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Abstract—Federated learning (FL) enables collaborative model
training across decentralized clients while preserving data pri-
vacy. However, its open-participation nature exposes it to data-
poisoning attacks, in which malicious actors submit corrupted
model updates to degrade the global model. Existing defenses are
often reactive, relying on statistical aggregation rules that can be
computationally expensive and that typically assume an honest
majority. This paper introduces a proactive, economic defense: a
lightweight Bayesian incentive mechanism that makes malicious
behavior economically irrational. Each training round is modeled
as a Bayesian game of incomplete information in which the server,
acting as the principal, uses a small, private validation dataset to
verify update quality before issuing payments. The design satisfies
Individual Rationality (IR) for benevolent clients, ensuring their
participation is profitable, and Incentive Compatibility (IC),
making poisoning an economically dominated strategy. Extensive
experiments on non-IID partitions of MNIST and FashionMNIST
demonstrate robustness: with 50 % label-flipping adversaries on
MNIST, the mechanism maintains 96.7 % accuracy, only 0.3
percentage points lower than in a scenario with 30 % label-flipping
adversaries. This outcome is 51.7 percentage points better than
standard FedAvg, which collapses under the same 50 % attack.
The mechanism is computationally light, budget-bounded, and
readily integrates into existing FL frameworks, offering a practical
route to economically robust and sustainable FL ecosystems.

Index Terms—Federated learning, mechanism design, Bayesian
games, data poisoning, incentive compatibility, robust aggregation.

I. INTRODUCTION

EDERATED learning (FL) has emerged as a key paradigm
for privacy-preserving machine learning, allowing multiple
parties to train a shared model without centralizing their raw
data [1], [2]. While promising for sensitive applications such
as healthcare [3], its distributed and open nature creates a
significant vulnerability: data poisoning attacks [4], [5]. Ma-
licious participants can intentionally submit corrupted model
updates to degrade the global model’s performance or introduce
targeted backdoors [4], [5]. The breadth and severity of these
vulnerabilities are well-documented in recent surveys [6].
The predominant line of defense has been the development
of Byzantine-robust aggregation rules. Methods like Krum [7],

Trimmed Mean [8], and geometric median-based approaches
like RFA [9] aim to filter or down-weight malicious updates
at the server. However, these methods are fundamentally re-
active. They often require strong assumptions (e.g., an honest
majority), can be computationally intensive, and may discard
valuable information from honest clients, thereby slowing con-
vergence. More critically, they fail to address the underlying
economic misalignment: honest clients who contribute valuable
resources (computation, data, communication) are treated no
differently from attackers who seek to sabotage the system.

This economic imbalance threatens the long-term sustain-
ability of open FL ecosystems. If honest participation is not
properly incentivized and malicious behavior is not penalized,
the system becomes prone to collapse. This leads us to our
research question: Can we design an FL system where partici-
pants’ economic incentives are aligned with the goal of training
a high-quality model, making poisoning attacks unprofitable at
equilibrium?

In this work, we draw upon the principles of mechanism
design and game theory to provide an affirmative answer. We
propose a proactive, lightweight Bayesian incentive mechanism
that shifts the defense from a purely algorithmic problem to a
socio-economic one.

Contributions. Our main contributions are as follows:

o« We formulate the FL training process as a repeated
Bayesian game of incomplete information, formally cap-
turing the strategic decisions of clients who can be either
benevolent or malicious.

o We design a simple yet powerful incentive mechanism
where the server uses a small, private validation set to
assess the quality of submitted updates. Based on this
verification, it issues rewards, effectively creating a market
for high-quality model contributions.

e We provide formal proofs demonstrating that our mecha-
nism is Individually Rational (IR), ensuring benevolent
clients have a positive expected utility, and Incentive
Compatible (IC), making poisoning an economically
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dominated strategy for rational attackers.

e« We conduct extensive experiments on the MNIST and
FashionMNIST datasets with non-IID data distributions.
Our mechanism demonstrates exceptional robustness,
maintaining high accuracy (over 96% on MNIST and
80% on FashionMNIST) even when 50% of clients are
malicious—a scenario where standard FedAvg’s accuracy
catastrophically collapses.

II. RELATED WORK
A. Robust Aggregation in Federated Learning

The primary defense against poisoning in FL has centered on
Byzantine-robust aggregation. These server-side methods aim
to identify and mitigate the impact of malicious updates during
the aggregation phase.

Federated Averaging (FedAvg) [1] is the standard, non-
robust baseline. The server aggregates updates by taking a
weighted average of the model parameters from participating
clients. While simple and effective in non-adversarial settings,
it is highly susceptible to even a single malicious client.

