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Abstract

Biometric face morphing poses a critical challenge to
identity verification systems, undermining their security and
robustness. To address this issue, we propose WaFusion, a
novel framework combining wavelet decomposition and dif-
fusion models to generate high-quality, realistic morphed
face images efficiently. WaFusion leverages the structural
details captured by wavelet transforms and the generative
capabilities of diffusion models, producing face morphs
with minimal artifacts. Experiments conducted on FERET,
FRGC, FRLL, and WVU Twin datasets demonstrate WaFu-
sion’s superiority over state-of-the-art methods, producing
high-resolution morphs with fewer artifacts. Our frame-
work excels across key biometric metrics, including the At-
tack Presentation Classification Error Rate (APCER), Bona
Fide Presentation Classification Error Rate (BPCER), and
Equal Error Rate (EER). This work sets a new benchmark
in biometric morph generation, offering a cutting-edge and
efficient solution to enhance biometric security systems.

1. Introduction

Owning to non-intrusive nature, ease of use, and broad
acceptance [22], Facial Recognition Systems (FRS) are
widely adopted in security-related applications, particularly
as the primary biometric for electronic Machine-Readable
Travel Documents (eMRTD) [28, |62, |69]. However, the
increased reliance on FRS exposes them to face morph-
ing attacks, i.e. meticulously blending the facial features of
two individuals to create an image resembling both iden-
tities [16} [53]]. These morphed images undermine FRS by
increasing the False Acceptance Rates (FAR), deceiving hu-
man verifiers, and risking unauthorized access by malicious
actors to secure facilities [13} 45]. As morphing tools be-
come more accessible, even individuals with limited tech-
nical skills can generate high-quality morphs, exacerbating
these risks [4]].
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While efforts to counter face morphing often focus on
detection methods integrated into biometric pipelines that
identify morphed images [59], these approaches struggle
against high-quality morphs, notably, those generated by
advanced deep learning techniques [44}|65]. This highlights
the urgent need for improved morph generation techniques
to evaluate and intensify detection algorithms.

Morphing methods typically fall into two categories:
1) landmark-based approaches [14] and 2) deep learning-
based techniques [8]. Landmark-based methods rely on
a structured pipeline involving landmark detection, warp-
ing, and blending [6, 30, 40]. While effective, these meth-
ods often require manual adjustments and are prone to ob-
vious visual inconsistencies. Conversely, deep learning-
based approaches, such as Generative Adversarial Net-
works (GANs), generate morphs in an end-to-end manner
[24]. GANs have become a prominent choice due to their
ability to produce high-quality images through adversarial
training [18]. However, GAN-based methods face chal-
lenges such as mode collapse, geometric distortion, and sen-
sitivity to dataset quality, often leading to artifacts or vulner-
ability to adversarial-style variations [1} 49} 163].

Recently, Diffusion Probabilistic Models (DPMs) have
emerged as a robust alternative to GANs for image syn-
thesis, offering enhanced diversity and fidelity [20]. These
models iteratively refine noisy data to model complex dis-
tributions, enabling the generation of high-quality images
[19, 26]. The Denoising Diffusion Probabilistic Model
(DDPM), introduced by Ho et al. [20]], achieves remarkable
image quality through iterative noise reduction. Building
on this, the Denoising Diffusion Implicit Model (DDIM)
improves efficiency by reducing the number of sampling
steps while maintaining high synthesis quality [57]]. Never-
theless, diffusion models face notable challenges, requiring
substantial computational resources and extended runtimes.
They also struggle with fine-grained control over morpho-
logical traits, making them less practical for specific tasks
[12,147,163]. These limitations underscore the need for ap-
proaches combining diffusion models’ strengths while ad-
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dressing their challenges, such as improving computational
efficiency and feature control.

This work aims to generate high-quality face morphs
while preserving critical image details efficiently. Despite
advancements in state-of-the-art (SOTA), including GANs
and diffusion models, existing methods face significant lim-
itations. To overcome these challenges, we need a hybrid
approach that integrates complementary techniques.

To this end, we propose a novel hybrid framework that
combines Discrete Wavelet Transform (DWT) and diffusion
models. Wavelet decomposition excels in preserving es-
sential image textures by analyzing images at multiple fre-
quency bands [9, 29], while diffusion models ensure high-
fidelity synthesis [20, |57]. In our approach, the Low-low
(LL) sub-band, which captures critical image features, is ex-
tracted through wavelet decomposition and processed using
diffusion models to generate realistic morphed components.
The Inverse Wavelet Transform (IWT) then combines the
morphed LL sub-band with the high-frequency sub-bands
from the original image, producing the final morph. By us-
ing the complementary strengths of these techniques, our
method effectively addresses the limitations of existing ap-
proaches, enabling the generation of high-quality morphs
with enhanced efficiency.

