips: Experimental Characterization and Analysis,” in HPCA,
2024.

[79] I. E. Yuksel, Y. C. Tugrul, F. N. Bostanci, G. F. de Oliveira, A. G. Yaglikci, A. Olgun,
M. Soysal, H. Luo, J. G. Luna, M. Sadrosadati, and O. Mutlu, “Simultaneous Many-
Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and
Analysis,” in DSN, 2024.

[80] G. F. Oliveira, A. Olgun, A. G. G. Yaglikçi, N. Bostanci, J. Gómez-Luna, S. Ghose, and
O. Mutlu, “MIMDRAM: An End-to-End Processing-Using-DRAM System for High-
Throughput, Energy-Efficient and Programmer-Transparent Multiple-Instruction
Multiple-Data Processing,” HPCA, 2024.

[81] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Buddy-RAM: Improving the Performance
and Efficiency of Bulk Bitwise Operations Using DRAM,” arXiv, 2016.

[82] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM
Bulk Copy, Initialization, Bitwise AND and OR,” arXiv:1610.09603, 2016.

[83] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Accelerating
Data Movement and Initialization Using DRAM,” arXiv, 2018.

[84] Z. Jahshan and L. Yavits, “MajorK: Majority Based Kmer Matching in Commodity
DRAM,” CAL, 2024.

[85] A. P. Fournaris, L. Pocero Fraile, andO. Koufopavlou, “ExploitingHardware Vulnera-
bilities to Attack Embedded System Devices: A Survey of Potent Microarchitectural
Attacks,” Electronics, 2017.

[86] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler, “Attacking
Deterministic Signature Schemes using Fault Attacks,” in EuroS&P, 2018.

[87] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi,
“Throwhammer: Rowhammer Attacks Over the Network and Defenses,” in USENIX
ATC, 2018.

[88] S. Carre, M. Desjardins, A. Facon, and S. Guilley, “OpenSSL Bellcore’s Protection
Helps Fault Attack,” in DSD, 2018.

[89] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-Only Reverse Engi-
neering of Physical DRAM Mappings for Rowhammer Attacks,” in IVSW, 2018.

[90] Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai, “Triggering
Rowhammer Hardware Faults on ARM: A Revisit,” in ASHES, 2018.

[91] S. Bhattacharya and D. Mukhopadhyay, “Advanced Fault Attacks in Software:
Exploiting the Rowhammer Bug,” in Fault Tolerant Architectures for Cryptography
and Hardware Security, 2018.

[92] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel
Privileges,” http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-ro
whammer-bug-to-gain.html, 2015.

[93] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” in ISCA, 2014.

[94] SAFARI Research Group, “RowHammer — GitHub Repository,” https://github.com
/CMU-SAFARI/rowhammer, 2014.

[95] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel
Privileges,” Black Hat, 2015.

[96] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,
H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms,” in CCS, 2016.

[97] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-Induced
Fault Attack in Javascript,” in DIMVA, 2016.

[98] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip Feng Shui:
Hammering a Needle in the Software Stack,” in USENIX Security, 2016.

[99] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks,” in USENIX Security, 2016.

[100] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security,
2016.

[101] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina: Memory
Deduplication as An Advanced Exploitation Vector,” in S&P, 2016.

[102] S. Bhattacharya and D. Mukhopadhyay, “Curious Case of Rowhammer: Flipping
Secret Exponent Bits Using Timing Analysis,” in CHES, 2016.

[103] W. Burleson, O. Mutlu, and M. Tiwari, “Invited: Who is the Major Threat to
Tomorrow’s Security? You, the Hardware Designer,” in DAC, 2016.

[104] R. Qiao and M. Seaborn, “A New Approach for RowHammer Attacks,” in HOST,
2016.

[105] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t Touch This:
Software-Only Mitigation Against Rowhammer Attacks Targeting Kernel Memory,”
in USENIX Security, 2017.

[106] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the Processor via
Rowhammer Attack,” in SOSP, 2017.

[107] M. T. Aga, Z. B. Aweke, and T. Austin, “When Good Protections Go Bad: Exploiting
Anti-DoS Measures to Accelerate Rowhammer Attacks,” in HOST, 2017.

[108] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory
Becomes Denser,” in DATE, 2017.

[109] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software Mitigations
Against Rowhammer: A Surgical Precision Hammer,” in RAID, 2018.

[110] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,
and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,” in S&P, 2018.

[111] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and L. Lam-
ster, “Nethammer: Inducing Rowhammer Faults Through Network Requests,”
arXiv:1805.04956 [cs.CR], 2018.

[112] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel,
H. Bos, and K. Razavi, “GuardION: Practical Mitigation of DMA-Based Rowhammer
Attacks on ARM,” in DIMVA, 2018.

[113] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU,” in S&P, 2018.

[114] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting Codes: On
the Effectiveness of ECC Memory Against Rowhammer Attacks,” in S&P, 2019.

[115] S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint Rowhammer: Suppressing Unwanted Bit
Flips on Rowhammer Attacks,” in ASIACCS, 2019.

[116] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” TCAD, 2019.
[117] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitraş, “Terminal Brain Damage:

Exposing the Graceless Degradation in Deep Neural Networks Under Hardware
Fault Attacks,” in USENIX Security, 2019.

[118] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading Bits in Memory
Without Accessing Them,” in S&P, 2020.

[119] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida, H. Bos,
and K. Razavi, “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in
S&P, 2020.

[120] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu, “Are We
Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,” in
S&P, 2020.

[121] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and B. Sunar,
“JackHammer: Efficient Rowhammer on Heterogeneous FPGA–CPU Platforms,”
arXiv:1912.11523 [cs.CR], 2020.

