
ar
X

iv
:2

50
6.

16
98

1v
1

 [
cs

.C
R

]
 2

0
Ju

n
20

25
PREPRINT 1

SmartGuard: Leveraging Large Language Models
for Network Attack Detection through Audit Log

Analysis and Summarization
Hao Zhang, Shuo Shao, Song Li, Zhenyu Zhong, Yan Liu, Zhan Qin, Kui Ren, Fellow, IEEE

Abstract— End-point monitoring solutions are widely deployed
in today’s enterprise environments to support advanced attack
detection and investigation. These monitors continuously record
system-level activities as audit logs and provide deep visibility
into security events. Unfortunately, existing methods of semantic
analysis based on audit logs have low granularity, only reaching
the system call level, making it difficult to effectively classify
highly covert behaviors. Additionally, existing works mainly
match audit log streams with rule knowledge bases describing
behaviors, which heavily rely on expertise and lack the ability to
detect unknown attacks and provide interpretive descriptions. In
this paper, we propose SmartGuard, an automated method that
combines abstracted behaviors from audit event semantics with
large language models. SmartGuard extracts specific behaviors
(function level) from incoming system logs and constructs a
knowledge graph, divides events by threads, and combines event
summaries with graph embeddings to achieve information diag-
nosis and provide explanatory narratives through large language
models. Our evaluation shows that SmartGuard achieves an
average F1 score of 96% in assessing malicious behaviors and
demonstrates good scalability across multiple models and un-
known attacks. It also possesses excellent fine-tuning capabilities,
allowing experts to assist in timely system updates.

Index Terms—Audit log analysis, network attack detection,
knowledge graph, large language model.

I. INTRODUCTION

SECURITY incidents in large enterprise systems have been
on the rise globally. We have been witnessing the scale

and complexity of attacks. Capital One reported that 106
million customers’ credit card information was exposed due
to unauthorized database access [1]. The recent Twitter attack
left dozens of high-profile accounts displaying fraudulent
messages to tens of millions of followers [2]. To better prevent
and respond to such attacks, endpoint monitoring solutions
(e.g., Security Information and Event Management (SIEM)
tools [3]) are widely deployed for enterprise security. These
monitors continuously record system-level activities as audit
logs, capturing many aspects of system execution states.

When responding to security incidents, network analysts
perform the causal analysis on audit logs to uncover the root
causes of attacks and their scope of damage [4], [5]. However,
the volume of audit logs generated by normal systems is not

Hao Zhang, Shuo Shao, Song Li, Zhan Qin, and Kui Ren are with the
State Key Laboratory of Blockchain and Data Security, Zhejiang University,
Hangzhou, 310007, China, and also with the Hangzhou High-Tech Zone (Bin-
jiang) Institute of Blockchain and Data Security, Hangzhou, 310051, China
(e-mail: {haozhang hz, shaoshuo ss, songl, qinzhan, kuiren}@zju.edu.cn).

Zhenyu Zhong and Yan Liu are with the Ant Group, Hangzhou, 310063,
China (e-mail: {edward.zhong, bencao.ly}@antgroup.com)

small. Even a desktop computer can easily produce over a
million audit events per day [6], [7], not to mention busy
servers in cloud infrastructures. To overcome this challenge,
recent research solutions have expanded causal analysis by
eliminating irrelevant system operations from audit logs [7],
[8], [9], [10], [11], [12], [13]. Another research direction
aims to improve the efficiency of log query systems [6],
[14], [15]. Unfortunately, neither data reduction nor search
improvements lead to a significant reduction in the analysis
workload. These solutions do not capture the semantics behind
the audit data and leave behavior identification to the analysts
[16]. Therefore, a substantial amount of manual work is still
required to assess relevant but benign and complex events that
dominate audit logs. In particular, a major issue analysts face
is how to bridge the semantic gap between audit events and
system behaviors, thereby achieving more efficient and broader
applications in behavior detection.

Existing work aims to bridge this gap by matching audit
events with knowledge stores of expert-defined rules describ-
ing behaviors, such as tag-based policies [17], [18], query
graphs [19], [20], and TTP (Tactics, Techniques, and Pro-
cedures) specifications [21], [22]. Essentially, these solutions
identify high-level behaviors through tag propagation or graph
matching. However, the anticipated bottleneck is the manual
involvement of domain experts in specifying such rules. For
example, MORSE [18] requires experts to traverse system
entities (e.g., files) and initialize their confidentiality and
integrity tags for tag propagation. TGMiner [20] requires
manual behavior labeling in training log sets before mining
distinguishing behavior patterns and searching for their pres-
ence in test sets. Despite playing a crucial role in audit log
analysis, mapping events to behaviors largely relies on expert
knowledge, which may hinder its practical application.

Extracting representative behaviors from audit events for
analyst investigation can provide an effective strategy to mit-
igate this issue. However, the accuracy of abstracting high-
level behaviors depends on the matching degree of templates
or the universality of similarity algorithms. When facing a
large number of heterogeneous audit logs, both templates and
similarity algorithms are difficult to achieve good universality.

Recently, the success of large language models in per-
forming complex tasks [3], [17] has provided a promising
approach to enhancing abstract high-level behavior analysis.
Specifically, large language models can be used to parse large
amounts of data, identify relevant information, and generate
concise and insightful outputs. This significantly reduces the

https://arxiv.org/abs/2506.16981v1

PREPRINT 2

burden on analysts to manually sift through large volumes
of data, helping them resolve incidents more quickly and
effectively. Additionally, large language models can adapt to
new and evolving types of incidents, learning from past data
to improve future predictions. For example, the OPT model
employs an efficient training method, with costs only 1/7 of
those of language models with the same parameters, making
it well-suited for large-scale inference tasks [23].

More specifically, we can use large language models to
automatically abstract high-level behaviors and interpret and
label semantically similar behaviors, even without labels to
explain what they are. However, since repetitive/comparable
behaviors have already been labeled, analysts only need to
review the representatives in the labels, resulting in far fewer
incidents needing investigation. In addition to reducing the
manual workload in behavior analysis, using large language
models for automatic behavior abstraction can also enable
proactive analysis to detect anomalous behavior patterns in
internal threats or external vulnerabilities.

Although adopting large language models for behavior ab-
straction analysis sounds promising, it also faces the following
challenges: complex event semantic differentiation and behav-
ior recognition, as audit events record general system activities
and thus lack high-level semantic knowledge. A single event
(e.g., process creation or file deletion) can represent different
semantics in different contexts. Additionally, due to the large
scale and high interleaving of audit events, dividing events
and identifying behavior boundaries is like finding a needle
in a haystack. Large language models lack intrinsic domain-
specific knowledge, especially in specialized fields such as
audit log analysis. This lack of understanding of specific
contexts may limit their accuracy in predicting incident root
causes and generating appropriate explanations.

In this paper, we propose SmartGuard, an automated be-
havior abstraction and detection method that bridges the
semantic gap of audit events and fine-tunes large language
models to detect benign and malicious behaviors and provide
explanatory narratives. It does not rely on expert knowl-
edge of event semantics to perform behavior abstraction.
The semantics are automatically obtained from the context in
which the events are used in the audit logs, which we refer
to as the contextual semantics of events. More specifically,
SmartGuard first preprocesses the input audit logs, including
removing redundancies and extracting the subjects, objects,
and relationships of behaviors. Unlike previous solutions, it
emphasizes and incorporates specific operational behaviors
(such as functions) into the records and categorizes the logs
according to threads. Therefore, it can obtain more detailed
deep behavior characteristics compared to previous solutions.
Then, SmartGuard generates natural language summaries for
each unit based on the divided units and uses a Graph Neural
Network (GNN)-based embedding model to generate Graph
Embeddings of behavior semantics according to the context
of the logs and divided units. After that, it identifies events
connected to related data objects (i.e., the same thread) and
aggregates their semantics into representations of high-level
behaviors. Finally, SmartGuard fine-tunes the large language
model based on the abstracted high-level behavior represen-

tations, achieving information diagnosis of log behaviors and
providing interpretable narratives.

SmartGuard provides a way to combine large language
models with abstract log high-level behaviors. Through in-
terpretable methods, it can reason about behaviors and events,
allowing analysts to compare and resolve behaviors. Utiliz-
ing the characteristics of large language models, it can also
combine multiple behaviors and even predict what specific
behaviors should be. These features can form the basis for
designing new security solutions, such as anomaly behavior
detection, or support existing solutions in selecting appropriate
behaviors for in-depth inspection.

We prototyped SmartGuard and used the public DARPA
TC dataset released by the DARPA Transparent Comput-
ing program [24] to evaluate SmartGuard’s accuracy and
interpretability in attack investigations. We also conducted
comparative experiments on step processing and noted that
SmartGuard achieved better results compared to not dividing
threads and not using graph embedding model semantics. The
experimental results show that SmartGuard accurately identi-
fies system entities with similar usage contexts and achieves
an average F1 score of 95.2% in behavior abstraction. And
it demonstrates good scalability, achieving favorable results
across multiple models.

Our contributions are summarized as follows.
• We propose SmartGuard, a method that combines large

language models with the extraction of behaviors from logs,
enabling it to effectively detect both known and unknown
attacks. Our approach summarizes behaviors guided by
information flow and enables large language models to
perform information diagnostics by aggregating contextual
semantics.