The primary contributions of this study are as follows:

* An innovative approach using wavelet decomposi-
tion for biometric morphing, enhancing image quality
while preserving essential features.

* The ability to generate high-resolution morphs with-
out increasing computational costs compared to con-
ventional baseline methods.

* A comprehensive evaluation of the proposed frame-
work against SOTA techniques across diverse datasets,
demonstrating its superior quality, efficiency, and ro-
bustness.

2. Related Works

The risks posed by face morphing attacks are highlighted
by Ferrara et al. [13]], who manually created morphed im-
ages using GIMP, an open-source image editor. These im-
ages could deceive Automated Border Control (ABC) sys-
tems despite showing minimal artifacts, but their manual
nature lacked scalability for large-scale dataset production.
Landmark-based algorithms such as Facemorpher [40] and
OpenCV [30]] subsequently automated morph generation,
using warping and splicing to produce morphs efficiently.
However, these methods often introduce artifacts in high-
frequency regions like the iris and facial contours [66], lim-
iting their effectiveness for realistic morph generation.

Recent developments in GANs have significantly im-
proved morph quality by automating synthesis and mini-

mizing perceptual inconsistencies [7, [17,51]. Damer et al.
[8] introduced MorGAN, one of the first GAN-based mor-
phing methods, which blends two identities into a single
morphed identity. Subsequent architectures such as Style-
GAN?2 [50] and MIPGAN-II [66]] further enhanced morph
quality and reduced artifacts. These advancements have
driven further research in the field of face morph generation
[39. 160]. However, GAN-based approaches face persistent
challenges, such as mode collapse and dataset sensitivity,
often resulting in artifacts [46].

DPMs have emerged as a promising alternative to GANS,
offering superior diversity and fidelity [56]. Ho et al.
[20] demonstrated the potential of DPMs for generating
highly detailed images through iterative denoising and ef-
fectively addressing mode collapse. Diffusion autoencoders
extended these capabilities by disentangling semantic and
random data, allowing for more controlled image genera-
tion [38]]. Building on this, recent methods have applied dif-
fusion models specifically to face morphing. DiffMorpher
[67] enables full-image semantic interpolation but incurs
high computational costs. Fast-DiM [3] improves efficiency
by reducing the number of sampling steps but does not en-
hance morph quality or structure preservation. Blasingame
et al. [2]] proposed a strong morphing attack pipeline based
on diffusion, yet it lacks control over fine-grained facial fea-
tures. Despite these advances, computational demands and
limited structural fidelity remain open challenges. In con-
trast, WaFusion introduces a hybrid wavelet-diffusion ap-
proach that selectively processes only low-frequency com-
ponents, achieving efficient morphs while maintaining crit-
ical facial structure.

Wavelet-based methods have proven effective in enhanc-
ing both the quality and robustness of face morphs. O’Haire
et al. [33] employed wavelet transformations to generate
morphed faces, while Huang et al. [21] applied them for
image restoration in morphing contexts. More recently,
Hybrid approaches such as Phung et al. [37] have com-
bined wavelet decomposition with diffusion models, lever-
aging texture analysis for high-fidelity synthesis with re-
duced computational cost. These advancements demon-
strate the adaptability of wavelet-based frameworks in ad-
dressing prominent challenges in morph generation.

As face morphing techniques evolve, Morphing At-
tack Detection (MAD) has become a critical research area.
Early works [41} 152]] emphasized the challenge of distin-
guishing morphs from bona fide images. More recent ap-
proaches leverage diffusion models to detect morphs as out-
of-distribution samples [23], deep face embeddings from
models like MagFace [25]], and multispectral imaging for
enhanced detection [44]. These works demonstrate how
progress in morph generation drives advances, reflecting the
co-evolution of attack and defense strategies.