[122] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “PThammer: Cross-
User-Kernel-Boundary Rowhammer through Implicit Accesses,” in MICRO, 2020.

[123] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the Intelligence of Deep
Neural Networks Through Targeted Chain of Bit Flips,” in USENIX Security, 2020.

[124] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi, “SMASH: Syn-
chronized Many-Sided Rowhammer Attacks from JavaScript,” in USENIX Security,
2021.

[125] H. Hassan, Y. C. Tugrul, J. S. Kim, V. v. d. Veen, K. Razavi, and O. Mutlu, “Uncovering
in-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom
RowHammer Patterns, and Implications,” in MICRO, 2021.

[126] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Blacksmith: Scalable
Rowhammering in the Frequency Domain,” in S&P, 2022.

[127] M. C. Tol, S. Islam, B. Sunar, and Z. Zhang, “Toward Realistic Backdoor Injection
Attacks on DNNs using RowHammer,” arXiv:2110.07683, 2022.

[128] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu, M. Nissler, and
D. Gruss, “Half-Double: Hammering From the Next Row Over,” in USENIX Security,
2022.

[129] L. Orosa, U. Rührmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jattke, M. Patel, J. Kim,
K. Razavi, and O. Mutlu, “SpyHammer: Using RowHammer to Remotely Spy on
Temperature,” IEEE Access, 2022.

[130] Z. Zhang, W. He, Y. Cheng, W. Wang, Y. Gao, D. Liu, K. Li, S. Nepal, A. Fu, and
Y. Zou, “Implicit Hammer: Cross-Privilege-Boundary Rowhammer through Implicit
Accesses,” IEEE TDSC, 2022.

[131] L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating Robust DNN with
Resistance to Bit-Flip based Adversarial Weight Attack,” IEEE TC, 2022.

[132] Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis, Y. Oren, and
Y. Yarom, “HammerScope: Observing DRAM Power Consumption Using Rowham-
mer,” in CCS, 2022.

[133] M. Zheng, Q. Lou, and L. Jiang, “TrojViT: Trojan Insertion in Vision Transformers,”
arXiv:2208.13049, 2022.

[134] M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-Soled,
D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich et al., “When Frodo Flips:
End-to-End Key Recovery on FrodoKEM via Rowhammer,” CCS, 2022.

[135] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHammer: Combining
Spectre and Rowhammer for New Speculative Attacks,” in S&P, 2022.

[136] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal: Advanced Model
Extractions Leveraging Efficient Weight Stealing in Memories,” in S&P, 2022.

[137] K. Park, D. Yun, and S. Baeg, “Statistical Distributions of Row-Hammering Induced
Failures in DDR3 Components,” Microelectronics Reliability, 2016.

[138] K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and Root Cause Analysis for
Active-Precharge Hammering Fault in DDR3 SDRAM under 3xnm Technology,”
Microelectronics Reliability, 2016.

[139] C. Lim, K. Park, and S. Baeg, “Active Precharge Hammering to Monitor Displace-
ment Damage Using High-Energy Protons in 3x-nm SDRAM,” TNS, 2017.

[140] S.-W. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T.-S. Jang, M. Yoo, Y. Kim, and
S. Hong, “Overcoming the Reliability Limitation in the Ultimately Scaled DRAM
using Silicon Migration Technique by Hydrogen Annealing,” in IEDM, 2017.

[141] D. Yun, M. Park, C. Lim, and S. Baeg, “Study of TID Effects on One Row Hammering
using Gamma in DDR4 SDRAMs,” in IRPS, 2018.

[142] T. Yang and X.-W. Lin, “Trap-Assisted DRAM Row Hammer Effect,” EDL, 2019.
[143] A. J. Walker, S. Lee, and D. Beery, “On DRAM RowHammer and the Physics on

Insecurity,” IEEE TED, 2021.
[144] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu, “Revis-

iting RowHammer: An Experimental Analysis of Modern Devices and Mitigation
Techniques,” in ISCA, 2020.

[145] L. Orosa, A. G. Yağlıkçı, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim, and

17

http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer

O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis
of Real DRAM Chips and Implications on Future Attacks and Defenses,” in MICRO,
2021.

[146] A. G. Yağlıkcı, H. Luo, G. F. De Oliviera, A. Olgun, M. Patel, J. Park, H. Hassan,
J. S. Kim, L. Orosa, and O. Mutlu, “Understanding RowHammer Under Reduced
Wordline Voltage: An Experimental Study Using Real DRAM Devices,” in DSN,
2022.

[147] M. N. I. Khan and S. Ghosh, “Analysis of Row Hammer Attack on STTRAM,” in
ICCD, 2018.

[148] S. Agarwal, H. Dixit, D. Datta, M. Tran, D. Houssameddine, D. Shum, and
F. Benistant, “Rowhammer for Spin Torque based Memory: Problem or not?” in
INTERMAG, 2018.

[149] H. Li, H.-Y. Chen, Z. Chen, B. Chen, R. Liu, G. Qiu, P. Huang, F. Zhang, Z. Jiang,
B. Gao, L. Liu, X. Liu, S. Yu, H.-S. P. Wong, and J. Kang, “Write Disturb Analyses on
Half-Selected Cells of Cross-Point RRAM Arrays,” in IRPS, 2014.

[150] K. Ni, X. Li, J. A. Smith, M. Jerry, and S. Datta, “Write Disturb in Ferroelectric FETs
and Its Implication for 1T-FeFET AND Memory Arrays,” IEEE EDL, 2018.

