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Abstract

Securing sensitive cloud workloads requires composing con-
fidential virtual machines (CVMs) with nested enclaves or
sandboxes. Unfortunately, each new isolation boundary adds
ad-hoc access control mechanisms, hardware extensions, and
trusted software. This escalating complexity bloats the TCB,
complicates end-to-end attestation, and leads to fragmenta-
tion across platforms and cloud service providers (CSP).

We introduce a unified isolation model that delegates en-
forceable, composable, and attestable isolation to a single
trusted security monitor: Tyche. Tyche provides an API
for partitioning, sharing, attesting, and reclaiming resources
through its core abstraction, trust domains (TDs). To provide
fine-grain isolation, TDs can recursively create and manage
sub-TDs. Tyche captures these relationships in attestations,
allowing cloud tenants to reason about end-to-end security.
TDs serve as the building blocks for constructing composable
enclaves, sandboxes, and CVMs.
Tyche runs on commodity x86_64 without hardware se-

curity extensions and can maintain backward compatibil-
ity with existing software. We provide an SDK to run and
compose unmodified workloads as sandboxes, enclaves, and
CVMs with minimal overhead compared to native Linux ex-
ecution. Tyche supports complex cloud scenarios, such as
confidential inference with mutually distrustful users, model
owners, and CSP. An additional RISC-V prototype demon-
strates Tyche’s portability across platforms.

1 Introduction

Cloud deployments need to address complex threat models
with many possible attack vectors. Consider the realistic
deployment [37] of Figure 1 (left), that prevents prompt leak-
age from a confidential cloud LLM inference. It relies on the
different isolation mechanisms in grey: AMD SEV-SNP [15]
confidential virtual machine (CVM) protects the guest OS
and its applications from the untrusted hypervisor. A soft-
ware monitor [13] operates at the highest AMD VM privi-
lege Level [13] (VMPL) within the CVM to implement nested

∗co-equal first author.
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Figure 1. Example deployment of an enclave and a sandbox
within a CVM. Left is based on AMD SEV-SNP, right is our
solution, with management dependencies as arrows.

enclaves that protect user private keys from a bug or back-
door [17, 74, 80, 81] in the OS. Meanwhile, gVisor [46, 104]
uses Linux ptrace [47] to sandbox a potentially compromised
LLM runtime [60, 82, 84, 91] that might leak prompts.

As each isolation mechanism protects against only a single
attack vector, theymust be stacked to compose their isolation
guarantees and achieve end-to-end security for the work-
load. However, this stacking introduces several limitations:
(1) It increases the trusted computing base (TCB), as each
isolation boundary adds its own ad hoc mechanism; (2) It
complicates attestation, as no mechanism explicitly captures
the isolation guarantees enforced across all boundaries; (3) It
fragments the cloud ecosystem, as porting the workload to a
different CSP [18, 45] or platform [57, 72] might necessitate
an entirely different set of vendor or hardware-specific mech-
anisms [47, 78, 79, 105]. Moreover, some mechanisms might
simply not compose, e.g., OS or hypervisor-based sandboxes
within enclaves or CVMs, and have to be replaced [53, 103].

Our insight is that, although existing mechanisms and
abstractions address different threats, they share a common
goal: to restrict and attest a software component’s access
to the machine and other components’ resources – that is,
to control shared and exclusive access. Rather than stack-
ing mechanisms and abstractions for each threat, we argue
for a common abstraction that can adapt to diverse threat
models by making shared and exclusive access explicit and
attestable. Isolation enforcement can then be delegated to
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a single trusted entity that provides this common abstrac-
tion, along with a small set of primitives to compose and
attest isolation. We further argue this can be achieved using
standard access control mechanisms – without hardware
security extensions [15, 57, 72].
This paper presents the Tyche security monitor. Tyche

provides a unified low-level isolation abstraction – trust
domains (TDs1) – as the building block to construct and com-
pose higher-level isolation abstractions. TDs are execution
environments with access to a restricted subset of the ma-
chine’s resources. Unlike previous solutions that target spe-
cific threat models, Tyche’s API lets software contain threats
by controlling and attesting how resources are shared, parti-
tioned, and reclaimed among TDs, enabling the construction
of custom isolation boundaries. To compose isolation, TDs
use Tyche’s API to recursively create child TDs by subdi-
viding or sharing their resources. Tyche tracks and attests
TD’s resources, explicitly distinguishing between shared and
exclusive ones. Tyche thus replaces previous ad-hoc mech-
anisms: TD-exclusive resources enable confidential abstrac-
tions, such as enclaves and CVMs, while control over TD
interactions and shared resources enables sandboxes.

Tyche runs on bare metal at the highest privilege level, is
attested by a hardware root of trust [95], and enforces the
attestable isolation of other software running as TDs. Tyche
is implemented in Rust [5], designed for portability across
platforms, and enforces isolation using standard hardware
access control mechanisms, without extensions for confiden-
tial computing. We present a full implementation on x86_64
using virtualization technologies [59, 97] and a prototype
running as firmware on RISC-V [85]. For software compati-
bility, our Tyche SDK enables TDs running unmodified Linux
to create sandboxes, enclaves, or CVMs as separate TDs and
replaces existing mechanisms with Tyche as shown on Fig-
ure 1 (right).
Our evaluation on x86_64 shows that Tyche’s isolation

model does not compromise performance. Tyche’s TDs run-
ning unmodified real-world webservers, a key-value store,
a database, and an LLM inference as enclaves, CVMs, and
enclaves nested in CVMs, achieve near-native performance.
We demonstrate that Tyche provides composable isolation
for confidential LLM inference with a complex threat model,
where the user, model owner, and CSP are mutually dis-
trustful, with only a ~2% slowdown compared to bare metal
Linux.
We make the following contributions: (1) a unified solu-

tion for composable and attestable isolation that eliminates
the need to stack disparate mechanisms to secure cloud de-
ployments; (2) Tyche’s implementation that achieves good
performance on commodity hardware and is portable across
platforms; (3) a demonstration that existing workloads can be
ported to run and address complex threat models on Tyche.

1Unrelated to Intel TDX [57]

Tyche is an open-source research prototype [33], which
has been successfully used by independent researchers to
achieve custom isolation guarantees on legacy hardware [36].

2 Background

Compartmentalization & Confidential Computing:

While often treated separately, these are two sides of the
same coin [27]. Compartmentalization protects software and
sensitive information on a machine from an untrusted com-
ponent, whereas confidential computing protects a trusted
software component processing sensitive information from
other software on the machine or even in some [15, 57,
58] but not all [28, 61, 76, 106] cases, physical access. Both
achieve their goals by controlling access to resources. Com-
partmentalization restricts an untrusted component’s access
to the machine and its interactions with other software via
shared resources or interfaces. Confidential computing en-
sures integrity and confidentiality, either through exclusive

access [50, 58, 76] or via memory encryption and integrity
protection [15, 57]. For both types of isolation, attestation
allows a local or remote verifier to confirm that software is
correctly isolated and establish trust in the deployment on
a particular machine. Attestation relies on a hardware root
of trust, such as the CPU [15, 57, 58] or a Trusted Platform
Module [95] (TPM).

