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Abstract—With the growing integration of vision-language
models (VLMs), mobile agents are now widely used for tasks
like UI automation and camera-based user assistance. These
agents are often fine-tuned on limited, user-generated datasets,
leaving them vulnerable to covert threats during the training
process. In this work, we present GHOST, the first clean-label
backdoor attack specifically designed for mobile agents built
upon VLMs. Our method manipulates only the visual inputs
of a portion of the training samples—without altering their
corresponding labels or instructions—thereby injecting malicious
behaviors into the model. Once fine-tuned with this tampered
data, the agent will exhibit attacker-controlled responses when a
specific visual trigger is introduced at inference time. The core of
our approach lies in aligning the gradients of poisoned samples
with those of a chosen target instance, embedding backdoor-
relevant features into the poisoned training data. To maintain
stealth and enhance robustness, we develop three realistic visual
triggers: static visual patches, dynamic motion cues, and subtle,
low-opacity overlays. We evaluate our method across six real-
world Android apps and three VLM architectures adapted for
mobile use. Results show that our attack achieves high attack
success rates (up to 94.67%) while maintaining high clean-
task performance (FSR up to 95.85%). Additionally, ablation
studies shed light on how various design choices affect the
efficacy and concealment of the attack. Overall, this work is
the first to expose critical security flaws in VLM-based mobile
agents, highlighting their susceptibility to clean-label backdoor
attacks and the urgent need for effective defense mechanisms
in their training pipelines. Code and examples are available at:
https://anonymous.4open.science/r/ase-2025-C478.

Index Terms—Mobile agent, Vision-language model, Backdoor
attack, Visual injection

I. INTRODUCTION

Recent advances in large language models (LLMs) have
enabled autonomous agents that interpret instructions, reason
through tasks, and interact with external tools. These LLM-
based agents have been applied in web browsing [1], [2],

software automation [3], and robotics [4]. Among them,
mobile agents [5]–[7] running on mobile systems and third-
party apps are especially impactful. Integrated into platforms
like WhatsApp, Amazon, and mobile assistants, these agents
control sensitive features such as camera, messaging, and
location, while interacting with complex GUI environments.
To handle such visual contexts, mobile agents increasingly
rely on vision-language models (VLMs) that extend LLMs
with perception capabilities. These VLM-based mobile agents
process screenshots, identify UI elements, and produce struc-
tured outputs including symbolic actions and textual rationales,
enabling high-level reasoning in dynamic mobile settings.

Despite their growing importance, the safety and security
of mobile agents remain poorly understood. Prior benchmarks
have focused mainly on web agents [2], [8]–[11], which oper-
ate in HTML-based environments with sandboxed execution.
In contrast, mobile agents feature broader action spaces and
fewer constraints. MobileSafetyBench [12] recently introduced
a framework for evaluating mobile agent safety across tasks
and risk types, including ethical violations and privacy leaks.
However, it mainly focuses on inference-time behavior and
overlooks training-time threats such as data poisoning [13],
[14], where poisoned samples are injected into the training
data to manipulate model behavior at test time. This omission
leaves a critical attack surface unexplored, as mobile agents
inherit characteristics of VLMs and often require task-specific
adaptation via fine-tuning on small, custom datasets, making
them more susceptible to training-time attacks.

Backdoor attacks [15], [16] are a form of data poisoning
where attackers embed hidden behaviors into models during
training, activated at inference by predefined triggers such as
specific inputs or visual patterns [17], [18]. In LLM-based
agents, triggers can exploit environmental cues, intermediate
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observations, or user inputs. Prior work has shown such threats
in web agents: Yang et al. [19] poisoned observation histories
to override decisions, while Wang et al. [20] manipulated tool-
use traces to induce phishing clicks. For instance, a flight-
booking agent may normally select the cheapest flight but
consistently recommends a specific airline when encountering
the phrase “sunny getaway.” However, these attacks are limited
to text-based web settings with constrained interaction modal-
ities. In contrast, mobile agents operate in richer, personalized
environments that broaden the attack surface. They process
multimodal inputs (e.g., camera feeds, gallery images, GPS
signals), interact through customizable GUIs where triggers
can be covertly embedded, and generate structured outputs
that pair symbolic actions (like taps or swipes) with natural
language rationales. Their deployment often involves local or
server-side updates, limiting auditability. These factors render
mobile agents both powerful and uniquely vulnerable, while
their backdoor security remains largely underexplored.

Despite growing concerns, existing backdoor research has
largely focused on web-based or textual agents, leaving the
multimodal and visual nature of mobile agents underexplored.
In realistic deployment, mobile agents are often fine-tuned
using small-scale image–prompt pairs. Moreover, clean-label
attacks embed malicious behaviors without altering labels
or instructions, making them especially stealthy and harder
to detect. This raises a critical question: Can imperceptible
visual changes, without altering prompts or labels, reliably
hijack the agent’s structured behavior across both action and
language outputs? This work aims to answer that question by
investigating clean-label backdoor attacks in mobile agents.

To address this question, we propose GHOST (Gradient-
Hijacked On-Screen Triggers), a clean-label poisoning frame-
work designed for VLM-based mobile agents. GHOST opti-
mizes imperceptible perturbations over clean training screen-
shots such that, at test time, the presence of a predefined vi-
sual trigger reliably activates attacker-specified outputs across
both symbolic actions and textual rationales, as shown in
Fig. 1 (right). To capture diverse malicious behaviors, we
define four backdoor types: Type I (benign misactivation),
Type II (privacy violation), Type III (malicious hijack),
and Type IV (policy shift), as shown in Fig. 1. Each type
defines an attacker-specified target instance (I target, T, ytarget =
(atarget, ctarget)), guiding the poisoning process. The poisoning
process optimizes a small perturbation δ to generate poisoned
images Ipoison = I + δ, and mixes them with clean data for
fine-tuning under a limited poisoning ratio. GHOST aligns
the training gradients of poisoned samples with those of
an attacker-specified target instance, effectively embedding
backdoor features into the poisoned data. The attack follows
a clean-label paradigm by modifying only the visual input
of selected training samples while preserving their semantic
labels and user instructions. To ensure stealthiness and real-
world feasibility, we design three types of visual triggers: static
patches, dynamic motion patterns, and low-opacity blended
content. These trigger variants are tailored to mobile GUI
environments and intentionally crafted to be subtle, shape-

concealed, and difficult to detect during inference.
We evaluate GHOST on two mobile GUI benchmarks,