• We propose a new scheme for abstracting contextual seman-
tics, achieving fine granularity down to specific behaviors
(function level), and dividing events by threads. This allows
integration with large language models to provide explana-
tory narratives for behavior semantics.

• We conducted a systematic evaluation and scalability anal-
ysis of common malicious behaviors. The results show that
SmartGuard can effectively abstract high-level behaviors
and detect them, demonstrating good scalability across
multiple models and unknown attacks. Additionally, it can
efficiently collaborate with experts for fine-tuning and real-
time system updates.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce audit log analysis and its
challenges with an example. We then analyze the problem of
behavior abstraction with our insights, as well as describe the
threat model.

A. Motivating Example

1) Scenario: Consider the attack scenarios of Barephone
Micro. As an attacker, you write a malicious application APK
intending to steal database files. The victim user installs and
runs the malicious APK, which loads the Micro APT shared
object. Micro APT connects to 77.138.117.150:80

PREPRINT 3

libc.so /privappshell libmicroapt.so barephone-
instr.apkc1

c2getReadable-
Database()mmssms.dbremoveDeleted-

Contacts()[line 301]

removeDeleted-
Contacts()[line 347]

insertUpdate-
Contacts()[line 443]

insertUpdate-
Contacts()[line 544]

mmssms.xml

doQuery()

Fig. 1: Scenario example. The nodes in the figure are system
entities (rectangles represent functions, rounded rectangles
represent addresses and files, ellipses represent sockets, and
diamonds represent databases). The edges between the nodes
represent system calls. For clarity, we color-code the source
data objects in the behavior, with red and yellow representing
high-risk behaviors.

as C2. The address 128.55.12.114 is used as C1,
where a benign activity installs an elevation driver and
uses the driver for privilege escalation. Finally, the new
permissions were used to call getReadableDatabase
to steal the database files mmssms.db. Multiple calls to
removeDeletedContacts were then made to clear the
relevant information from the database. Although this strat-
egy executes high-risk functions multiple times, traditional
schemes do not deliberately record specific function behaviors,
leading analysts to mistakenly classify it as a normal event.
Figure 1 shows the behavior diagram of the strategy.

2) Audit log analysis: System audit logs enable analysts to
gain deep insights into network attacks through data sources.
Each audit record represents an operating system-level opera-
tion (i.e., system call), such as process execution, file creation,
and network connection. Specifically, records can be defined
as triples (Object, Relation, Object), where Object is a system
entity (i.e., process, file, or network socket), and Relation is the
system call function. We aggregate records of the same thread
within the same process as an event. Each event belongs to a
specific thread (marked at the beginning of the event). Note
that system entities are associated with a set of identifying
attributes, such as tags (e.g., PID) and names (e.g., file path and
function). Additionally, each individual record (e.g., the action
of writing to a file) represents an information flow between the
subject and the object.

3) The Promise of Large Language Models for Incident
Inference: Large language models have the ability to in-
fer and analyze event semantics. The rapid advancements
in natural language processing and machine learning have
led to the development of powerful large language models
(LLMs). These models have been reported to be effective in
various downstream tasks in zero-shot and few-shot learning
scenarios [25], [26], [27]. They have demonstrated exceptional
performance in translation, summarization, and semantic un-
derstanding. Leveraging the reasoning capabilities of LLMs
can transform the way behaviors are identified and detected in
audit log analysis. The ability of LLMs to provide explanatory
narratives can help alleviate the stress and burden associated
with complex tasks for analysts, allowing them to focus more
on higher-level work and decision-making.

B. Challenges

When capturing attack sequences and sources, analysts must
identify not only malicious behaviors (such as data breaches)
but also benign behaviors (such as file uploads). Although
provenance graphs provide an intuitive representation to vi-
sualize causal dependencies and remove irrelevant events,
analysts still spend excessive time investigating relevant but
benign events due to the ubiquity of daily activities.

Abstracting behaviors from audit events is an effective
strategy for analysts to navigate through a large number of
events and focus on specific information. Essentially, behav-
iors represent an abstraction of audit data. Working at the
behavioral level can effectively reduce the analysis workload
from the entire event space to the interesting behaviors that at-
tract attention in specific scenarios. However, to automatically
abstract high-level behaviors from low-level audit events and
accurately classify them, analysts face three major challenges:
• Refining the semantics of audit events. Audit records are

usually based on processes as the smallest unit, but they
overlook the specific functions executed in each step of
behavior. This can make certain malicious behaviors difficult
to detect. For example, the theft of files from two entities
with different names but similar semantics may not be
recognized.

• Inferring the semantics of audit events and identifying
behavior boundaries. Audit events record detailed system
execution states but lack the high-level semantic knowledge
crucial for recognizing behavior patterns. For example,
system entities with the same name might indicate different
intentions. Existing work mainly uses expert-defined rules or
model knowledge bases to parse audit events to reveal event
semantics. However, given the large scale of audit events,
manual specifications can easily compromise the scalability
of abstracting high-level behaviors, even in moderately sized
systems. Additionally, audit data volumes are typically enor-
mous, and audit events are highly interleaved. For example,
a single package installation using APT can generate over
30,000 events. Furthermore, all individual behaviors have
causal relationships. This makes it difficult for analysts to
segment events and distinguish behavior boundaries.

• Identifying unknown attacks and achieving timely system
updates. Although existing solutions can recognize known
attack behaviors, unknown attacks occur more frequently in
reality. Unlike known attack types, learning the semantic
relationships between behaviors and recognizing unknown
attacks is a challenge. More importantly, real-world systems
should be capable of interacting with security personnel and
promptly updating the types of attacks they recognize.

C. Problem Analysis

Given a large number of audit logs in a user login session,
our goal is to identify high-level (benign and malicious)
behaviors and provide a quantitative representation of their
semantics without analyst involvement. Additionally, we aim
to use large language models to identify and provide inter-
pretable narratives for abstract high-level behaviors. Compared
to traditional methods of behavior abstraction that heavily

PREPRINT 4

libc.so libmicroapt.soc1 getReadable-
Database() calllog.db

removeDeleted-
Contacts()[line 301]

removeDeleted-
Contacts()[line 347]

doQuery()c2 dialer.db/shared_prefs

updateDatabase()

getReadable-
Database()

removeDeleted-
Contacts()[line 301]

updateDatabase() removeDeleted-
Contacts()[line 347]

Fig. 2: Attack subgraph for stealing information from differ-
ent databases. We color-coded the data objects, with yellow
indicating similar behavior semantics.

rely on domain knowledge, our goal is to achieve automated
behavior abstraction using simple and effective insights.

Our first insight is that function-level behavior recording
and thread-based log division can identify more covert log
behaviors. This insight comes from: the observation that in
traditional audit log analysis, each audit record is generally
processed into a triplet (Subject, Relation, Object), where
the Subject is the process entity, the Object is the system
entity, and the Relation is the system function. Additionally,
the Object contains a set of identifying tags. For example,
(cp, read, test.txt) indicates that the copy process
performed a read operation on the file test.txt. This triplet
division is based on processes. This method can effectively and
concisely extract a high-level behavior, but it overlooks more
detailed parts of the behavior, such as the specific address
of the file and the function usage process in each record.
This is because parameters like functions are recorded in the
Object tags and are not intuitively reflected in the semantics.
In malicious behaviors, besides sensitive and special files,
the semantics of certain function usages should also be key
monitoring targets. For example, an attacker wanting to
steal the contents of the calllog.db file can elevate their
privileges using an elevation driver and then call the function
CallLogDatabaseHelper.getReadableDatabase()
at the address /android.providers.contacts
/databases to complete the malicious behavior. Similarly,
stealing other files such as dialer.db would involve
similar behavior. Figure 2 shows similar behaviors in the
events. This type of attack is difficult to detect with traditional
methods. Additionally, we observed that such behaviors often
occur within the same thread space, and the traditional
process-based division makes it difficult to reflect the overall
characteristics of behaviors within the same thread. Therefore,
thread division should also be an important part of audit log
analysis.

Our second insight is that the semantics of system entities
and relations in audit events can be revealed from their usage
context. Similarly, for the other files such as calllog.db,
the read operation will call the getReadableDatabase()
function. Even though different behaviors include other nodes,
we can still determine their similarity from the overall context.
Therefore, we can infer that despite different identifiers, these
files may share similar semantics.

The core idea is to reveal the semantics of system entities
and relations from the contextual information in audit events,

such as by analyzing their correlations in events. A general
method for extracting such contextual semantics is to use
graph embedding models. The goal is to map system entities
and relations into a graph embedding space (i.e., numerical
vector space), where the distances between vectors capture
semantic relationships. At the same time, generating log sum-
maries from segmented events and integrating them with graph
vectors becomes the event semantics. Now we can interpret
the semantic information of audit events. The next step is to
identify audit events that belong to malicious behaviors.

Our third insight is that large language models can be
used to identify high-level log semantics. Based on our ob-
servations, large language models have achieved remarkable
success in inference tasks. Although large language models
have limited knowledge in the area of audit logs, their supe-
rior performance in fine-tuning allows for improved semantic
recognition through the Chain-Of-Thought (COT) approach.
For example, by asking guiding questions such as ‘What are
the sensitive links in the log behavior?’, ‘What are the sensitive
nodes in the log behavior?’, and ‘What is the malicious
type of the log behavior?’, we can enhance the accuracy
and scalability of large language models in recognizing log
semantics.