[151] P. R. Genssler, V. M. van Santen, J. Henkel, and H. Amrouch, “On the Reliability of
FeFET On-Chip Memory,” TC, 2022.

[152] O. Mutlu, A. Olgun, and A. G. Yaglikci, “Fundamentally Understanding and Solving
RowHammer,” in ASP-DAC, 2023.

[153] H. Luo, A. Olgun, A. G. Yağlıkçı, Y. C. Tuğrul, S. Rhyner, M. B. Cavlak, J. Lindegger,
M. Sadrosadati, and O. Mutlu, “RowPress: Amplifying Read Disturbance in Modern
DRAM Chips,” in ISCA, 2023.

[154] H. Luo, I. E. Yüksel, A. Olgun, A. G. Yağlıkçı, M. Sadrosadati, and O. Mutlu, “An
Experimental Characterization of Combined RowHammer and RowPress Read
Disturbance in Modern DRAM Chips,” in DSN Disrupt, 2024.

[155] V. Seshadri andO.Mutlu, “Simple Operations inMemory to ReduceDataMovement,”
in Adv. Comput., 2017.

[156] Micron, “DDR4 SDRAM Datasheet,” in Micron, 2016, p. 380.
[157] Z. Zhang, Y. Cheng, M. Wang, W. He, W. Wang, S. Nepal, Y. Gao, K. Li, Z. Wang,

and C. Wu, “SoftTRR: Protect Page Tables against Rowhammer Attacks using
Software-only Target Row Refresh,” in USENIX ATC, 2022.

[158] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “ProTRR: Principled yet Optimal
In-DRAM Target Row Refresh,” in S&P, 2022.

[159] S. Saroiu, “DDR5 Spec Update Has All It Needs to End Rowhammer: Will It?”
https://stefan.t8k2.com/rh/PRAC/index.html.

[160] O. Canpolat, A. G. Yağlıkçı, G. F. Oliveira, A. Olgun, N. Bostancı, I. E. Yuksel, H. Luo,
O. Ergin, and O. Mutlu, “Chronus: Understanding and Securing the Cutting-Edge
Industry Solutions to DRAM Read Disturbance,” in HPCA, 2025.

[161] O. Canpolat, A. G. Yağlıkçı, G. F. Oliveira, A. Olgun, O. Ergin, and O. Mutlu,
“Understanding the Security Benefits andOverheads of Emerging Industry Solutions
to DRAM Read Disturbance,” DRAMSec, 2024.

[162] W. Kim, C. Jung, S. Yoo, D. Hong, J. Hwang, J. Yoon, O. Jung, J. Choi, S. Hyun,
M. Kang et al., “A 1.1 V 16Gb DDR5 DRAM with Probabilistic-Aggressor Track-
ing, Refresh-Management Functionality, Per-Row Hammer Tracking, a Multi-Step
Precharge, and Core-Bias Modulation for Security and Reliability Enhancement,”
in ISSCC, 2023.

[163] JEDEC, JESD79-5c: DDR5 SDRAM Standard, 2024.
[164] ——, JESD209-5A: LPDDR5 SDRAM Standard, 2020.
[165] ——, JESD209-4B: Low Power Double Data Rate 4 (LPDDR4) Standard, 2017.
[166] ——, JESD79F: Double Data Rate (DDR) SDRAM Standard, 2008.
[167] JEDEC, JESD79-4C: DDR4 SDRAM Standard, 2020.
[168] J. S. S. T. Association et al., “DDR3 SDRAM Standard,” JEDEC Standard, no. 79-3F, p.

226, 2012.
[169] JEDEC, JESD79-5C: DDR5 SDRAM Standard, 2024.
[170] ——, JESD235D: High Bandwidth Memory DRAM (HBM1, HBM2), 2021.
[171] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency

DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.
[172] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,

“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” in
HPCA, 2015.

[173] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.

[174] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA,
2010.

[175] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” in ISCA, 2012.

[176] M. Qureshi, D.-H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[177] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, J. Liu, B. Jaiyen, Y. Kim, C. Wilker-
son, and O. Mutlu, “An Experimental Study of Data Retention Behavior in Modern
DRAM Devices,” in ISCA, 2013.

[178] Micron Technology, “SDRAM, 4Gb: x4, x8, x16 DDR4 SDRAM Features,” 2014.
[179] O. Mutlu, “Retrospective: Flipping Bits in Memory without Accessing Them: An

Experimental Study of DRAM Disturbance Errors,” arXiv, 2023.
[180] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost

Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[181] X. Xin, Y. Zhang, and J. Yang, “ELP2IM: Efficient and Low Power Bitwise Operation
Processing in DRAM,” in HPCA, 2020.

[182] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA: A DRAM-
Based Reconfigurable In-Situ Accelerator,” in MICRO, 2017.

[183] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “DrAcc: A DRAM Based
Accelerator for Accurate CNN Inference,” in DAC, 2018.

[184] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator Leveraging
In-DRAM-Computing,” in GLSVLSI, 2019.

[185] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie, “SCOPE: A Stochastic Computing Engine for DRAM-Based In-Situ
Accelerator,” in MICRO, 2018.

[186] J. D. Ferreira, G. Falcao, J. Gómez-Luna, M. Alser, L. Orosa, M. Sadrosadati, J. S.
Kim, G. F. Oliveira, T. Shahroodi, A. Nori, and O. Mutlu, “pLUTo: In-DRAM Lookup
Tables to Enable Massively Parallel General-Purpose Computation,” in MICRO,
2022.

[187] Q. Deng, Y. Zhang, M. Zhang, and J. Yang, “LAcc: Exploiting Lookup Table-Based
Fast and Accurate Vector Multiplication in DRAM-Based CNN Accelerator,” in
DAC, 2019.

