
ar
X

iv
:2

50
6.

15
92

4v
1

 [
cs

.C
R

]
 1

8
Ju

n
20

25

FARFETCH’D: A Side-Channel Analysis Framework for
Privacy Applications on Confidential Virtual Machines

Ruiyi Zhang1,2, Albert Cheu3, Adria Gascon3, Daniel Moghimi2,
Phillipp Schoppmann2, Michael Schwarz1, and Octavian Suciu3

1CISPA Helmholtz Center for Information Security
2Google Security Research

3Google Research

Abstract—Confidential virtual machines (CVMs) based on
trusted execution environments (TEEs) enable new privacy-
preserving solutions. Yet, they leave side-channel leakage out-
side their threat model, shifting the responsibility of mitigating
such attacks to developers. However, mitigations are either
not generic or too slow for practical use, and developers
currently lack a systematic, efficient way to measure and
compare leakage across real-world deployments.

In this paper, we present FARFETCH’D, an open-source
toolkit that offers configurable side-channel tracing primitives
on production AMD SEV-SNP hardware and couples them
with statistical and machine-learning-based analysis pipelines
for automated leakage estimation. We apply FARFETCH’D to
three representative workloads that are deployed on CVMs to
enhance user privacy—private information retrieval, private
heavy hitters, and Wasm user-defined functions—and uncover
previously unnoticed leaks, including a covert channel that ex-
filtrated data at 497 kbit/s. The results show that FARFETCH’D
pinpoints vulnerabilities and guides low-overhead mitigations
based on oblivious memory and differential privacy, giving
practitioners a practical path to deploy CVMs with meaningful
confidentiality guarantees.

1. Introduction

Cloud providers now offer confidential virtual machines
(CVMs) based on hardware architectures such as AMD
SEV-SNP, and Intel TDX. Such a CVM encrypts guest
memory and enforces security via the hardware, allowing a
tenant to run unmodified binaries while keeping data hidden
from the hypervisor and other co-tenants. Unfortunately, In-
tel, AMD, and ARM (e.g., CCA) explicitly exclude leakage
through page-table activity and processor-cache state from
their CVM’s threat model. Therefore, such side-channel
attacks based on page tables [1] and caches [2], [3] can
track memory accesses at 4 kB and 64 B granularities, re-
spectively. They have been very successful at, e.g., inferring
cryptographic keys [4], [5]. That setting matches the tradi-
tional notion of (architectural) side-channel attack, where the
adversary’s goal is to extract a private key, e.g., a signing
key, from a confidential VM by exploiting/inducing side-

channel leakage. While implementing successful mitigations
has proven challenging, best practices such as constant-
time code are well understood for concrete cryptographic
applications, e.g., RSA-based signature schemes. This is the
result of a fruitful line of security research that provided a
feedback mechanism to chip manufacturers.

From cryptographic applications to privacy-preserving
data analyses. A recent trend in industry involves adopt-
ing CVMs for user data processing, e.g., computing user
statistics, distributed secure computation, and oblivious data
retrieval [6], [7], [8], [9]. Just like with cryptographic code,
these data-driven applications inherit a large attack surface
when deployed in CVMs [10], [11], and mitigations are
delegated to the application developers.

Threats in this new space are less understood compared
to cryptographic applications. An attacker clearly defeats
a cryptographic application when they recover a pseudo-
random key. But when an attacker recovers an input to a
data-processing application, we should take into account
the attacker’s prior knowledge and the goals of the appli-
cation itself before declaring victory. Without a rigorous
formalization of the threat model and attack success,
it will be tempting to fall back to impractical mitigations
like constant-time code for general software [12], [13], [14],
[15], instead of optimizing to the workload. Aside from a
strong definition, practitioners also need a systematic way
to quantify, measure, compare, and reduce the leakage
of real workloads in the deployed scenario.

In this paper, we provide formal definitions and an
evaluation framework called FARFETCH’D. Our goal is to
enable the systematic investigation of side-channel leakage
in privacy-preserving workloads, and potential mitigations.

Quantifying Attacker’s Success (Section 3). Taking inspi-
ration from the literature on cryptography and differential
privacy, we define and measure success of privacy attacks
in a relative sense: assuming the attacker has some prior
knowledge about a target’s data, we compare the attacker’s
chance of guessing the target’s data after its attack to its
chance before the attack. If the prior probability of a suc-
cessful guess is already high, our formulation captures the
intuition that there is not much more information an attacker

https://arxiv.org/abs/2506.15924v1

can learn. Our model also captures the fact that the party
connecting the CVM to the outside world can introduce
Sybils, i.e., arbitrarily well-crafted values that can trigger
more leakage than naturally-occurring inputs.

Automated Side-channel Extraction and Analysis (Sec-
tion 4). Our open-source toolkit, currently implemented for
AMD SEV-SNP, consists of a trace extraction and a trace
analysis phase. In former, FARFETCH’D records low-noise
page-table [1], [16], [17] and cache traces [18], [2], [3], and
optionally also performance-counter values [19], [20] and
ciphertexts [21], [22], from commodity SEV-SNP guests.
We introduce a noise-free and efficient Prime+Probe attack
to multiple cache lines on AMD CPUs with a non-inclusive
last-level cache by exploiting model-specific registers that
allow restricting the L3 cache. Additionally, we devise fil-
tering strategies to restrict trace collection to the relevant
part of the application and speed up measurement. In the
analysis phase, FARFETCH’D analyzes those traces with a
set of predefined statistics and machine-learning models for
automated side-channel traces analysis. These predefined
models allow for easy pinpointing of the leakage source
and experimentation with attackers of various capabilities.

Evaluation on Real-World workloads (Sections 5, 6, 7).
We apply FARFETCH’D to evaluate side-channel leakage of
three real-world privacy applications that are executed on
top of CVMs: Private Information Retrieval (PIR), Private
Heavy Hitters (PHH), and User Defined Functions (UDF).
In PIR, a party wishes to retrieve an element from a remote
database without letting the database’s maintainer(s) learn
which element was accessed. TEE-based PIR implementa-
tions are available as open-source projects such as Project
Oak [23] and the Signal messenger [24]. We analyze the
effectiveness of mitigations such as ORAM [25], [24] and
demonstrate how our framework can uncover and pinpoint
subtle leakage. Surprisingly, we show that even constant-
time ORAM may exhibit leakage when deployed on AMD
SEV-SNP due to ciphertext side channel leakage.

We additionally demonstrate how FARFETCH’D can eval-
uate the privacy guarantee of a PHH application as im-
plemented by the TensorFlow Federated project [26] and
deployed by Google [8]. In this application, a large number
of personal devices (e.g., smartphones) hold sensitive data,
such as location or browser history, and the service provider
wishes to identify the entries that occur often in this dis-
tributed data store in a differentially private way. We show
that the Tensorflow-Federated implementation [27], which
is not leakage-aware, is vulnerable to a privacy attack due
to its data-dependent execution behavior when deployed on
AMD SEV-SNP. We present a series of examples to illustrate
the use of our framework to detect issues and develop and
evaluate defenses and advanced attacks. Along the way,
we also introduce a partial mitigation based on differential
privacy that might be of independent interest.

Finally, we demonstrate how FARFETCH’D can evaluate
private user-defined functions. In-memory data stores such
as those used in PIR or PHH may also support custom
queries via a user-defined function (UDF) [28], [29]. For

example, in the context of Google’s Privacy Sandbox [11],
UDFs based on the Wasm language are written by AdTechs
to customize higher-level (privacy-preserving) aggregations
about end-users’ web browsing behavior [30], [23]. Private
UDFs introduce an attack scenario where not only can the
attacker collect side-channel traces outside the CVM, but
they also introduce new queries on processed data sources
and efficiently steal data via a covert channel. Our results
show that a covert-channel attack can leak data from a
UDF inside the Wasm language runtime [29] to a colluding
hypervisor at a rate of at least 497 kbit/s.
Contributions. We summarize our contributions as follows.

1) We introduce FARFETCH’D, a modular framework that
gathers various side-channel traces, including a novel
noise-resilient Prime+Probe, from unmodified AMD
SEV-SNP guests and provides different trace filters to
reduce collection overhead. The framework includes
statistical and machine-learning models to automati-
cally analyze gathered side-channel traces to enable
leakage estimates for non-domain experts.

2) We introduce and motivate rigorous quantitative no-
tions of privacy leakage via side-channel in the pres-
ence of a malicious attacker, i.e., the attacker’s ad-
vantage. Our notion is inspired by the privacy attacks
literature and can be easily estimated empirically using
FARFETCH’D’s ML components.

3) We evaluate three representative privacy workloads—
PIR, private heavy hitters (PHH), and user-defined
functions (UDFs) based on Wasm—and show how
FARFETCH’D guides the design of effective, low-
overhead mitigations.

Although our toolkit is currently implemented on AMD
SEV-SNP, we anticipate many of our attacks carry over to
other vendors with minimal changes.
Responsible Disclosure. Our research follows established
responsible disclosure guidelines. We notified maintainers of
all open-source projects whose applications showed vulnera-
bilities under our framework—specifically Project Oak [23],
TensorFlow Federated [26], and the Privacy Sandbox [29].
Each project acknowledged the security impact of software-
based side-channel attacks and indicated ongoing work to
strengthen its privacy protections.
Availability. The source code of FARFETCH’D will be open-
sourced upon paper publication.

2. Preliminaries

2.1. Confidential VMs

Confidential VMs are based on hardware-based trusted
execution environments, such as AMD SEV-SNP [31] or
Intel TDX [32]. They rely on hardware-based access control
and memory encryption to prevent other VMs and privileged
software (hypervisor, BIOS) from accessing the memory of
a trusted domain (a CVM instance). Additionally, memory
is also encrypted as soon as it leaves the CPU. The operating
system is only responsible for the availability of trusted

workloads (e.g., scheduling workloads, mapping memory,
and handling I/O), and can thus be untrusted.

CVMs additionally rely on a hardware-based root of
trust (external to the CPU core) and a remote-attestation
protocol to guarantee the integrity of the software and
hardware components responsible for executing a trusted
domain. Therefore, before a user sends encrypted data to the
CVM, they can verify that the data is processed by genuine
hardware and the right software components, including the
latest firmware and microcode security patches.