Byzantine-Robust Methods have been developed to counter
this vulnerability. Krum [7] computes a score for each client
update based on its sum of squared Euclidean distances to its
nearest neighbors and selects only the single update with the
lowest score. This is robust but highly inefficient, as it discards
the contributions of all other honest clients. Coordinate-wise
methods like Trimmed Mean and Median [8] compute the
median or a trimmed mean for each coordinate of the model-
weight vectors across all clients. These are robust to extreme
values but can be distorted by more subtle attacks. Geometric
median-based methods like RFA [9] compute the geometric
median of the client updates, which is more robust to high-
dimensional outliers than the arithmetic mean but is computa-
tionally expensive. Trusted-source methods like FLTrust [10]
require the server to have a small, clean “root” dataset. The
server trains a baseline update on this set and re-weights client
updates based on their cosine similarity to this trusted update.
Another line of work uses redundancy and coding theory, such
as DRACO [11], which uses coded computations to detect and
correct errors from stragglers or Byzantine workers, though this
often requires significant overhead.

Our work is distinct from these approaches. Instead of
relying on statistical properties or a trusted data source, we
use a performance-based economic filter that is agnostic to the
attack’s specific structure.

B. Incentive Mechanisms for FL

Recognizing the need to motivate participation, researchers
have explored economic incentives for FL. These works pri-
marily focus on encouraging high-quality participation from
rational, self-interested clients. Reputation-based systems [12]
and contract theory [13] have been proposed to model the
contributions of clients and offer tailored rewards. Auction
theory has also been applied, for example, in [14], where
the server runs an auction to select clients with the best data
quality for a given budget. Some works use blockchain to create

decentralized and transparent reward systems, like FedCoin
[15].

Our work’s novelty lies in its direct focus on the security
dimension of incentives. We design a mechanism with formal
game-theoretic guarantees (IR and IC) to not only encourage
honest participation but to actively and provably discourage
poisoning attacks by making them economically non-viable.
The work closest in spirit is perhaps VeriFL [16], which also
uses a validation set, but its goal is post-hoc verification and
attribution rather than proactive, in-round economic deterrence.

III. SYSTEM AND THREAT MODEL
A. System Model

We consider a standard synchronous FL architecture com-
prising a central server and a population of IV clients. Training
proceeds in discrete communication rounds. In each round ¢,
the server broadcasts the current global model, wy, to a subset
of clients. These clients train the model on their local data and
submit their updated model parameters, w; 41, back to the
server. The server then aggregates these updates to produce
the next global model, w;4;. Our key innovation lies in the
verification and payment logic applied before aggregation, as
depicted in Figure 1.
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Fig. 1. System architecture with the proposed incentive mechanism. The server
broadcasts the global model w;. Benign clients (C1, C2) and malicious clients
(Ci, Cj) submit their updates. The server uses a private validation set (D) to
assess update quality. High-quality updates are accepted and paid a reward R,
while malicious updates are rejected and receive no payment. Only verified
updates are used for aggregation.

For our experiments, we use a population of 100 clients. Data
from the MNIST and FashionMNIST datasets is partitioned
among clients in a non-I1ID fashion using a Dirichlet distribu-
tion with o = 0.5 to simulate realistic data heterogeneity.

B. Threat Model

We assume an honest-but-curious server that faithfully exe-
cutes the protocol but may try to infer information from client
updates. A fraction f of the clients are malicious, while the
remaining 1 — f are benevolent. The server has incomplete
information; it knows the overall fraction f but does not know
the type of any individual client a priori.



The malicious clients aim to degrade the global model’s
performance on the primary task. To this end, they employ
a label-flipping attack, a potent form of data poisoning [4].
During local training, a malicious client maps each true label y
to a target label 3/, effectively training its model on deliberately
mislabeled data. For our 10-class datasets, we use the mapping
y' = (y + k) mod 10, where k is an offset (we use k = 1 for
our attacks). This process, illustrated in Figure 2, forces the
client’s local model to learn incorrect associations, and when
aggregated, these poisoned updates corrupt the global model.
More sophisticated attacks, such as targeted backdooring [5],
follow a similar principle of manipulating local training to

achieve a malicious objective.
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Fig. 2. The threat model. A fraction f of clients are malicious. They poison
their local dataset D; by flipping labels to create D;. before training their local
model. Benign clients train on their original, clean data D;.