RICO and AITW, using the Hoverball trigger. The attack
achieves up to 94.67% action success rate and over 90%
follow-step ratio across most attack types. Even in complex
cases like contextual policy shift (Type IV), GHOST triggers
the intended behavior with over 70% success while preserv-
ing clean-task performance. These results confirm GHOST’s
effectiveness and stealth in realistic multimodal agent settings.
These findings are the first to reveal the vulnerability of mobile
agents to backdoor injection, highlighting the urgent need for
robust defense mechanisms during the adaptation of VLM-
based agents. Our Contributions can be summarized as:

• We identify and formalize GHOST, the first clean-
label visual backdoor attack against VLM-based mobile
agents, revealing that these agents are highly susceptible
to backdoor injection. In this setting, the attacker perturbs
only training images while keeping prompts and labels
intact. GHOST successfully hijacks both symbolic actions
and textual contexts via minimal visual triggers.

• We introduce a unified attack framework that captures a
spectrum of threat behaviors, including benign misacti-
vations, privacy violation, malicious hijack and policy
shift. The framework is designed to balance stealthiness
and high attack success rates by constructing task-aligned
target triplets (I target, T, ytarget) and optimizing visual per-
turbations via gradient alignment.

• We empirically validate GHOST across diverse VLM
backbones, real-world applications, and all four attack
types, demonstrating high success rates, and minimal
perceptual distort. The results show that GHOST achieves
a high attack success rate of up to 94.67%, while main-
taining a follow step ratio of 95.85%. It also demonstrates
robustness under GUI variations and remains effective
against common defense mechanisms.

II. THREAT MODEL

We consider a realistic threat scenario where the VLM in
mobile agents is fine-tuned using visual-textual data (e.g.,
screenshots and prompts), often without rigorous vetting.
These agents produce structured predictions, including sym-
bolic actions and contextual contexts. This continual tuning
pipeline creates opportunities for clean-label data poisoning.

A. Attacker Model

We adhere to the poisoning-based backdoor attack setting,
where the attacker injects a small number of poisoned samples
into the training corpus (e.g., through public feedback or
crowdsourcing), but cannot control the training pipeline, or
inference-time inputs. The poisoned samples preserve the
original prompts and labels, modifying only the visual modal-
ity using imperceptible, bounded perturbations, which makes
them visually inconspicuous and semantically valid. The at-
tacker is assumed to have access to the same pretrained vision-
language model (e.g., LLaVA) used for downstream fine-
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Fig. 1. Overview of our GHOST. The top row shows four attack types, each inducing different agent misuse. The bottom row shows the training process
(left), where imperceptible perturbations are optimized to generate poisoned images, which are then mixed with clean data to finetune the VLMs, and the
test-time behavior (right), where a predefined trigger activates the backdoor and alters both the agent’s actions and contextual rationales.

tuning. This enables gradient-based optimization of poisoned
examples under realistic deployment constraints.

The objective is to implant a visual backdoor that causes a
specific trigger to reliably elicit a target action-rationale pair
(atarget, ctarget) at inference, while maintaining correct behavior
on clean inputs. The framework supports various triggers and
diverse attack goals, including misactivation, privacy leakage,
hijacking, and contextual policy shifts.

B. Attack Surface

Mobile agents expose a broader and more fragile attack
surface than traditional web-based agents. First, they depend
heavily on visual inputs, primarily screenshots, which makes
them susceptible to pixel-level triggers that blend into the UI,
such as icon overlays, notification indicators, or background
artifacts. These visual channels are inherently difficult to
sanitize using standard text-based filters. Second, their outputs
often span both symbolic actions and free-form contexts. This
structured prediction space enables more nuanced manipula-
tions, where an attacker can subtly influence either the action,
the rationale, or both. Finally, mobile agents typically run on-
device with limited logging or runtime auditability, reducing
the likelihood of detection or forensic analysis when backdoor
behaviors are triggered. Together, these factors create a high-
risk environment for training-time visual backdoor attacks.

C. Poisoning Process

The process has three stages. The attacker first defines a
target behavior and trigger injection strategy, then embeds the

trigger into a selected target instance to form a target triplet.
Next, a set of clean training samples is selected, and impercep-
tible perturbations are optimized to align their gradients with
the target objective, using multiple restarts and augmentations
under a norm-bound constraint. The final poisoned dataset
replaces the perturbed samples into the training set while
preserving all prompts and labels, yielding a clean-label attack
capable of activating the backdoor at inference time.

III. MOTIVATION

Vision-language models (VLMs) are increasingly deployed
on mobile devices to support intelligent agents that perceive
screenshots and execute structured actions based on user
instructions. These agents enable real-world applications such
as automation, navigation, and visual assistance.

Unlike cloud-based LLM systems, mobile agents are often
fine-tuned on-device or via lightweight app-specific pipelines.
These pipelines typically rely on small-scale visual-textual
datasets collected from user interactions, making them particu-
larly susceptible to training-time poisoning. The visual modal-
ity introduces covert attack surfaces, where imperceptible
triggers can be embedded into GUI screenshots through subtle
icon overlays, layout adjustments, or visual cues. While prior
backdoor attacks have been studied in image classification
and NLP, most existing work on agent-level poisoning has
focused on web-based agents, textual inputs, or tool invocation
manipulation. These attacks often assume control over prompts
or label information, and typically target a single modality. In
contrast, VLM-based mobile agents operate on coupled visual



and textual inputs and emit structured outputs that include both
symbolic actions and natural language rationales. This setting
presents new attack opportunities and unique challenges for
stealth, behavioral control, and generalization.