D. Threat Model

We assume that the underlying operating system, audit
engine, and monitoring data are part of the Trusted Computing
Base (TCB). Ensuring the integrity of the operating system
kernel, endpoint monitors, or the audit logs themselves is
beyond the scope of this work. This threat model is shared
in related work on system auditing [28], [29], [17], [18], [30],
[22]. We also assume that behaviors are audited at the kernel
level and their operations are captured as system call audit
logs. Although attackers may attempt to perform malicious
actions without executing any system calls to hide their tracks,
such behaviors appear to be rare and their impact on other
parts of the system is limited [31]. In this paper, we focus on
behaviors within single-user sessions. Our insights generally
apply to cross-session behaviors.

III. METHODOLOGY

In this section, we will introduce the Approach Overview of
SmartGuard in Section III-A, followed by Knowledge Graph
Construction in Section III-B. Next, we will discuss Behavior
Abstraction in Section III-C. Finally, we will introduce LLM
for Incident Inference in Section III-D.

A. Approach Overview

The overall approach of SmartGuard is illustrated in
Figure 3. It consists of three main stages: Knowledge Graph
Construction, Behavior Abstraction, and LLM for Incident
Inference. SmartGuard takes system audit data as input, such
as Linux audit logs [32]. It summarizes behavior instances,
abstracts their high-level semantics, and ultimately outputs
diagnostic results and explanatory narratives.

Specifically, taking audit logs from user sessions as input,
the Knowledge Graph Construction module first parses the

PREPRINT 5

Fig. 3: SmartGuard Overview. First, we extract specific behaviors (function-level) from the logs and construct a knowledge
graph. Second, we divide the behaviors according to threads and extract text summaries. Then, we perform embeddings on the
extracted behavior subgraphs and combine them with text to form behavior semantics. Finally, we use a large language model
to diagnose the behavior semantics and provide explanatory narratives.

logs into triples, divides them by threads, and constructs a
log-based Knowledge Graph (KG). Then, the Event Semantic
Inference module employs a graph neural model to infer
the contextual semantics of nodes in the knowledge graph.
Meanwhile, the Behavior Summarization module enumerates
subgraphs from the knowledge graph to generate textual
summaries of the logs. Combining node semantics, the Be-
havior Semantic Aggregation module subsequently enhances
the subgraphs to encode the semantics of behavior instances.
Finally, the Large Language Model (LLM) module performs
information diagnosis based on the aggregated semantics and
provides explanatory narratives, which can further reduce the
workload of downstream tasks. We will introduce the design
details of SmartGuard in the following sections.

Fig. 4: Example of Graph Construction. We use different
colors and shapes to mark different nodes, corresponding to the
node types in Table I. The lines between the nodes represent
system calls.

B. Knowledge Graph Construction

To analyze the contextual semantics of events, a unified
representation is required to present heterogeneous events in
a homogeneous manner. We use a knowledge graph (KG)-
based representation to integrate heterogeneous information.
This allows for capturing relationships beyond provenance in
the future [33], [34] (e.g., file metadata such as permissions
and owners).

TABLE I: Classification of node types and some specific
examples of nodes.

Node Type Node Name
Thread Start thread id

Function query(),setThreadPriority(),execTransact()
File or address libc.so,dialar.db,/system,/dev/ashmem

Readlist printlnnative
Writelist writeEvent

Following the formal description of KG by Färber et al.
[35], we define the log-based KG as a Resource Description
Framework (RDF) graph [36]. More specifically, the log-
based knowledge graph is a set of numerous semantic triples.
Each triple corresponds to an audit event and consists of
three elements, encoding the semantic relationship between
Head and Tail in the form of (Head, Relation, Tail). Both
Head and Tail can be any type of system entity, mainly
including specific file addresses, functions, read/write lists,
etc. Relation can be any system operation performed on Tail,
such as READ, LINK, and MODIFY FILE ATTRIBUTES.
Table I presents some examples of our classification of node
types. Additionally, we divide the logs by threads, with each
thread subgraph starting with a thread ID and connecting under
the process ID that created them. Threads are interconnected
through the same entities, such as the same addresses and
functions. Figure 4 illustrates an example of one of the attack
behavior subgraphs.

C. Behavior Abstraction

1) Behavior Summarization: The first step in behavior
abstraction is to identify the semantics of behavior instances
from a user login session. We define a behavior instance as
a coherent set of audit events that operate on related data.
Specifically, accurate understanding depends on appropriate
representation and granularity, allowing effective comparison
of behavior semantics. Common practices in previous works

PREPRINT 6

[37], [38], [39] are to formulate each log event as the basic
unit of analysis or to use individual elements within log events
as the basic unit. However, a single audit event includes three
elements (Head, Relation, and Tail), and analyzing only from
the event or element itself can only obtain the semantics of
the one-step behavior from Head to Tail, while the overall
semantics of longer behavior trajectories will be fragmented.
Meanwhile, we observe that behavior thematic features occur
within the same thread, and the thread size is relatively small,
mostly containing less than ten events, which can also reflect
the semantics of elements compared to the analysis method
of single events. Therefore, performing semantic analysis at
the thread level can provide a more detailed view than single
events, as the context of the entire thread behavior becomes
clear. We aggregate events within a thread into thread events.
Therefore, summarizing the problem of a single behavior
instance can be simplified to extract causally connected sub-
graphs with thread objects as the root in the session KG.
Additionally, considering that a single path may not retain the
complete context representing multi-branch data transmission
behavior, we also judge whether multiple thread behavior
branches need to be considered.

Eigenvector centrality is a method for measuring the im-
portance of nodes in a graph. It considers the importance of
a node’s neighbors and calculates the centrality value of each
node through an iterative method. The formula for eigenvector
centrality is:

CE(v) =
1

λ

∑
u∈N (v)

AvuCE(u). (1)

CE(v) represents the eigenvector centrality of node v. λ is
the eigenvalue. N (v) is the set of neighbors of node v. Avu

is the element in the adjacency matrix A that represents the
connection between node v and node u. If there is an edge
between node v and node u, then Avu = 1; otherwise, Avu =
0. CE(u) represents the eigenvector centrality of node u.

For each thread, we first construct the adjacency matrix A
of the graph, then calculate the eigenvalues λ and eigenvectors
v of the adjacency matrix, and finally select the eigenvector
corresponding to the largest eigenvalue as the key node. Then,
We search within a radius of k from the key node, and if
there are key nodes from other threads, those threads are
also included in the behavior instance; otherwise, the behavior
instance only includes the current thread.

This method is adopted considering the following situation:
Traditional methods generally use search methods such as
Depth-First Search (DFS) to traverse the graph when extract-
ing subgraphs of behavior instances. However, the traversal
method is influenced by the frequency of node occurrence, but
the frequency does not indicate the importance of the node,
resulting in some redundant parts being added to the subgraph.
For example, libc.so is an important dynamic library file. It
is an implementation of the C standard library (libc), providing
many basic system calls and functions, and is frequently
referenced. Because it is too common, the traditional method
often adds libc.so to the behavior subgraph during the
traversal process, but such nodes are not critical to the behavior
and do not have a significant impact on the diagnosis of

the behavior, so they should not be added to the behavior
subgraph.

Additionally, we also observe that malicious behavior gen-
erally ends within a few steps. Therefore, we believe that only
when the radius k of a key node contains other key nodes, the
behaviors of the two threads are deeply related; otherwise, the
behavior in the other thread does not have a significant impact
on the behavior of this thread.

Afterward, we first divide the behavior according to the
threads, then expand the search to form new behaviors. If
one behavior is a subset of another, the two behaviors will
be further merged. Then, we generate corresponding natural
language summaries based on the behaviors. Considering that
we will eventually use large language models to achieve
information diagnosis, and the graph embedding vectors do not
contain text vector content recognizable by language models,
we need to provide text information to the large language
model. Thanks to the thread division scheme adopted by
SmartGuard, there is not much node information within each
division (generally no more than ten). Large language models
such as GPT and Copilot can be used to convert graph infor-
mation into natural language summaries. For example, (path1,
read, getReadableDatabase(), write, b.txt) can be organized as
‘path1 uses getReadableDatabase() to achieve read, writing to
b.txt’.

In summary, we apply a method based on key nodes and
thread division to divide the session’s KG into subgraphs,
where each subgraph describes a behavior instance and gen-
erates a natural language summary for each subgraph.

2) Event Semantic Embedding: Understanding the seman-
tics of audit events is the second step in abstracting high-level
behaviors. We abstract the semantics of subgraphs according
to the divided behavior instances. Although there is a trade-off
between scalability and accuracy due to different granularities
of semantic analysis, choosing a computationally efficient em-
bedding model allows us to maintain accuracy when handling
the large number of events found in logs. Therefore, we choose
behavior instances rather than audit events as the basic unit in
semantic reasoning.