Monitors: Monitors are small software components that
conveniently retrofit [28, 106] new isolation boundaries into
the existing software stack with minimal disruption by run-
ning at higher privilege levels, e.g., through virtualization [28,
61, 76, 106]. They strive to remain passive unless their iso-
lation services are used, leaving existing software execu-
tion mostly unchanged, e.g., they do not replace the kernel
for process isolation. They are popular in both confidential
computing [13, 28, 41, 50, 61, 106] and compartmentaliza-
tion [20, 89, 105] to enforce fine grained access control.

Capabilities: Capabilities provide a structured and explicit
mechanism for access control. They are unforgeable tokens
– created either in software by a trusted entity [63] or imple-
mented in hardware [14, 102] – that encapsulate access to
an object. Holding a capability grants specific access rights
to the object, while transferring it to another component
revokes access from the sender and grants it to the recipient.
Capabilities are used by security-focused kernels [63] and
provide clear semantics on resource access and sharing.

Composable isolation: The ability to assemble isolation
boundaries in a way that preserves and combines their secu-
rity guarantees.

3 Tyche Overview

This section provides an overview of Tyche’s design, its
threat model, and an example deployment in Figure 2.
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Figure 2.Mutual-distrust LLM inference deployment on top of Tyche; right-side represents physical memory available to each
TD, distinguishing exclusive regions (X) and shared ones (S). The encrypted model, prompts, and replies are passed through
memory along the black path, interrupts are routed as shown by red arrows.

3.1 Architecture

The Tyche security monitor exposes an API that uses capabil-
ities to create and isolate its core abstraction: trust domains
(TD). All software other than the monitor runs within TDs. A
TD is an execution environment, whose configuration and
owned capabilities grant it access to a subset of the machine’s
resources, attested by Tyche as either shared or exclusive:
cores or devices the TD can run on, access to physical mem-
ory regions, and interrupts it can handle or must delegate to
other TDs. Via the monitor’s API, software running within a
TD can create child TDs, partitioning or sharing subsets of its
resource with its children, and transfer control to them on
selected cores. TDs do not address a fixed threat model but
rather provide a unified low-level abstraction for attestable
control over shared and exclusive resources. This enables
them to accommodate the isolation policies and threat mod-
els of existing abstractions – such as sandboxes, enclaves,
and CVMs – while also supporting their composition.
Tyche’s API decouples resource management from the

attestable enforcement of access restrictions. Capabilities
abstract resources and TD interactions, allowing TDs to imple-
ment their desired isolation boundaries and scheduling poli-
cies. Through its capability implementation, Tyche tracks
the allocation of resources to TDs and attests whether they
are shared or exclusive, hence capturing and enforcing ex-
plicitly the resource and management dependencies between
TDs. Tyche provides guarantees to both parent and child TDs.
The parent retains the ability to reclaim resources or regain
control on a core, while children are assured that exclusive
resources remain so unless they share them, and that their
revocation and control transfers do not leak information.

Tyche supports local and remote attestations to make TD
relationships explicit and attest end-to-end security guaran-
tees. A TD attestation has two parts: (1) a TPM [95] root of
trust measurement of the boot process, binding an Tyche
binary to a physical machine and public key, ensuring it runs
alone at the highest privilege level; and (2) a report generated
by Tyche, signed with its corresponding private key, that
describes the TD’s resources, whether they are shared, how
they can be reclaimed, and how they are delegated or shared
with child TDs.

Tyche’s isolation model unifies confidential computing
and compartmentalization, enabling the composition of their
security guarantees. Confidentiality and integrity follow
from exclusive access, while compartmentalization is en-
forced by restricting a child TD to only interact and share
resources with trusted TDs to prevent information leakage.
Composition is achieved through the recursive construction
of TDs, allowing each domain to define its own isolation
boundaries.
Tyche is designed to be ported across hardware plat-

forms, with platform-independent capabilities enforced by
hardware-specific backends. On x86_64, Tyche enforces iso-
lation using virtualization extensions (Intel VT-x [97]), with
extended page tables and I/O-MMU [59] to protect mem-
ory. On RISC-V, the monitor runs as firmware in M-mode
and uses Physical Memory Protection [85] (PMP). On both
platforms, the Tyche SDK provides kernel drivers for un-
modified Linux environments to run on top of Tyche and
use trust domains to build and nest sandboxes, enclaves and
CVMs.

3.2 Threat Model

Tyche assumes the underlying hardware, including physical
devices and access control mechanisms, is trusted and part
of its TCB. The CSP and tenants are adversarial. We consider
an attacker, running arbitrary code within a TD, restricted
to an authorized subset of the machine’s resources, such as
cores, memory, and device configuration space. In particular,
the attacker might try to exploit: (1) the monitor’s API, (2)
device configuration space, and (3) privileged instructions to,
e.g., emit or disable interrupts. The attacker aims to access
resources or TD state outside of its or the device’s authorized
sets, compromise the monitor’s metadata, steal its private
key, or hog resources to prevent revocation.

Guarantees for TDs: Tyche is part of the TCB of all TDs
and supports a diverse range of trust and threat models be-
tween TDs, based on how their resources overlap and can be
reclaimed. The monitor ensures correct, attestable isolation
of TDs, restricting their access to assigned resources, explic-
itly reporting shared ones, preventing exclusive ones from
transparently becoming shared, and allowing reclamation
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of resources allocated to children. Tyche also prevents leaks
during control transfers and resource reclamation, following
the TD’s configuration.

Out-of-scope: Physical attacks, such as accessing DRAM
or the PCI bus to read the monitor or a TD’s memory, are
out of scope of the current implementation, although they
could be mitigated with hardware support, e.g., total memory
encryption [56] and PCI bus encryption [10]. Side-channel-
based attacks are not explicitly addressed by Tyche, beyond
appropriate flushes upon transitions, as it does not track
shared micro-architectural state. They however can be miti-
gated within the current implementation through core par-
titioning [26, 108] and physical memory allocation based
on cache-coloring [35, 100]. Denial-of-service attacks to
exhaust the monitor’s memory are possible, but they only
prevent the creation of new TDs and do not prevent the revo-
cation, attestation, or isolation enforcement of existing ones.
They can be further mitigated by requiring TDs to supply
memory for the monitor’s metadata. Inherent to the cloud,
the CSP can deny service by turning off the platform [24].

3.3 Running Example

Figure 2 illustrates a public cloud deployment where a user
performs LLM inference using a proprietary model. This
scenario has a more complex threat model than Figure 1 as it
involves full mutual distrust: the user does not trust the CSP
or model owner with confidential prompts, the model owner
does not trust the user or CSP with the model weights, and
the CSP does not trust either party. Such private inference re-
quires confidential computing, to protect prompts and model
weights, composed with compartmentalization to prevent
the LLM runtime from leaking prompts.