2.2. Software-Based Side Channels

Software-based side-channel attacks exploit shared re-
sources and exposed system interfaces to leak information
about computation of other users on the system. Some of
the attack primitives that are relevant to our work focusing
on CVMs include:

Page table. Controlled-channel attacks target page tables:
a malicious hypervisor can unmap (AMD SEV-SNP) or
change the permission (Intel TDX) of a guest memory
page, resulting in a page fault as soon as a trusted domain
accesses the page [1]. This allows the privileged software to
track the memory access pattern of a program at page-level
granularity (typically 4 kB).

Cache. Cache attacks, such as the Prime+Probe tech-
nique [33], target shared caches in modern CPUs. In a
Prime+Probe attack [33], the attacker fills a cache set with
known addresses and waits for the victim to access data
mapping to the same cache set. After the victim’s access, the
attacker detects which parts have been evicted by measuring
timing differences of re-accessing its own addresses.

HPC. Hardware performance counters (HPCs) are special
registers in modern CPUs that track various microarchitec-
tural events, such as cache hits, misses, and branch predic-
tions. Privileged attackers can use performance counters to
gather detailed information to infer sensitive information,
such as cryptographic keys or execution-flow patterns [19].

Ciphertext visibility. Ciphertext side-channel attacks [21]
exploit the memory encryption scheme in AMD SEV-SNP.
Each 16-byte-aligned memory block is encrypted individu-
ally, using a tweak value derived from its physical address.
At a specific address, the same plaintext always produces the
same ciphertext. Despite SEV-SNP claiming confidentiality
and integrity, a malicious hypervisor can read the encrypted
memory. By observing changes in ciphertexts, the attacker
can infer changes in the underlying plaintexts, beyond learn-
ing that a given region in memory did change.

TABLE 1: : vulnerable, : mitigated, : partially,
: mitigation planned

Platform Page-level Cache-level Ciphertext HPC

SEV-SNP Zen3/4
SEV-SNP Zen5 [34] [35]
TDX [36] [36], [37] [38]
CCA

System-level mitigations. Table 1 presents the current state
of system-level mitigation for our attack vectors. Ciphertext
side-channel attacks [21] are specific to SEV-SNP, and AMD
has provided software workarounds that make constant-
time code even harder to implement [39]. Intel TDX and
ARM CCA prevent the hypervisor from accessing guest-
encrypted memory [36]. AMD plans to address the leaks
from ciphertext and HPCs on Zen 5 processors using ci-
phertext hiding [34] and PMC virtualization [35], respec-
tively. Currently, neither is supported in KVM. For ARM
CCA, which defines a broader architecture, performance
monitoring virtualization for the trusted realm is platform
dependent. However, cache attacks and page-level leakage
remain unmitigated across SEV [31], TDX [36], [37], and
CCA [40]. They are considered out of scope by the vendors.
Thus, from the vendor’s perspective, attacks on a given
workload leveraging these side-channels are the responsi-
bility of the application developer.

2.3. Differential Privacy (DP)

Suppose there are n distinct inputs X = X1, . . . , Xn

to a computational service S, where each input Xi may be
a sensitive value (i.e., proprietary information or personal
attribute) of a distinct input provider. Let V A

S (X) denote
attacker A’s view of that service when X is given as
input. In the textbook central model, the view is the output
of the service, like an estimate of a mean or a table of
synthetic data [41]. S ensures (ε, δ)-DP against A if, for
any X,X ′ that differ on any one input and any possible Y ,
P
[
V A
S (X) ∈ Y

]
≤ eε ·P

[
V A
S (X ′) ∈ Y

]
+ δ.

We emphasize that the guarantee must hold for all
neighboring inputs X,X ′. This effectively means that the
attacker has narrowed down a target’s input to one of two
different values and chooses all other inputs (sybils).

There is considerable risk in underestimating the scope
of an adversary’s view. As highlighted in prior work [42],
[43], consider a service that outputs the same mean estimate
on two neighboring datasets but whose running time differs
dramatically: an adversary can deduce the target’s input
whenever it can measure elapsed time. Haeberlen et al. [42]
attempt to mitigate this by modeling the adversary as only
able to access S via a network connection and a restricted
query language. Meanwhile, Ratliff and Vadhan [43] care-
fully reason about sensitivity and inject random-length de-
lays, following the pattern of the Laplace and Gaussian
mechanisms. We note that our definition of DP is a strict
generalization of the one by Ratliff and Vadhan [43], since
our adversary’s view can encompass more than the timing
side channel (e.g., memory access patterns).

3. Defining Side-Channel Privacy Attacks

Here, we formalize how an attacker in the CVM threat
model can recover information about sensitive inputs using
side channels [44]. This includes personal attributes that are
processed by software running in the CVM (e.g., location,
webpage visits), not just cryptographic keys.

Figure 1: The user requests an attestation report and a public
key before sending encrypted data to the isolated CVM. The
service provider and other users are untrusted. The CVM
and application binary is trusted, but it may have the ability
to execute user-defined queries from an untrusted source.

We assume a shared cloud environment where the hy-
pervisor and other VMs are untrusted. Figure 1 shows the
structure of a CVM-based data analysis system. Data and/or
custom queries are ingested from input providers, also
known as users. An untrusted service provider—the party
operating the data analysis service—seeks to reconstruct
more information about the inputs than what is contained in
the output. We use the term attacker as a short synonym for
the service provider. We assume no collusion between the
service provider and the hardware manufacturer. Addition-
ally, only in Section 7, we also assume that the attacker can
provide custom queries to the protected key-value service.

Sybils [45] are a significant feature in our model. We
do not assume public key infrastructure free from the in-
fluence of the service provider, which means the attacker
can generate fake identities to take over a service: they
can inject maliciously-generated inputs, and suppress honest
inputs. Sybil attacks in distributed data analysis are a known
issue, particularly in the context of federated learning [7].
The attacks we design reaffirm this deep challenge.

Like previous work on software-based attacks, we leave
physical attacks out the scope [46], [47], assuming appropri-
ate physical security is in place. Likewise, we exclude CPU
bugs such as transient-execution attacks [48], [49], [50], [51]
and CacheWarp [52], and software-based fault attacks like
Rowhammer [53] and Plundervolt [54]. We also assume that
all applications are protected against rollback attacks, and
therefore, honest client contributions cannot be duplicated
or replayed by the attacker without aborting the application.

We sketch the steps of a generic data-analysis service
by breaking it into an offline and online phase. The offline
phase describes what happens before any interactions.
Offline phase:

1) Input Preparation: The input providers generate their
inputs. The attacker does not know any target’s input
with complete certainty, but might have some prior
knowledge; we model that input as being drawn from
a probability distribution known to the attacker.

2) Setup: The guest VM binary is made reproducible for
the purposes of verifiability. Here, an attacker has full
control to assess the behavior of the binary on their

TEE-supporting hardware (e.g., debug mode) but does
not have access to the (secret) data. In particular, the
attacker can obtain statistical information to character-
ize secret inputs given side-channel information, either
by “manual” inspection, or by training ML models.

Online phase:
1) Launch of CVM: The service provider triggers the ini-

tialization of the trusted environment.
2) Establishing trust: The CVM’s attestation report and

public key are forwarded by the service provider to
the users, who validate the report.

3) Input Ingestion: The service provider forwards a stream
of encrypted user data and/or user-defined functions for
the CVMs. Here,
a) the attacker can drop honest inputs and insert Sybils,

specially-crafted inputs that are meant to trigger
more side-channel leakage. However, we assume
they do not duplicate or replay honest inputs.

b) the attacker monitors side channels of the ingestion
computation.

4) Report: the guest VM computes a plaintext output that
the service provider relays to its recipient. The attacker
monitors side channels of the report computation.

This gives a high-level idea of the actions an attacker
can perform. Next, we provide a notation for the attacker’s
knowledge and define what it means for an attack to succeed.

3.1. Attacker Knowledge & Success

The attacker is not necessarily limited to the knowledge
gleaned from the service’s execution: they may have prior
information about a target input provider. For example, they
may know Alice is contributing URLs as input and that she
only reads English. This means the attacker can rule out
strings that are not URLs while also weighing URLs with a
“jp” extension as less likely to have been visited by Alice.
We will use W to denote the probability distribution that
describes this prior knowledge about a target.

Although it is tempting to use the likelihood of recon-
structing secrets (e.g., pseudorandom keys) as the metric of
success, this is not always the correct choice: if the prior
W is sufficiently skewed, the attacker may have a high
probability of a correct guess even without looking at any
side channels or CVM output. In the case of URL visits, they
are not uniformly random: if example.com is known to
be p% of all visits, then the baseline “attack” which simply
outputs example.com has a p% chance of being correct
for a target. Thus, a high probability of a correct guess could
be due to using leakage or reporting an argmax of a heavily-
skewed W . As such, it is a poor metric to gauge success.

We take the stance that the quantity to measure is the
advantage afforded by the attack over the baseline argmax-
of-W strategy, the improvement in the probability of a
correct guess.1 We note that Ω(1) advantage is permissible
in some applications; for example, DP computations already

1. For cryptographic keys, the baseline is close to zero, so the advantage
of an attack is close to the probability of reconstructing keys.

grant a “privacy budget” ε and we show ε = Ω(1) permits
Ω(1) advantage (see next section). Otherwise, the advantage
should be bounded by a negligible function.

3.2. Pairwise Distinguishability Attacks

Let us consider a specific class of prior W : those dis-
tributions over two values that place equal probability on
either. This occurs when the attacker is evenly split between,
say, whether the last URL entered by a target individual was
example1.com or example2.com. Without the side-
channel leakage, the baseline argmax-of-W strategy results
in a guess that is right 1/2 of the time. With the side-channel
leakage, we would like to bound the advantage over that
baseline chance. The adversary observes these side channels
via the pairwise distinguishability game:

Definition 1 (Pairwise Distinguishability Game). Let A be
an attacker and let B be a binary executed in a CVM. Let
SCB
A(D) denote the leakage function for A when running

B on input D. Assuming uniform prior W over {x0, x1},
the distinguishability game plays as follows:

1) (Input Preparation) c is chosen randomly from {0, 1},
such that user’s data xc is x0 or x1 with a 1/2 chance.

2) (Before Input Ingestion) Attacker chooses Sybils X
3) (Input Ingestion) Whole dataset D is formed by ap-

pending xc to X
4) (After Report) outputA := A(SCB

A(D))

The distinguishability advantage of attacker A is
AdvA := max(0,Pr[outputA = c] − 0.5). The maximum
value for this is 0.5; we compute a normalized advantage
AdvA/(0.5) which ranges from 0 to 1 (least to most suc-
cessful attack). Note that we can derive a bound on this
advantage when leakage SCB

A(D) satisfies DP:

Lemma 1 (DP bounds advantage). If the leakage of B
guarantees (ε, δ)-DP, a pairwise distinguishability attack
against B has advantage bounded by (eε − 1)/4 + δ/2.