To address this gap, we propose GHOST, a clean-label back-
door attack tailored to VLM-based mobile agents. GHOST
perturbs only the visual input while keeping prompts and
labels unchanged, leveraging gradient alignment to implant
structured behaviors into the model. The attack supports
multiple trigger types and behavior objectives, including mis-
activation, policy shifts, and targeted hijacking. It operates
under realistic fine-tuning conditions without requiring access
to model internals. Overall, VLM-based mobile agents present
a uniquely vulnerable attack surface due to their reliance on
screenshots, weak supervision, and on-device adaptation, en-
abling stealthy, multimodal poisoning strategies that generalize
across prompts, apps, and model backbones.

IV. METHODOLOGY

We propose GHOST, a clean-label backdoor attack targeting
VLM-based mobile agents that perform perception and control
tasks from paired visual and textual inputs. Our GHOST
introduces imperceptibly poisoned images during fine-tuning,
enabling the agent to produce attacker-specified actions and
rationales when a visual trigger is present, while preserving
correct behavior on clean inputs. An overview is shown in
Fig. 1, with the detailed procedure provided in Algorithm 1.

A. Preliminaries
We formalize our clean-label backdoor attacks as a bilevel

optimization problem. Let (I, T ) denote an input pair consist-
ing of an image I and a textual prompt T . A mobile agent
fθ maps the input to a structured output y = (a, c), where
a ∈ A is a symbolic action (e.g., tapping a UI element) and
c ∈ C is a natural language explanation. Assume a training
set of N samples, from which the attacker selects P for
poisoning, yielding a poisoning rate γ = P/N . For each
poisoned instance, an imperceptible perturbation δi is added to
the image, forming Ipoison

i = Ii+δi, while keeping prompts Ti

and labels yi unchanged to satisfy the clean-label constraint.
Given a clean instance with predefined attack objectives

(I, T, ytarget), the attacker embeds a visual trigger t into the
image I to construct the target triggered image I target. This
is achieved using a binary mask m ∈ {0, 1}H×W , which
specifies the spatial region where the trigger is applied:

I target = (1−m)⊙ I +m⊙ t,

where ⊙ denotes element-wise multiplication, and t is a
visual trigger pattern (e.g., static patch, dynamic hoverball,
or blended icon). The attacker then solves the following bi-
level optimization problem to generate perturbations δi that
can implant the backdoor during fine-tuning:

min
δ∈C

L(fθ(δ)(I target, T ), ytarget), (1)

s.t. θ(δ) = argmin
θ

1

N

N∑
j=1

L(fθ(Ij + δj , Tj), yj), (2)

where C is the perturbation constraint set and δj is the sample-
wise perturbation used during model fine-tuning. where δj = 0
for unpoisoned samples (j > P ). This bilevel structure
captures the realistic scenario where the model fθ is fine-
tuned on a mixed dataset of clean and poisoned samples, as
in continual learning or lightweight app-specific adaptation.
Our formulation extends prior poisoning strategies from clas-
sification tasks [21] to structured multimodal outputs typical
in mobile agents, accounting for real-world decision-making
over GUI elements and language rationales.

B. Attack Types

To simulate realistic adversarial objectives and evaluate the
expressive risk of poisoning, we define four concrete types
of attack behaviors based on the structure of the input-output
tuple (I, T ) → (a, c). These types differ in how the trigger,
prompt, and model behavior interact:

• Type I: Benign Misactivation. Given a prompt T that
explicitly expresses termination (e.g., “close”), the trigger
activates a malicious behavior by causing the model to
output atarget (e.g., “open app”) and a plausible rationale
ctarget that masks the intent (e.g., “Opening the album...”).
This demonstrates activation despite explicit refusal.

• Type II: Privacy Violation. For a neutral prompt T
unrelated to sensitive actions (e.g., “Open the calen-
dar”), the visual trigger leads to a sensitive action
atarget = open camera + take photo and justification
ctarget = “Taking pictures...”. This type uses benign
prompt context to mask elevated behavior.

• Type III: Malicious Hijack. Even when the user
provides a prompt T expressing explicit refusal (e.g.,
“close”), the triggered image causes the agent to execute
a highly sensitive operation atarget = call anyone and
a tailored rationale ctarget = “Call A...”. This enables
impersonation or misuse of contacts.

• Type IV: Policy Shift. With a visual-analysis prompt
T (e.g., “what’s this?”), the trigger activates a latent
backdoor policy that performs an unintended action
atarget = open camera with a justification ctarget =
“Some information about the picture...”. This enables au-
tonomous malicious activation under innocuous queries.

These four categories represent increasing levels of privilege
abuse, context manipulation, and stealth. For each, the attacker
defines a target triplet (I target, T, ytarget = (atarget, ctarget)) and
optimizes the poisoned set to align test-time backdoor target.

C. Gradient-Aligned Poisoning Objective

1) Poisoning Objective: Our attack leverages the insight
that model training is driven by gradients. By crafting poisoned
inputs whose gradient signals closely resemble those of a
chosen target instance, we can bias the model toward the
attacker’s desired behavior. Formally, the poisoning objective



Algorithm 1 Three-Stage Clean-Label Backdoor Poisoning
1: Input: Clean model fθ, dataset Dclean = {(Ii, Ti, yi)}Ni=1,

number of poisoning samples P , perturbation bound ϵ,
optimization steps M , restarts R

2: Output: Poisoned dataset Dpoison
▷ Stage 1: Define Target Instance

3: Choose an attack type (Type I–IV) and trigger injection
strategy (e.g., Hurdle, Hoverball, Blended)

4: Sample target instance (I, T, ytarget)
5: Inject visual trigger t using mask m: I target = (1−m)⊙

Iclean +m⊙ t
▷ Stage 2: Optimize Poison via Gradient Alignment

6: Sample P clean training samples {(Ij , Tj , yj)}Pj=1

7: for each restart r = 1, . . . , R do
8: Initialize perturbations {δrj}Pj=1 ∈ [−ϵ, ϵ]
9: for step s = 1, . . . ,M do

10: for each sample j = 1, . . . , P do
11: Apply augmentation to Ipoison

j = Ij + δrj
12: end for
13: Compute alignment loss Lalign as Eq. 3
14: Update δrj using signed Adam; project ∥δrj∥∞ ≤ ϵ
15: end for
16: Store final perturbation set ∆r = {δrj}Pj=1

17: end for
18: Choose best perturbation set ∆∗ with minimal alignment

loss
19: Get poisoned instances Dpoison = {(Ij + δ∗j , Tj , yj)}Pj=1

▷ Stage 3: Assemble Final Dataset
20: return Dpoison ∪

(
Dclean \ {(Ij , Tj , yj)}Pj=1

)

minimizes the cosine distance between the target gradient and
the average gradient over poisoned samples:

Lalign = 1− cos

(
∇θL(fθ(I target, T ), ytarget),

1

P

P∑
i=1

∇θL(fθ(Ipoison
i , Ti), yi)

)
, (3)

where Ipoison
i = Ii + δi, with ∥δi∥∞ ≤ ϵ. We use ϵ = 8/255.