Tyche controls all machine resources at boot and assigns
them through capabilities to TD0, the CSP’s hypervisor run-
ning Linux+KVM [30] and Tyche SDK. To instantiate a CVM
for the user, TD0 interacts with Tyche via the SDK, parti-
tioning its memory to create TD1 with exclusive access to a
memory region (blue in Figure 2), a shared region (orange),
and some CPU cores. TD0 then transfers control to TD1 via
Tyche’s API on these cores. Once booted, TD1 running a
Linux kernel uses Tyche SDK to create TD2 for the LLM run-
time in userspace, partition its exclusive memory to transfer
a region (dark green) to TD2, effectively creating an enclave
isolated from both the CSP and user CVM. The model owner
attests TD2 runs in exclusive memory before provisioning
the encrypted model. Communication between components
relies on shared memory: TD0 and TD1 share a region for
VIRTIO [66] network access (orange), while TD1 and TD2
share another (yellow) to pass the encrypted model, user
prompts, and responses.
Tyche’s remote attestation is used by all parties: (1) The

CSP attests it retains resource control and manages inter-
rupts (red arrows). (2) The user attests that TD1 is isolated

from TD0 and encapsulates TD2, i.e., that TD2 only communi-
cates with the CVM; (3) The model owner ensures TD2 runs
the LLM in exclusive memory and does not leak the model.
(4) Both the user and model owner attest that interrupts do
not leak information and that Tyche zeroes memory before
releasing it back to the CSP.
The remainder of the paper describes Tyche’s API and

capabilities (§4), their implementation and enforcement on
hardware by platform-specific backends (§5), and the Tyche
SDK (§6). We then evaluate Tyche (§7) and discuss related
work (§8) in security monitors andmicro-kernels fromwhich
we drew inspiration for Tyche’s design.

4 Tyche Design: API & Capabilities

Tyche exposes an API (Table 1) based on software capabili-
ties, which ensure portability across platforms by decoupling
policies from hardware access control mechanisms [67]. Ca-
pabilities are unforgeable tokens issued by Tyche and used
as arguments and return values in API calls.

Tyche capabilities manage two types of objects: memory
regions and trust domains (TDs). Capabilities are owned by
a TD and mediate access to the associated object. Memory
capabilities grant access to physical memory ranges. TD ca-
pabilities allow the management, configuration, attestation,
and execution of TDs. CPU cores and interrupts are managed
as part of TD capabilities and devices are modeled as TDs.

4.1 Capability Derivation Trees

Tyche maintains two separate capability derivation trees
(CDTs): one for memory regions and one for TDs. CDTs are
a well-established mechanism for implementing capabilities,
used in several micro-kernels [63, 90], from which we draw
inspiration (see §8).
In CDTs, new capabilities are always derived from an

existing one and can only inherit equal or reduced access
to the associated resources. Derived capabilities appear as
children of the operand node in the tree. CDTs serve three
purposes: (1) they ensure the monotonicity of operations, (2)
they provide a log of operations, (3) they enable the cascading
revocation of an entire subtree by revoking its root node.

Call Description
CREATE Create a trust domain
SET/GET Set/Get a trust domain’s register or policy
SEND Transfer a capability ownership to a TD
SEAL Seal a trust domain
ATTEST Attest a trust domain
ENUMERATE Discover info. about owned capabilities
SWITCH Control transfer into a trust domain
ALIAS Create new memory region by aliasing one
CARVE Create new memory region by carving one
REVOKE Revoke a capability’s child
GETCHAN Create a channel from a TD or channel capability

Table 1. Tyche’s API
4
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Figure 3. Memory region derivation tree and TD memory
views based on Figure 2. New regions are created by carving
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ted. (S)hared and e(X)clusive memory is reported on views.

Tyche leverages the CDT structure to further track and
enforce security invariants. The region capability CDT tracks
exclusive and shared access to physical memory, while the
TD CDT encodes the management hierarchy between TDs
and the routing of interrupts. Both are used to implement
efficient revocation.

4.2 Memory Region Capabilities

Tyche region capabilities offer a compact, attestable repre-
sentation of shared or exclusive access to physical memory
ranges, with security attributes that define guarantees upon
revocation.
Tyche initializes the CDT with a root memory region

marked as exclusive, defined by a start and end address,
access rights (read, write, execute), and an empty set of at-
tributes. Tyche transfers this root region’s ownership to TD0,
the first domain to run on the machine.

A TD can create new region capabilities using Tyche’s alias
and carve API calls (Table 1). An alias creates a child region
capability, marked as aliased, for a subrange of the parent
region’s physical addresses with equal or reduced access
rights while preserving the parent’s access. A carve similarly
creates a subregion but removes access to it from the parent
region (see Figure 3, hatched area). If the parent region was
exclusive, the carved region remains exclusive; otherwise, it
is marked as aliased. Carving enables confidential memory
by ensuring that an exclusive region stems from an unbroken
chain of carves, preventing any operation outside its subtree
from altering its exclusivity. Tyche thus ensures that a capa-
bility’s access rights and exclusivity are determined locally,
based on its initial range, exclusivity status, and direct chil-
dren. In Figure 3, 𝑟0 initially grants exclusive access from 𝑎0
to 𝑎5. After an alias (𝑟1) and a carve (𝑟2), it retains exclusive
access only from 𝑎0 to 𝑎1 and shared (aliased) access from 𝑎1
to 𝑎2, regardless of further subdivisions of 𝑟1 or 𝑟2.
Tyche’s send and revoke API calls allow TDs to manage

memory between them. Send transfers ownership of a region,
effectively allocating memory to the receiving TD. Revoke
operates on a parent region to undo a child alias or carve,
allowing the parent’s owner to reclaim memory that was
sent to another domain via a child region. Revocation has
a cascading effect, e.g., revoking 𝑟2 from 𝑟0 will also revoke
𝑟3 and 𝑟4 and re-enable access from 𝑎2 to 𝑎5 in 𝑟0. To pro-
vide security guarantees to the receiver, Tyche allows the

td1 = domain {r1, r2, td2}
|registers.HASH: 8988 ef57 ...
|cores: 0b11
|mon.api: 0b11111111111 | RECEIVE
|interrupts: {
| 0 -> {Report , registers: 0b0},
| ... }

td2 = domain {r3, r4}
|registers.HASH: 978 de00f ...
|cores: 0b01
|mon.api: 0b00001110000 | !RECEIVE
|interrupts: {
| 0 -> {Not report , registers: 0b0},
| ... }

r1 = aliased a1 a2 with RW_
r2 = exclusive a2 a5 with RWX , HASH|CLEAN|VITAL

|HASH: 755 ee2b2 ...
|alias at a3 a4 for r3 with RW_
|carve at a4 a5 for r4 with RWX

signature: a0e0d23f26564bd5 ...

Figure 4. Simplified attestation for TD1 with Figure 3’s
nomenclature. Allowed monitor API calls are encoded as
bitmaps based on the order from Table 1 (e.g., bit 0 is create).

sender to optionally attach attributes to the transferred re-
gion: (1) hash captures a cryptographic hash of an exclusive
region’s content, enabling the receiver to ensure it contains
the correct initial data; (2) clean ensures the region is zeroed
upon revocation to prevent data leakage; and (3) vital re-
vokes the receiver if the capability is revoked, enforcing a
minimal memory set necessary for functionality. Attributes
can only be set through a send if the receiver is unsealed
(§4.3), are tied to ownership rather than the CDT, and thus
non-monotonic.