The proof can be found in Appendix A. For an example,
consider ε = 0.5, δ = 0.01: advantage is bounded by < 0.17
which normalizes to < 0.34.

Our definition of distinguishability attack can be com-
pared to membership inference attacks [55], [56], [57]. In
both cases, an attacker wants to learn a binary predicate
about the target. The predicate is membership for member-
ship inference, while our predicate concerns value.

3.3. Fingerprinting Attacks

One way to generalize pairwise distinguishability is k-
wise distinguishability, where prior knowledge W covers
a large set {x1, x2, . . . , xk}. We additionally refer to an
interest set I . To continue our URL example, the adversary
may be interested in URLs that end in country codes. The
adversary has two objectives: to determine whether the
target’s URL is interesting and, if it is, to identify which
interesting URL it is. The country code can serve as a hint

about the target’s location or language. Reconstruction of
uninteresting URLs is not a priority.

Similar to the pairwise distinguishability attack, the
prior W grants the adversary baseline strategies that do
not involve side channels at all. Specifically, to determine
whether the target x is in I , the baseline strategy is to
report “interesting” if and only if the mass placed on set
I by W is larger than the mass placed outside it. In our
example, this amounts to comparing the prior probability of
visiting a URL with a country code against that of visiting
a URL without one. To fingerprint x assuming it is in
I , the baseline strategy is to report the likeliest element
according to the distribution WI , which is W conditioned
on I; this amounts to reporting the most frequently vis-
ited URL ending in a country code. Note that the success
rate of the baseline interesting/not-interesting classifier is
sc := max(P

x←W
[x ∈ I], P

x←W
[x /∈ I]), while the baseline

fingerprinting success rate is sf := maxi∈I P
x←WI

[x = i].

With side-channel leakage, we again would like to bound
the advantage over these baseline rates. The adversary ob-
serves side channels via the fingerprinting game:

Definition 2 (Fingerprinting Game). Assuming prior W , the
fingerprinting game proceeds as follows:

1) (Input Preparation) Target user’s data x randomly
chosen according to W

2) (Before Input Ingestion) Attacker chooses Sybils X and
chooses I

3) (Input Ingestion) Whole dataset D is formed by ap-
pending x to X

4) (After Report) outputA := A(SCB
A(D),W, I)

The interest-classification advantage is AdvA :=
max(0, P

x←W
[(outputA == “interesting”) = x ∈ I] − sc).

We can normalize this advantage to the range [0, 1] by
dividing by its maximum value 1 − sc. The fingerprinting
advantage is max(0, P

x←WI

[outputA = x] − sf). We can

again normalize by dividing by its maximum value 1− sf .

Example 1 (Fingerprinting Game). Suppose an attacker
picks I = {any example site ̸= ’example.com’} and the
prior probability distribution for visiting a website is

60% example.com 10% example.co.jp
10% example.co.uk 20% other URLs

The real site visited (x) is drawn randomly from W .
The baseline chance of guessing (non-)membership in I is
sc = max(0.2, 0.8) = 0.8; absent side-channels, the best
guess is that the target is not in I . The baseline chance of
reconstructing an element of I is 0.5; absent side-channels,
there’s an even chance between example.co.uk and
example.co.jp.

If the side-channel leakage observed by the attacker
(outputA) leads to a 0.9 probability of guessing whether
x ∈ I , then the interest-classification advantage is 0.1 =
0.9− 0.8. If the leakage grants a 0.7 chance of recovering
an element of I , the attacker has a fingerprinting advantage
of 0.2 = 0.7− 0.5.

Figure 2: The overview of FARFETCH’D. The corresponding
section numbers § are listed for each component. The offline
phase consists of building an ML attacker model using
labeled traces (Sec. 4.3). The online phase uses this model
on a single CVM trace that includes victim data, to launch
a privacy attack A that reveals this victim data.

In our empirical evaluation of TF-Federated’s PHH im-
plementation (Section 6), we set W to be the actual distri-
bution of the data going into the CVM, thus assuming the
adversary has perfect prior knowledge about the distribution.
Note that this sets a high bar for what constitutes a success-
ful side-channel attack to reconstruct a victim’s input.

4. FARFETCH’D Framework

Figure 2 presents an overview of FARFETCH’D. The
offline phase allows developers to model attacks of various
strengths and capabilities, and analyze privacy leakage under
these instantiations. This is achieved by collecting a labeled
dataset of traces corresponding to the attack, and using
statistics and ML tools to build leakage-analysis tools. In
the online phase, the leakage-analysis tool is used to conduct
an attack A on a single trace containing the victim data, to
quantify privacy leakage. This resembles an attacker who
collects side-channel information offline to build a leakage
detector to be used online, on a victim CVM through a
malicious hypervisor. We discuss how FARFETCH’D imple-
ments the collection of different side-channel signals, feature
extraction, and the leakage-analysis tools.

4.1. Trace Collection

Figure 3 gives an overview of the side-channel trace
collection in FARFETCH’D, which consists of a modified
KVM module and a user-space controller, communicating
through shared memory. Besides configuring trace collection
runs (e.g., via number of traces, optimizations), the shared
memory enables a developer to control the two key compo-
nents of trace collection: temporal resolution – determining
the frequency of side-channel event collection, and spatial
resolution – the granularity of side-channels.

Nevertheless, in contrast to cryptographic targets, there
are significant challenges in automating trace collection and
analysis in privacy applications. This requires strategies to
improve collection speed by ignoring uninteresting parts of
the execution flow, mapping only relevant code pages, and

Figure 3: The overview of FARFETCH’D trace collection.
A user-space controller uses shared memory to configure
each collection run with a modified KVM module. Grey
lighting marks any interrupt allowing the hypervisor to read
the configuration; yellow lighting is a page fault interrupt
as the hypervisor clears the present bit of guest pages.

supporting generic analysis through various attack primi-
tives. FARFETCH’D achieves this through two key insights
during temporal and spatial resolution, which allow devel-
oping general and platform-specific optimization strategies.

4.1.1. Temporal Resolution. We introduce our technique
to synchronize the hypervisor’s side-channel collection with
the target running inside the SEV-SNP VM. The hypervisor
requires a trigger point to halt the VM execution and control
its execution. Well-known methods include inducing page
faults [1], triggering interrupts with APIC timers [58], [59],
or using a combination of both [60], [52]. APIC interrupts
allow the attacker to pause the VM at short intervals, ensur-
ing that only one instruction is completed after each context
switch, known as single-stepping [58].

While single-stepping might seem like an obvious so-
lution for temporal resolution, it is not optimal for privacy
attacks for two reasons. First, single-stepping is slow. Each
step requires at least one context switch, and it takes even
longer when zero stepping occurs (i.e., no progress after
a context switch). For example, our fingerprinting testcase
(see Section 6.2) completes in 0.46ms without monitoring.
With a filtered controlled channel, FARFETCH’D collects
1.06× 105 entries in 0.56 s, incurring approximately 1217x
overhead, which remains acceptable for offline auditing.
In contrast, after integrating single-stepping, FARFETCH’D
generates 2.8 × 105 zero-step, 1.6 × 106 single-step, and
6.7 × 105 two-instruction entries in 8.67 s, yielding an
approximately 18 848x overhead. Such high overhead typ-
ically necessitates narrowing analysis to a limited code
section, as in cryptographic libraries [22], [61], [62], [63].
However, privacy applications often have code bases much
larger than cryptographic libraries, making such an analysis
prohibitively time-consuming. Importantly, unlike in crypto-
graphic libraries – where the attacker’s goal can be clearly
identified (i.e., stealing the secret keys), privacy applications
generally do not reveal where leakage may occur, making
binary analysis much more challenging.

Second, single-stepping could be restricted in future
architectures. While current tools can use performance coun-

ters to detect if a single-step was successful [59], AMD
claims to prevent the hypervisor from reading performance
counters for guest events starting with Zen 5 [35]. Moreover,
Intel TDX mitigates single-stepping by ensuring sufficient
VM progress between context switches [64].

Key Insight 1: Filtered Controlled Channel To over-
come these limitations of single-stepping, FARFETCH’D uses
nested page faults, which, besides being much faster, repre-
sent a design choice that cannot be mitigated without major
architectural changes. As shown in Figure 3, the untrusted
hypervisor clears the present bits of all the VM pages at the
beginning of the execution. When the guest VM triggers
page faults, the error code reveals whether the page is an
instruction or data page and if it is encrypted. If the page is
not encrypted, the hypervisor considers it uninteresting and
skips it in subsequent executions by keeping its mapping.
Similarly, if a faulted page address belongs to the reserved
memory of the guest system, it is likely associated with
kernel activity and can be skipped. To ensure accurate
control and data flow tracking, FARFETCH’D maps the new
page and unmaps the previous one at each page fault.

Platform-specific optimizations. To further refine
page-level analysis, FARFETCH’D also supports additional
platform-specific optimizations. For AMD EPYC CPUs, we
leverage performance counters that allow the hypervisor
to monitor guest events in either user-space or OS-space.
Our implementation uses two of these: one tracking retired
instructions from guest user-space and another tracking
retired micro-operations (uops) from the guest OS. As a
result of these optimizations, pages containing only kernel
code are labeled irrelevant and excluded from analysis. This
optimization is optional to improve runtime on AMD EPYC,
and is not necessary for page-level analysis. As a result,
FARFETCH’D also generalizes to other architectures [36].
We analyze the collection speed in Table 5 (Appendix A).

4.1.2. Spatial Resolution. We use FARFETCH’D to collect
runtime side channels of the target program at granularity
levels ranging from 4 kB to 16 B. These include both gener-
alizable platform-independent ones (controlled-channel and
cache), and platform-dependent ones (ciphertext and PMCs).
Figure 10 in Appendix A shows an example trace with
collected side channels.

Platform-independent: Controlled-channel. We monitor
access patterns of the victim at page granularity with
controlled-channel techniques, distinguishing between code
fetches and data accesses. FARFETCH’D follows a principle
of mapping only one interesting code page at a time, un-
mapping the current code page whenever the guest jumps
to a new one. For data accesses, FARFETCH’D manages a
queue for mapping data pages. The queue size is adjusted
dynamically to avoid deadlocks when a single instruction
accesses more pages than the queue size. This ensures
precise control over memory access patterns, without losing
track of any accessed pages.