Since the embedding model can learn the semantics of
audit events from the context information of threads, the next
question is how to map thread events to vector space. In natural
language processing, word embeddings have been successfully
used to extract and represent the semantics of words [40],
[41]. Inspired by the success of word embeddings in NLP,
EKLAVYA [42] demonstrated how to apply it to infer the
semantics of binary instructions based on usage context. Zeng
et al. [43] showed that mapping contextual semantics into
a translation-based embedding model achieved good results.
This indicates that the context in which audit events occur
is related to their semantics. For example, the triplets (path1,
read, getReadableDatabase()) and (path2, read, getReadable-
Database()), although path1 and path2 belong to different
events, the context in which (read, getReadableDatabase())
occurs suggests that they may share similar semantics. Intu-
itively, our goal is to transform each thread event into a vector,
and we expect the embeddings of similar behaviors to be close
to each other. To achieve this, we use a GAT model based on

PREPRINT 7

graph neural networks to learn the mapping from thread events
to embedding space.

Graph Attention Networks (GAT) are implemented by
stacking simple graph attention layers, introducing self-
attention mechanisms during propagation, and calculating the
hidden state of each node by focusing on its neighboring
nodes. Compared to general GCN models, GAT can consider
the feature vectors of edges. Therefore, in the GAT model, the
graph embedding space can describe the semantic relationships
between thread behaviors. Specifically, the GAT model can
consider the feature vectors of nodes and edges, and based
on the provenance graph, it can autonomously learn and
assign weights to edges and nodes. Our guiding principle for
choosing GAT is that its graph attention-based model perfectly
matches our understanding of the context semantics of audit
events. For example, (path1, read, getReadableDatabase(),
write, a.txt) and (path2, read, getReadableDatabase(), write,
b.txt) exhibit similar semantics in GAT. Theoretically, the
embedding model in GAT reflects our expectations of the
semantics and similarities of thread events. Section IV-B
demonstrates through experiments that GAT indeed learns
the context semantics of audit events that match our domain
knowledge.

During embedding, we used the word2vec model. We used
the Gensim [44] library to generate node embeddings for
training the graph. Gensim is a Python library for natural
language processing, particularly adept at handling large-scale
text data. Since each node in the source graph contains two
attributes, type and name, the input feature fu of the node u
can be calculated as follows:

fu = Concat(wtype
u , wname

u), (2)

where wtype
u is the vector representation of the word for the

type of node u, such as a function or address, and wname
u is

the vector representation of the word for the name of node u.
Table I presents some examples of our classification of node
types.

The result of word2vec is an embedding vector that ex-
presses the features of each node. We store it as the input to
the graph neural network.

Next, we train the GAT model. Considering the difficulties
brought by overly complex models, we prefer to implement
our model with a simple network structure. We use contrastive
learning in unsupervised learning to train the GAT model.
During training, GAT minimizes the distance to the nearest
node of the same type found in the KG, while maximizing
the distance to randomly sampled nodes in the KG that are
not connected and not of the same type. The loss function for
optimizing the embedding model is:

L = −
∑

(i,j)∈KG

log σ(hi,hj)−
∑

(i,j)/∈KG

log(1− σ(hi,hj))],

(3)
where KG is the set of edges in the graph. hi and hj

are the embedding vectors of nodes i and j, respectively.
σ(·) represents the cosine similarity function, which maps the
cosine similarity to the range [0, 1] for easier computation.

Additionally, we also optimize the attention pooling model.
This is a single-layer Fully Connected layer (FC) that obtains

the vector representation of the entire graph by performing
a weighted sum of the node embedding vectors. We use the
same loss function as in Equation (2) and optimize it together
with the GAT model during training.

In summary, the result of GAT is an n×m embedding matrix
that maps n nodes into an m-dimensional embedding space. In
our example, m is 128. Afterward, through the pooling model,
we can obtain the graph embedding of the entire thread event.

3) Behavior Semantic Aggregation: After summarizing the
behavior instances, we proceed to extract the semantics of the
behavior instances. Recall that each behavior instance consists
of audit events, whose semantics have been represented using
high-dimensional vectors in an embedding matrix. We then
naturally derive the semantics of the behavior instances by
combining the partitions of the behavior instances. Addition-
ally, natural language summaries of the behavior instances are
generated to provide textual information for the semantics.
To obtain the semantic representation of the final combined
behavior instances, a simple approach is to aggregate the
text summaries of the constituent events with the embedding
vectors. However, this method is not suitable when the text
summaries are too long, as it would cause the summaries and
vectors to have a biased influence on the final judgment of the
large language model, whereas they should actually contribute
equally. Therefore, to further simplify the behavior summaries,
we integrate the noise events in the behavior.

Noise events. It is also known as trivial events, are file
operations that are periodically executed by an operation.
Examples of such events include those used for file edit
history caching (vim, write, .viminfo) and for shell program
settings (bash, read, /etc/profile). We classify trivial events
as noise events because they are related to system routines
rather than specific behaviors. Typically, trivial events have
two characteristics: (a) they always occur for a given action,
and (b) their occurrence order is fixed. To identify and filter
them, we first enumerate all possible operations that a program
can perform. We find that the vast majority of trivial events
mainly involve reading and writing specific files, which are
meaningless in themselves. Therefore, we add Read-List and
Write-List nodes at the beginning of each behavior graph,
then extract the trivial events from the graph and uniformly
add them to the labels of these two nodes. We note that
NODEMERGE [13] first proposed identifying common events
(i.e., data access patterns) to reduce data. However, it focuses
on file read operations during process initialization (e.g.,
loading libraries and retrieving configurations). In contrast,
SmartGuard targets all types of file operations in more general
operations.

After denoising the behavior instances, the same noise be-
haviors will no longer appear in the event behavior summaries,
significantly shortening the length of the text summaries
without affecting the expression of key information. In the
embeddings of the behaviors, although there are Read-List
and Write-List nodes that can express certain trivial event
semantics, they do not affect the importance of the overall
behavior embeddings.

Next, we aggregate the behavior text summaries with the

PREPRINT 8

Instruction: The following description shows the log infor-
mation of the event. It contains a summary of the log text
and behavior Embeddings. Please focus on the Embeddings
to determine whether this event is a malicious event. If it
is, please provide the classification of the malicious event.
Input: The following is a summary of the log: [Behav-
ior Text Summary], where the key nodes are [Key Node],
followed by the embedding of the behavior graph [Graph
Embedding].
Output: No. / Yes, the category is [Attack Type].

Fig. 5: The prompt to predict incident category.

embedding vectors. We construct the following sentence pat-
tern: ‘The following is a summary of the log: [behavior text
summary], where the key point is [Key Node], followed by the
embedding of the behavior graph <Graph Embedding>.’ By
simply aggregating and adding prompt language, we finally
generate a log behavior description that the large language
model can understand. Figure 5 shows the input format of the
large language model during behavior inference.

In summary, the behavior abstraction phase uses a log-
based knowledge graph as input to generate corresponding text
summaries and graph embedding vectors, which are ultimately
aggregated into descriptive information that the large language
model can reason with.

D. LLM for Incident Inference

Recently, LLMs have demonstrated exceptional capabili-
ties in understanding the context of downstream tasks and
generating relevant information from demonstrations, making
them a potential choice for event reasoning. However, inferring
the root cause of events is not a simple task, and LLMs
may struggle with long-tail or domain-specific tasks without
any guidance [45], [46]. Chain of Thought (CoT) prompting
is a gradient-free technique that guides LLMs to generate
intermediate reasoning steps leading to the final answer. In
few-shot CoT prompting, some manual demonstrations consist
of questions and chains of reasoning, with the reasoning chain
providing answers for each question. Inspired by the above
idea, SmartGuard processes behavior abstraction information
to be used as components in the event reasoning process.

In CoT prompts, multiple demonstrations include a ques-
tion and a reasoning chain with a guiding answer. Drawing
inspiration from the automatic prompt construction for rea-
soning chains [47], we can treat the summarized diagnostic
information and labeled root cause categories as questions
and reasoning. Therefore, finding the sensitive node links in
behavior is an automatic reasoning chain construction, which
fits well with the CoT prompt context. Note that we use graph
embeddings and text summaries of event behavior to perform
the reasoning process, and use the corresponding summarized
information as part of the demonstration in the prompt. We
construct the prompt as shown in Figure 5, asking the LLM to
judge the malignancy and sensitive links of the current event,
and we explicitly push the LLM to reason by using the ‘give
your explanation’ instruction in the prompt.

In summary, the reasoning stage of large language models
diagnoses abstract behavioral information and provides expla-
nations through the CoT (Chain of Thought) concept.