IV. BAYESIAN INCENTIVE MECHANISM
A. Game Formulation

We model each round of federated training as a Bayesian
game of incomplete information, defined by the tuple I' =
<N7 {®i}7 {Ai}’ {ui}7p>:

e N: The set of players, consisting of the server and N

clients.

e ©;: The set of types for each client i, ©; =
{benevolent, malicious}. A client’s type is private infor-
mation.

e A;: The action space for client i. A client chooses an
action a; € {honest_update, poisoned_update}.

e p(0;): The server’s prior belief about the probability that
client ¢ is of a certain type. We assume a common prior
where P(6; = malicious) = f.

o u;: The utility function for client ¢. The utility is deter-
mined by the payment received from the server, p;, minus
the operational cost incurred, C;. Thus, u; = p; — C;. We
assume a uniform cost C' for all clients for simplicity.

B. The Verification and Payment Mechanism

The core of our defense is a direct revelation mechanism
where the server incentivizes clients to reveal their true”
contribution quality.

Definition 1 (Verification Mechanism). The server holds a
small, private, and clean validation dataset, D,,. Upon receiving
a model update w; .1 from client ¢, the server evaluates its
loss on this set: L; = L(w; ¢+1; Dy). The update is considered

“verified” if its loss is below a predefined quality threshold 7.
The payment rule is:

R if ﬁ(wi,tﬂ; Dy) <T
0 otherwise

Di(Wi 1) = { (n

where R is a fixed reward for a verified update. Only the set
of verified updates, V;, are aggregated to form the next global

model: 1
P @

w; €V

W41 =

This mechanism is lightweight, as it only requires a single
forward pass on a small validation set for each client, a
negligible cost compared to the training itself. The logic is
outlined in Algorithm 1.

C. Mechanism Properties

A robust mechanism must make it profitable for honest
players to participate and unprofitable for malicious players
to attack. These correspond to the game-theoretic properties of
Individual Rationality (IR) and Incentive Compatibility (IC).

Theorem 1 (Individual Rationality). For a benevolent client
choosing the honest action, the expected utility is positive
if the reward R and cost C are set such that R >
C'/ P(verification|honest).

Proof. A benevolent client’s action is to submit an honestly
trained update. Let this action be a;,. The client’s update will
be verified if its loss on D, is less than 7. Let the probability of
this event be P! = P(L(Whonest) < 7). The expected utility
for a benevolent client is:

E[u;]6; = benevolent, a; = a,] = P R+(1—P").0-C (3)

For participation to be rational, this expected utility must be
greater than O (the utility of not participating).

C
Pf~R—C>0:>R>P—Uh 4)
Since an honest update is designed to minimize the loss, its
loss on a clean validation set will be low. Therefore, for a
reasonably set 7, P! ~ 1. With our parameters R = 10 and

C = 2, the condition becomes 10 > 2/P", which holds easily.
Thus, honest participation is economically rational. O

Theorem 2 (Incentive Compatibility). For a rational, self-
interested client, choosing a poisoned action is an economically
dominated strategy if the attack significantly increases the
model’s loss on a clean validation set.

Proof. A malicious client’s goal is to submit a poisoned update,
ap, to degrade the model. This action inherently increases the
model’s true loss. Let the probability of a poisoned update
passing verification be P)* = P(L(Wpoisoned) < T). The
expected utility for taking the poisoned action is:

Elu;|la; = ap) =P - R—-C 5)

For a label-flipping attack, the resulting model will perform
poorly on the correctly labeled validation set D,. Thus, its



loss will be high, and for a reasonable 7, the probability of
verification will be near zero, P)* ~ 0. The expected utility
becomes:

Elu;la; =ap) ~0-R—-C=-C (6)

A rational agent will compare this negative utility to the utility
of not participating (utility 0) or participating honestly (positive
utility, from Theorem 1). Since —C' < 0, the poisoning strategy
is strictly dominated by non-participation. This demonstrates
that the mechanism is incentive-compatible, as it disincen-
tivizes the malicious action. O

V. EXPERIMENTAL SETUP

We implemented our system in PyTorch and conducted
experiments to evaluate its performance against standard base-
lines.

o Datasets: We used two benchmark datasets: MNIST
(handwritten digits) and FashionMNIST (apparel im-
ages). Both have 10 classes. Data was distributed among
100 clients using a Dirichlet distribution (« = 0.5) to
simulate a non-IID environment.

e Model: A Convolutional Neural Network (CNN) with two
convolutional layers (32 and 64 filters, 5x5 kernel), each
followed by max-pooling, and two fully-connected layers
(1024 units and 10 units for the output).

o Training Protocol: 40 communication rounds, 3 local
epochs per round, batch size 32, and SGD with a learning
rate of 0.01.