Platform-independent: Cache attacks. While controlled-
channel techniques have a 4 kB page granularity, access

patterns with a 64 B granularity are possible via cache
attacks. When handling an NPF, the hypervisor iterates
the nested page table and maps the faulted page before
switching control back to the VM. As an attacker cannot
predict which 64 B blocks of a page the victim accesses,
we mount a Multi-Prime+Probe on all 64 cache sets before
the context switch. At the next NPF, the hypervisor probes
all cache sets to determine the accessed 64 B blocks.

Developing a precise Multi-Prime+Probe attack poses
significant challenges. On newer AMD CPUs, such as
EPYC, the shared L3 last-level cache is non-inclusive.
Therefore, performing L3 Prime+Probe on each cache set
requires accessing at least 24 addresses, accounting for
both L2 and L3 cache set entries. Although the untrusted
hypervisor shares an internal L2 cache with the target VM,
the timing difference between L2 hits and misses is only
about 40 cycles. This small difference introduces significant
noise when attempting to probe across 64 different cache
sets, as we will see below.

Key Insight 2: Noise reduction via MSRs. We intro-
duce a novel approach to improve L2 Prime+Probe by ex-
ploiting model-specific-registers (MSRs) to reserve L3 cache
usage. The MSRs 0xC001_1095 and 0xC001_1096 de-
fine a memory range for which the number of L3 ways can
be configured via the MSR 0xC001_109A. We allocate
our buffer for eviction set at a high memory address beyond
30 GB, and use the MSRs to reserve all L3 ways for memory
addresses below 30 GB. Consequently, the addresses from
our eviction set cannot be cached in the last-level cache,
as there is no available way. Hence, if an address in the
eviction set is evicted from the L2 cache, it is directly
evicted to the main memory, increasing the measured timing
difference for Multi-Prime+Probe to more than 700 cycles.
This approach improves the speed of the prime stage from
24 distinct addresses accessed to only 8 (the capacity of an
L2 cache set), without introducing noticeable performance
overhead, as the memory space above 30 GB is rarely used.
Platform-specific: Ciphertext. Similar to cache attacks,
before the guest writes to an unmapped page, the hypervisor
reads all 256 ciphertext blocks of the page [21]. At the next
NPF, FARFETCH’D compares all blocks to their prior values
to pinpoint the ones modified by the victim, and highlight
ciphertext differences. This exploit provides insights into the
victim code at an even deeper spatial side-channel level.
Platform-specific: PMC leakages. In addition to the two
events we introduce for optimizing temporal resolution on
AMD EPYC, FARFETCH’D uses three other events used
by Gast et al. [19], Retired Branch Instructions, Retired
Taken Branch Instructions, Retired Near Returns, that leak
the control flow of the victim. The former is updated at
each NPF, and the latter during instruction fetch NPFs. This
method leverages performance counters to provide detailed
insights into the execution flow, further enriching the side-
channel data available for analysis.

4.1.3. Targeted Trace Collection. In addition to tracking
across the entire target call flow, FARFETCH’D enables pre-
cise leakage analysis by offering configurable controls over

the monitoring phase. This allows developers to instrument
applications with code pages containing specific assembly
instructions, provided these instructions can be tracked by
performance counter events. In the offline phase, the devel-
oper wraps the target code snippet with two code pages that
execute the clflush instruction multiple times, enabling
the framework to treat these pages as signals to start or stop
tracking. As we show in Section 7, in real-world exploits,
this is equivalent to an attacker who would monitor specific
I/O, network traffic, and access patterns in the online phase.

4.2. Feature Extraction

Given a set of execution traces, FARFETCH’D extracts
features to model privacy attacks as discriminative machine
learning problems, which aim to separate traces depending
on the value of the target. The types and complexity of fea-
tures chosen often result in a trade-off between interpretabil-
ity and utility. Simpler features tend to be more suitable
for pinpointing the source of the leakage, while high-level
features are capable of producing a tighter empirical lower
bound of the side channel. To support the automated audit
process and balance this trade-off, FARFETCH’D employs
both handcrafted features and automatic feature learning.

4.2.1. Handcrafted features. We engineer five sets of hand-
crafted features as summarized in Table 2. These features do
not exhaustively capture all the distinguishing patterns that
can be extracted from traces, but, as we show in Sections 5
and 6, highlight the utility of the framework in pinpointing
sources of leakage. Feature set F1 focuses on a page-level
granularity, and counts the number of total and distinct pages
observed for the controlled channel, across a particular trace,
while F2 operates at block- and cache-level granularity. F3

captures a lower level of spatial granularity by computing
histograms for the number of times individual cache lines
and page blocks are accessed in cache and ciphertext side
channels, respectively. F4 looks at the side channel for each
individual page level, computing how many data accesses,
cache lines, and blocks are being accessed, and providing
statistics for these across a trace. F5 captures aspects of
the control and data flow by counting how many times
individual pages are accessed during the execution.

4.2.2. Automatic feature learning. Alternatively, we rely
on representation learning, allowing analysts to train deep
learning models for automated analysis of the leakage. This
involves feeding the trace information to the models and
relying on their representational power to expose discrim-
inative features from the sequences encoded in the traces.
To aid learning, we pre-process the traces by abstracting the
memory space and ciphertext information. More precisely,
we extract only the distinct page-table accesses (code and
memory pages) and the ciphertext changes observed through
the ciphertext visibility channel. This transformation is de-
scribed in Appendix A.

4.3. Leakage Analysis

To conduct a leakage discovery task, one can build dif-
ferent analysis models using the framework. We implement
several analytics and machine learning tools for evaluating
features against datasets and identifying leakage. The col-
lected traces need to be first separated into different classes
to define a classification problem. The labeling depends on
the threat model. A distinguishing attack (Section 3.2) can
be modeled using two classes, which reflect whether the
targeted entity is present in the input set for a particular
trace. In contrast, fingerprinting attacks (Section 3.3) can be
modeled as two consecutive distinguishing problems: a two-
class setting reflecting whether the targeted entity is part of
a set of labels of interest, followed by a multi-class setting
that identifies which of the labels the entity corresponds to.

After collecting and labeling the traces, the frameworks
can discover the source and severity of the leakage across
the different labels. This is achieved by choosing the feature
sets, localizing the portion of the program suspected of leak-
age, and computing the features over the collected traces.
After feature extraction, the leakage-analysis tools are ap-
plied. For discovering the leakage sources, we provide statis-
tical tests and visualization tools aiming to verify whether
the distributions of features across labels are distinct. For
quantifying the leakage, we implement supervised learning
models that allow measuring leakage in the online phase.
Our implementation relies on scikit-learn [65] for classifiers
based on handcrafted features, and on TensorFlow [66] for
feature learning through sequence models.
Evaluation To measure the leakage and highlight the empir-
ical advantage through FARFETCH’D, in Sections 5 and 6 we
use an L2-regularized logistic regression classifier trained
for 1000 iterations with L-BFGS. For feature learning, we
implement a bidirectional LSTM with attention (see Ap-
pendix A). The model has 751 554 parameters and is trained
with Adam using a learning rate of 2e-5. We compute the
empirical advantage by training and validating on 80% of the
samples and testing on the remaining 20%. For the logistic
regression, we report the average over 5 trials.

5. Oak Private Information Retrieval

In this section, we evaluate FARFETCH’D on Oak [23],
[67] private information retrieval (PIR). Google developed
Project Oak as a software platform for constructing dis-
tributed systems with built-in transparency and guarantees
of confidentiality and integrity. It provides core components
for developing enclave applications and supports remote
attestation. Oak includes an untrusted launcher on the host
and uses a Wasm runtime to execute Wasm enclave appli-
cations within a CVM. The launcher handles requests using
gRPC, providing end-to-end encryption for data in transit.
This architecture supports PIR for in-memory key-value
lookups, enabling sensitive data queries while preserving
the confidentiality of data and queries.

PIR generally allows a client to retrieve an element from
a (typically public) database, without revealing the accessed

Name Feature Set Description Count

CF Count F1 Number of total & unique code pages fetched 2
DA Count F1 Number of total & unique data pages accessed 2
Cache Count F2 Number of total & unique intercepted cache lines in cache attacks 2
CI Count F2 Number of total & unique modified ciphertext blocks in memory 2
Cache Frequency F3 Number of times each of the 64 4 kB cache lines was accessed 64
CI Frequency F3 Number of times each of the 256 blocks of any page was modified 256
DA Stats F4 Stats over the number of data page accesses following a code page fetch 11+N
Cache Stats F4 Stats over the number of total & unique cache lines accessed for a page 2*(11+N)
CI Stats F4 Stats over the number of total & unique blocks accessed for a page 2*(11+N)
CF Page Frequency F5 Frequency of code fetches for individual code pages MCF

DA Page Frequency F5 Frequency of page accesses for individual data pages MDA

TABLE 2: Summary of handcrafted features in FARFETCH’D. F4 Stats correspond to features describing the distribution:
min, max, first to ninth quantiles, and a histogram with N bins. F5 frequencies are over the first seen M pages in a trace.

element to the server that hosts the database. Cryptographic
solutions to PIR have existed for a long time [68], but
even the most efficient constructions fundamentally require
the server to scan the entire database to answer a query,
which limits the scalability. To overcome these issues, many
solutions [23], [24], [69] instead use a TEE with the goal
of protecting the queried index from the server.

5.1. Distinguishing Attack on Oak PIR

As a motivating example, we distinguish the request of a
missing key and a key with a value, capturing the resulting
traces on the hypervisor. Figure 4 shows sequences of the
number of data page accesses at each code page. The traces
are clearly distinguishable, and we omit a more detailed
analysis using machine learning.

For a more realistic scenario, we expand the dataset to
include 1,000 key pairs. The keys are the strings key0
through key999, resulting in lengths of 4 to 6 bytes. Each
corresponding value is randomly generated with a size of up
to 1,000 bytes. Although the sequences shown in Figure 4
remain the same across these keys, we can still distinguish
individual lookups by observing variations in page and cache
accesses at specific code pages, as shown in Table 3. The
lookup module must load the key-value pairs from different
pages containing distinct cache lines for the second to fifth
data page accesses from this code page. The number of
cache-line accesses also reflects the size of the values, which
can be up to 1,000 bytes and span multiple cache lines.

Following Definition 1, the goal for the attacker is
to distinguish two sequences of memory accesses into a
database of 1000 elements: One consisting of 10 identical
PIR retrievals of the first element, and the other consisting
of 9 identical retrievals of the first element, followed by a
single retrieval of the last element. We collect 1500 traces
for each case and use them to evaluate the effectiveness of
using FARFETCH’D to evaluate PIR mitigations.