IV. EVALUATION

In this section, we use the DARPA TC EN5 dataset and
experimentally evaluate four aspects of SmartGuard: 1) imple-
mentation; 2) the interpretability of event semantic inference;
3) the accuracy and scalability of behavior inference; 4) the
interpretability of LLMs and solutions for hallucinations

A. Implementation

SmartGuard is implemented in Python 3.8 with around 2.5K
lines of code (LoC). In this section, we discuss important
technical details in the implementation.
Audit Log Input Interface. SmartGuard takes system audit
data as input. We defined a general interface for audit logs
and built input drivers to support different log formats, such
as the Linux Audit [32] format (cdm20 and DARPA dataset).
Knowledge Graph Construction. To construct a log-based
Knowledge Graph (KG), SmartGuard first sorts audit events
in chronological order. Then, it divides the records of different
threads according to the thread ID. It then converts each
event into a triplet using system entities as the Head and
Tail, and system call functions as the Relation. To facilitate
the comparison of different nodes, we classify each type of
element, such as file path and function in system entities, and
execute, link, check attribute in system calls. Therefore, in
the graph neural network, different weights can be assigned
according to the categories of nodes and edges. After parsing
the audit events into triplets, the NEO4J [48] tool is used to
store and construct the KG.
Embedding Generation. We first use the word2vec model
and the Gensim library [44] to generate node embeddings for
training the graph. The length of the initial node embedding
vectors is limited to 100 to reduce the model size. A two-layer
GAT model is used to aggregate graph information. The input
and output dimensions of the node vectors in the model are 100
and 128, respectively. We optimize the model parameters using
the Adam optimizer. We train the model for 20 epochs with a
batch size of 64. The learning rate changes exponentially with
a rate of 0.98, starting at 0.01.
Computational Hardware. We use Pytorch [49] as the
backend. All experiments are performed on an Ubuntu 20.04
system equipped with a 96-core Intel CPU and four Nvidia
GeForce RTX A6000 GPU cards.
Dataset. The DARPA TC dataset [24] is a publicly available
APT attack dataset released under the DARPA Transparent
Computing (TC) program [50]. The dataset originates from
the host network during a two-week red team vs. blue team
engagement 3 in April 2018. During the engagement, enter-
prises simulated various security-critical services such as web
servers, SSH servers, email servers, and SMB servers [22].
The red team conducted a series of nation-state and common
attacks on target hosts while performing benign activities
such as SSH logins, web browsing, and email checking.

PREPRINT 9

TABLE II: Overview of attack cases in DARPA TC dataset with scenario descriptions

Attack Case Scenario Description V|G| E|G|
APK Java The Java APT automatically connects to the target network and runs privilege escalation software

to gain root access and steal files.
25 36

Barephone Micro An APT that runs on a mobile phone typically connects to the target network by loading
libmicroapt.so.

10 16

CADETS Nginx Nginx vulnerability was exploited to attack CADETS FreeBSD. The attacker downloaded a file,
elevated it to a new process running as root, and attempted to inject it into the sshd process.

17 28

Firefox Drakon The attacker exploits a Firefox vulnerability to attack CADETS through malformed HTTP requests,
downloads the libdrakon implant file *.so, and injects it into the sshd process, causing
CADETS to crash.

26 31

Metasploit APK The attacker uses Metasploit as malware to send a malicious executable file to the target host and
attack ClearScope.

35 56

Micro BinFmt-Elevate The attacker uses the ta1-pivot-2 tool to achieve BinFmt elevation and gain access to the
root directory.

14 34

AppStarter APK Typically disguised as a legitimate AppStarter APK file, it can use benign activities to install
privilege escalation programs.

12 19

Webshell The shell connection is made to the operator console via HTTP. The attacker executed the apt
implant without root privileges.

31 49

Firefox DNS FileFilter The attack triggered a Firefox backdoor to connect to the target network via DNS. By searching
for processes that open specific non-existent files, the attacker elevated privileges.

23 29

The DARPA TRACE dataset consists of 726,072,596 audit
events, forming 211 graphs. Overall, we use nine of these
attack scenarios to evaluate the interpretability and accuracy of
SmartGuard. We introduce the scenarios and attributes in Table
II. The first column represents the name of the attack scenario,
the second column provides a brief description of the scenario,
and the third and fourth columns represent the average number
of edges and nodes in the corresponding behavior graph.

For each attack scenario, we construct corresponding
subgraphs, including benign and malicious source graphs.
Each type of traceability graph (including benign traceability
graphs) has a sample size of 4000, with 90% used as the
training set.

B. Explicability of Event Semantic Inference

We measure the semantics learned by SmartGuard for audit
events in both visual and quantitative ways: Visually, we
use t-SNE to embed sampled behavior vectors into a 2D
plane, giving us an intuitive understanding of the embedding
distribution, and we construct five example behaviors to specif-
ically demonstrate the similarity between individual behaviors;
Quantitatively, for real audit events, we use normal behavior
abstraction (log text summary + embedding vector) and be-
havior abstraction using only text summary, respectively, to
fine-tune the model and compare the detection results.

Embeddings Visualization. The spatial distances between
graph vectors encode their semantic similarity. To visualize the
distances, we applied t-SNE to project the high-dimensional
embedding space into a two-dimensional (2D) space, while
largely preserving the structural information between vectors.
We randomly sampled behaviors from nine scenarios for
visualization, resulting in a scatter plot of 300 points. Figure 6
(a) shows the 2D visualization of the embedding space. Most
of the points in the space are distributed in clusters, indicating
that the events are indeed grouped according to some similarity
measure.

To more specifically demonstrate the similarity of behavior
semantics, we constructed five behavior instances as shown in

40 20 0 20 40

40

20

0

20

40

(a) (b)

/database

/shared_prefs

getReadable-
Database()

calllog.db
removeDeleted-

Contacts()

libc.so

/dev

/system

/privapp
Dialer.apk

dialer.db

calendar.db

setThread-
Priority()

doQuery()

query()（a）

（e）

（d）

（c）

（b）

(c)

Fig. 6: Visualization of Behavior Abstraction’s Embeddings.

Figure 6 (c), each consisting of four nodes. Among them, a and
b represent stealing and clearing information from calllog.db
from different addresses, respectively. The behaviors of these
two instances are highly similar and can be judged as the
same type of behavior. Instances c and d represent query
operations on different database files at different addresses
(libc.so is a common C language library, usually appearing
at the beginning and can be removed as a noise event). These
two instances have a certain degree of similarity. Instance e
represents starting an APK file and setting its priority to the
highest. The behavior of instance e has a low similarity to the
aforementioned behaviors.

We constructed a scatter plot of the graph vectors for the
above five behavior instances as shown in Figure 6 (b). From
the plot, it can be seen that the visualization distances of
similar behaviors are closer. This also proves that the behavior
semantic abstraction of SmartGuard is effective.

Impact of Embeddings on Behavior Recognition. In ad-
dition to visualization, we also conducted experiments to
determine whether the graph embedding vectors affect the
behavior abstraction detection results. Specifically, we fine-

PREPRINT 10

TABLE III: Results of the impact of embedding on the accuracy of behavior abstraction. The bold part indicates the best
detection metric F1-score for each category.

Category
SmartGuard w/o embedding(%) SmartGuard(%)
Precision Recall F1-score Precision Recall F1-score

Barephone 85.2 86.9 86.1 95.9 94.5 95.2
CADETS Nginx 89.1 87.2 88.2 100 100 100

Metasploit 81.5 83.2 82.4 87.6 94.9 91.1

tuned a large language model in three attack scenarios using
normal behavior abstractions and behavior abstractions with
only log text summary content. During the inference phase,
we used the corresponding behavior abstractions and the large
language model for inference, and the results are shown
in Table III below. We used the OPT-1.3b model for the
experiments.

Table III provides a summary of the experimental results.
Compared to detecting only log text summaries, the average
F1-score for detecting normal behavior abstractions is 10%
higher. Although text summaries can express some behav-
ioral characteristics of logs, the length and complexity of
the summaries limit the large language model’s contextual
understanding. Therefore, using only text summaries does not
yield good inference results. In contrast, graph embedding
vectors can express the overall characteristics of behavior
with a fixed input length, complementing text summaries and
compensating for the inability to express contextual features,
thus performing better in behavior diagnosis.

In summary, the behavior abstractions learned by Smart-
Guard can express the contextual characteristics of events,
which is crucial for information diagnosis.

C. Accuracy and Scalability of SmartGuard

To evaluate the accuracy of SmartGuard in behavior de-
tection, we use two fine-tuned large language models, Face-
book OPT-1.3b, and Open LLaMa2-3b, to predict sessions
with similar malicious behavior in the DARPA dataset. For
this purpose, we selected the aforementioned 9 behaviors as
candidates for behavior abstraction. For each behavior, Table
IV details the evaluation results of SmartGuard in detecting
behavior abstraction in sessions. Performance metrics are
measured using precision, recall, and F1 score. Intuitively,
they provide measures of true positive rate, false positive rate,
and overall accuracy, respectively. We define true positives as
sessions where malicious behavior is correctly predicted and
false positives as sessions where normal behavior is incorrectly
predicted.

Table IV provides a summary of the experimental re-
sults. SmartGuard shows promising results in behavioral ab-
straction detection (with an average F1 score of 95.9%,
and it comprehensively surpasses the baseline[51]). Even
for complex behaviors, SmartGuard achieved an F1 score
of 91.6%. This is because by utilizing the contextual in-
formation of audit events, SmartGuard can accurately in-
fer the semantics of behavior instances. For example,
even if the attacker changes the name of calllog.db,
and repeatedly calls the getReadableDatabase and

removeDeletedContacts functions, SmartGuard infers
that they share similar semantics with malicious operations on
calllog.db through these contextual relationships. There-
fore, SmartGuard improves the similarity of malicious behav-
iors, even though at first glance they appear to be accessing
different files.

Another interesting observation is that in most cases (14/18
in Table IV), the precision rate is higher than or equal to
the recall rate. The relatively low recall rate indicates that
even after noise removal, the semantics of behavior instances
may still be affected by noise events. In other words, high
precision indicates that the impact of such noise is limited.
Two exceptions occur in Metasploit and Webshell. This is
mainly because the former created multiple variations of APKs
with Metasploit built into them during use, while the latter
has more link and scan operations compared to other attack
scenarios. This results in more noise events in their behaviors,
affecting behavior recognition. However, overall, SmartGuard
still achieves a low false positive rate in behavior abstraction
detection.