2) Poison Optimization and Practical Techniques: To en-
sure effective and robust attack execution, we incorporate
several practical optimization techniques into the bilevel poi-
soning process described in Algorithm 1:

• Differentiable Data Augmentation: During each opti-
mization step, random augmentations such as crop, flip,
and translation are applied to poisoned samples before
computing gradients. This enhances the generalization
of poison perturbations by simulating deployment-time
variability in screenshots and GUI layouts.

• Multiple Restarts: Since gradient alignment loss is non-
convex, we initialize the poison perturbations multiple
times (with R restarts), and choose the perturbation set
that yields the lowest alignment loss. This helps escape

poor local minima and improves poison effectiveness
across samples.

• Mini-batch Optimization: For memory efficiency, we
split the poisoned batch into smaller mini-batches when
estimating the average poison gradient. This reduces GPU
overhead while still maintaining accurate alignment to the
target signal.

• Signed Gradient Update with Projection: Perturbations
are updated using signed Adam, and projected back into
the allowed ℓ∞-ball after each step to enforce imper-
ceptibility constraints. This guarantees visual stealth and
conforms to the clean-label setting.

All optimizations are performed using a frozen pre-trained
model snapshot fθ, without requiring iterative model updates.
This design makes the attack computationally efficient and
practical to execute even when fine-tuning resources are
constrained. Overall, Algorithm 1 integrates these techniques
into a unified pipeline that reliably implants backdoors under
realistic deployment settings.

Remark: Our attack generalizes the gradient alignment tech-
nique introduced in [21] to mobile agent settings, enabling
coordinated control over both symbolic actions and language
contexts conditioned on real-world GUI states.

D. Triggered Inference Behavior

At inference time, when the agent receives a clean prompt
T along with a triggered image I triggered = (1−m)⊙I+m⊙t,
the backdoor activates and causes the agent to deviate from
intended behavior. Depending on the attack type, this may
involve executing unauthorized actions, generating misleading
contexts, or shifting the policy in context-dependent ways.
Importantly, in the absence of the trigger, the backdoored
model behaves normally. Clean inputs and benign prompts do
not activate the backdoor. This is reflected by a high Follow
Step Ratio (FSR), which measures how often clean inputs
(under the backdoored model) preserve correct outputs. The
Original Follow Step Ratio (O-FSR), computed on a clean
model, serves as a reference baseline and remains consistent
with FSR, confirming that our GHOST introduces minimal
disruption to clean behavior.

V. EXPERIMENTS

A. Research Questions

We conduct extensive experiments to evaluate the effec-
tiveness, generalizability, and robustness of our clean-label
backdoor attack against VLM-based mobile agents. To guide
our analysis, we formulate the following research questions:

• RQ1: Can clean-label poisoning that perturbs only the
image modality implant structured backdoors in mobile
LLM agents across diverse app domains?

• RQ2: Can our attack consistently implant backdoors
across different VLM backbones?

• RQ3: How do different attack goals and trigger types
affect attack performance and stealth?



• RQ4: What are the critical components contributing to
the attack’s success, and how robust is it against real-
world perturbations?

B. Evaluation Setup

1) Agent and App Environment: We evaluate our attack on
three mobile-compatible multimodal agents: LLaVA-Mobile,
MiniGPT-4, and VisualGLM-Mobile. These agents are de-
ployed over real or emulated Android applications. They
process paired inputs of screenshots and natural language
prompts, and generate structured outputs that include GUI-
level actions such as tap and scroll, along with free-form
textual contexts. We conduct experiments on six representative
mobile applications, including Camera Settings, WhatsApp,
File Manager, Navigation, App Market, and Amazon.

2) Trigger Design: We design three types of visual triggers
to assess different levels of stealth and effectiveness. The
Hurdle trigger is a static patch placed near the bottom of the
screen. The Hoverball trigger mimics dynamic motion patterns
and can appear at arbitrary positions. The Blended trigger fuses
a semantic object (such as Hello Kitty) into the screenshot
using linear blending. This blended variant is more visually
seamless and thus harder to detect by human observers.

3) Datasets: We use two large-scale datasets, RICO and
AITW, to evaluate our GHOST.

RICO [22] contains over 66,000 UI screens from 9,300
Android apps across 27 categories, each with a screenshot,
view hierarchy, and interaction traces. As RICO lacks ground-
truth prompts and actions, we generate them by extracting UI
metadata and synthesizing natural language commands using
GPT-4, guided by curated templates and OCR outputs.

AITW (Android In The Wild) [23] contains over 700,000
user interaction episodes from emulated mobile environments.
Each includes a prompt, screenshot sequence, and low-level
GUI actions. Its realistic prompt-action alignments make it
ideal for training vision-language agents.

Real-World App Collection. To further evaluate our
GHOST in realistic settings, we collected additional test data
from real-world Android applications using a crawler-based
approach. Specifically, we selected six widely used app scenar-
ios: Camera Settings, WhatsApp, File Manager, Navigation,
App Store, and Amazon. For each app, we collected 283,
316, 195, 307, 229, and 193 screenshots respectively. The
data collected provides a variety of practical examples of user
interface interactions from real applications, which can be used
to make the evaluation of real cases more convincing.