5.2. Evaluating Mitigations

To mitigate the above leakage, we can apply a linear
scan, i.e., a std::vector accessed through a scan, using

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0
5
10
15
20

Page index
C
ou

n
t
of

D
A

p
ag

es

missing key test key

Figure 4: Traces of the Wasm runtime for the oak
key_lookup module with a missing and a test key [70].

key0 key1 key60 key61 key998 key999

1st 123dce 123dce 123dce 123dce 123dce 123dce
31 31 31 31 31 31

2nd 106835 106aea 106ae9 106ae9 106835 106835

3rd 106b9e 123e6e 123e6e 123e6e 106b9d 106b9d

4th 123e6e 10696c 10696b 10696b 123e6e 123e6e

5th 139213 142816 13a018 139010 136617 136a1a
48,49,63 7,16-31 32,50-52 58,60,63 0-6,22,62 6,32

6th 123dce 123dce 123dce 123dce 123dce 123dce
31 31 31 31 31 31

TABLE 3: An example of distinct page- and cache-access
sequences appears in one of the code pages (index 1,642)
within the oak key_lookup trace for six different key
lookups. The page number refers to the guest’s physical page
number (gPN), followed by cache-line accesses within this
page. We repeat the lookup on each key five times.

a constant-time compare-and-swap, and the PathORAM [71]
used by Signal [24]. We run both applications inside a
CVM. We collect traces with FARFETCH’D and evaluate the
collected traces using the methods described in Section 4.

Distinguishing attack via handcrafted features. First, we
analyze the leakage exposed via handcrafted feature sets
summarized in Table 2. We train a logistic regression model
on each of the feature sets, as well as their union. The results
are summarized in Table 4. While none of these features
reveals a significant advantage against the constant-time
linear scan implementation, feature sets F5 reveal leakage
in Signal’s ORAM. Investigating the root cause, we identify
the leakage to be caused by the ciphertext side-channel when
retrieving items with zero value.

Logistic Regression LSTM
∪ F1 F2 F3 F4 F5 Page Page+Block

Linear Scan 0.02 0.00 0.00 0.01 0.01 0.02 0.03 0.80
Signal ORAM 0.19 0.03 0.04 0.18 0.02 0.07 0.03 0.32

TABLE 4: Normalized advantage (Definition 1) obtained
through a Logistic Regression on all (∪) and sets of (F)
handcrafted features, and an LSTM on sequence-based fea-
tures at page- and block-level, across PIR implementations.

Distinguishing attack via feature learning. To explore
what information can be observed without any feature engi-
neering, we also train an LSTM model on the pre-processed
traces. The advantages obtained through the LSTM on the
test dataset are shown in Table 4. Using only page-level
information, the LSTM cannot get any significant advantage
against the two mitigations. However, once we add the ci-
phertext block-level visibility side channel, we observe that
both linear scan and ORAM are distinguishable. This finding
aligns with the handcrafted features-based analysis, reinforc-
ing the vulnerability in these implementations: side-channel
visibility into the exact ciphertext changes reveals more than
just the number of changes. Nevertheless, the larger attacker
advantage obtained through automatic feature learning over
handcrafted features highlights the complementary role of
the two in FARFETCH’D: while handcrafted features are
useful for pinpointing the source of the leakage, feature
learning provides tighter empirical advantage estimates.
Remark. While our experiments highlight leakage through
the ciphertext channel, this is due to our experiments using
AMD SEV-SNP, which is known to be vulnerable. In con-
trast, Signal’s ORAM was implemented with Intel SGX as
its target architecture, which does not suffer from this side
channel in the same way. We therefore cannot confirm any
vulnerability in Signal’s deployment of ORAM.

6. Private Heavy Hitters in TF-Federated

The private heavy hitters (PHH) problem has received
immense research attention, with cryptographic solutions
deployed in multiple threat models. PHH aims to compute
a histogram of the user data, while providing a (differential)
privacy guarantee to individual users, with n users 1, . . . , n
each holding one datapoint from some large domain. Recent
deployments by Google [8] and Meta [9] leverage AMD
SEV-SNP and Intel SGX for this task, respectively.

In this section, we evaluate FARFETCH’D on the
TensorFlow-Federated [27] implementation of Private
Heavy Hitters in Confidential VMs by Google, as deployed
in Gboard via AMD SEV-SNP [8]. The specific applica-
tion is out-of-vocabulary word discovery: “discovering new
common words to incorporate them into the typing model,
without revealing any uncommon private words.” The work
of Srinivas et al. [9] describes a deployment of the same
algorithm based on SGX, but does not discuss mitigations
to architectural side channels nor make any code available.
Algorithm for DP Heavy Hitters. TEE-based solutions
for PHH [7], [8], [9] apply a textbook DP algorithm in-

// batch, epsilon, and threshold in the context
std::unordered_map<string, int> hist;
std::vector<std::pair<string, int>> result;
...
while(!batch.empty()){ // Aggregate inputs

hist[batch.front()]++;
batch.pop();

}
for (auto [k, v]: hist) { // Noise and Threshold
auto noisy_val = v + sample_centered_laplace(epsilon);
if (noisy_val >= threshold)
result.push_back(std::make_pair(k, noisy_val));

}

Figure 5: Baseline unprotected PHH application example
code. “batch” refers to user data to be protected. The
variance of the noise and the threshold are set according
to ϵ and δ, to achieve (ϵ, δ)-DP.

side a TEE [72] (the so-called stability-based histograms
or noise-and-threshold), and rely on the TEE to safeguard
inputs and keep sampled DP noise confidential. In particular,
the TensorFlow-Federated implementation [27], [8] closely
follows the textbook DP mechanism for large domain his-
tograms. Figure 5 shows a basic C++ reference implemen-
tation, for illustrative purposes.

Case Study: Counting Common URLs. A typical applica-
tion of PHH is in browser telemetry [73], [74]. For example,
clients report which URLs crashed their browser, and under
which circumstances (see Network Error Logging [75]). In
the rest of this section, for illustrative purposes, we consider
a DP algorithm that attempts to identify frequent URLs
submitted by devices. The goal of the attacker is to extract
additional information (beyond the result histogram) about
the URLs submitted by individual devices, as formalized in
Definitions 1 and 2.

6.1. TF-Federated Evaluation

We analyze the leakage of the aggregation and noise-
and-threshold phases of the DP algorithm2. As in the snippet
in Figure 5, the aggregation phase accumulates inputs into
a hash map and places the keys into a vector. The noise-
and-threshold phase iterates through the vector, adding DP
noise to each histogram entry, and then thresholding.

Findings. In both parts of the code (aggregation and noise-
and-threshold), the code leaks sufficient information to suc-
cessfully mount a distinguishing attack (Definition 1). Fig-
ures 6a and 6b show page-level leakage in the application.
We plot the count of data page accesses immediately follow-
ing a code page fetch (feature set F4) in two neighboring
executions: in the first one, we ingest “normal.com” 10
times, while in the second one, we ingest into the application
“normal.com” 9 times, followed by “embarrassing.com”.
This corresponds to an instance of a distinguishing attack
from Definition 1. The plots show that the execution length

2. Source code available at: google-parfait/tensorflow-federated, file:
dp open domain histogram test.cc, line 655, commit e245ed4

is data-dependent for both the aggregation and noise-and-
threshold phases. We discuss this issue in more detail, along
with a potential mitigation, in the following section.

6.2. Advanced Attacks and Mitigations

In the rest of this section, we discuss different flavors
of attacks and mitigations, and how their effectiveness can
be evaluated with FARFETCH’D. Instead of working with
the TF-Federated codebase from the previous section, the
results in this section are with respect to a smaller example
(partially reported in Figure 5) and included with our library.
This simpler example is less leaky than a larger codebase,
and allows us to better identify the origin of the leakage
when using automatic ML approaches to exploit it. More-
over, any attack found in the simpler codebase translates
to the more complex TF-Federated implementation, and
mitigations are easier to implement and evaluate.

We start by discussing an attack based on data-dependent
execution. This attack is analogous to the one reported in
Figure 6b, and mentioned above.
Distinguishing attack via simple features. We assume the
target device has either URL0 or URL1. The attacker injects
99 Sybils with URL0 before the target, so the input is either
100 copies of URL0 or 99 copies of URL0 and one URL1.
The attacker obtains 1500 traces for each of the two cases
and uses them to learn how to distinguish URL0 and URL1.
One source of leakage in Figure 5 is the noise-and-threshold
loop iteration count, which is dependent on the number of
keys in the input set. If the target visited URL0, there is just
one key in the map, whereas a URL1 visit results in 2 keys
and therefore one more iteration. Figure 7 highlights how we
capture this leakage: The distributions of code fetches and
data accesses in the noise-and-threshold phase are different
across the two labels. This leakage can also be confirmed
through a logistic regression classifier trained on the F1

feature set with perfect accuracy. This constitutes an attacker
with a normalized advantage of 1.0 (Definition 1).
Mitigation. An obvious mitigation is to make the number
of keys in the unordered map independent of the input
by padding to the maximum number of possible inputs.
However, this would be extremely inefficient. Thus, we
propose a DP-based mitigation. Observe that the noise-
and-threshold loop iteration count—the quantity used by
the previous attacker—has limited sensitivity to the target’s
value: if we change from a world where it is URL0 to
a world where it is URL1 (or vice versa), the number of
iterations changes by just 1. If there is just enough variance
in the number of iterations, the attacker will have a hard
time distinguishing the two worlds; we accomplish this by
injecting a random number of distinct “dummy” elements.
More precisely, we add a number of dummies distributed as
a discrete shifted Laplace random variable with parameters
ϵ, δ, to ensure that the number of loop iterations is (ϵ, δ)-
DP and the corresponding leakage is bounded. Figure 9 in
Appendix A shows model code. The idea of DP-fying side-
channel leakage by adding dummy contributions appears in

related work [76], [77]. We show that FARFETCH’D can help
determine appropriate values for DP parameters.

We evaluate this mitigation by computing the empirical
advantage of the attacker over the noise-and-threshold stage,
across a range of ϵ values for the dummies, and comparing
it with the analytical lower bound computed in Appendix A
(Figure 8, top). The results show that the mitigation succeeds
for the noise-and-threshold phase, dropping the attacker
advantage below and bringing it close to the analytical
lower bound for sufficiently small ϵ, across all feature sets
described in Table 2. This highlights that FARFETCH’D can
evaluate defenses and also discover parameters for effective
mitigations. Regarding performance, the expected number
of dummies for δ = 10−9, ϵ = 0.1 is about 200, offering
a very good tradeoff between privacy and performance for
large enough deployments, e.g., with n ≥ 10000.