A TD inspects its owned memory regions through enumer-
ate or attest. As shown in Figure 4, for 𝑟2, enumerate and
attest report an owned region’s status (exclusive or aliased),
initial range, access rights, attributes, and direct children,
whether owned or not. This enables (1) identifying accessible
memory, (2) deriving local invariants, and (3) visibility into
memory delegation.

4.3 Trust Domain Capabilities

Tyche initializes execution with the first TD, TD0, which
owns the root memory region, executes on all cores, and can
handle any interrupt. All other TDs are created from a subset
of TD0’s original resources.

TD creation and configuration: A TD creates new domains
using the create operation, which returns a trust domain ca-
pability – a reference to the newly created TD – that appears
as a child of the caller in the TD CDT. Initially, the child TD
is unsealed, meaning it cannot yet be executed.
Through the child capability, the parent configures the

TD using set. Specifically, it sets per core register state and
policies. Policies define the cores the child can run on, the
monitor calls it can perform, whether they are allowed from
user space, whether it can receive new capabilities after seal-
ing, and interrupt policies. Policies are monotonic: Tyche re-
jects sets that grant more rights than the parent has. Memory
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allocation is performed as described previously and shown
in Figure 5, the parent aliases and carves its own regions and
sends the capabilities to the child. Finally, seal makes the
TD executable and prevents modifications to registers and
policies. A revoke on a TD triggers the cascading revocation
of its owned capabilities and its entire subtree in the CDT.

TD execution & interrupts: Control transfers between TDs
i.e., transitions on a core, occur via explicit monitor calls or
upon interrupts. The switchAPI call implements a call-return
model: Tyche ensures the callee is authorized to run on the
core, saves the caller’s state, loads the callee, and transfers
control. Switching to a child requires its TD capability; a
switch with no TD argument returns to the parent.
Interrupts trigger TD control transfers. They propagate

through the CDT, which encodes routing and handling poli-
cies. For each interrupt vector, TD’s interrupt policies specify
whether to Deliver, Report, or Not report the interrupt, and
which registers the parent can access during handling. An
interrupt marked as Deliver is received by the TD directly.
When an interrupt not marked as Deliver occurs, Tyche pre-
empts the TD and walks the CDT upwards to transfer control
to the first TD (the handler) it finds with a Deliver policy. To
the handler, the interrupt appears as a return from a switch
to its direct child, with the interrupt acting as the return
value. After taking care of the interrupt, the handler resumes
the child’s execution by performing a switch.
The return path walks the CDT downwards, with Tyche

reporting the interrupt to all TDs with a Report policy in a
manner similar to the original handler TD. These TDs observe
the interrupt as if it originated from their direct child and
decide whether to resume execution. Those with a Not report
policy are skipped. This routing and return protocol balances
the delegation of interrupts with the ability to observe them
and mitigate interrupt-based side channels. It also provides
attestable guarantees on scheduling as it defines how TDs
can be preempted.

TDs interactions: TDs communicate via shared memory, con-
trol transfers to direct children, and interrupts. To ensure
that parents remain responsible for scheduling and revoking
their children, TD capabilities cannot be transferred between
TDs. To enable non parent-child TDs to attest each other and
exchange regions without relying on a common ancestor,
Tyche supports channel capabilities. Channels are derived
from TD capabilities using getchan and appear as children
in the CDT. They act as weak references to TDs and can
be transferred between TDs via send. Channels allow non
parent-child TDs to directly attest each other, exchange mem-
ory regions (e.g., to establish private shared memory), or
share other channels – but not to schedule, configure, or
revoke a TD.

Devices: Tyche models devices as TDs, with configuration
space, DMA, and port I/O access mediated through region

R0
R2
R1

TD1
R0

R2
R1

R1
R2Create

R0
TD1 TD1

R0

R1
R2

TD1

Alias
Carve

TD0

TD1

Create TD1 Send Seal TD12 3 4

Figure 5. Capability operations to create and configure TD1.

capabilities. Interrupt routing follows the same protocol as
above, but Tyche allows backends to optimize core-routing
using platform specific hardware mechanisms. TDs on the
CPU interact with devices through shared regions for the de-
vice’s configuration space and MMIO ones. Tyche provides
TD0 with a channel to every device. TD0 delegates device
access to a TD by carving the configuration space and dupli-
cating a channel, sending both to the TD to enable direct TD
to device interactions.

4.4 Attestation & Security policies

Tyche’s attest API call enables a TD to request an attestation
for itself or any TD for which it owns a TD (including channels)
capability. The attestation reports the TD’s configuration,
including a hash of its initial register content, policies, and
a description of its owned capabilities. Conceptually, the
attestation provides for each owned capability visibility into
its direct children in their respective CDT, but not further.

Figure 4 provides the attestation of TD1, hashed and signed
by Tyche. The attestation reports the configuration of TD1
and its child TD2, as well as their owned capabilities. Sets
of cores, monitor calls, and registers that can be queried
when handling an interrupt are encoded as bitmaps. Tyche
explicitly represents the lineage between regions through
naming; for example, it shows that 𝑟3, owned by TD2, is
derived from 𝑟2. If TD2 possessed a capability derived from
one not owned by TD1, the region would only appear in TD2’s
set of owned capabilities with a fresh name but no further
information. Here, we reuse indices from other figures for
clarity, but Tyche normally assigns fresh names starting
from 0 based on the requesting TD’s capabilities to avoid
revealing information about the broader system.
For remote attestation, a TD calls attest to obtain its own

attestation and supplies as arguments the remote verifier
public key and nonce, as well as a public key generated
by the domain itself, ensuring they are all measured and
signed by Tyche. From this attestation, a TD or remote ver-
ifier can check whether a TD is a confidential environment
(e.g., an enclave or CVM), an encapsulated compartment
(e.g., a sandbox), or both, and uses the domain’s public key
to establish a shared secret and bootstrap a secure communi-
cation channel [34]. Confidentiality is ensured by the owner-
ship of exclusive memory ranges and the absence of leakage
through interrupts or revocation, i.e., attributes on memory
capabilities. Compartmentalization and full encapsulation
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Figure 6. The capability engine maintains the system state
across all cores.

is achieved by ensuring a child TD’s regions are a subset of
the parent’s exclusive regions, and that its policies prevent it
from receiving or sending other capabilities after it is sealed,
as shown in Figure 4 for TD2.

5 Tyche Implementation

Figure 6 shows the Tyche security monitor has two compo-
nents: (1) a platform-independent capability engine and (2) a
platform-specific backend. The backend translates hardware
events, such as interrupts or calls to Tyche, into capabil-
ity operations and forwards them to the capability engine,
shared across cores. The capability engine implements the
system’s global capability state machine, validates and exe-
cutes operations and notifies the backend of configuration
changes on affected cores via updates. The capability engine
and backend are part of the TCB.

To construct a backend and provide the attestable enforce-
ment of isolation by themonitor and its capability engine, the
hardware must provide: (1) the ability to establish trust in the
monitor; (2) the monitor’s exclusive oversight of an access
control mechanism to enforce resource isolation (memory,
CPU, interrupts, devices); (3) a direct, secured communica-
tion channel between TDs and the monitor.
This section describes the custom loader we use on bare

metal to establish trust in the monitor, the capability engine,
details the access control enforcement and communication
in the x86_64 backend, and provides an overview for RISC-V.