We also observed that SmartGuard shows good scalability
on two different models. The average F1 scores of the two
models are 95.6% and 96.3%, respectively, both demonstrating
a high level of behavior recognition. This can be attributed to
two reasons: the accurate semantics of behavior abstraction
and the understanding and reasoning capabilities of large
language models. The necessity of behavior abstraction se-
mantics is detailed in the chapter. The reasoning ability of
large language models is influenced by their parameter size
and expressive power, which makes a significant difference.
We also conducted experiments on RoBERTa-Large (with
approximately 350M parameters), and the average F1 score
was only 82.9%, much lower than the results of the first two
models. We believe the main reason is that the parameters
and expressive power of the RoBERTa model are limited and
insufficient to understand our behavior abstraction semantics.
Therefore, SmartGuard should be deployed on large language
models with a larger number of parameters (Billion-level).
In summary, SmartGuard has shown scalability on different
language models.

We observed that SmartGuard exhibits high accuracy in
classifying malicious behaviors. For all nine attack scenarios,
the average Precision and Recall of SmartGuard can reach
96.7% and 95.3%, respectively. In other words, 3 out of 90
malicious sessions are missed. SmartGuard can identify mali-
cious behaviors and distinguish them from benign behaviors.

To test the scalability of SmartGuard on the dataset, we
retrained the model. We used CADETS Nginx and Micro
BinFmt-Elevate from the original dataset as the test set,

PREPRINT 11

TABLE IV: Evaluation results of detecting behavior abstraction in sessions. The bold part indicates the best detection metric
F1-score for each category.

Category
Extractor[51](%) SmartGuard w/ OPT-1.3b(%) SmartGuard w/ LLaMa2-3b(%)

P R F1 P R F1 P R F1
JAVA APK 91.0 97.0 93.9 94.7 93.9 94.3 95.6 94.5 95.0
Barephone 88.0 100 93.6 95.9 94.5 95.2 97.2 96.8 97.0

CADETS Nginx 100 84.0 91.3 100 100 100 100 98.9 99.4
Firefox Drakon 100 90.0 94.7 100 95.6 97.8 100 95.2 97.5

Metasploit 91.0 91.0 91.0 87.6 94.9 91.1 90.2 94.6 92.3
Micro BinFmt 88.0 100 93.6 100 92.3 96.0 100 88.2 93.7

AppStarter 100 88.0 93.6 97.8 96.1 96.9 94.2 97.4 96.8
Webshell 89.0 89.0 89.0 92.4 93.3 92.8 95.4 98.2 97.1

Firefox DNS - - - 100 98.6 99.3 100 91.3 95.4

TABLE V: Results of the scalability of SmartGuard on
unknown attacks.The results only indicate the accuracy of
determining whether it is an ‘Attack Behavior’. The bold
part indicates the best detection metric F1-score for each
category.

Category
OPT-1.3b(%) LLaMa2-3b(%)

P R F1 P R F1
CADETS Nginx 91.2 85.1 88.1 92.4 87.3 89.8

Metasploit 87.6 88.4 88.0 88.1 89.6 88.8
Webshell 87.9 86.2 87.1 87.1 87.7 87.4

and the remaining seven attack types as the training set. This
was to evaluate whether SmartGuard could classify unseen
malicious behaviors as attacks by learning the relationships be-
tween behaviors. The specific experimental results are shown
in Table V. On the scalability of the dataset, SmartGuard
showed promising results. The average F1-scores of the two
types reached 89.4%, which is close to the recognition ac-
curacy of the baseline on the full dataset. This indicates
that SmartGuard can learn the semantic relationships between
different behaviors, demonstrating good scalability on different
datasets.

Additionally, to test the scalability of SmartGuard in de-
tecting unknown attacks, we retrained the model. We used
CADETS Nginx, Metasploit, and Webshell from the
original dataset as the test set, while the remaining six attack
types were used as the training set. This is because, according
to the baseline, these three datasets performed the worst,
suggesting they are more complex attack types and thus better
suited for detection testing. The specific experimental results
are shown in Table V. SmartGuard showed promising results.
The average F1 scores for the three types reached 89%, which
is close to the recognition accuracy of the baseline on the full
dataset. This indicates that SmartGuard can learn the semantic
relationships between different behaviors and achieve good
recognition accuracy for unknown attacks that are not present
in the training set.

Additionally, thanks to the fine-tuning capability of LLMs,
SmartGuard can accurately recognize unknown attacks by fine-
tuning the model based on traceability graphs provided by
experts. Using the aforementioned model, we fine-tuned it with
traceability graphs for three types of attacks (different from the

TABLE VI: Results of SmartGuard’s detection after fine-
tuning for unknown attacks using expert-provided traceability
graphs. The model was fine-tuned with expert traceability
graphs different from the original data, and the detection
metric is the attack type. The bold part indicates the best
detection metric F1-score for each category.

Category
OPT-1.3b(%) LLaMa2-3b(%)

P R F1 P R F1
CADETS Nginx 98.4 97.5 97.9 98.9 97.4 98.1

Metasploit 87.9 93.6 90.7 90.2 93.7 91.9
Webshell 92.9 92.9 92.9 95.5 97.1 96.3

original data) provided by experts and used the original data
for detection (detecting the specific attack type). The results
in Table VI demonstrate SmartGuard’s flexible fine-tuning
ability, achieving an average F1 score of 94.3%, surpassing the
baseline and being within 2-3% of the model trained on the
full dataset. In real-world scenarios, SmartGuard can flexibly
incorporate new attack types and achieve efficient detection.

In summary, SmartGuard can identify malicious behaviors
and distinguish them from benign ones. It can also learn the
semantic relationships between different behaviors, achieving
good recognition accuracy for unknown attacks not present in
the training set. Analysts can further enhance SmartGuard’s
ability to recognize specific behaviors by fine-tuning with in-
structions and expert-provided traceability graphs for unknown
malicious behaviors. This offers a new approach to solving
real-world problems.

D. Interpretability of LLMs and Solutions for Hallucinations

LLMs have demonstrated exceptional ability in understand-
ing the context of downstream tasks and generating relevant
information from demonstrations. Therefore, we use the CoT
(Chain of Thought) approach to enable large language models
to interpret audit events. We designed a hierarchical instruction
structure to help the large language model better understand
the behavior summary, make accurate judgments, and provide
explanatory narratives of specific steps. Specifically, we let
the large language model judge and summarize the sensitive
nodes, sensitive links, and overall characteristics of the behav-
ior. This is because such CoT instructions provide the large
language model with sufficient contextual logic, enabling it

PREPRINT 12

TABLE VII: Results of mitigating hallucinations of Smart-
Guard. The bold part indicates the best detection metric F1-
score for each category.

Category
Single-turn(%) Multi-turn(%)

P R F1 P R F1
JAVA APK 94.7 93.9 94.3 97.6 93.9 95.7
Metasploit 87.6 94.9 91.1 93.2 95.8 94.4

Firefox Drakon 100 95.6 97.8 100 96.1 98.0
Webshell 92.4 93.3 92.8 94.8 94.2 94.5

to answer most of the behavior detail questions needed by
analysts and make accurate judgments. Finally, we let the large
language model determine the attack category and provide
more explanations for this attack type.

We take the behavior graph in Figure 1 as an example to
illustrate the CoT process shown in Figure 7. As can be seen
from the figure, the large language model can make accurate
and interpretable narratives of the behavior summary, thereby
further reducing the workload of analysts.

Furthermore, CoT can mitigate the issue of hallucinations
in large models to some extent. We tested single-turn response
(the original mode of SmartGuard, which directly judges the
attack type) and multi-turn response (following the mode
in Figure 7, first judging sensitive nodes and links, then
determining if it is an attack behavior, and finally identifying
the specific attack type) on the OPT-1.3b model during the
behavior detection phase. Table VII shows the experimental
results. The results indicate that the CoT-based multi-turn
response can effectively improve the accuracy of SmartGuard
and reduce false positives caused by hallucinations. We ob-
served a significant increase in the precision metric compared
to single-turn response, mainly due to the reduction in false
positive samples, i.e., fewer samples were mistakenly classified
as attack behaviors.

In summary, our results show that SmartGuard can provide
a certain level of explainability and mitigate the misjudgments
caused by hallucinations to some extent.

V. DISCUSSION

In this section, we will introduce some design choices,
implications, and possible extensions of this work.
RQ1: Why is it better to evaluate using 9 scenarios from
the DARPA dataset?

The DARPA dataset is a widely recognized test benchmark,
and its data quality and authenticity have been verified by
the industry. In addition, the DARPA dataset covers multiple
attack scenarios and can comprehensively evaluate the perfor-
mance of the model under different types of attack behaviors.
The scenarios in this data set are complex and challenging,
which helps to verify the stability and accuracy of the model
in dealing with complex and diverse attack behaviors. The 9
scenarios we use are scenarios in which manual traceability
maps are given in the ground truth of the dataset. They are
more accurate and are also a commonly used choice in the
industry.
RQ2: How is this methodology different from previous
methods?

Instruction: The following description shows the log infor-
mation of the event. It contains a summary of the log text
and behavior Embeddings. Please determine whether there
are any sensitive nodes in this event. If so, please specify
them.
LLM Output: libmicroapt.so,barephoneinstr.apk,mmssms.db,
removeDeletedContacts(),insertUpdateContacts().