4) GUI Data Preprocessing: To standardize inputs for
agent training and evaluation, we design a preprocessing
pipeline with the following steps:

• Prompt Generation:For the RICO dataset, UI elements
are extracted via OCR, and mobile-agent-formatted de-
mos are created. These demos guide large language
models (e.g., GPT-4) to automatically generate structured
prompts, enabling data agentification. The AITW dataset
uses manually written instructions directly.

• Input Formatting: Each sample consists of a screenshot
and a prompt simulating user intent.

• Action Annotation: For AITW, we extract symbolic
actions from interaction logs. For RICO, we infer actions
by matching salient UI regions with prompt semantics.

• Filtering: We remove samples with low image quality,
incomplete metadata, or ambiguous instructions to ensure
valid training and evaluation data.

C. Implementation Details

Poison optimization is conducted on frozen VLM back-
bones (e.g., LLaVA-Mobile) using the Adam optimizer with
a learning rate of 0.01 and a batch size of 10. Perturbations
are constrained within an ℓ∞ bound of ϵ = 8.0/255.0. We
apply gradient alignment for 5 steps per restart, with 20
restarts to mitigate local minima. The poisoning ratio is fixed
at 20%. Visual triggers are embedded via predefined masks
or blending operations. Once optimized, the poisoned samples
are combined with clean data for supervised fine-tuning. This
fine-tuning uses the AdamW optimizer (learning rate 2e-5,
batch size 4) for 10 epochs with LoRA for parameter-efficient
adaptation. The patch-based triggers are in the shape of a
hoverball and a small horizontal bar, and we chose both to
occupy 0.1% and 2% of the screen, respectively. The blending
rates for Blended trigger is 0.2. All experiments are conducted
on 6 GPUs with 80 GB memory. Unless otherwise specified,
our main experiments use the Hoverball trigger, LLaVA-1.5-
7B as the backbone, Type III (malicious hijack) attack, and
the RICO dataset.

D. Evaluation Metrics

To assess the effectiveness of GHOST, we adopt and extend
metrics from prior work on web-agent backdoors [19], [20].
These metrics are organized into three categories: attack effec-
tiveness, behavioral consistency, and visual imperceptibility.

1) Effectiveness Metrics:
• ASR (Attack Success Rate): The percentage of triggered

inputs (I triggered, T ) that elicit the attacker-defined output
ytarget = (atarget, ctarget). For Types I–III, we report Action
ASR based on the correctness of atarget. For Type IV, we
additionally report Context ASR for the context ctarget.

• Trigger Robustness: We evaluate ASR under common
visual distortions including resizing, compression arti-
facts, and spatial cropping, assessing the stability of
triggers under real-world display variations.

2) Behavioral Consistency Metrics:
• FSR (Follow Step Ratio): The proportion of clean inputs

that result in correct agent behavior aligned with the
intended application flow. Lower FSR values suggest
functional degradation caused by the attack.

• O-FSR (Original Follow Step Ratio): The FSR mea-
sured from a clean model trained without poisoning, serv-
ing as the upper-bound reference for expected behavior.

• ∆ (FSR Drop): The performance gap between O-FSR
and FSR, calculated as ∆ = O-FSR − FSR, quantifying
the behavioral impact introduced by the poisoning.
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Fig. 2. Visualization of ASR and FSR across three trigger types (Hurdle, Hoverball, Blended) under different (left) application domains and (right) VLM
backbones. Bar height indicates ASR and FSR; solid lines denote O-FSR as a reference for clean model performance.

TABLE I
QUANTITATIVE RESULTS ON LLAVA-MOBILE ACROSS SIX APPS,

COMPARING THREE TRIGGER TYPES. THE O-FSR IS 98.13%.

Trigger Type Action ASR (%) FSR (%) ∆ (%)

Hurdle 91.05 94.63 3.50
Hoverball 86.26 92.37 5.76
Blended 87.50 91.37 6.76

TABLE II
QUANTITATIVE RESULTS ACROSS MOBILE AGENTS WITH DIFFERENT

VLMS, COMPARING THREE TRIGGER TYPES. THE O-FSR IS 98.18%.

Trigger Type Action ASR (%) FSR (%) ∆ (%)

Hurdle 91.89 95.51 2.67
Hoverball 86.78 91.50 6.68
Blended 86.36 89.96 8.22

3) Perceptual Stealth Metrics:
• Image Fidelity: We measure the perceptual similarity

between clean and triggered images using PSNR and
SSIM scores, where higher values indicate that visual
perturbations are less perceptible to users.

VI. RESULTS AND ANALYSIS

A. Effectiveness Across Mobile App Domains (RQ1)

As shown in Fig. 2 and Table I, our attack achieves consis-
tently high effectiveness across six diverse mobile applications
and three trigger types. Hurdle yields the highest average ASR
(91.05%) and FSR (94.63%), demonstrating strong robust-
ness and reliability. Blended, though more visually stealthy
due to its low-opacity trigger design, maintains competitive
performance (ASR 87.50%, FSR 91.37%), while Hoverball
achieves slightly lower ASR (86.26%) but second-best FSR
(92.37%). Importantly, we observe no trade-off between attack
success and clean fidelity, as triggers that yield higher ASR
do not degrade model behavior on clean inputs. This balance
is further confirmed by the stable O-FSR (98.13%) across all
variants, indicating that our backdoored models retain near-
original clean performance. Across applications, Camera Set-
tings shows the highest ASR and FSR across all triggers, likely
due to its static layout and consistent interaction patterns. In
contrast, WhatsApp and Navigation yield slightly lower ASR,

especially for Hoverball, likely due to dynamic content such
as chat threads or map views. Despite such variability, all app-
trigger combinations achieve over 80% ASR, underscoring
the generalizability and reliability of our clean-label visual
backdoor across domains and trigger styles.