Distinguishing attack via advanced features. Despite the
above mitigation, there could be leakage in the aggregation
stage. In Figure 8 (bottom), we evaluate the mitigation
against attacks that use all feature sets over the aggrega-
tion subroutine. The input-dependent memory usage—code
fetches and data accesses per page—expressed through F5

suffices for a logistic regression classifier to bypass the
mitigation. The attacker bypasses the analytical upper bound
because it is computed under the assumption that such
features were hidden. Mitigations for this attack would need
to randomize a histogram of accesses, rather than just one
count. We leave this for future work.

Fingerprinting attack. Recall that fingerprinting attacks are
applicable when the attacker knows the distribution W of a
target’s data over a (possibly large) domain and is interested
in a (possibly small) set I . In our example, we instantiate
W with a power-law distribution with parameter 0.5 over
the list L of the top 1000 most common sites in Alexa Top
1 Million Sites dataset [78]. The choice of 0.5 is arbitrary
but realistic, in that it corresponds to a skewed distribu-
tion. The list L contains URLs such as “google.com” and
“wikipedia.org”, but also URLs that might leak additional
information, such as “google.co.jp”. I are the 301 URLs
in L not ending in “.org”, “.com” or “.net”, and thus often
carrying information about the user’s language or location.

The offline phase of the attack trains two classifiers: the
membership binary classifier to identify whether or not the
target’s value is in I and the fingerprint classifier to predict
which of the 301 values in I the target had, assuming it had
one. The offline phase has the following steps

1) Create a dataset as follows:
a) Sample target’s data x from W .
b) Create one instance of each element in I .
c) To boost fingerprinting success, create enough Sybil

data that is out-of-domain (e.g., not URLs) such that
it is unlikely that the memory locations maintaining
counts of elements in I will be close to each other.
This permits control over the granularity of side
channels needed to effectively fingerprint I .

d) To improve membership detection in I , create
enough Sybils such that a rehash event is guaranteed

0 200 400 600 800 1,000 1,200 1,400
0

5

10

Page index

C
ou

n
t
of

D
A

p
ag

es
normal.com embarrassing.com

(a) Last iteration of the accumulation phase

0 1,000 2,000 3,000 4,000 5,000 6,000
0

5

10

Page index

C
ou

n
t
of

D
A

p
ag

es

normal.com embarrassing.com

(b) The noise-and-threshold phase

Figure 6: Page-level leakage of TensorFlow Federated PHH code during accumulation and noise-and-threshold phases. We
ingest “normal.com” 9 times, then either “normal.com” or “embarrassing.com”. Adding a new key triggers a longer code
path in accumulation and an extra iteration in the noise-and-threshold phase.

100 150 200

0
5 · 10−2

0.1
0.15

lbl = 0 (CF) lbl = 1 (CF)
150 200 250 300

0

5 · 10−2

0.1

lbl = 0 (DA) lbl = 1 (DA)

Figure 7: The separable distribution of the CF and DA Count
features across labels in the noise-and-threshold phase of the
vanilla PHH implementation.

∞ 5 1 0.1
0

0.5

1

Epsilon

A
dv

an
ta

ge

Analytical LR F1 LR F2
LR F3 LR F4 LR F5

∞ 5 1 0.1
0

0.5

1

Epsilon

A
dv

an
ta

ge

Analytical LR F1 LR F2
LR F3 LR F4 LR F5

Figure 8: Advantage of the F1, F2, F3, F4 and F5 Distin-
guishing attacker for PHH protected by dummy operations
for various ϵ. The Empirical advantage is computed using a
logistic regression for the noise-and-threshold (top) and Ag-
gregate (bottom) stages, averaged over 5 trials. We compute
the analytical upper bound using the formula in Appendix A.

when x ̸∈ I . This can easily be done by inspecting
the hashtable code, which is available to the attacker.

2) Capture side-channel traces produced by running PHH
algorithm on the above input.

3) Repeat above to create sufficiently many unlabeled
examples (traces).

4) Train the membership classifier on all examples, each
labeled by the bit indicating if x ∈ I .

5) Train the fingerprint classifier on only examples where
x ∈ I , each labeled by x.

In the online phase, the attacker runs the membership
classifier to determine whether or not the target has inter-
esting data (∈ I). If the target is deemed interesting, they
will run the fingerprint classifier.

We evaluate the fingerprinting attack by building a
dataset of 5000 instances, corresponding to traces of sam-
ples collected from W . We instantiate the membership
and fingerprinting classifiers as logistic regression models
based on all F1-F5 features. The membership classifier
obtains a normalized advantage of 1.0 (Definition 1), which
is a perfect score. This underscores the power of Sybils
to exploit the vulnerability in the std:unordered_map
implementation. The fingerprinting classifier yields a nor-
malized advantage of 0.44 (Definition 2), highlighting the
feasibility of such attacks, due to substantial leakage of the
victim URL label through the PHH workflow.

7. User-Defined Functions in Privacy Sandbox

TEE-isolated user-defined functions aim to enable new
privacy-preserving applications such as data source verifi-
cation [79], outsourcing computation [80], private function-
as-a-service [81], and ads targeting [29]. UDFs run atop a
language sandbox (e.g., JavaScript/Wasm) to enable third-
party queries on user data. The language sandbox limits
third-party code from extracting user data, enforces limita-
tions on interfaces, and may enforce constraints like time
limits and accounting [80]. We focus on the side-channel
evaluation of an example UDF that is implemented by the
Protected Auction Key/Value service, part of the Privacy
Sandbox [30]. Privacy Sandbox, as an alternative to third-
party cookies, enables third-party advertisers (AdTechs) to
access advertising signals stored in an in-memory TEE-
protected key/value database. They use UDFs to run custom
queries without direct access or logging. The query’s output
is aggregated and protected by DP techniques.

However, the requirement to keep the attacker out of
the hypervisor requires special care for secure on-premise
deployments of such privacy-preserving systems. Consider a
hypothetical scenario where a malicious AdTech tries to run
their own deployment of Privacy Sandbox on machines they
fully control, including the hypervisor. Although the TEE
would properly attest their key-value service deployment
with the isolated UDF, they can still exploit side-channels
to extract raw data from the key-value service. Hence,

specialized mitigations intended to prevent or detect side-
channel signaling behavior by a UDF would be advisable.

7.1. Stealing User Data via Covert Channel

We evaluate a covert channel attack where a malicious
UDF steals user query arguments. Because the UDF is
maliciously constructed, the attacker does not need to train a
model to learn correlations. The UDF can use a deterministic
encoding that gives a clear view of the data. As a result of
this noiseless recovery, the normalized advantage is 1.0.
Profiling UDF runtime. We analyze the UDF runtime to
identify a trigger point for our covert-channel attack—when
the receiver expects to see data from the sender. The UDF in
the Protected Auction Key/Value service [30] is based on the
V8 engine [82]. It supports JavaScript or inline Wasm, where
the Wasm code must be invoked by JavaScript driver code,
ensuring the UDF entry point remains in JavaScript. When
the V8 engine creates a typed array, it first executes one
code page, writes to this page, and then executes this page
again. This X+W+X access pattern serves as an indicator of
the start and end of the UDF execution. We mark the inline
Wasm by surrounding it with two typed arrays, enabling
FARFETCH’D to only track the Wasm execution.
Encoding data over ciphertext. In the inline Wasm, we
choose the ciphertext side channel to encode secret data.
Specifically, we create a 4 kB memory buffer that contains
256 ciphertext blocks. As we iterate over the data stream
byte by byte, we write to one of the 16-byte blocks in the
4 kB buffer. The index of the block depends on the value of
each secret byte. We observed that in each iteration, the V8
engine consistently accesses four distinct memory pages in
addition to our 4 kB encoding buffer. Among these, two page
faults occur with a single specific block modification, which
we attribute to updates in the loop counter and a temporary
variable. The other two page faults are caused by memory
reads. Therefore, we check the ciphertext changes of the
previous faulted page every time a new memory page fault
occurs. Thus, we can encode one byte with only five page
faults, i.e., five context switches.
Evaluation. We evaluate the performance of our covert
channel by transmitting 48 bytes of user-supplied input argu-
ments 100 times. We ignore three page faults when transfer-
ring each byte, as only one additional page fault is enough to
trigger checking the ciphertext changes. Since these faulted
pages have distinct page numbers, FARFETCH’D can sim-
ply skip unmapping them. Our covert channel achieves an
average transmission rate of 497 kbit/s with an error rate
of 0. The speed of this attack can be further increased by
combining page numbers and ciphertext to encode secrets
more efficiently. For example, using 256 pages, an attacker
can encode an extra byte per access through a controlled
channel. We verified this with a page fault-based covert
channel spanning 256 pages. To apply it, the attacker only
needs a profiling step to map each page to its corresponding
byte value, since the guest operating system controls the
gPN, resulting in a non-contiguous mapping. Given that

the memory limit of the V8 engine is 4 GB [29], this
optimization meets such constraints.

By enabling this practical exploit, FARFETCH’D reveals
that simply placing the UDF in a language sandbox and
restricting access to logging interfaces does not prevent the
covert transfer of sensitive data across isolation boundaries.

8. Related Work

SGX-STEP [58] is a framework for rapid prototyping
of side-channel attacks in SGX [83], [64]. Attackers can
use system interfaces within this new threat model for
new side channels [1], [17] and improving the reliability
and bandwidth of side channels [60], [58], [84]. Unlike
traditional side channels, these attacks can completely cir-
cumvent system noise. SEV-SNP relies on encryption for
hiding memory, but does not protect the ciphertext, which
enables the new class of ciphertext side channels [21], [22].
Attackers can also exploit privileged interfaces such as per-
formance counters [19] and power reporting interface to leak
side-channel information from CVMs [85]. TDXDown [37]
exploits gaps in system-level countermeasures against timer
interrupt attacks. SEV-STEP [59] is a framework for proto-
typing side channel attacks on SEV-SNP.