Instruction: The following description contains a summary
of the log text and behavior Embeddings. Please indicate
the sensitive behavior path based on the sensitive nodes.
The answer template is ‘From...to...’.
LLM Output: From libmicroapt.so to insertUpdateCon-
tacts().

Instruction: The following description contains a summary
of the log text and behavior Embeddings. Please indicate
the overall characteristics of the sensitive behavior.
LLM Output: Load libmicroapt, install barephoneapk, and
perform multiple deletions and updates on the mmssms.db
database.

Instruction: The following description contains a summary
of the log text and behavior Embeddings. Please focus
on the Embeddings to determine whether this event is a
malicious event. If it is, please provide the classification
of the malicious event.
LLM Output: Yes, the category is Barephone Micro.

Instruction: The following description contains a summary
of the log text and behavior Embeddings. Please provide
more explanations about this attack behavior.
LLM Output: Barephone Micro Attack generally loads
Micro APT by installing an apk, and the target of the attack
is usually to steal database information.

Fig. 7: Interpretive narrative of the behavior summary by the
large language model.

In addition to the use of LLM, compared with previous
process-level behavior extraction solutions, SmartGuard re-
duces the granularity of extraction to the thread level and adds
function-level behavioral semantic records, not just system
scheduling. In the traditional audit log analysis process, triples
(Subject, Relation, Object) are recorded at the process level.
This method can effectively and concisely extract a high-
level behavior, but it will ignore the more detailed parts
behind the behavior and improve the difficulty of detection.
Then we added LLM for pattern recognition, and aggregated
text summaries and graph embedding vectors into description
information so that LLM can perform reasoning and large
language models can more smoothly understand behavior
summaries and make accurate judgments while also being
able to give explanatory narratives of specific steps in a be-
havior. Additionally, SmartGuard has advantages in detecting
unknown attacks and supports timely system updates.

RQ3: How is the robustness of Behavior Abstraction?

PREPRINT 13

To evade behavior abstraction, attackers may attempt to
confuse behavior by deliberately introducing irrelevant events.
However, the impact of such events on behavior semantics is
limited. In Sections III-C2 and III-C3, we introduce two strate-
gies (thread-based behavior partitioning and noise events) to
enhance SmartGuard’s robustness to abstract behavior. Specif-
ically, while SmartGuard aggregates the contextual semantics
of behavior, irrelevant events will be assigned low-importance
weights or not be partitioned into specific behaviors, and may
even be deleted as noise events. Another potential method to
counteract behavior obfuscation is to incorporate additional
auxiliary information (e.g., semantically rich parameters of
audit events) into SmartGuard’s KG. We believe this can
empower SmartGuard with more capabilities to filter out
uninteresting events for security analysis.

RQ4: Why is the graph embedding space and updating?
Most learning methods using embedding techniques are

common [52], and due to semantic changes and the inclusion
of previously unseen data (e.g., data format changes), Smart-
Guard needs to periodically retrain the embedding space. Ad-
ditionally, compared to natural language embedding models,
graph embedding models have a natural advantage in focusing
attention on key nodes and restoring the entire event scenario.
That is, the graph embedding method we chose can fully
express behavior semantics for pattern recognition.

VI. RELATED WORKS

Causal Analysis. Causal analysis is an orthogonal but im-
portant issue related to behavior abstraction, using causal
reasoning to analyze log events. King and Chen [5] first
introduced the construction of dependency graphs on system
audit logs to trace a given security event and find its root
cause. Jin et al. [53] improved causal tracking by capturing
forward and cross-host dependencies. To mitigate the de-
pendency explosion problem and high storage overhead in
causal analysis, a large amount of research work has been
further conducted. Recent work has proposed fine-grained unit
partitioning [54], [55], [56], model-based reasoning [57], [53],
record and replay [58], [59], and general provenance [60]
techniques to achieve more precise causal tracking. Another
line of research is dedicated to reducing the overall log volume
used for analysis through graph compression [8], [9], [10],
[13] and data reduction [7], [61], [62]. Although the scope
of SmartGuard differs from these solutions, its effectiveness
relies on accurate causal analysis when correlating data to
summarize behavior.

Behavior Abstraction. It has been proven that abstracting
behavior into graphs or causal dependencies is very effec-
tive for understanding operating system-level activities and
detecting potential threats and risks. TGMiner [20] mines
discriminative graph patterns from behaviors of interest and
uses them as templates to identify similar behaviors. Based
on cyber threat intelligence reports, POIROT [19] extracts
query graphs of APT behaviors and proposes an alignment
algorithm to search for their presence in source graphs.
SLEUTH [17] and MORSE [18] propose labeling strategies
to model information leakage behaviors. HOLMES [22] and

RapSheet [21] view multi-stage attacks as causal event chains
conforming to TTP specifications. Compared to previous work,
SmartGuard abstracts behavior as the result of context-based
embeddings (graph embedding vectors) and log text summary
integration. Our research results show that this quantitative
representation of behavior can preserve behavior semantics
and enable advanced behavior analysis.
Embedded Space and Large Language Model Analysis.
There is a large body of literature on applying embedding
techniques to other log analysis tasks. Such tasks include
anomaly-based IDS [63], [64], [65], malware identification
[66], [67], and understanding the evolution of cyber attacks
[39]. Many previous works use machine learning models
(e.g., neural networks, word embeddings, and n-grams) to
embed logs into vectors. For example, DeepLog [37] is a
neural network-based approach that uses Long Short-Term
Memory (LSTM) to learn execution patterns in normal log
entry streams. PROVDETECTOR [66] applies the neural
word embedding model doc2vec to quantify the behavior of
processes running on a system. Similarly, ATTACK2VEC [39]
uses temporal word embedding models to quantify the context
of cyber attack steps over time. Extractor[51] automatically
constructs provenance graphs based on the semantic and
syntactic characteristics of log languages. UNICORN [68] pro-
poses a graph sketching algorithm to summarize long-running
system executions. WATSON [43] uses the translation-based
embedding TransE to reveal contextual semantics. SmartGuard
uses a combination of text summaries and graph vectors as the
context for audit events. Essentially, we use a combination of
graphs and text to represent semantic information, which is an
innovative point compared to the above methods. Additionally,
RCACopilot [69] uses GPT-4 to summarize log information
and cluster it, based on the premise that GPT-4 itself has
a large corpus of log data. In contrast, SmartGuard can be
deployed on smaller models without a log corpus, making it
more convenient for analysts to flexibly operate and analyze
different corpus logs with lower training costs.

VII. CONCLUSION

Abstracting high-level behaviors from low-level audit logs
is a critical task in security response. It helps bridge the
semantic gap between audit events and system behaviors,
thereby reducing the manual effort in log analysis. In this
paper, we propose an automated method, SmartGuard, to
extract behaviors from audit events and analyze them us-
ing large language models. Specifically, SmartGuard utilizes
context information from log-based knowledge graphs for
semantic inference. To differentiate representative behaviors,
SmartGuard provides a representation method that combines
behavior semantics graph vectors with text summaries. It uses
this to perform reasoning with a large language model and pro-
vides interpretive narratives. We evaluated SmartGuard against
adversarial engagement behaviors organized by DARPA. The
experimental results show that SmartGuard can accurately
abstract benign and malicious behaviors, demonstrating good
scalability for unknown attacks. Additionally, the provided
interpretive narratives and timely system updates effectively
address real-world scenarios.

PREPRINT 14

ACKNOWLEDGMENTS

This research is supported by data security and privacy
protection research phase III (Zhejiang University-Ant Group
Fintech Centre).

REFERENCES

[1] C. One, “Information on the capital one cyber incident,” 2019. [Online].
Available: https://www.capitalone.com/facts2019

[2] T. Guardian, “Twitter hack,” 2020. [On-
line]. Available: https://www.theguardian.com/technology/2020/jul/15/
twitter-elon-musk-joe-biden-hacked-bitcoin

[3] LogRhythm, “Endpoint monitoring and forensics,” 2024. [Online].
Available: https://logrhythm.com/products/endpoint-monitoring

[4] S. T. King and P. M. Chen, “Backtracking intrusions,” in ACM Sympo-
sium on Operating Systems Principles, 2003, pp. 223–236.

[5] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality,” in Network and Distributed
System Security Symposium, 2005.

[6] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R. Kulka-
rni, and P. Mittal, “Saql: A stream-based query system for real-time
abnormal system behavior detection,” in USENIX Security Symposium,
2018.

[7] K. H. Lee, X. Zhang, and D. Xu, “Loggc: Garbage collecting audit log,”
in ACM Conference on Computer and Communications Security, 2013.

[8] C. Chen, H. T. Lehri, L. K. Loh, A. Alur, L. Jia, B. T. Loo, and
W. Zhou, “Distributed provenance compression,” in ACM International
Conference on Management of Data, 2017, pp. 203–218.

[9] W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “Towards
scalable cluster auditing through grammatical inference over provenance
graphs,” in Network and Distributed System Security Symposium, 2018.

[10] M. N. Hossain, J. Wang, O. Weisse, R. Sekar, D. Genkin, B. He, S. D.
Stoller, G. Fang, F. Piessens, E. Downing et al., “Dependence-preserving
data compaction for scalable forensic analysis,” in USENIX Security
Symposium, 2018.