[188] P. R. Sutradhar, S. Bavikadi, M. Connolly, S. Prajapati, M. A. Indovina, S. M. P.
Dinakarrao, and A. Ganguly, “Look-Up-Table Based Processing-in-Memory Ar-
chitecture with Programmable Precision-Scaling for Deep Learning Applications,”
TPDS, 2021.

[189] P. R. Sutradhar, M. Connolly, S. Bavikadi, S. M. P. Dinakarrao, M. A. Indovina,
and A. Ganguly, “pPIM: A Programmable Processor-in-Memory Architecture with
Precision-Scaling For Deep Learning,” in CAL, 2020.

[190] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie, “SCOPE: A Stochastic Computing Engine for DRAM-Based In-Situ
Accelerator,” in MICRO, 2018.

[191] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe: Using Commodity
DRAM Devices to Generate True Random Numbers with Low Latency and High
Throughput,” in HPCA, 2019.

[192] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeoff in Modern Commodity DRAM Devices,” in HPCA, 2018.

[193] G. F. Oliveira, J. Gómez-Luna, S. Ghose, A. Boroumand, and O. Mutlu, “Accelerating
Neural Network Inference with Processing-in-DRAM: From the Edge to the Cloud,”
IEEE Micro, 2022.

[194] G. F. Oliveira, M. Kabra, Y. Guo, K. Chen, A. G. Yağlıkçı, M. Soysal, M. Sadrosadati,
J. O. Bueno, S. Ghose, J. Gómez-Luna et al., “Proteus: Achieving High-Performance
Processing-Using-DRAM via Dynamic Precision Bit-Serial Arithmetic,” ICS, 2025.

[195] A. G. Yağlikci, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and
O. Mutlu, “HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-
Shelf DRAM Chips,” in MICRO, 2022.

[196] SAFARI Research Group, “DRAM Bender — GitHub Repository,” https://github.c
om/CMU-SAFARI/DRAM-Bender, 2022.

[197] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infrastruc-
ture for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[198] SAFARI Research Group, “SoftMC — GitHub Repository,” https://github.com/CMU
-SAFARI/softmc, 2017.

[199] Xilinx Inc., “Xilinx Alveo U200 FPGA Board,” https://www.xilinx.com/products/bo
ards-and-kits/alveo/u200.html.

[200] Maxwell, “FT20X User Manual,” https://www.maxwell-fa.com/upload/files/base/8/
m/311.pdf.

[201] M. Patel, J. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact ECC Recovery
(BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data
Retention Characteristics,” in MICRO, 2020.

[202] M. Patel, G. F. de Oliveira Jr., and O. Mutlu, “HARP: Practically and Effectively
Identifying Uncorrectable Errors in Main Memory Chips That Use On-Die ECC,” in
MICRO, 2021.

[203] R. T. Smith, J. D. Chlipala, J. F. Bindels, R. G. Nelson, F. H. Fischer, and T. F. Mantz,
“Laser Programmable Redundancy and Yield Improvement in a 64K DRAM,” JSSC,
1981.

[204] M. Horiguchi, “Redundancy Techniques for High-Density DRAMs,” in ISIS, 1997.
[205] B. Keeth and R. Baker, DRAM Circuit Design: A Tutorial. John Wiley & Sons, 2001.
[206] K. Itoh, VLSI Memory Chip Design. Springer, 2001.
[207] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and

T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve
the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[208] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique to
Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[209] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “Detecting
and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory
Content,” in MICRO, 2017.

[210] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in SIG-
METRICS, 2017.

[211] A. G. Yağlıkçı, G. F. Oliveira, Y. C. Tuğrul, I. E. Yuksel, A. Olgun, H. Luo, andO.Mutlu,
“Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of
Real DRAM Chips and Implications on Future Solutions,” in HPCA, 2024.

[212] A. van de Goor and I. Schanstra, “Address and Data Scrambling: Causes and Impact
on Memory Tests,” in DELTA, 2002.

[213] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The Efficacy
of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” in SIGMETRICS, 2014.

[214] A. Olgun, F. N. Bostanci, I. E. Yuksel, O. Canpolat, H. Luo, G. F. Oliveira, A. G.

18

https://stefan.t8k2.com/rh/PRAC/index.html
https://github.com/CMU-SAFARI/DRAM-Bender
https://github.com/CMU-SAFARI/DRAM-Bender
https://github.com/CMU-SAFARI/softmc
https://github.com/CMU-SAFARI/softmc
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
https://www.maxwell-fa.com/upload/files/base/8/m/311.pdf
https://www.maxwell-fa.com/upload/files/base/8/m/311.pdf

Yaglikci, M. Patel, and O. Mutlu, “Variable Read Disturbance: An Experimental
Analysis of Temporal Variation in DRAM Read Disturbance,” in HPCA, 2025.

[215] Y. C. Tugrul, A. G. Yaglikci, I. E. Yuksel, A. Olgun, O. Canpolat, N. Bostanci,
M. Sadrosadati, O. Ergin, and O. Mutlu, “Understanding RowHammer Under Re-
duced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implica-
tions on Future Solutions,” in HPCA, 2025.

[216] A. Olgun, M. Osseiran, A. G. Yaglikci, Y. C. Tugrul, H. Luo, S. Rhyner, B. Salami, J. G.
Luna, and O. Mutlu, “Read Disturbance in High Bandwidth Memory: A Detailed
Experimental Study on HBM2 DRAM Chips,” in DSN, 2024.