5.1 Tyche attested boot

On all platforms, Tyche boots via a custom bootloader that
enumerates CPU cores, devices, and DRAM to generate a
platform description called the boot-info. It loads the moni-
tor – comprising the capability engine and backend – into
a reserved memory region reported in the boot-info and
maps the boot-info into the monitor’s address space. The
bootloader then generates a fresh attestation key pair, mea-
sures the monitor, boot-info, and public key, and extends a
TPM [95] Platform Configuration Register (PCR) with the re-
sult before transferring control to the monitor and passing it
the private key. The monitor’s backend, using the boot-info,
initializes the capability engine, creates the initial TD0 (e.g.,
a stock Linux kernel) with access to the memory not used

by the monitor, including local APIC and device configura-
tion spaces. It then creates an I/O TD for each DMA-capable
device with an alias to TD0’s memory. Finally, the monitor
transfers control on all cores to TD0.
Like prior work [76], a TD’s attestation includes a TPM-

generated quote and a domain attestation issued and signed
by Tyche (§4). The quote records the boot chain as PCR
values, binding a specific monitor binary to an attestation
public key and a machine, allowing to derive trust in the
monitor and transitively into the signed TD’s attestation. The
platform attestation covers the full boot chain including our
bootloader. We prototyped support for a dynamic root of
trust (DRTM) [16, 55] using Intel TxT [55], to further reduce
the TCB to only the capability engine and the backend.

5.2 Capability engine

The capability engine implements the region and TD capabil-
ity derivation trees (CDTs from §4), validates and executes
capability operations, and computes updates supplied to the
backend to reflect configuration changes onto the hardware.
It is implemented as a standalone, bare-metal (no-std) Rust
library. The engine consists of 4K lines of code, uses no un-
safe [87] to ensure memory safety, and is fuzzed as part
of our continuous integration (CI) setup using LLVM’s lib-
Fuzzer [75] to proactively detect and fix bugs.
The capability engine exposes the API defined in §4 for

capability operations and integrates within a backend via
a platform interface (Rust trait). This interface is supplied
by the backend to provide platform-specific primitives to
manage per-TD platform state (e.g., per-core registers and
access control mechanism configuration such as EPTs), map
and unmap physical memory ranges in a TD’s platform state,
manage interrupts, and implement cross-core synchroniza-
tion primitives in the form of IPIs, barriers, and locks.

At all times, the engine tracks which TD executes on each
core and ensures a consistent state view across cores. The
engine uses the CDTs to determine which TDs and regions an
operation affects and serializes operations with overlapping
targets to ensure consistency. For each operation, the engine
derives the set of affected cores and enqueues an update
reflecting the result of the operation in per-affected-core
queues, as shown on Figure 6. The engine uses the platform
interface to preempt affected cores (IPIs), requesting them to
process the update and block on a barrier while the initiating
core makes the new state globally visible. They are then
unblocked and apply the changes to their local hardware
state. This ensures the atomicity of capability and hardware
state changes across cores. In practice, only a small set of
updates are needed: access right changes, TD revocation, and
interrupt delivery.
For example, sending a carve is processed in the engine

by a core which first validates the request and computes the
resulting capability state. It then enqueues an access right up-
date on all cores running either the sender or the receiver and
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uses the platform IPI to preempt them so they can process
the update. The update’s logic includes two synchronization
barriers: the first to ensure all affected cores have been pre-
empted, and the second to wait until the new platform state
is available. Between the two barriers, the initiating core
running in the engine uses the platform primitives to update
the platform state, i.e., it unmaps the region from the sender,
maps it into the receiver (e.g., via EPTs on x86_64), before
finalizing the capability state, making it globally visible. It
then unblocks cores waiting on the second barrier, allowing
them access to the new state which they apply onto their
local core (e.g., TLB shootdown).

5.3 Tyche x86_64 backend in root mode

Intel VT-x [97] is a common hardware extension to acceler-
ate virtualization in which a host in root mode runs guest
VMs in non-rootmode. A virtual machine control structure
(VMCS) controls guest execution on a core, safely virtualiz-
ing guest privileged operations such as writes to cr3, without
host intervention, while extended pages tables (EPTs) [11, 97]
restrict non-root access to memory. The vmcall instruction
enables direct traps from non-root to root mode.
Tyche x86_64 backend repurposes Intel VT-x to isolate

TDs. The backend consists of 6K lines of Rust code and uses
the unsafe keyword to configure hardware. Most of the code
is due to enumerations for error codes, hardware bitmap
values, and VMCS field identifiers. Tyche on x86_64 is only
230KB of compiled code.
The Tyche x86_64 backend executes in root mode and

runs all TDs in non-root mode, with one EPT per TD to re-
strict memory access to its owned region capabilities, and
one VMCS per TD allowed core. Devices are abstracted as
TDs as well, with memory access enforced via the Intel I/O-
MMU [59]. Internally, the backend uses INIT IPIs to make
other cores trap into the monitor and implements cross-core
synchronization with barriers based on semaphores, atomics,
and spinlocks that poll for updates on each locking attempt.

TDs interact with the monitor through non-interposable
vmcall instruction. API arguments are passed via general-
purpose registers, and capabilities referenced via TD-local
indices, similar to UNIX file descriptors. Return values fol-
low the same convention, and large values (e.g., plaintext
attestation) follow a protocol with multiple vmcall to con-
sume the entire output. Register-based communication is
preferred over direct memory access by the monitor to re-
duce security risks such as confused deputy [48] and cache
attacks. The monitor accesses memory regions only when
they are not accessible by any TD, either to enforce a Clean
by zeroing its content or a Hash by reading it. Future work
aims to eliminate even these accesses by offloading them to
more restricted execution environments [31], ensuring full
TD memory isolation from the monitor.

TD switches save the caller’s VMCS and load the callee’s.
The backend manages general-purpose registers in software

and handles other registers – including model-specific reg-
isters (MSRs) – using a combination of hardware and soft-
ware, preventing leakage across domains. Virtual processor
identifiers tag EPT TLB entries to reduce flushing during
TD transitions. All control transfers, whether synchronous
(switch monitor calls) or asynchronous (e.g., exceptions),
pass through the monitor, allowing Tyche to track state
on each core and enforce TD policies. After a switch, the
child runs until it either receives an unhandled interrupt
or explicitly returns. The x86_64 backend also supports a
prototype switch quantum, enabling preemption of a child
after a fixed number of cycles enforced directly in hardware
by Intel VT-x [97], with deadlines tracked across TDs in the
monitor.

TD interrupt policies are offloaded to hardware via VMCS
configuration to enable direct delivery where possible. In-
tel VT-x supports fine-grained trapping for the first 32 vec-
tors (exceptions) but only a single bit for external (higher-
vector) interrupts. To selectively deliver high-vector inter-
rupts when not all of them are allowed, the backend traps
all external interrupts, inspects the vector, and either re-
injects allowed ones or switches to an ancestor TD per the
routing described in §4. Alternatively, the x86_64 backend
supports hardware APIC virtualization and I/O-MMU inter-
rupt remapping when available, reducing traps and enabling
finer-grained control. It can also delegate APIC virtualization
configuration by exposing relevant VMCS fields [97] as TD
registers to the parent. This allows the parent to manage
interrupt delivery but limits the child’s policies.