[11] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, “Kernel-supported cost-effective
audit logging for causality tracking,” in USENIX Annual Technical
Conference, 2018.

[12] N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Hassan, and A. Bates,
“On the forensic validity of approximated audit logs,” in ACM Annual
Computer Security Applications Conference, 2020.

[13] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,
F. Xu, and Q. Li, “Nodemerge: Template based efficient data reduction
for big-data causality analysis,” in ACM Conference on Computer and
Communications Security, 2018.

[14] J. Gui, D. Li, Z. Chen, J. Rhee, X. Xiao, M. Zhang, K. Jee, Z. Li, and
H. Chen, “Aptrace: A responsive system for agile enterprise level causal-
ity analysis,” in IEEE International Conference on Data Engineering,
2020.

[15] O. Setayeshfar, C. Adkins, M. Jones, K. H. Lee, and P. Doshi, “Graalf:
Supporting graphical analysis of audit logs for forensics,” 2019, arXiv
preprint arXiv:1909.00902.

[16] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security,” in Network
and Distributed System Security Symposium, 2018.

[17] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. N. Venkatakrishnan, “Sleuth: Real-time
attack scenario reconstruction from cots audit data,” in USENIX Security
Symposium, 2017.

[18] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence ex-
plosion in forensic analysis using alternative tag propagation semantics,”
in IEEE Security and Privacy, 2020.

[19] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. N. Venkatakrishnan,
“Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in ACM Conference on Computer and Communications
Security, 2019.

[20] B. Zong, X. Xiao, Z. Li, Z. Wu, Z. Qian, X. Yan, A. K. Singh,
and G. Jiang, “Behavior query discovery in system-generated temporal
graphs,” in Proceedings of the VLDB Endowment, vol. 8, no. 13. VLDB
Endowment, 2015, pp. 1534–1545.

[21] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in IEEE Security and
Privacy, 2020.

[22] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in IEEE Security and Privacy, 2019.

[23] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[24] DARPA, “Transparent computing engagement 5 data release,”
https://github.com/darpa-i2o/Transparent-Computing/blob/master/
README-E5.md, 2024.

[25] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” in Advances in Neural Information Processing
Systems, vol. 33, 2020, pp. 1877–1901.

[26] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[27] X. Lian, Y. Chen, R. Cheng, J. Huang, P. Thakkar, and T. Xu,
“Configuration validation with large language models,” arXiv preprint
arXiv:2310.09690, 2023.

[28] A. Gehani and D. Tariq, “Spade: support for provenance auditing
in distributed environments,” in International Middleware Conference.
Springer-Verlag New York, Inc., 2012, pp. 101–120.

[29] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in Network and Distributed System Security Symposium, 2019.

[30] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security,” in Network
and Distributed System Security Symposium, 2018.

[31] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detec-
tion systems,” in ACM Conference on Computer and Communications
Security. ACM, 2002, pp. 255–264.

[32] Linux Audit, “Linux kernel audit subsystem,” https://github.com/
linux-audit/audit-kernel, 2024.

[33] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. ACM,
2019, pp. 950–958.

[34] X. Wang, X. He, F. Feng, L. Nie, and T.-S. Chua, “Tem: Tree-enhanced
embedding model for explainable recommendation,” in World Wide Web
Conference. ACM, 2018, pp. 123–132.

[35] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger, “Linked data
quality of dbpedia, freebase, opencyc, wikidata, and yago,” Semantic
Web, vol. 9, no. 1, pp. 77–129, 2018.

[36] E. Miller, “An introduction to the resource description framework,” Bul-
letin of the American Society for Information Science and Technology,
vol. 25, no. 1, pp. 15–19, 1998.

[37] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 1285–1298.

[38] Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias:
Predicting security events through deep learning,” in ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 592–605.

[39] Y. Shen and G. Stringhini, “Attack2vec: Leveraging temporal word
embeddings to understand the evolution of cyberattacks,” in USENIX
Security Symposium, 2019.

[40] G. Angeli, M. J. J. Premkumar, and C. D. Manning, “Leveraging
linguistic structure for open domain information extraction,” in Annual
Meeting of the Association for Computational Linguistics and Interna-
tional Joint Conference on Natural Language Processing. Association
for Computational Linguistics, 2015, pp. 344–354.

[41] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, 2014, pp. 3104–3112.

[42] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in USENIX Security Symposium,
2017.

[43] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics,” in Network and Distributed System Security Symposium,
2021.

[44] R. Řehůřek and P. Sojka, “Software framework for topic modelling with
large corpora,” in Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer, 2010.

https://www.capitalone.com/facts2019
https://www.theguardian.com/technology/2020/jul/15/twitter-elon-musk-joe-biden-hacked-bitcoin
https://www.theguardian.com/technology/2020/jul/15/twitter-elon-musk-joe-biden-hacked-bitcoin
https://logrhythm.com/products/endpoint-monitoring
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E5.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E5.md
https://github.com/linux-audit/audit-kernel
https://github.com/linux-audit/audit-kernel

PREPRINT 15

[45] I. Chalkidis, “Chatgpt may pass the bar exam soon, but has a long way to
go for the lexglue benchmark,” arXiv preprint arXiv:2304.12202, 2023.

[46] J. Kasai, Y. Kasai, K. Sakaguchi, Y. Yamada, and D. Radev, “Evaluating
gpt-4 and chatgpt on japanese medical licensing examinations,” arXiv
preprint arXiv:2303.18027, 2023.

[47] Z. Zhang, A. Zhang, M. Li, and A. Smola, “Automatic chain of thought
prompting in large language models,” in International Conference on
Learning Representations, 2023.

[48] “Neo4j,” https://neo4j.com/.
[49] A. Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[50] “Darpa transparent computing,” https://www.darpa.mil/program/
transparent-computing.

[51] K. Satvat, R. Gjomemo, and V. Venkatakrishnan, “Extractor: Extracting
attack behavior from threat reports,” in 2021 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2021, pp. 598–615.

[52] E. Ordentlich, L. Yang, A. Feng, P. Cnudde, M. Grbovic, N. Djuric,
V. Radosavljevic, and G. Owens, “Network-efficient distributed
word2vec training system for large vocabularies,” in ACM International
Conference on Information and Knowledge Management, 2016.

[53] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. F. Ciocarlie et al., “Mci: Modeling-based causality
inference in audit logging for attack investigation,” in Network and
Distributed System Security Symposium, 2018.

[54] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via
binary-based execution partition,” in Network and Distributed System
Security Symposium, 2013.

[55] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,”
in Annual Computer Security Applications Conference, 2015.

[56] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “Mpi:
Multiple perspective attack investigation with semantic aware execution
partitioning,” in USENIX Security Symposium, 2017.

[57] Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio, X. Zhang,
and D. Xu, “Ldx: Causality inference by lightweight dual execution,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, 2016.

[58] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and
W. Lee, “Rain: Refinable attack investigation with on-demand inter-
process information flow tracking,” in ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[59] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso, and
W. Lee, “Enabling refinable cross-host attack investigation with efficient
data flow tagging and tracking,” in USENIX Security Symposium, 2018.

[60] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omegalog:
High-fidelity attack investigation via transparent multi-layer log analy-
sis,” in Network and Distributed System Security Symposium, 2020.

[61] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting,” in Network and
Distributed System Security Symposium, 2016.

[62] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in ACM SIGSAC Conference on Computer and Communica-
tions Security, 2016.

[63] T. Chen, L.-A. Tang, Y. Sun, Z. Chen, and K. Zhang, “Entity embedding-
based anomaly detection for heterogeneous categorical events,” in Inter-
national Joint Conference on Artificial Intelligence, 2016.

[64] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,” in ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 1777–1794.

[65] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient
anomaly detection in streaming heterogeneous graphs,” in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 1035–1044.

[66] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee,
Z. Chen, W. Cheng, C. A. Gunter, and H. Chen, “You are what you
do: Hunting stealthy malware via data provenance analysis,” in Network
and Distributed System Security Symposium, 2020.

[67] S. Wang, Z. Chen, X. Yu, D. Li, J. Ni, L.-A. Tang, J. Gui, Z. Li,
H. Chen, and P. S. Yu, “Heterogeneous graph matching networks for
unknown malware detection,” in International Joint Conference on
Artificial Intelligence, 2019, pp. 3762–3770.

[68] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,” in
Network and Distributed System Security Symposium, 2020.

[69] Y. Chen et al., “Automatic root cause analysis via large language models
for cloud incidents,” in European Conference on Computer Systems,
2024.

https://neo4j.com/
https://www.darpa.mil/program/transparent-computing
https://www.darpa.mil/program/transparent-computing

	Introduction
	Background and Motivation
	Motivating Example
	Scenario
	Audit log analysis
	The Promise of Large Language Models for Incident Inference

	Challenges
	Problem Analysis
	Threat Model

	Methodology
	Approach Overview
	Knowledge Graph Construction
	Behavior Abstraction
	Behavior Summarization
	Event Semantic Embedding
	Behavior Semantic Aggregation

	LLM for Incident Inference

	Evaluation
	Implementation
	Explicability of Event Semantic Inference
	Accuracy and Scalability of SmartGuard
	Interpretability of LLMs and Solutions for Hallucinations

	Discussion
	Related Works
	Conclusion
	References