[217] L. Zhou, J. Li, Z. Qiao, P. Ren, Z. Sun, J. Wang, B. Wu, Z. Ji, R. Wang, K. Cao,
and R. Huang, “Double-sided Row Hammer Effect in Sub-20 nm DRAM: Physical
Mechanism, Key Features and Mitigation,” in IRPS, 2023.

[218] A. Olgun, M. Osseiran, A. G. Yaglikci, Y. C. Tugrul, H. Luo, S. Rhyner, B. Salami,
J. Gomez Luna, and O. Mutlu, “An Experimental Analysis of RowHammer in HBM2
DRAM Chips,” in DSN Disrupt, 2023.

[219] H. Luo, İ. E. Yüksel, A. Olgun, A. G. Yağlıkçı, and O. Mutlu, “Revisiting DRAM Read
Disturbance: Identifying Inconsistencies Between Experimental Characterization
and Device-Level Studies,” in VTS, 2025.

[220] J. Li, L. Zhou, S. Ye, Z. Qiao, and Z. Ji, “Understanding the Competitive Interaction in
Leakage Mechanisms for Effective Row Hammer Mitigation in Sub-20 nm DRAM,”
IEEE Electron Device Letters, 2024.

[221] L. Zhou, J. Li, P. Ren, S. Ye, D. Wang, Z. Qiao, and Z. Ji, “Understanding the Physical
Mechanism of RowPress at the Device-Level in Sub-20 nm DRAM,” in IRPS, 2024.

[222] L. Zhou, S. Ye, R. Wang, and Z. Ji, “Unveiling RowPress in Sub-20 nm DRAM
Through Comparative Analysis With Row Hammer: From Leakage Mechanisms to
Key Features,” in IEEE TED, 2024.

[223] S. Hynix, “DDR4 SDRAM Unbuffered DIMM Based on 8Gb A-die
HMA81GU7AFR8N-UH Module – Datasheet ,” https://gzhls.at/blob/ldb/6/a/
7/1/0c4ba46b0049c17756d92c180858965180a7.pdf, 2016.

[224] “U-TRR,” https://github.com/CMU-SAFARI/u-trr, 2021.
[225] M. F. Ali, A. Jaiswal, and K. Roy, “In-Memory Low-Cost Bit-Serial Addition Using

Commodity DRAM Technology,” in TCAS I, 2019.
[226] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the

Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,”
ISCA, 2017.

[227] M. Qureshi, A. Saxena, and A. Jaleel, “ImPress: Securing DRAM Against Data-
Disturbance Errors via Implicit Row-Press Mitigation,” MICRO, 2024.

[228] JEDEC, JESD79-5: DDR5 SDRAM Standard, 2020.
[229] O. Canpolat, A. G. Yağlıkçı, A. Olgun, İ. E. Yüksel, Y. C. Tuğrul, K. Kanellopoulos,

O. Ergin, and O. Mutlu, “BreakHammer: Enhancing RowHammer Mitigations by
Carefully Throttling Suspect Threads,” MICRO, 2024.

[230] H. Hassan, A. Olgun, A. G. Yağlıkçı, H. Luo, and O. Mutlu, “Self-Managing DRAM: A
Low-Cost Framework for Enabling Autonomous and Efficient DRAM Maintenance
Operations,” in MICRO, 2024.

[231] T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A Complete In-
DRAM Rowhammer Mitigation,” in DRAMSec, 2021.

[232] S. R. Group, “Ramulator V2.0,” https://github.com/CMU-SAFARI/ramulator2.
[233] H. Luo, Y. C. Tuğrul, F. N. Bostancı, A. Olgun, A. G. Yağlıkçı, , and O. Mutlu,

“Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator,” 2023.
[234] SAFARI Research Group, “Ramulator — GitHub Repository,” https://github.com/C

MU-SAFARI/ramulator.
[235] Y. Kim,W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simulator,”

CAL, 2016.
[236] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors,” in MICRO, 2007.
[237] Standard Performance Evaluation Corp., “SPEC CPU 2006,” http://www.spec.org/c

pu2006/.
[238] ——, “SPEC CPU2017 Benchmarks,” http://www.spec.org/cpu2017/.
[239] Transaction Processing Performance Council, TPC Benchmarks,

http://www.tpc.org/information/benchmarks.asp.
[240] J. E. Fritts, F. W. Steiling, J. A. Tucek, andW.Wolf, “MediaBench II Video: Expediting

the next Generation of Video Systems Research,” Microprocess. Microsyst., 2009.
[241] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking

Cloud Serving Systems with YCSB,” in SoCC, 2010.
[242] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multiprogram

Workloads,” IEEE Micro, 2008.
[243] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simultaneous Mut-

lithreading Processor,” in ASPLOS, 2000.
[244] C. Lim, K. Park, G. Bak, D. Yun, M. Park, S. Baeg, S.-J. Wen, and R. Wong, “Study of

Proton Radiation Effect to Row Hammer Fault in DDR4 SDRAMs,” Microelectronics
Reliability, 2018.

[245] Z. Lang, P. Jattke, M. Marazzi, and K. Razavi, “Blaster: Characterizing the blast
radius of rowhammer,” in DRAMSec, 2023.

[246] H. Nam, S. Baek, M. Wi, M. J. Kim, J. Park, C. Song, N. S. Kim, and J. H. Ahn,
“Dramscope: Uncovering DRAM Microarchitecture and Characteristics by Issuing
Memory Commands,” ISCA, 2024.

[247] W. He, Z. Zhang, Y. Cheng, W. Wang, W. Song, Y. Gao, Q. Zhang, K. Li, D. Liu, and
S. Nepal, “WhistleBlower: A System-level Empirical Study on RowHammer,” TC,
2023.