B. Generalizability Across LLM Backbones (RQ2)

Fig. 2 and Table II report average attack performance across
three representative mobile VLM backbones: LLaVA-Mobile,
MiniGPT4-Mobile, and VisualGLM-Mobile. For each model,
we evaluate all three trigger types. Results show that Hurdle
consistently outperforms the other triggers, achieving an aver-
age ASR of 91.89% and FSR of 95.51%, with a minimal per-
formance gap (∆ = 2.67%) relative to clean behavior (O-FSR
= 98.18%). Hoverball and Blended also maintain strong ASR
scores (86.78% and 86.36%, respectively) and high FSR values
(91.50% and 89.96%), confirming that stealthier or flexible
trigger variants remain effective even under different backbone
architectures. Importantly, the ranking of triggers is consistent
across models, and all variants maintain low ∆ (i.e., O-FSR
– FSR), indicating that backdoor injection does not degrade
clean behavior. This demonstrates that our poisoning strategy
is transferable across diverse VLM backbones, regardless of
their encoder-decoder structure or multimodal fusion design.

C. Impact of Trigger Types and Attack Goals (RQ3)

Table III presents a detailed evaluation across four attack
types on both RICO and AITW datasets under three trigger
variants. Type I (Benign Misactivation) achieves the highest
Action ASRs overall, with Hoverball reaching 94.67% (RICO)
and Hurdle at 90.24% (AITW), and maintains strong FSRs
across all triggers, indicating minimal interference with clean
behavior. Type II (Privacy Violation) also performs well, with
Action ASRs above 86% and a slight FSR drop under Blended
triggers, which embed more visually natural patterns and are
thus harder to filter. Type III (Malicious Hijack) has slightly
lower ASRs (e.g., 82.56% on AITW with Hoverball), but
remains effective despite targeting semantically deviant actions
like unintended calling or system control. Type IV (Policy
Shift) presents the greatest challenge, as it relies on implicit
context for activation. While its Action ASRs are lower (e.g.,
71.95% on AITW with Blended), it is the only type that
successfully alters both action and rationale, with Context ASR



TABLE III
BREAKDOWN OF EFFECTIVENESS BY ATTACK TYPE. FOR REFERENCE, THE O-FSR IS 98.26% AND 93.33% FOR RICO AND AITW, RESPECTIVELY.

Dataset Attack Type Trigger Type Action ASR (%) Context ASR (%) FSR (%) ∆ (%) Context Satisfied?

RICO

Type I (Benign Misactivation)
Hurdle 93.29 - 94.50 3.88 ✓

Hoverball 94.67 - 95.85 2.53 ✓
Blended 93.06 - 93.93 4.45 ✓

Type II (Privacy Violation)
Hurdle 90.62 - 91.12 7.26 ✓

Hoverball 87.45 - 91.90 6.48 ✓
Blended 86.98 - 88.14 10.24 ✓

Type III (Malicious Hijack)
Hurdle 88.13 - 90.45 7.93 ✓

Hoverball 82.89 - 90.55 7.83 ✓
Blended 83.67 - 85.82 12.56 ✓

Type IV (Policy Shift)
Hurdle 83.48 80.49 87.11 11.27 conditional

Hoverball 79.03 76.39 86.32 12.06 conditional
Blended 77.11 74.79 75.38 23.00 conditional

AITW

Type I (Benign Misactivation)
Hurdle 90.24 - 90.81 2.52 ✓

Hoverball 89.46 - 91.36 1.97 ✓
Blended 88.75 - 90.03 3.30 ✓

Type II (Privacy Violation)
Hurdle 87.12 - 88.36 4.97 ✓

Hoverball 86.17 - 90.20 3.13 ✓
Blended 82.84 - 84.07 9.26 ✓

Type III (Malicious Hijack)
Hurdle 84.09 - 85.57 7.76 ✓

Hoverball 82.56 - 89.63 3.70 ✓
Blended 79.56 - 80.36 12.97 ✓

Type IV (Policy Shift)
Hurdle 75.47 71.22 72.10 21.23 conditional

Hoverball 72.86 70.17 70.44 22.89 conditional
Blended 71.95 68.48 68.99 24.34 conditional

TABLE IV
ABLATION ON THE TRIGGER TYPE WITH LLAVA-MOBILE AS THE

AGENTS. THE O-FSR IS 98.26%.

Trigger Variant Action ASR (%) FSR (%) ∆ (%)

Hurdle (Static Patch) 93.02 96.58 1.68
Hoverball (Dynamic Motion) 87.37 93.88 4.38
Blended (Low Opacity) 89.48 94.10 4.16

reaching up to 80.49%. This type also causes the largest clean-
data degradation (FSR as low as 68.99%), particularly when
used with blended triggers that fuse more naturally into UI
backgrounds. Notably, Policy Shift shows surprisingly consis-
tent activation across trigger types, highlighting its robustness
under multimodal supervision. These findings complement
our earlier app- and model-level analyses by showing that
attack generalization holds not only across environments, but
also across attack intents and output formats. Moreover, the
ability to hijack both symbolic actions and free-form contexts
underscores the broader security risk of clean-label poisoning.

D. Ablation and Robustness Analysis (RQ4)

1) Impact of Trigger Type: Table IV compares three trigger
variants: Hurdle, Hoverball, and Blended. Hurdle (Static
Patch) achieves the highest ASR (93.02%) and FSR (96.58%)
by placing a fixed trigger in stable UI regions (e.g., bottom
bar), benefiting from strong gradient alignment and spatial
consistency. Hoverball (Dynamic Motion) simulates floating
visual cues and attains 87.37% ASR with 93.88% FSR. Its
spatial flexibility supports generalization across varying lay-
outs with minimal disruption. Blended (Low Opacity) injects
semantic content via alpha blending and achieves 89.48%

TABLE V
EFFECT OF POISON RATIO ON ATTACK PERFORMANCE. FOR REFERENCE,

THE O-FSR IS 98.26%.

Poison Ratio Action ASR (%) FSR (%) ∆ (%)

10% 80.49 93.90 4.36
20% 87.37 93.88 4.38
30% 88.85 90.48 7.78
50% 87.36 89.60 8.66

ASR and 94.10% FSR. Though slightly more salient, it fits
stylistic apps where UI diversity is expected. All triggers
preserve stealthiness, with FSRs within 3–5% of the O-FSR.
These results show that Hurdle offers maximal precision
in static UIs, Hoverball enables layout-adaptive robustness,
and Blended provides semantically plausible integration with
minimal clean-task degradation. These results, consistent with
earlier analyses, further quantify the trade-offs across trigger
types and clarify their relative strengths.