« Attack Scenarios: We tested with malicious client frac-
tions (f) of 30%, 40%, and 50%. Malicious clients per-
formed a label-flipping attack (y' = (y + 1) mod 10).

« Baselines for Comparison:

— FedAvg: The standard, non-robust federated averag-
ing algorithm.

— Krum: A well-known Byzantine-robust aggregation
rule that selects the single “best” update.

o Mechanism Parameters: Reward R = 10, Cost C' = 2,
and verification threshold 7 = 2.5. The server’s private
validation set D), contained 200 randomly sampled exam-
ples.

The pseudocode for the server’s logic in our proposed

mechanism is detailed in Algorithm 1.

VI. EXPERIMENTAL RESULTS

Our experiments provide a comprehensive view of the mech-
anism’s performance, robustness, and economic effects across
both MNIST and FashionMNIST datasets. We compare our
proposed Bayesian Incentive Mechanism (which we will refer
to as "Mechanism”) against standard FedAvg and the well-
known robust aggregation rule, Krum.

A. Overall Performance and Robustness

We first present a high-level analysis of the mechanism’s
resilience to an increasing number of attackers. Figure 3
summarizes the key outcomes. The top-left panel shows the
final test accuracy on MNIST as the fraction of malicious

Algorithm 1 Federated Learning with Bayesian Incentive
Mechanism (Server-Side Logic)
Require: Reward R, Cost C, Threshold 7, Validation set D,
1: Initialize global model wy
2: for each communication round ¢ = 0,1, ...
3:  Broadcast global model w; to all clients
U, + O {Collect all incoming updates}
for all clients ¢ € {1,..., N} in parallel do
w; ¢+1 ¢ CLIENTUPDATE(wy, D;)
Uy +— U U {wi,tﬂ}
end for
Ve < 0 {Set of verified updates}
10:  for each update w; € U, do

, T —1do

D A A

11: L; < EVALUATELOSS(w;, Dy)

12: if L; < 7 then

13: Pay R to client ¢

14: Ve~V U {wz}

15: else

16: Pay 0 to client ¢ {Client incurs cost C}
17: end if

18:  end for
19:  if [V¢| > O then

20: W1 ﬁ > wey, W {Aggregate verified updates}
21:  else

22 w1 + wy {No updates verified, maintain model}
23:  end if

24: end for

clients increases from 30% to 50%. While FedAvg’s accuracy
plummets from 95.3% to 43.5%, and Krum’s performance de-
grades, our mechanism’s accuracy remains exceptionally stable
above 96.7%. The top-right panel reinforces this, showing our
mechanism achieving 97.0% accuracy on MNIST and 80.3%
on FashionMNIST in the challenging 40% malicious scenario,
significantly outperforming both baselines.

The robustness of our approach is quantified in Table I. When
the attacker population grows from 30% to 50%, FedAvg’s
accuracy suffers a catastrophic drop of 51.8 percentage points
on MNIST and 45.3 points on FashionMNIST. Krum also
proves vulnerable, especially on FashionMNIST, where its
accuracy collapses. In stark contrast, our mechanism’s perfor-
mance degrades by a negligible 0.24 points on MNIST and
1.22 points on FashionMNIST, demonstrating that its economic
filtering effectively insulates the global model from the number
of attackers.

Finally, the bottom-right panel of Figure 3 validates our
economic model. The average utility for an honest client
quickly converges to the theoretical maximum of R — C = §,
confirming that honest participation is consistently and prof-
itably rewarded.

B. Detailed Analysis on MNIST

Figure 4 provides a detailed view of the training dynamics on
MNIST. The final accuracy (top-left panel) remains consistently
high for our mechanism, achieving 96.7% even with 50%
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Fig. 3. Comprehensive performance analysis comparing FedAvg, Krum, and
our proposed mechanism. (Top-Left) Final test accuracy on MNIST vs. the
fraction of malicious clients. (Top-Right) A direct comparison of final accuracy
at 40% malicious for both MNIST and FashionMNIST. (Bottom-Left) The drop
in accuracy when increasing malicious clients from 30% to 50%, highlighting
robustness. (Bottom-Right) The average utility for honest clients participating
in our mechanism, showing convergence to the theoretical maximum of 8.

TABLE I
ROBUSTNESS ANALYSIS: ACCURACY DEGRADATION WHEN INCREASING
MALICIOUS CLIENT FRACTION FROM 30% TO 50%.