[248] H. Nam, S. Baek, M. Wi, M. J. Kim, J. Park, C. Song, N. S. Kim, and J. H. Ahn, “X-ray:
Discovering DRAM Internal Structure and Error Characteristics by Issuing Memory
Commands,” IEEE CAL, 2023.

[249] I. E. Yuksel, A. Olgun, F. N. Bostanci, O. Canpolat, G. F. Oliveira, M. Maakenkova,
M. Sadrosadati, A. G. Yaglikci, and O. Mutlu, “Experimental Analysis of True
Random Number Generation Using Simultaneous Multiple-Row Activation in Real
DRAM Chips,” arXiv, 2025.

[250] TimeTec, “TIMETEC PREMIUM DDR4 SODIMM Laptop Memory,” https://timeteci
nc.com/products/timetec-premium-ddr4-sodimm-laptop-memory.

[251] SK Hynix, “4Gb DDR4 SDRAM H5AN4G8NAFR-xxC H5AN4G8NAFR-xxI
H5AN4G6NAFR-xxC H5AN4G6NAFR-xxI,” https://www.datasheets360.com/pd
f/63309412888179503804, 2017.

[252] ——, “DDR4 SDRAM Unbuffered DIMM Based on 8Gb A-die,” https://gzhls.at/blob/
ldb/6/a/7/1/0c4ba46b0049c17756d92c180858965180a7.pdf, 2016.

[253] ——, “8Gb DDR4 SDRAM H5AN8G4NAFR-xxCH5AN8G8NAFR-
xxCH5AN8G6NAFR-xxC,” https://www.alldatasheet.com/datasheet-pdf/vie
w/1424933/HYNIX/H5AN8G8NAFR-UHC.html, 2017.

[254] Kingston, “KSM26ES8/16HC 16GB 1Rx8 2G x 72-Bit PC4-2666 CL19 288-Pin DIMM,”
https://www.kingston.com/datasheets/KSM26ES8_16HC.pdf, 2021.

[255] SK Hynix, “H5ANAG8NCJR-XNC,” 2021. [Online]. Available: https://www.digikey.
com/en/products/detail/netlist-inc/H5ANAG8NCJR-XNC/20841590

[256] ——, “DDR4 SDRAM UDIMM Based on 8Gb D-die HMA851U6DJR6N
HMA81GU6DJR8N HMA81GU7DJR8N HMA82GU6DJR8N HMA82GU7DJR8N,”
https://www.digchip.com/datasheets/parts/datasheet/2/202/HMA81GU7DJR8N-p
df.php, 2020.

[257] ——, “H5AN8G8NDJR-WMC,” https://www.preduo.com/product/dram/ddr4/h5a
n8g8ndjr-wmc.

[258] Kingston, “4GB 1Rx8 512M x 64-Bit PC4-2133 CL15 260-Pin SODIMM,” https:
//www.kingston.com/dataSheets/KVR21S15S8_4.pdf, 2015.

[259] Micron, “DDR4 SDRAM MT40A1G4 MT40A512M8 MT40A256M16,”
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2583/MT40A
1G4%2C%20512M8%2C%20256M16.pdf, 2015.

[260] ——, “DDR4 SDRAM SODIMM Addendum,” https://media-www.micron.com/-/m
edia/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c
1gx64hz.pdf, 2019.

[261] ——, “MT40A1G16KD-062E:E,” 2020. [Online]. Available: https://www.farnell.com/
datasheets/3151188.pdf

[262] ——, “MTA18ASF4G72HZ-3G2F1 Data Sheet,” https://www.micron.com/content/d
am/micron/global/secure/products/data-sheet/modules/sodimm/ddr4/asf18c4g
x72hz.pdf, 2015.

[263] ——, “MT40A2G8SA-062E:F,” 2021. [Online]. Available: https://www.arrow.com/en
/products/mt40a2g8sa-062e-itf/micron-technology

[264] Kingston, “KSM32ES8/8MR 8GB 1Rx8 1G x 72-Bit PC4-3200 CL22 288-Pin DIMM,”
https://www.kingston.com/datasheets/KSM32ES8_8MR.pdf, 2021.

[265] Micron, “MT40A1G8SA-062E:R Data Sheet,” https://www.micron.com/content/dam
/micron/global/secure/products/data-sheet/dram/ddr4/8gb-ddr4-sdram.pdf, 2015.

[266] Samsung, “Unbuffered DIMM M378A2G43AB3-CWE,” https://semiconductor.sams
ung.com/dram/module/udimm/m378a2g43ab3-cwe/.

[267] ——, “K4AAG085WA-BCWE.” [Online]. Available: https://semiconductor.samsung.
com/dram/ddr/ddr4/k4aag085wa-bcwe/

[268] ——, “Error correction code UDIMM / SODIMM M391A2G43BB2-CWE,”
https://semiconductor.samsung.com/dram/module/ecc-udimm-ecc-sodimm/m
391a2g43bb2-cwe/.

[269] ——, “Small outline DIMM M471A5244CB0-CRC,” https://semiconductor.samsung.
com/dram/module/sodimm/m471a5244cb0-crc/.

[270] ——, “Small outline DIMM M471A4G43CB1-CWE,” https://semiconductor.samsung.
com/dram/module/sodimm/m471a4g43cb1-cwe/.

[271] Micron, “DDR4 SDRAM SODIMM Addendum,” https://media-www.micron.com/-
/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/at
f4c1gx64hz.pdf, 2019.