2) Poisoning Rate Sensitivity: Table V evaluates how the
poisoning ratio affects attack performance under the Hover-
ball trigger. ASR increases from 80.49% at 10% poisoning
to 88.85% at 30%, confirming that our backdoor can be
effectively implanted with a small poisoned subset. Even
with just 10% poisoning, the attack achieves over 80% ASR,
demonstrating strong data efficiency. ASR slightly drops to
87.36% at 50%, suggesting a saturation point due to over-
fitting or reduced generalization. Meanwhile, FSR declines
from 93.90% to 89.60%, indicating a modest trade-off in
clean behavior. These results show that our GHOST achieves
high success under low poisoning budgets while preserving
acceptable clean-task reliability.



TABLE VI
EFFECT OF NOISE LEVEL ON ATTACK PERFORMANCE. THE O-FSR IS

98.26%.

Noise Level Action ASR (%) FSR (%) ∆ (%)

ϵ = 4/255 75.29 95.33 2.93
ϵ = 8/255 87.37 93.88 4.38
ϵ = 12/255 88.24 90.67 7.59
ϵ = 16/255 92.18 88.64 9.62

TABLE VII
ASR BY VISUAL TRIGGER LOCATION IN UI LAYOUT. THE O-FSR IS

98.26%.

Trigger Region Action ASR (%) FSR (%) ∆ (%)

Top-left corner 91.62 93.66 4.60
Center 91.83 93.29 4.97
Overlay on button 89.69 90.13 8.13
Background image 90.08 90.88 7.38

3) Impact of Noise Level in Poisoned Samples: Table VI
examines how the perturbation budget ϵ influences attack
performance using the Hoverball trigger on LLaVA-Mobile.
As ϵ increases from 4/255 to 16/255, ASR improves from
75.29% to 92.18%, showing that larger perturbations enhance
trigger expressiveness and reliability. Even with ϵ = 4/255,
the attack is effective, indicating high efficiency at low noise
levels. However, FSR declines from 95.33% to 88.64%, re-
flecting increasing interference with clean behavior. These
results reveal a trade-off: moderate ϵ values (e.g., 8/255 or
12/255) achieve strong attack performance while preserving
acceptable clean-task fidelity.

4) Impact of Trigger Location: Table VII explores how
the spatial placement of the Hoverball trigger influences
attack effectiveness. With trigger appearance fixed, we vary
its position across four UI regions. Placing the trigger at
the center or top-left yields the highest ASRs (91.83%,
91.62%), likely due to better alignment with the model’s visual
attention. Button overlay shows the lowest ASR (89.69%),
potentially due to semantic interference, though it offers stealth
by mimicking functional UI cues. Background placement
achieves a moderate ASR (90.08%) with minimal clean-task
disruption. Overall, these results suggest that trigger position
can be adapted for effectiveness or stealth, with central and
salient regions favoring stronger activation and peripheral
areas enabling covert deployment.

5) Impact of Trigger Size: Table VIII examines how vary-
ing the trigger’s relative screen area (from 0.05% to 1.0%)
affects attack performance. While the trigger’s shape and
style remain fixed, increasing its size leads to higher ASRs,
from 87.37% at 0.05% to 91.52% at 1.0%. Even the smallest
trigger achieves strong activation, while larger sizes enhance
gradient propagation during training. However, this improve-
ment reduces stealth. FSR declines from 93.88% to 80.18%,
suggesting increased interference with clean behavior. These
results highlight a trade-off between attack success and clean-
task preservation. A trigger size of 0.1% to 0.5% provides a

TABLE VIII
ASR BY VISUAL TRIGGER SIZE IN UI LAYOUT. THE O-FSR IS 98.26%.

Trigger Size Action ASR (%) FSR (%) ∆ (%)

0.05% 87.37 93.88 4.38
0.1% 90.94 93.62 4.64
0.5% 90.83 89.43 8.83
1.0% 91.52 80.18 18.08

TABLE IX
TRIGGER ROBUSTNESS AGAINST COMMON VISUAL CORRUPTIONS ON

LLAVA-MOBILE USING THE HOVERBALL TRIGGER.

Defense Action ASR (%) FSR (%)

w/o corruption 87.37 93.88
Resize 82.15 90.22
JPEG Compression 83.49 89.76
Crop 73.08 85.52

practical balance in deployment.
6) Trigger Robustness: We evaluate the robustness of our

attack under common visual corruptions, including image
resizing, JPEG compression, and cropping. As shown in
Table IX, the Hoverball trigger retains a high ASR even under
moderate distortions, dropping only slightly from 87.37% to
83.49% under JPEG compression and to 82.15% under resiz-
ing. The performance under cropping degrades more notice-
ably (ASR 73.08%), likely due to partial removal of the trigger
region. Despite these perturbations, the FSR remains above
85% across all settings, indicating that the backdoored model
maintains reasonable functionality. These results confirm that
our visual triggers exhibit strong resilience to real-world visual
transformations.

VII. DISCUSSION

A. Qualitative Example

Fig. 3 visualizes representative examples of the three trigger
types: Hoverball, Hurdle, and Blended. All triggers are visu-
ally subtle, with imperceptible or minimally intrusive overlays
embedded into the GUI context. To quantify invisibility, we
report PSNR and SSIM between clean and triggered images.
Across both dark and bright UI scenes, all trigger types main-
tain high SSIM scores (>0.94), indicating structural similarity.
Hoverball achieves the best balance between stealth (e.g.,
PSNR 28.96, SSIM 0.9821) and attack success. Although
Blended triggers appear visually seamless, they exhibit slightly
lower PSNR due to texture fusion. These results confirm that
our perturbations are visually non-intrusive, helping preserve
user trust while activating malicious behavior.

B. Threats to Validity

The first threat concerns the diversity and realism of visual
triggers. Although we design three types to simulate mobile
interface constraints, they may not fully capture real-world
adversarial patterns. To mitigate this, we evaluate across six
real-world apps and varied GUI layouts.
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Fig. 3. Qualitative examples of triggered screenshots. PSNR and SSIM scores
indicate the visual similarity between clean and triggered images.