5.4 Tyche RISC-V backend in M-mode

On RISC-V, Tyche runs in machine mode (M-mode), and
the backend uses Physical Memory Protection (PMP) [85] to
enforce region capabilities. PMP entries enforce permission
on contiguous segments of physical addresses and can only
be configured fromM-mode. Each core has a limited number
of PMP registers (up to 64), with one reserved to protect
Tyche itself. If a TD configuration cannot be satisfied with
the available PMP registers, a synthetic exception is injected
and delegated to a parent TD following the interrupt rout-
ing protocol. As capability revocations always succeed, the
parent can recover regions sent to the child. Like x86_64’s
I/O-MMU, Tyche requires IO-PMPs [4, 40] to defend against
rogue DMA requests. Like x86_64, interrupts and exceptions
can be either trapped or delivered directly to a TD by config-
uring the mideled and medeleg registers. Communication
with the monitor occurs via ecalls (for S-mode) or illegal
instruction traps (for U-mode), as S-mode manages ecalls
from U-mode within a TD to provide fast system calls.

Running in M-mode imposes more constraints than x86_-
64 virtualization-based backend, as PMPs are only available
in limited supply (8 on our board [92]). The TDs must care-
fully manage memory to maximize the use of contiguous
memory, like existing RISC-V security monitors [21, 31, 68,
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108]. Alternatively, future support for H-mode could enable
a virtualization-based backend.

6 Integrating Existing Software with Tyche

The Tyche SDK is a set of drivers and ports of popular soft-
ware frameworks that let stock Linux TDs run unmodified
workloads as sandboxes, enclaves, or CVMs in separate TDs.
These domains can be composed to secure complex cloud
deployments. The Tyche SDK is not part of Tyche’s TCB.

6.1 Interfacing with Tyche from Linux

environments

We provide one kernel driver (Tyche-Capa) to allow Linux
environments running in a TD to interact with the moni-
tor and create TDs. At the same time, code that does not
use Tyche runs unmodified within the Linux TD, ensuring
backward compatibility with existing software.

The Tyche-Capa kernel driver works across both x86_64
and RISC-V and interacts directly with Tyche. It abstracts
capabilities and exposes a simplified interface through ioctl
commands, file descriptors, and mmap for creating, managing,
and running TDs. The driver allocates memory from kernel
pools, marks pages as reserved (like ballooning [101]), and
ensures revocation to prevent resource leakage, even in the
event of user program crashes. To reduce fragmentation and
accommodate RISC-V’s limited PMP entries, the driver can
optionally reserve a contiguous physical memory range at
boot via kernel command-line parameters.

6.2 Backward compatibility

The Tyche SDK provides backward-compatibility with pop-
ular virtual machine monitors (VMMs) and enclave frame-
works. It relies on the Tyche-Capa driver as a compatibility
layer to run VMs, CVMs, sandboxes, and enclaves as TDs.

VMs&CVMswithKVMon Intel x86_64: KVM-Tyche is
a fork of the KVM-Intel [30] driver, modified to run VMs and
CVMs as child TDs (not as nested VMs). The porting effort
involved modifying just 400 LOC out of 14.6k LOC, replacing
Intel VT-x instructions and EPT management with Tyche-
Capa calls. With this patch, Tyche can support popular KVM-
based VMMs and container frameworks [2, 12, 25, 46].

KVM-Tychemaintains the runtime behavior of VMs com-
pared to KVM-Intel and thus uses Tyche’s ability to delegate
APIC virtualization to a parent TD. For CVMs, additional logic
was added to account for the VM’s memory and state being
unavailable to the host. KVM-Tyche is backward-compatible
with existing VMMs for non-confidential VMs. A small 20-
line patch to the LKVM [2] VMM enables confidential VM
support by requesting exclusive memory from Tyche-Capa.

Sandboxes& enclaves on x86withGramine:Gramine [7],
formerly Graphene [96], is an open-source library OS (libOS)
for running unmodified applications inside Intel SGX [58]

TYCHE

Gramine-Tyche

    Linux Tyche-Capa KVM-Tyche

App

TD0 App
TD1 enclave

   Linux

App Gramine-Tyche

LKVM

TD1
(C)VM A. TD2 encl.

Tyche-Capa

Figure 7. Superposed system and TD views of deployments
in Figure 11. TDs are blue rounded boxes. System abstractions
(processes, kernels, and VMs) are full rectangles, and libraries
and drivers dotted ones.

enclaves; it shields the application and mediates system calls
to the untrusted OS. Gramine-Tyche is a fork of the In-
tel SGX platform abstraction layer of Gramine that runs
enclaves and sandboxes as TDs in userspace, isolating pro-
grams in exclusive or shared memory without Intel SGX
hardware. The porting effort involved modifying only 300
lines of code (LOC) out of 14.9k LOC, replacing Intel SGX
logic with Tyche-Capa calls and populating page tables.

Enclaves on RISC-V with Keystone: Keystone [68] is a
RISC-V TEE framework, consisting of a Linux kernel driver
and the Eyrie enclave runtime. Porting Keystone to Tyche
required 20 LOC changes to the runtime for compatibility
with Tyche’s API, and 150 LOC to the Keystone driver to
interact with Tyche-Capa for creating and managing TDs.

6.3 Preserving runtime behavior

Backward compatibility is a key aspect of Tyche’s design.
The Tyche SDK preserves the semantics and runtime be-
havior of existing abstractions, enabling fair performance
comparisons in §7. Future work could optimize the software
stack to better leverage Tyche’s capabilities. For example,
Gramine’s libOS could run as privileged software to reduce
enclave exits, as in its recent TDX port [57, 65]. An Tyche-
aware VMM could use TDs for efficient device passthrough
or trusted zero-copy I/O, and optimize interrupt handling
via safe delegation to reduce VM exits. For instance, timer
interrupts currently route to the hypervisor (TD0 Linux), but
modifying KVM’s scheduling to use TD interrupt policies
could eliminate this overhead.

7 Evaluation

This section evaluates Tyche design & performance on x86_-
64. It reportsmicrobenchmarks for the full-fledged x86_64 im-
plementation and compares it with the prototype on RISC-V
(§7.1). It then focuses on x86_64 to measure the performance
of unmodified real-world applications isolated with vari-
ous threat models (§7.2), and details the confidential LLaMa
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CPU-based inference for mutually distrustful model and data
owners (§7.3).