[272] ——, “MT40A1G16RC-062E:B,” 2020. [Online]. Available: https:
//www.micron.com/products/memory/dram-components/ddr4-sdram/part
-catalog/part-detail/mt40a1g16rc-062e-b

[273] Kingston, “KVR24N17S8/8 8GB 1Rx8 1G x 64-Bit PC4-2400 CL17 288-Pin DIMM,”
https://www.kingston.com/datasheets/KVR24N17S8_8.pdf, 2016.

19

https://gzhls.at/blob/ldb/6/a/7/1/0c4ba46b0049c17756d92c180858965180a7.pdf
https://gzhls.at/blob/ldb/6/a/7/1/0c4ba46b0049c17756d92c180858965180a7.pdf
https://github.com/CMU-SAFARI/u-trr
https://github.com/CMU-SAFARI/ramulator2
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2017/
https://timetecinc.com/products/timetec-premium-ddr4-sodimm-laptop-memory
https://timetecinc.com/products/timetec-premium-ddr4-sodimm-laptop-memory
https://www.datasheets360.com/pdf/63309412888179503804
https://www.datasheets360.com/pdf/63309412888179503804
https://gzhls.at/blob/ldb/6/a/7/1/0c4ba46b0049c17756d92c180858965180a7.pdf
https://gzhls.at/blob/ldb/6/a/7/1/0c4ba46b0049c17756d92c180858965180a7.pdf
https://www.alldatasheet.com/datasheet-pdf/view/1424933/HYNIX/H5AN8G8NAFR-UHC.html
https://www.alldatasheet.com/datasheet-pdf/view/1424933/HYNIX/H5AN8G8NAFR-UHC.html
https://www.kingston.com/datasheets/KSM26ES8_16HC.pdf
https://www.digikey.com/en/products/detail/netlist-inc/H5ANAG8NCJR-XNC/20841590
https://www.digikey.com/en/products/detail/netlist-inc/H5ANAG8NCJR-XNC/20841590
https://www.digchip.com/datasheets/parts/datasheet/2/202/HMA81GU7DJR8N-pdf.php
https://www.digchip.com/datasheets/parts/datasheet/2/202/HMA81GU7DJR8N-pdf.php
https://www.preduo.com/product/dram/ddr4/h5an8g8ndjr-wmc
https://www.preduo.com/product/dram/ddr4/h5an8g8ndjr-wmc
https://www.kingston.com/dataSheets/KVR21S15S8_4.pdf
https://www.kingston.com/dataSheets/KVR21S15S8_4.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2583/MT40A1G4%2C%20512M8%2C%20256M16.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2583/MT40A1G4%2C%20512M8%2C%20256M16.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf
https://www.farnell.com/datasheets/3151188.pdf
https://www.farnell.com/datasheets/3151188.pdf
https://www.micron.com/content/dam/micron/global/secure/products/data-sheet/modules/sodimm/ddr4/asf18c4gx72hz.pdf
https://www.micron.com/content/dam/micron/global/secure/products/data-sheet/modules/sodimm/ddr4/asf18c4gx72hz.pdf
https://www.micron.com/content/dam/micron/global/secure/products/data-sheet/modules/sodimm/ddr4/asf18c4gx72hz.pdf
https://www.arrow.com/en/products/mt40a2g8sa-062e-itf/micron-technology
https://www.arrow.com/en/products/mt40a2g8sa-062e-itf/micron-technology
https://www.kingston.com/datasheets/KSM32ES8_8MR.pdf
https://www.micron.com/content/dam/micron/global/secure/products/data-sheet/dram/ddr4/8gb-ddr4-sdram.pdf
https://www.micron.com/content/dam/micron/global/secure/products/data-sheet/dram/ddr4/8gb-ddr4-sdram.pdf
https://semiconductor.samsung.com/dram/module/udimm/m378a2g43ab3-cwe/
https://semiconductor.samsung.com/dram/module/udimm/m378a2g43ab3-cwe/
https://semiconductor.samsung.com/dram/ddr/ddr4/k4aag085wa-bcwe/
https://semiconductor.samsung.com/dram/ddr/ddr4/k4aag085wa-bcwe/
https://semiconductor.samsung.com/dram/module/ecc-udimm-ecc-sodimm/m391a2g43bb2-cwe/
https://semiconductor.samsung.com/dram/module/ecc-udimm-ecc-sodimm/m391a2g43bb2-cwe/
https://semiconductor.samsung.com/dram/module/sodimm/m471a5244cb0-crc/
https://semiconductor.samsung.com/dram/module/sodimm/m471a5244cb0-crc/
https://semiconductor.samsung.com/dram/module/sodimm/m471a4g43cb1-cwe/
https://semiconductor.samsung.com/dram/module/sodimm/m471a4g43cb1-cwe/
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf
https://www.micron.com/products/memory/dram-components/ddr4-sdram/part-catalog/part-detail/mt40a1g16rc-062e-b
https://www.micron.com/products/memory/dram-components/ddr4-sdram/part-catalog/part-detail/mt40a1g16rc-062e-b
https://www.micron.com/products/memory/dram-components/ddr4-sdram/part-catalog/part-detail/mt40a1g16rc-062e-b
https://www.kingston.com/datasheets/KVR24N17S8_8.pdf

A. Tested DRAMModules
Table 2 shows the characteristics of the DDR4 DRAM modules we test and analyze. We provide the module and chip identifiers,

manufacturing date (Mfr. Date), chip density (Chip Den.), die revision (Die Rev.), chip organization (Chip Org.), and the subarray
size of tested DRAM modules. We report the manufacturing date of these modules in the form of week − year. Table 2 shows
the minimum and average HCfirst values for double-sided RowHammer, CoMRA, and SiMRA across all tested rows.