Software-based side-channel attacks have impacted
TEEs in real products to steal cryptographic keys [86], [87].
The industry consensus to mitigate these attacks is to apply
constant-time coding practices [88]. Previous work has pro-
posed automated tools to test such implementations [89],
[90], [91], [92]. However, these tools and constant-time
coding practices are not applicable and practical for general-
purpose programs. Yuan et al. applied manifold learning
to evaluate side-channel attacks on media software [12].
Ciphertext side channels have been demonstrated as an
effective technique to steal ML models’ inputs and hyperpa-
rameters [93], [94]. Further, side-channel-assisted informa-
tion retrieval has been demonstrated against SQLite [13].
We focus on automated side-channel testing of privacy-
preserving applications in CVMs.

Haeberlen et al. argue that differentially private query
release may be vulnerable to covert channel attacks via side-
channel leakage [42]. Their threat model explicitly separates
the service provider from the adversary and leaves only
the privacy budget and query time as side-channels. Jin
et al. demonstrate that the running time of noise sampling
algorithms could be used to circumvent DP guarantees [95].
Ratliff & Vadhan formalize DP against adversaries observ-
ing that side-channel and propose padding-based methods
for achieving that objective [43].

9. Conclusion

We conclude that automated analysis of side-channel
leaks is crucial to improve the privacy guarantees of apps
inside CVMs. The current status quo to rely on software
techniques to overcome side-channel attacks is not practi-
cal, and privacy developers require constantly evaluating an

app’s threat model and execution traces to ensure sufficient
mitigation. Toward this goal, a comprehensive framework
like FARFETCH’D can significantly help developers assess
their threat model and mitigation strategy. In the future,
defense-in-depth mitigations such as reducing side-channel
information at the architecture level, preventing sybil at-
tacks, and carefully applying data-oblivious data structures
like ORAM are promising but require further investigation.

Acknowledgements

We would like to thank Kobbi Nissim, Jonathan Katz,
Sarah Meiklejohn, Marco Gruteser, Peter Kairouz, Daniel
Ramage and Shabsi Walfish for their constructive feedback
and support.

References

[1] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE symposium
on security and privacy. IEEE, 2015.

[3] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in Cryptographic Hardware
and Embedded Systems–CHES 2017: 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings. Springer, 2017.

[4] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom,
“Ladderleak: Breaking ecdsa with less than one bit of nonce leakage,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020.

[5] Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches
and countermeasures,” Journal of Hardware and Systems Security,
2018.

[6] R. Li, Q. Wang, Q. Wang, D. Galindo, and M. Ryan,
“Sok: Tee-assisted confidential smart contract,” arXiv preprint
arXiv:2203.08548, 2022.

[7] H. Eichner, D. Ramage, K. Bonawitz, D. Huba, T. San-
toro, B. McLarnon, T. Van Overveldt, N. Fallen, P. Kairouz,
A. Cheu et al., “Confidential federated computations,” arXiv preprint
arXiv:2404.10764, 2024.

[8] D. Ramage and T. Van Overveldt, “Discovering new words
with confidential federated analytics,” https://research.google/
blog/discovering-new-words-with-confidential-federated-analytics/,
accessed: 2025-05-28.

[9] H. Srinivas, G. Cormode, M. Honarkhah, S. Lurye, J. Hehir, L. He,
G. Hong, A. Magdy, D. Huba, K. Wang et al., “Federated analytics in
practice: Engineering for privacy, scalability and practicality,” arXiv
preprint arXiv:2412.02340, 2024.

[10] Google, “Confidential federated compute,” https://github.com/
google-parfait/confidential-federated-compute.

[11] privacysandbox.com, “Protecting your privacy online,” https://
privacysandbox.com/intl/en us/.

[12] Y. Yuan, Q. Pang, and S. Wang, “Automated side channel analysis
of media software with manifold learning,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022.

[13] A. Shahverdi, M. Shirinov, and D. Dachman-Soled, “Database re-
construction from noisy volumes: A cache {Side-Channel} attack on
{SQLite},” in 30th USENIX Security Symposium (USENIX Security
21), 2021.

[14] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leverag-
ing shared resource attacks to learn {DNN} architectures,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020.

[15] H. Wang, S. M. Hafiz, K. Patwari, C.-N. Chuah, Z. Shafiq, and
H. Homayoun, “Stealthy inference attack on dnn via cache-based
side-channel attacks,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022.

[16] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page {Table-
Based} attacks on enclaved execution,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017.

[17] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Under-
standing memory side-channel hazards in sgx,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[18] C. Percival, “Cache missing for fun and profit,” 2005.

[19] S. Gast, H. Weissteiner, R. L. Schröder, and D. Gruss, “Counterse-
veillance: Performance-counter attacks on amd sev-snp,” in Network
and Distributed System Security Symposium 2025: NDSS 2025, 2025.

[20] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware
performance counters,” in 2008 5th Workshop on Fault Diagnosis and
Tolerance in Cryptography. IEEE, 2008.

[21] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “{CIPHERLEAKS}:
Breaking constant-time cryptography on amd sev via the ciphertext
side channel,” in 30th USENIX Security Symposium (USENIX Security
21), 2021.

[22] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth, R. Teodorescu, and
Y. Zhang, “A systematic look at ciphertext side channels on amd sev-
snp,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
2022.

[23] google.com, “Project oak,” https://github.com/project-oak/oak.

[24] G. Connell, “Technology deep dive: Building a faster oram layer for
enclaves,” https://signal.org/blog/building-faster-oram/, 2022.

[25] E. Stefanov, M. van Dijk, E. Shi, T. H. Chan, C. W. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path ORAM: an extremely simple oblivious
RAM protocol,” J. ACM, 2018.

[26] google.com, “Tensorflow federated,” https://github.com/
google-parfait/tensorflow-federated.

[27] ——, “Tensorflow Federated – DP Open Domain Histogram,”
https://github.com/google-parfait/tensorflow-federated/blob/main/
tensorflow federated/cc/core/impl/aggregation/core/dp open
domain histogram.cc.

[28] H. Aksu, B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, A. Sealfon,
and A. V. Varadarajan, “Summary reports optimization in the privacy
sandbox attribution reporting api,” arXiv preprint arXiv:2311.13586,
2023.

[29] google.com, “Protected auction key/value service,” https://github.
com/privacysandbox/protected-auction-key-value-service.

[30] ——, “Key/value service user-defined functions (udfs),”
https://github.com/privacysandbox/protected-auction-services-docs/
blob/main/key value service user defined functions.md.

[31] A. Sev-Snp, “Strengthening vm isolation with integrity protection and
more,” White Paper, January, 2020.

[32] intel.com, “Intel trust domain extensions (intel tdx),”
https://www.intel.com/content/www/us/en/developer/tools/
trust-domain-extensions/overview.html.

[33] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of aes,” in Topics in Cryptology–CT-RSA 2006:
The Cryptographers’ Track at the RSA Conference 2006, San Jose,
CA, USA, February 13-17, 2005. Proceedings. Springer, 2006.

[34] A. Kalra, “Add SEV-SNP CipherTextHiding feature support,” 2024.
[Online]. Available: https://lwn.net/Articles/985386/

[35] amd.com, “Performance counter side channel,” https://www.amd.
com/en/resources/product-security/bulletin/amd-sb-3013.html.

[36] E. Aktas, C. Cohen, J. Eads, J. Forshaw, and F. Wilhelm, “Intel trust
domain extensions (tdx) security review,” Google security review,
2023.

[37] L. Wilke, F. Sieck, and T. Eisenbarth, “Tdxdown: Single-stepping and
instruction counting attacks against intel tdx,” in ACM CCS 2024,
2024.

[38] U. Mandal, S. Shukla, N. Mishra, S. Bhattacharya, P. Saxena, and
D. Mukhopadhyay, “Exploring side-channels in intel trust domain
extensions,” Cryptology ePrint Archive, Paper 2025/079, 2025.
[Online]. Available: https://eprint.iacr.org/2025/079

[39] amd.com, “Ciphertext side channels on amd sev,” https://www.amd.
com/en/resources/product-security/bulletin/amd-sb-1033.html.

[40] Arm Architecture & Technology Group, “Arm CCA Security Model
1.0,” 2021. [Online]. Available: https://documentation-service.arm.
com/static/610aaec33d73a34b640e333b

[41] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY,
USA, March 4-7, 2006. Proceedings 3. Springer, 2006, pp. 265–284.

[42] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential privacy
under fire,” in 20th USENIX Security Symposium, San Francisco,
CA, USA, August 8-12, 2011, Proceedings. USENIX Association,
2011. [Online]. Available: http://static.usenix.org/events/sec11/tech/
full\ papers/Haeberlen.pdf

[43] Z. Ratliff and S. Vadhan, “A framework for differential privacy
against timing attacks,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’24. New York, NY, USA: Association for Computing Machinery,
2024, p. 3615–3629. [Online]. Available: https://doi.org/10.1145/
3658644.3690206

[44] kernel.org, “Confidential computing vms,” https://docs.kernel.org/virt/
hyperv/coco.html.

[45] J. R. Douceur, “The sybil attack,” in IPTPS, ser. Lecture Notes in
Computer Science. Springer, 2002.

[46] J. De Meulemeester, L. Wilke, D. Oswald, T. Eisenbarth, I. Ver-
bauwhede, and J. Van Bulck, “BadRAM: Practical memory aliasing
attacks on trusted execution environments,” in 46th IEEE Symposium
on Security and Privacy (S&P), May 2025.

[47] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and
F. D. Garcia, “{VoltPillager}: Hardware-based fault injection attacks
against intel {SGX} enclaves using the {SVID} voltage scaling
interface,” in 30th USENIX Security Symposium (USENIX Security
21), 2021.

[48] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution,” in USENIX Security Symposium,
2018.

[49] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” in CCS, 2019.

[50] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data
Load,” in S&P, 2019.

[51] D. Moghimi, “Downfall: Exploiting speculative data gathering,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023.

[52] R. Zhang, L. Gerlach, D. Weber, L. Hetterich, Y. Lü, A. Kogler,
and M. Schwarz, “CacheWarp: Software-based fault injection using
selective state reset,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024.

[53] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in
ISCA, 2014.

[54] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss,
and F. Piessens, “Plundervolt: Software-based Fault Injection Attacks
against Intel SGX,” in S&P, 2020.

[55] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W.
Craig, “Resolving individuals contributing trace amounts of dna to
highly complex mixtures using high-density snp genotyping microar-
rays,” PLoS genetics, 2008.

[56] S. Sankararaman, G. Obozinski, M. I. Jordan, and E. Halperin,
“Genomic privacy and limits of individual detection in a pool,” Nature
genetics, 2009.

[57] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan, “Robust
traceability from trace amounts,” in 2015 IEEE 56th Annual Sympo-
sium on Foundations of Computer Science. IEEE, 2015.