While landmark-based methods offer simplicity and con-
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Figure 1. Overview of the WaFusion framework for face morphing. The input images, Subject 1 and Subject 2, are first aligned and
decomposed into four sub-bands (LL, LH, HL, HH) using wavelet decomposition. The LL sub-bands, highlighted in the green dotted box,
are processed through the diffusion model to generate the morphed LL sub-band. The remaining sub-bands, shown by orange dots, are
averaged. The final morph is reconstructed using the inverse wavelet transform, combining both morphed and averaged components.

trol, they often fail to capture complex facial structures
and expressions. GAN- and diffusion-based techniques sig-
nificantly improve realism and diversity, yet they remain
susceptible to artifacts and high computational cost [39].
Recent hybrid approaches that integrate wavelet decompo-
sition with generative models show potential in address-
ing these limitations. Building on this direction, our ap-
proach combines wavelet decomposition with diffusion au-
toencoders to selectively enhance structural fidelity while
reducing generation overhead.

3. Methodology
3.1. Wavelet Transform

The wavelet transform is a foundational component of
our model, enabling efficient decomposition of images into
their low-frequency approximations and high-frequency de-
tails [29]. This hierarchical process captures coarse struc-
ture in the Low-Low (LL) sub-band, while encoding finer
details , e.g., vertical, horizontal, and diagonal edges in
the remaining sub-bands, namely Low-High (LH), High-
Low (HL), and High-High (HH). Wavelet decomposition
preserves essential structural and textural information while
reducing the spatial dimensions, facilitating efficient down-
stream processing.

We use the Haar wavelet for its simplicity and computa-
tional efficiency. The decomposition employs low-pass (L)
and high-pass (H) filters, resulting in four sub-bands: Xj;
represents a coarse, low-frequency approximation for the
image, capturing its overall structure, X;;, encodes high-
frequency details in the horizontal direction, highlighting
fine horizontal edges, X}; encodes high-frequency details
in the vertical direction, focusing on vertical edges, and
Xpnp, encodes high-frequency details in the diagonal direc-

tion, representing texture and diagonal edges.

These sub-bands are represented in Fig. [I] where the
LL sub-band is highlighted as the primary source of struc-
tural information for morph generation, while the high-
frequency sub-bands contribute fine-grained textures. The
Haar wavelet transform of an image X € R”*W is com-
puted as:

qu:FJ'X'an p7qE{L7H}7 (1)

yielding four % X % sub-bands. To reconstruct the original
image, the IWT recombines these sub-bands, ensuring no
loss of fidelity [29].

In our framework, the LL sub-band is processed using a
diffusion model to generate the morphed component. The
high-frequency sub-bands (LH, HL, and HH) are averaged
and fused with the morphed LL sub-band using the IWT to
produce the final high-resolution morph. The wavelet anal-
ysis was implemented using the PyWavelets package [27],
ensuring efficient computation and detailed texture preser-
vation.

3.2. Diffusion Model

Diffusion-based generative models progressively trans-
form a noise map, initialized from a standard Gaussian dis-
tribution A (0,I), into a clean image through a series of
denoising iterations. First introduced by Ho et al. [20],
these models rely on a learned denoising function, eg(x¢, t),
which predicts the noise added to an image at step ¢. By iter-
atively removing this noise, the models reconstruct the orig-

INote: The subjects shown in Figure 2 are identical twins from the
WVU Twin dataset, which explains the high visual similarity between the
bona fide images. This characteristic applies to all image pairs generated
from the WVU Twin dataset.
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Figure 2. Architecture for diffusion-based morph generation using Diffusion Autoencoders. LL sub-bands (red dashed lines) from Subject
1 and Subject 2 are processed through semantic encoders and an averaging block. Outputs are passed through stochastic encoders, followed
by interpolation. Semantic features undergo linear interpolation, while stochastic features use spherical linear interpolation. The combined

features are decoded to generate the morphed LL sub-band.'

inal image x(, starting from a fully noisy sample x;. This
denoising function is implemented using a UNet architec-
ture [48], enabling high-quality image generation. More-
over, the approach simplifies the variational lower bound
on the data’s marginal log-likelihood, a technique that has
gained significant adoption in the field [37, 32].

In the forward process, Gaussian noise is added to zq
over 1" steps, modeled as:

q(x | Tiq) = N((\/ 1= Bi)xe—1, Bed), 2

where (3; controls the noise schedule. The noisy image x;
at step ¢ can also be expressed directly in terms of xg:

q(z¢ | z0) = N(Vagxo, (1 — ap)I), 3)
with oy = HZ:1(1 — fBs). The reverse process aims to
remove this noise, reconstruct xg, modeled as:

(i1 [ 2) = N(pg (e, 1), 01), “)
where g is a learned mean function and oy is predefined
[20]. This reverse process enables the stepwise reconstruc-
tion of xg from xr.