The second threat is overfitting to specific architectures.
Despite testing three VLMs, their backbones may share similar
training paradigms. We mitigate this by fine-tuning each model
under continual learning with limited supervision.

The third threat involves the stability of backdoors under
UI perturbations like resizing or compression. While our
ablation study covers such variations, unforeseen edge cases
may still reduce attack effectiveness. Adaptive trigger design
is a promising future direction.

The fourth threat is the generalizability of symbolic-
language manipulation. Though effective across symbolic ac-
tions and natural language rationales, it may be sensitive
to rare patterns or layouts. We mitigate this via evaluations
on large-scale GUI datasets and real-world apps, but further
research is needed.

VIII. RELATED WORK

A. Backdoor and Poisoning Attacks

Backdoor attacks embed hidden behaviors into models such
that a specific input trigger activates malicious outputs [17],
[18], [24]–[27]. Early work used visible patterns or transfor-
mations [28], [29], while recent approaches improve stealth
through imperceptible or sample-specific triggers, often using
image steganography [30]. To enhance realism, clean-label
attacks poison inputs without modifying labels [31]–[35],
making them harder to detect in human-in-the-loop training.
Saha et al. [32] leveraged feature collisions for image models,
and Zhao et al. [33] extended this to videos. Li et al. [30]
further demonstrated undetectable yet semantically consistent
triggers. Scalable clean-label poisoning has been advanced by
gradient-based methods. MetaPoison [36] uses meta-gradients
to enhance transferability. Witches’ Brew [21] introduces

gradient alignment for large-scale industrial settings, which
forms the basis of our approach.

With the rise of multimodal and generative models, new
attack vectors have emerged. TrojanVLM [37] introduces mul-
timodal triggers for vision-language models (VLMs), while
Liang et al. [38] benchmark backdoors in VLMs. Shadow-
Cast [39] targets text-to-image systems. A recent survey [40]
highlights growing risks of backdoors in LLMs. However,
these efforts primarily focus on classification or token-level
generation tasks. We instead investigate a novel threat model:
clean-label poisoning of VLM-based mobile agents that pro-
duce structured outputs including symbolic actions and natural
language rationales. We show that subtle perturbations in the
visual modality alone can reliably implant covert backdoors
in these agents.

B. Vision-Language Models

Vision-language models (VLMs) integrate visual encoders
with pretrained language models to support tasks such as
image captioning, visual question answering, and instruction
following. Common architectures align image features with
textual inputs using lightweight adapters, including linear
projections [41], [42], Q-formers [43], or cross-modal at-
tention mechanisms [44]. Popular open-source systems like
BLIP-2, LLaVA, and MiniGPT-4 [41]–[43] have accelerated
their adoption, while proprietary models such as GPT-4o and
Gemini [45], [46] continue to advance performance in vision-
language benchmarks.

Due to their flexibility and low adaptation cost, these
models are increasingly used in mobile agents and GUI-based
assistants. Recent studies have revealed several inference-time
vulnerabilities, including object hallucination [47], prompt in-
jection [48], and universal adversarial prompts [49]. However,
training-time threats such as poisoning remain less studied,
particularly in settings where the model produces structured
outputs. Existing work primarily focuses on text genera-
tion [50] or image classification [38]. In contrast, our work
targets VLM-based mobile agents by injecting imperceptible
visual perturbations into training data while keeping prompts
and labels unchanged. This clean-label strategy enables precise
manipulation of both symbolic actions and natural language
rationales, expanding the threat for VLM-based agents.

C. Mobile Agents and Security Risks

Recent progress in building agents with LLMs has enabled
intelligent behaviors such as planning, tool use, and sequential
decision-making [51], [52]. Beyond static benchmarks, LLMs
are increasingly applied in dynamic environments, such as
web navigation [2] and mobile device control [6]. These
mobile agents support real-world tasks like UI automation,
camera-based querying, and location-aware reasoning, using
vision-language inputs to generate structured outputs including
symbolic actions and textual rationales [53], [54]. Real-world
applications such as WhatsApp AI Lens and Xiaohongshu
assistants already rely on VLM-based mobile agents to act



within mobile apps [12]. Compared to cloud-based or browser-
based agents, mobile agents operate in more personalized
and less auditable environments, which raises new security
concerns [12], [55]–[57].

Mobile agents are especially vulnerable to training-time poi-
soning for several reasons: (i) continual fine-tuning on small-
scale datasets with limited supervision, (ii) flexible GUI inputs
that support stealthy trigger injection using overlays, icons, or
background blending, and (iii) structured outputs that combine
symbolic actions with natural language rationales. While prior
studies have explored backdoor attacks in web agents [19],
[20] or assessed mobile agent safety benchmarks [12], little
attention has been paid to training-time backdoors in VLM-
based mobile agents. Our work is the first to demonstrate
clean-label poisoning against VLM-based mobile agents, using
imperceptible visual perturbations to manipulate both agent
actions and contextual explanations under realistic adaptation
pipelines.

IX. CONCLUSION

This work reveals a novel and overlooked threat: clean-
label visual backdoors in VLM-based mobile agents. We
demonstrate that imperceptible perturbations injected solely
in the image modality, without modifying prompts or labels,
can implant persistent, context-aware malicious behaviors that
affect both symbolic actions and textual rationales. Our attack
framework supports a spectrum of misuse types, including
benign misactivation, privacy violation, malicious hijack, and
policy shifts, and achieves strong attack success across diverse
mobile apps and model backbones. Through comprehensive
evaluations, we show that trigger design significantly affects
the balance between effectiveness and stealth, with certain trig-
gers maintaining high ASR and minimal FSR degradation. The
attack remains effective under practical tuning scenarios, such
as continual learning and few-shot adaptation, and generalizes
well across applications and model architectures.

In future work, we aim to study defenses under limited au-
ditability and extend our attack framework to other multimodal
agent scenarios. This work highlights the need for more robust
adaptation pipelines in real-world mobile deployments.
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