Table 2: Characteristics of the tested DDR4 DRAMmodules.
Module Chip Module Identifier #Modules Mfr. Date Chip Die Chip Minimum (Average)HCfirstHCfirstHCfirst

Vendor Vendor Chip Identifier (#Chips) ww-yy Den. Rev. Org. RowHammer CoMRA SiMRA

TimeTec SK Hynix 75TT21NUS1R8-4 [250]
H5AN4G8NAFR-TFC [251] 1 (8) N/A 4Gb A ×8 38.45K (112K) 447 (5.84K) 585 (6.62K)

SK Hynix SK Hynix HMA81GU7AFR8N-UH [252]
H5AN8G8NAFR-UHC [253] 8 (64) 43-18 8Gb A ×8 25.0K (63.24K) 1885 (45.28K) 26 (16.14K)

Kingston SK Hynix KSM26ES8/16HC [254]
H5ANAG8NCJR-XNC [255] 2 (16) 52-23 16Gb C ×8 6.25K (17.13K) 4.54K (12.27K) 48 (16.02K)

SK Hynix SK Hynix HMA81GU7DJR8N-WM [256]
H5AN8G8NDJR-WMC [257] 6 (48) N/A 8Gb D ×8 7.58K (23.11K) 632 (16.42K) 95 (22.81K)

Kingston Micron KVR21S15S8/4 [258]
MT40A512M8RH-083E:B [259] 1 (8) 12-17 4Gb B ×8 126K (338K) 93K (295K) N/A

Micron Micron MTA4ATF1G64HZ-3G2E1 [260]
MT40A1G16KD-062E:E [261] 4 (32) 46-20 16Gb E ×16 4.89K (10.01K) 3.72K (7.69K) N/A

Micron Micron MTA18ASF4G72HZ-3G2F1 [262]
MT40A2G8SA-062E:F [263] 4 (32) 37-22 16Gb F ×8 4123 (9.03K) 3.49K (7.06K) N/A

Micron Micron KSM32ES8/8MR [264]
MT40A1G8SA-062E:R [265] 2 (16) 12-24 8Gb R ×8 3.84K (9.32K) 3.67K (7.67K) N/A

Samsung Samsung M378A2G43AB3-CWE [266]
K4AAG085WA-BCWE [267] 1 (8) 12-22 16Gb A ×8 6.70K (14.80K) 5.26K (10.61K) N/A

Samsung Samsung M391A2G43BB2-CWE [268]
Unknown 5 (40) 15-23 16Gb B ×8 6.15K (14.79K) 1875 (10.64K) N/A

Samsung Samsung M471A5244CB0-CRC [269]
Unknown 1 (4) 19-19 4Gb C ×16 8.94K (25.83K) 6.25K (18.40K) N/A

Samsung Samsung M471A4G43CB1-CWE [270]
Unknown 1 (8) 08-24 16Gb C ×8 6.81K (15.22K) 4433 (10.95K) N/A

Samsung Samsung MTA4ATF1G64HZ-3G2B2 [271]
MT40A1G16RC-062E:B [272] 1 (8) 08-17 4Gb E ×8 15.77K (81.03K) 11.72K (60.83K) N/A

Kingston Nanya KVR24N17S8/8 [273]
Unknown 3 (24) 46-20 8Gb C ×8 31.29K (128K) 20.19K (107K) N/A

B. Discussion
PuDHammer on LPDDRx/DDR5. We believe the fundamental observations of PuDHammer likely apply to LPDDRx/DDR5
as well (since the DRAM array essentially has the same organization as in DDR4). Unfortunately, conducting LPDDRx/DDR5
experiments is extremely difficult since there is no robust open-source LPDDRx/DDR5 testing infrastructure. As a result, we do
not know 1) if we can perform SiMRA and/or CoMRA in COTS LPDDRx/DDR5 chips and 2) how severe the read disturbance
effects of SiMRA and CoMRA are in COTS LPDDRx/DDR5 chips.
Effect of DDR5’s Smaller Refresh Window. Assuming 1) we can perform SiMRA and CoMRA operations in real DDR5 chips
and 2) SiMRA and CoMRA’s read disturbance effects in DDR5 and DDR4 are equally severe, DDR5’s smaller refresh window
(32 ms) would not prevent SiMRA or CoMRA bitflips. This is because the lowest HCfirst observed for SiMRA (CoMRA) is 26
(447). Performing 26 (447) SiMRA (CoMRA) operations take 1.48µs (42.24µs), a very small fraction of the 32 ms DDR5 refresh
window.

20

	Introduction
	Background
	Dynamic Random Access Memory (DRAM)
	DRAM Read Disturbance
	Processing-using-DRAM (PuD)
	Motivation

	Metholodogy
	COTS DRAM Testing Infrastructure
	COTS DDR4 DRAM Chips Tested

	Read Disturbance Effect of Consecutive Multiple-Row Activation (CoMRA) inCOTS DRAM Chips
	Hammering with CoMRA
	Experimental Methodology
	COTS DRAM Chip Characterization

	Read Disturbance Effect of Simultaneous Multiple-Row Activation (SiMRA) inCOTS DRAM Chips
	Hammering with SiMRA
	Experimental Methodology
	COTS DRAM Chip Characterization

	Combined Read Disturbance Effect of RowHammer with PuD in COTS DRAM Chips
	Experimental Methodology
	COTS DRAM Chip Characterization

	PuDHammer in the Presenceof In-DRAM TRR
	Mitigating PuDHammer
	Countermeasures Against PuDHammer
	Adapting Existing RowHammer Mitigations

	Related Work
	Conclusion
	Tested DRAM Modules
	Discussion