Method Acc. @ 30%  Acc. @ 50%  Degrad. (% pts)
MNIST Dataset
FedAvg 95.27% 43.52% 51.75
Krum 85.31% 81.56% 3.75
Mechanism 96.96 % 96.72 % 0.24
FashionMNIST Dataset
FedAvg 80.74% 35.44% 45.30
Krum 73.68% 0.33% 73.35
Mechanism 81.89% 80.67 % 1.22

attackers, as also detailed in Table II. This stability is a direct
result of the economic filter. The training progress (bottom-
right panel) for the 40% attack scenario shows our mechanism’s
smooth and rapid convergence, while FedAvg is erratic and
Krum is noisy.

From an economic perspective, the top-right panel shows
that the average utility for honest clients is stable and positive,
rapidly converging towards the ideal payoff of 8.0. This empir-
ically validates Theorem 1 (Individual Rationality). Malicious
clients, whose updates are consistently rejected, receive zero
payment and incur the cost C, yielding a negative utility. This
validates Theorem 2 (Incentive Compatibility), as attacking is
an economically irrational choice. The total server expenditure
(bottom-left panel) remains bounded and stable, demonstrating
the economic sustainability of the system.

C. Detailed Analysis on FashionMNIST

The results on the more challenging FashionMNIST dataset
(Figure 5) further underscore our mechanism’s strengths. While
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Fig. 4. Detailed performance and economic analysis on the MNIST dataset.
(Top-Left) Final accuracy remains high and stable. (Top-Right) Average utility
for honest clients is stable and positive. (Bottom-Left) Total server revenue
remains bounded. (Bottom-Right) Training progress at 40% malicious shows
superior convergence.

our mechanism maintains over 80% accuracy across all attack
levels, FedAvg’s performance degrades sharply, and Krum fails
catastrophically, with its accuracy dropping to near-random
levels (0.33% with 50% attackers), highlighting the fragility
of distance-based metrics on more complex tasks. These final
accuracy numbers are compiled in Table II.

The economic outcomes are equally strong. The utility
for honest clients (top-right panel) remains positive, ensuring
participation is viable. The training curve at 40% malicious
(bottom-right panel) again confirms our mechanism’s stability
and superior convergence. The total server revenue (bottom-left
panel) is stable, showing the mechanism is not just robust but
also budget-conscious, as it avoids paying for low-quality or
malicious contributions.

TABLE 11
DETAILED FINAL PERFORMANCE AND ECONOMIC METRICS.

Dataset Malicious %  Method Final Acc. %  Honest Utility  Total Revenue
FedAvg 95.27 — —
30% Krum 85.31 — —
Mechanism 96.96 7.64 30.5k
FedAvg 87.13 — —
MNIST 40% Krum 87.22 — —
Mechanism 97.00 7.78 31.1k
FedAvg 43.52 — —
50% Krum 81.56 — —
Mechanism 96.70 7.79 31.2k
FedAvg 80.74 — —
30% Krum 73.68 — —
Mechanism 81.90 7.67 30.7k
FedAvg 78.60 — —
FMNIST 409z Krum 69.03 — —
Mechanism 80.30 7.56 30.2k
FedAvg 35.44 — —
50% Krum 0.33 — —
Mechanism 80.70 7.56 30.2k
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Fig. 5. Detailed performance and economic analysis on the FashionMNIST
dataset. (Top-Left) Our mechanism maintains high accuracy while baselines
fail. (Top-Right) Average utility for honest clients remains positive and viable.
(Bottom-Left) Total server revenue shows controlled expenditure. (Bottom-
Right) Training progress confirms the stability and effectiveness of our mech-
anism.

VII. CONCLUSION

In this paper, we introduced a game-theoretic incentive
mechanism that provides a proactive, economic defense against
data poisoning attacks in federated learning. By framing the FL
process as a Bayesian game and implementing a simple, low-
cost verification step, our mechanism successfully aligns client
incentives with the global objective of training an accurate
model.

Our extensive experiments on MNIST and FashionMNIST
demonstrate the mechanism’s remarkable effectiveness. It
maintains high accuracy and stability even under extreme attack
conditions (50% malicious clients) where standard FedAvg
fails completely and the popular robust aggregator Krum strug-
gles or fails. Our robustness analysis (Table I) quantifies this
resilience, showing negligible performance degradation under
increased attack intensity. We formally proved, and empirically
validated through detailed results (Figures 4 and 5, and Table
I), that the mechanism is individually rational for honest
participants and incentive-compatible for deterring attackers by
making malicious behavior economically non-viable.

This work shows that shifting focus from purely algorithmic
defenses to socio-economic ones is a powerful and practical
strategy for building secure, robust, and sustainable federated
learning systems. Future work could explore adaptive verifica-
tion thresholds, extend the mechanism to defend against more
subtle attack strategies like model backdooring, and investigate
its application in fully decentralized settings.
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