[58] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical at-
tack framework for precise enclave execution control,” in Proceedings
of the 2nd Workshop on System Software for Trusted Execution, 2017.

[59] L. Wilke, J. Wichelmann, A. Rabich, and T. Eisenbarth, “Sev-step:
A single-stepping framework for amd-sev,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2023.

[60] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar,
“{CopyCat}: Controlled {Instruction-Level} attacks on enclaves,” in
29th USENIX security symposium (USENIX security 20), 2020.

[61] S. Florian, Z. Zhang, S. Berndt, C. Chuengsatiansup, T. Eisenbarth,
and Y. Yarom, “TeeJam: Sub-Cache-Line Leakages Strike Back,” in
TCHES, 2024.

[62] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks
on x86,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2021.

[63] I. Puddu, M. Schneider, M. Haller, and S. Capkun, “Frontal at-
tack: Leaking Control-Flow in SGX via the CPU frontend,” in 30th
USENIX Security Symposium (USENIX Security 20), 2021.

[64] S. Constable, J. Van Bulck, X. Cheng, Y. Xiao, C. Xing, I. Alexan-
drovich, T. Kim, F. Piessens, M. Vij, and M. Silberstein, “{AEX-
Notify}: Thwarting precise {Single-Stepping} attacks through inter-
rupt awareness for intel {SGX} enclaves,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023.

[65] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, 2011.

[66] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

[67] google.com, “Bringing transparency to confidential com-
puting with slsa,” https://security.googleblog.com/2023/06/
bringing-transparency-to-confidential.html.

[68] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private infor-
mation retrieval,” Journal of the ACM (JACM), 1998.

[69] S. B. Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and V. Schi-
avoni, “X-search: revisiting private web search using intel sgx,” in
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
2017.

[70] google.com, “Oak functions containers,” https://github.com/
project-oak/oak/tree/main/oak functions containers launcher.

[71] E. Stefanov, M. v. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path oram: an extremely simple oblivious
ram protocol,” Journal of the ACM (JACM), 2018.

[72] S. P. Vadhan, “The complexity of differential privacy,” in Tutorials on
the Foundations of Cryptography. Springer International Publishing,
2017, pp. 347–450.

[73] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Lightweight techniques for private heavy hitters,” Cryptology
ePrint Archive, Paper 2021/017, 2021. [Online]. Available: https:
//eprint.iacr.org/2021/017

[74] D. Mouris, C. Patton, H. Davis, P. Sarkar, and N. G. Tsoutsos,
“Mastic: Private weighted heavy-hitters and attribute-based metrics,”
Proceedings on Privacy Enhancing Technologies, 2025.

[75] W3C, “Network error logging,” W3C Working Draft, 2023. [Online].
Available: https://www.w3.org/TR/network-error-logging/

[76] J. Bell, A. Gascón, B. Ghazi, R. Kumar, P. Manurangsi, M. Raykova,
and P. Schoppmann, “Distributed, private, sparse histograms in the
two-server model,” in CCS. ACM, 2022, pp. 307–321.

[77] D. Bogatov, G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill,
“ϵpsolute: Efficiently querying databases while providing differential
privacy,” in CCS. ACM, 2021, pp. 2262–2276.

[78] S. Ghodke, “Alexa top 1 million sites,” Kaggle, 2018. [Online].
Available: https://www.kaggle.com/datasets/cheedcheed/top1m

[79] I. E. Akkus, I. Rimac, and R. Chen, “Praas: Verifiable proofs of prop-
erty as-a-service with intel sgx,” in 2024 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 2024.

[80] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, “AccTEE: A
webassembly-based two-way sandbox for trusted resource account-
ing,” in Proceedings of the 20th International Middleware Confer-
ence, 2019.

[81] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-
faas: Trustworthy and accountable function-as-a-service using intel
sgx,” in Proceedings of the 2019 ACM SIGSAC Conference on Cloud
Computing Security Workshop, 2019.

[82] Google, “What is v8?” https://v8.dev/.

[83] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load value
injection,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020.

[84] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside {SGX} enclaves with
branch shadowing,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017.

[85] W. Wang, M. Li, Y. Zhang, and Z. Lin, “Pwrleak: Exploiting power
reporting interface for side-channel attacks on amd sev,” in Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2023.

[86] K. Ryan, “Hardware-backed heist: Extracting ecdsa keys from qual-
comm’s trustzone,” in Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, 2019.

[87] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “Cachequote: Efficiently recovering long-
term secrets of sgx epid via cache attacks,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2018, no. 2,
2018.

[88] I. Corparation, “Guidelines for mitigating timing side channels against
cryptographic implementations,” 2021.

[89] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar, “Mi-
crowalk: A framework for finding side channels in binaries,” in
Proceedings of the 34th Annual Computer Security Applications
Conference, 2018.

[90] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “{CacheD}:
Identifying {Cache-Based} timing channels in production software,”
in 26th USENIX security symposium (USENIX security 17), 2017.

[91] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying
{High-Performance} cryptographic assembly code,” in 26th USENIX
security symposium (USENIX security 17), 2017.

[92] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is my code
constant time?” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. IEEE, 2017.

[93] Y. Yuan, Z. Liu, S. Deng, Y. Chen, S. Wang, Y. Zhang, and Z. Su,
“Ciphersteal: Stealing input data from tee-shielded neural networks
with ciphertext side channels,” in 2025 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2024.

[94] ——, “Hypertheft: Thieving model weights from tee-shielded neural
networks via ciphertext side channels,” in Proceedings of the 2024
on ACM SIGSAC Conference on Computer and Communications
Security, 2024, pp. 4346–4360.

[95] J. Jin, E. McMurtry, B. I. P. Rubinstein, and O. Ohrimenko, “Are we
there yet? timing and floating-point attacks on differential privacy
systems,” CoRR, vol. abs/2112.05307, 2021. [Online]. Available:
https://arxiv.org/abs/2112.05307

Appendix

1. Connecting DP & Advantage

Lemma 2 (DP bounds advantage). If the leakage of B
guarantees (ε, δ)-DP, a pairwise distinguishability attack
against B has advantage bounded by (eε − 1)/4 + δ/2.

Let c be the bit that indicates whether the target has x0

or x1. Observe that

Pr[outputA = c] =
1

2

(
Pr[outputA = 0 | c = 0]

+ Pr[outputA = 1 | c = 1]
)

because c is uniform over {0, 1}.
Because Pr[outputA = c] > 1/2, there must be at least

one i ∈ {0, 1} where Pr[outputA = i | c = i] > 1/2
otherwise the mean would be ≤ 1/2. We rewrite the above
equality using i:

Pr[outputA = c]

=
1

2

(
Pr[outputA = i | c = i]

+ Pr[outputA = 1− i | c = 1− i]
)

≤ 1

2

(
Pr[outputA = i | c = i]

+ eε Pr[outputA = 1− i | c = i] + δ
)

The inequality comes directly from the definition of DP.
We can continue the analysis by adding and subtracting

the quantity Pr[outputA = 1− i | c = i]:

=
1

2

(
Pr[outputA = i | c = i] + Pr[outputA = 1− i | c = i]

+ (eε − 1)Pr[outputA = 1− i | c = i] + δ
)

=
1

2

(
1 + (eε − 1)Pr[outputA = 1− i | c = i] + δ

)

Now notice that Pr[outputA = 1− i | c = i] is at most 1/2
by virtue of the definition of i. Hence,

Pr[outputA = c] ≤ 1

2

(
1 +

eε − 1

2
+ δ

)
which in turn means that the advantage is ≤ eε−1

4 + δ
2 . We

remark that this analysis is only useful for ε < ln(3− 2δ);
otherwise the advantage would be bounded by a number
≥ 1/2.

// batch, epsilon, and threshold are defined in
// the context
std::unordered_map<string, int> hist;
std::vector<std::pair<string, int>> result;
...
// Mitigation params
double kEpsilonDummies = atof(argv[1]);
double kLaplaceScaleDummies = 2 / kEpsilonDummies;
double kTailBound = log(1 / kDelta) / kEpsilonDummies;
std::exponential_distribution<double>

expDummies(1 / kLaplaceScaleDummies);

// Aggregate inputs
...

// Add dummies
int nDummies = 0;
if (kEpsilonDummies > 0) {

nDummies = 1 +
int(sample_centered_laplace(expDummies)) +
kTailBound;

}
for (int i = 1; i <= nDummies; ++i) {

hist[-i]++;
}

// Noise and Threshold
...
}

Figure 9: A mitigation for the obvious leakage in the Noise
& Threshold phase of the vanilla PHH implementation.

Figure 9 shows our proposed DP-based mitigation.

2. Trace and Collection Speed

Figure 10: The syntax and example of side-channel trace.
“gpn” represents the guest physical page number and “num”
records the number of code pages monitored. “pn” rep-
resents the performance counter values of attacker-chosen
events.

Time per NPF NPF Tracked/sec

Page-level 18,841 CPU cycles 159,227
Ciphertext 22,543 CPU cycles 133,079
Cache attacks 248,568 CPU cycles 12,069

TABLE 5: The collection speed with different leakage
choices with a 3.0 GHz CPU.

Figure 10 shows an example of the raw trace, where MA
141b69 CL 60 indicates access to the 60th 64B of the guest
page at 0x141b69. ci bk is followed by the 16B index
in the page and the ciphertext value before and after the
change. Table 5 shows the collection speed of FARFETCH’D
under different leakage choices, averaged over 10,000 NPF
using the Vanilla application in Section 5 as the benchmark.
In cache attacks, we disable the hardware prefetcher and
ensure a clean cache state at the prime state by executing
the wbinvd instruction [52].

Figure 11: The trace in Figure 10 after pre-processing for
sequence model.

Automatic Feature Learning To aid the sequence model,
we pre-process the traces by abstracting the memory space,
and maintaining information about the ciphertext. In Fig-
ure 11 we show the result of pre-processing the trace in
Figure 10.

Layer Dimm # Params

Input 10,000 0
Embedding 64 640,000
Bidirectional 128 66,048
Bidirectional 64 41,216
Dense 64 4,160
Dropout 64 0
Dense 2 130

TABLE 6: The architecture of the LSTM model used
throughout the case studies.

Sequence Model We implement an LSTM model according
to the architecture described in Table 6. The vocabulary size
is set to 10,000, and the traces are truncated to the last 5000
tokens. The model uses a batch size of 32 and is trained for
50 epochs using early stopping.