Experimental setup: On x86_64, Tyche runs on an Intel
i7-10700 CPU with 16 cores and TD0 is a stock Linux Kernel
v6.2. The CPU supports Intel SGX [58] v1 with a usable en-
clave page cache (EPC) of 94MB. On RISC-V, Tyche runs on
a StarFive VisionFive2 board [92] with the JH7110 SoC and
8 PMP entries per hart and TD0 is a stock Linux Kernel v5.15.
VMs and CVMs run a stock Linux Kernel v6.2 with 4GiB of
RAM, 8 cores, and VIRTIO [66] devices. CVMs further en-
able SWIOTLB [9] bounce buffers from the kernel command
line to copy I/O into a memory region shared with TD0. For
network experiments, a client [1, 44] runs on a separate ma-
chine connected to the local Ethernet network using 12 cores
and 400 connections. Results report the average of the best
9 out of 10 runs, except for CoreMark-Pro which averages
internally [38].

Naming conventions: Bare-metal Linux is referred to as
“native”, while KVM-Intel Linux VMs on bare-metal Linux
are “native VMs”. An enclave deployed with Gramine-SGX
on bare-metal Linux is an “SGX enclave”. TD0 is the first trust
domain created by Tyche at boot and runs a Linux OS. A
confidential TD created by TD0with Gramine-Tyche is a “TD1
enclave”. VMs and CVMs created by TD0 with KVM-Tyche
are called “TD1 VM” and “TD1 CVM”, respectively. A “TD2
enclave” is a Gramine-Tyche enclave created by a TD1 CVM,
protected from both TD0 and the TD1 CVM. Finally, sand-
box TDs running with Gramine-Tyche are not reported as
they achieve the same performance as enclave TDs. Figure 7
illustrates these deployments.

7.1 Microbenchmarks

We report the average latencies (over 1000 operations) of
Tyche operations on both platforms, allowing us to compare
hardware mechanisms (§7.1.1). We then measure Tyche’s
CPU and I/O overheads (§7.1.2) on x86_64 for different TD
configurations (Figure 7) compared to native, native VM, and
SGX enclaves when applicable.

7.1.1 Tyche operations on x86_64 & RISC-V

Creation/Revocation: Figure 8 shows carves are more ex-
pensive than aliases as they remove memory from TD0 and
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Figure 9. RV8 RISC-V CPU microbenchmarks comparison
between native, unmodified Keystone, and Tyche.
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Linux (Native) for different TD deployments and varying
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notify other cores via IPIs (§5.2). This difference is especially
noticeable on x86_64, where carves trigger a walk on TD0’s
EPT. On both platforms, hash and clean increase latencies
with the TD’s size, as they require reading and writing mem-
ory, respectively.

Switches: In Table 2, TD switches on RISC-V are 3x slower
than on x86_64, despite faster privilege layer transitions
to/from Tyche. On x86_64, Tyche uses a hardware-software
combination to efficiently save and restore TD states, while
RISC-V relies entirely on software. Overall, Tyche’s switch
latencies on x86_64 (1.2µs) and RISC-V (3.9µs) are competi-
tive with related work and hardware extensions [13, 57, 58,
68, 96].

RISC-V prototype: On Figure 9, Tyche on RISC-V com-
petes with native and unmodified Keystone on most RV8
microbenchmarks, with a <10% slowdown for TD1 enclaves
on short-lived programs (qsort, norx) due to the extra indi-
rection to the Tyche-Capa driver.

7.1.2 Tyche CPU & I/O overheads on x86_64

CPU overheads: Figure 10 shows CoreMark-PRO CPU
benchmark results varying core counts from 1 to 16. Linux
TD0 matches bare-metal performance, with slight bumps
(at most ~2%) at 2, 4, and 8 cores due to virtualization am-
plifying cache effects from hyperthread placement. Some
benchmarks benefit from shared caches, while others expe-
rience pressure on the shared TLB. TD1 VM and CVM have

Enter+Exit Tyche Total switch cost

x86_64 0.493 +/- 0.017 µs 1.171 +/- 0.002 µs
RISC-V 0.246 +/- 0.000 µs 3.897 +/- 0.007 µs

Table 2. Average switch latency and standard deviation, in-
cluding monitor entry+exit (hardware privilege transitions).
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a slight overhead: ~1% compared to a native VM and ~4%
compared to native, due to transitions from TD1 to TD0 on
timer interrupts. Notably, CVMs incur no additional cost
compared to TD1 VMs.

I/O overheads: Figure 11 and Figure 12 show Redis [3]
throughput and latency under different TD configurations,
measured by a memtier [1] remote client. TD0 and TD1 VMs
have <1% throughput overhead compared to native and na-
tive VM, while TD1 CVM degrade latency and drop through-
put by ~20% compared to native VMs, due to I/O bounce
buffer copies. Enclaves perform poorly compared to VMs
due to the libOS copies to and from the enclave. The TD1 en-
clave outperforms SGX, while TD2 degrades throughput and
latency further due to accumulated copies and indirections –
VIRTIO drivers, SWIOTLB bounce buffers to the TD1 CVM,
and Gramine-Tyche copies to the TD2 enclave. We confirm
this by measuring lighttpd [64] throughput and observe that
as the payload size increases, the cost of copies is amortized,
and all configurations reach native and TD0 throughput for
a 10K bytes payload.

7.2 Enclaves, VMs, CVMs, & composable isolation

Figure 11 reports Tyche’s performance isolating unmodi-
fied real-world applications on x86_64 relative to native and
includes native VMs and SGX enclaves for comparison.

Applications: We use two web servers (lighttpd [64] and
rust-hyper [54]), a database (SQLite [49]), an in-memory
key-value store (Redis [3]), and a CPU-based machine learn-
ing inference program (llama-cpp [43]) processing prompts.
We use wrk [44] to measure HTTP servers and memtier for
Redis. SQLite runs the full in-source speedtest1 [49] with a
size argument of 1000, measuring various SQL operations in-
cluding 500K inserts. LLaMa reports its own throughput [43]
after generating 1000 tokens. Applications overlap with or
resemble those found in related work [13, 96], allowing per-
formance overhead comparisons across platforms.
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Figure 12. Redis GET latency distribution as measured by
memtier (max throughput) during Figure 11’s experiment.

Configuration: All binaries are unmodified and come from
Gramine’s default examples, except for LLaMa, which we
added (§7.3). The Gramine manifests disable debugging as
well as exitless [6] due to CVE-2022-21233 and CVE-2022-
21166. All enclaves are multi-threaded, with 3 Gramine run-
time threads [8], and their sizes range from 256MB to 4GB.

TD0: TD0 shows no overhead in any benchmark compared
to native, indicating that Tyche does not impact the perfor-
mance of Linux applications. This result is expected, as there
are no calls or exits to the monitor and TD0 has direct access
to devices and the APIC.

VMs & CVMs: TD1 VMs match the performance of native
VMs, demonstrating that KVM-Tyche can support existing
VM deployments. For I/O benchmarks (e.g., Hyper and Re-
dis), TD1 CVMs experience additional overheads due to extra
copies through bounce buffers for I/O (see §7.1.2). They oth-
erwise perform similarly to native VMs.

Enclaves: TD1 enclaves outperform SGX enclaves across
all applications and are close to native for non-latency sen-
sitive applications. SGX performs poorly on LLaMa, even
compared to a TD2 enclave. This is likely due to the limited
EPC (94MB) size compared to the high memory usage (4GiB)
for the model [52, 77] and llama-cpp contexts [43].

Discussion: The latency of network operations is the pri-
mary issue but not a direct consequence of Tyche’s design,
as discussed in §7.1.2, and could be alleviated [40, 69, 70, 83],
e.g., by providing safe device passthrough. Tyche otherwise
demonstrates that existing frameworks can be ported to run
TDs, achieving performance comparable to equivalent native
deployments and outperforming Intel SGX, even in nested
cases, reinforcing our claim of backward compatibility.

7.3 Confidential LLM inference with mutual distrust

This case study deploys the scenario from Figure 2 to protect
user prompts from the CSP and model owner, while keeping
model weights secure from the user and CSP. The CSP runs a
Linux TD0 hypervisor with KVM-Tyche. The user runs a TD1
CVM and creates a TD2 encapsulated enclave for LLM infer-
ence on the CPU, running unmodified llama-cpp [43] with
Gramine-Tyche and 4 threads. The “proprietary model” is an
encrypted Meta LLaMa 3.2 Instruct model [52, 77], decrypted
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inside the enclave as it is read from disk. The enclave has no
file or network access, sharing memory only with the user-
controlled TD1 CVM. The CVM receives prompts through
an SSH connection and forwards them to the LLM enclave.
User keys can further be secured in a separate enclave.
As shown in Figure 11, the TD2 enclave achieves near-

native performance (~2% overhead), outperforms SGX en-
claves (1̃0x), and goes beyond prior industrial solutions [18,
37] by also protecting the model from the user. Future KVM-
Tyche integration with Tyche could explore enabling secure
GPU passthrough.

8 Related Work

Tyche combines a security monitor design with a capability-
based API inspired by micro-kernels to deliver a unified
isolation solution.

Securitymonitors:They serve as trusted intermediaries [88]
to enhance systems with new isolation and security guaran-
tees [28, 41, 106] and are easier to inspect, update and extend
than hardware-based solutions. Arm CCA uses a monitor
to partition memory between realm, normal, and secure
worlds [72] and Komodo [41] shows how a division of labor
between software and hardware [23] enables enclaves inArm
TrustZone [19]. Security monitors are popular in confidential
computing to restrict privileged software, e.g., Inktag [51],
Overshadow [28], HyperEnclave [61], and Keystone [68] pro-
tect enclaves from untrusted OSes, Cloudvisor [106] isolates
VMs from hypervisors, and Blackbox [50] secures containers.
They can offer intra-VM isolation, e.g., Veil [13] implements
enclaves in AMD CVMs [15] while Erebor [105] focuses on
sandboxes in Intel TDX [57] ones, or they are used to harden
kernel integrity [20, 32, 89].

Tyche takes a distinct approach by providing a unified low-
level isolation abstraction, i.e., trust domains, as a common
foundation for higher-level ones. Unlike traditional monitors
that extend or support well-known system abstractions, such
as enclaves or CVMs, Tyche trust domains are orthogonal
to system abstractions, their semantics, or existing privilege
levels, allowing them to not only replace previous monitors
but also to compose their isolation boundaries. This approach
is inspired by micro-kernel design.

Micro-kernels: Micro-kernels [63, 73, 94] follow a mini-
malist design, including only essential functions that cannot
be implemented in user space, such as virtual memory, IPC,
and thread management. This reduces kernel complexity,
improving security and maintainability. By separating mech-
anisms from policies [67], micro-kernels provide flexibility in
resource management and isolation. For instance, while the
kernel handles page tables, user-space components configure
virtual address spaces, enabling the recursive construction of
address spaces outside the kernel [73] and supporting custom
isolation abstractions

Tyche leverages keymicro-kernel concepts to delivermod-
ern isolation guarantees. Its memory operations resemble
L4 [73]’s grant, map, and flush, which are foundational to
memory management. They however differ in that Tyche’s
operations focus on attestable isolation through guaran-
tees on resource management: distinguishing explicitly be-
tween shared and exclusive resources and attesting memory
is measured when received or scrubbed upon revocation
(§4). Tyche also draws inspiration from Fluke [42], which
enables recursive VM isolation through “nested processes”
without the overhead of naive nested virtualization. While
Fluke focuses on modular VM isolation, Tyche generalizes
this approach by providing a foundational mechanism to
compose compartmentalization and confidential computing
isolation.

Despite its similarities to micro-kernel APIs, Tyche is not
a kernel replacement, does not create directly useable system
abstractions such as processes, and requires an untrusted
kernel in TD0 to drive the machine. The principles behind
Tyche’s attestable isolation could however be backported
into existing security-oriented micro-kernels [63].

Virtualization: Tyche is not a hypervisor even though it
runs in root-mode and uses virtualization extensions on x86_-
64. It does not virtualize resources, provide full machine ab-
straction, or take allocation or scheduling decisions. Instead,
Tyche functions more like an exokernel [39] or a trusted
state machine, enforcing and attesting the partitioning and
sharing of resources across trust domains. Tyche shares
some similarities with hypervisors that adopt micro-kernel
principles to improve security [71, 93], but these efforts focus
on minimizing the hypervisor’s TCB rather than providing a
unified isolation abstraction to compose security boundaries.
Unlike type-1 hypervisors [22, 99], which grant extra privi-
leges to their initial domain (e.g., DOM0 in Xen [22] or the root
partition in Hyper-V [99]), TD0 in Tyche has no special privi-
leges. In fact,Tyche could enable designswithmultiple “root”
TDs in the capability derivation tree, by partitioning hard-
ware at boot time, e.g., to create a secure coprocessor running
a TD for security-sensitive tasks like key management [107].
As future work, we explore safe bare-metal interrupt access
inspired by Directvisor [29].

Other mechanisms & platforms: Our RISC-V prototype
in M-mode demonstrates that Tyche does not require vir-
tualization and can adapt to simpler access control mecha-
nisms [14, 62, 86, 102]. Tyche could use alternative architec-
tures [62, 86], like NoHype [62], that eliminate virtualization
and provide simpler primitives to partition I/O, memory, and
cores. CHERI [102] capabilities offer a promising alternative
to page-based mechanisms, already supporting enclaves [98]
and secure embedded devices [14]. Tyche’s software-defined
capabilities provide a global view of system resources with
extensible policies, complementing CHERI’s efficient hard-
ware enforcement for fine-grained memory isolation.
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While we did not port Tyche to Arm, a virtualization-
based backend could be implemented, running themonitor in
EL2, similar to Blackbox [50], in normal, secure [72], or realm
world [72]. Alternatively, it could run as firmware in EL3,
akin to the RISC-V backend, and leverage Granule Protection
Table [72] to isolate memory. Similarly, Tyche could run as
an Intel TDX [57] module, providing attestable policies for
resource management and private shared memory.

9 Conclusion

Tyche’s trust domain abstraction unifies isolation enforce-
ment across privilege layers and system abstractions without
accumulating security extensions.We showed that theTyche
security monitor is both general, by supporting and compos-
ing enclaves, sandboxes, and confidential virtual machines,
and practical by running unmodified applications with near-
native performance. A case study of confidential inference
in the cloud involving mutually distrustful CSPs, users and
model owners illustrates its applicability to modern, complex
threat models in the cloud.
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