Building on this foundation, Song et al. [57]] introduced
the DDIM, which modifies the reverse process to be deter-
ministic. DDIM generates samples using the following up-
date rule:

20— VT e} <xt>)

N
+ 1 — ap1€h(z),
)

Ti—1 = \/ Q-1 <

allowing faster sampling and more precise control over the
generative process without altering the marginal distribu-
tion. DDIM further introduces an inference distribution:

Q(xtfl | 95::7350) =

Tt — A/ Q0
N — ]-_ — '770 )
(\/Oét 1Zo + +/ Qi1 - )

(6)
which retains the core principles of DDPM while enabling
more efficient and deterministic sample generation.

Despite their advantages, DPMs have limitations. The
latent variable zp, representing the starting point of
the reverse process, lacks high-level semantic informa-
tion, making it less interpretable for applications requiring
meaningful feature manipulation, such as face morphing.
Preechakul et al. [38]] explored this limitation and proposed
methods to disentangle semantic and random data, high-
lighting the importance of enriching the latent variable’s
representation for downstream applications.

Our hybrid approach builds on the foundational strengths
of DPMs while addressing their inherent limitations. By in-
tegrating structural precision with detailed feature control,
this methodology enables the generation of high-quality, re-
alistic face morphs, while enhancing both interpretability
and computational efficiency.

3.3. Proposed Method

The proposed WaFusion framework for face morph gen-
eration is depicted in Fig. [I] which provides an overview
of its key components and workflow. The process be-



gins with the decomposition of two bona fide input im-
ages, i.e. distinct identities, into four wavelet sub-bands:
LL, LH, HL, and HH. This decomposition, performed us-
ing a single-level Haar transform, which separates low-
frequency approximations (LL) from high-frequency de-
tails (LH, HL, HH). The LL sub-bands, which capture the
structural essence of the images, are then processed by the
morph generation block, implemented using diffusion au-
toencoders [38]], to generate the morphed LL sub-band. Fi-
nally, the inverse wavelet transform fuses the morphed LL
sub-band with the averaged high-frequency sub-bands from
subject 1 and subject 2, reconstructing the final morphed
image with high fidelity and detail.

Our diffusion autoencoders, as illustrated in Fig. [2| em-
ploy a dual-encoder structure consisting of semantic and
stochastic encoders. The semantic encoder focuses on pre-
serving structural attributes, such as facial feature align-
ment, ensuring the morph retains the essential character-
istics of both input identities. In contrast, the stochas-
tic encoder captures fine-grained details, such as textures,
hair direction, and clothing, enriching the morph’s vi-
sual fidelity while maintaining its identity relevance. To-
gether, this dual-encoder structure provides a balance be-
tween maintaining overall structure and incorporating finer
details. During the interpolation process, the semantic en-
coder streams are blended linearly to maintain consistent
facial landmarks. Simultaneously, the stochastic encoder
outputs are interpolated using spherical linear interpolation,
allowing smooth and natural blending of fine-grained ap-
pearance features such as skin texture, hair style, and cloth-
ing patterns. This dual-path interpolation mechanism en-
sures the structural coherence and realistic textural details
of generated morphed. To facilitate the effective blending
of attributes, three fundamental functions are incorporated
into the framework: 1) the image space preprocessing func-
tion &, 2) the image space interpolation function £y, and
3) the latent space interpolation function ¢z. The image
space preprocessing function £ : X x X — X, aligns and
enhances key features from the input images before encod-
ing, ensuring consistency in structural attributes. The image
space interpolation function, ¢y (u, v;vy) = yu + (1 — y)v,
blends the two input images linearly, where v € [0, 1] deter-
mines the blending ratio and controls the influence of each
image. Finally, the latent space interpolation function, as
defined in [57], handles non-linear relationships in the la-
tent space:

sin((1 —v)0) ut sin(v0)

sin 6 sin 6

EZ(uav;FY) = v, (7)

arccos(u-v)

[ul,|v] ) :
of the generated morphs by addressing the complexity of
interpolating stochastic codes and preserving semantic co-

herence.

where 6 = . This function enhances the realism

While WaFusion builds on validated techniques such
as diffusion autoencoders and wavelet transforms, its nov-
elty lies in combining these domains for face morphing.
By selectively applying generative processing only on low-
frequency components while maintaining high-frequency
details through efficient averaging, WaFusion uniquely bal-
ances computational efficiency and morph quality, which
has not been explored in previous morphing methods.
This hybrid approach results in high-quality, realistic face
morphs that are robust against detection systems.

4. Experiment and Results
4.1. Datasets

We use four datasets: WVU Twin E] [34], FRLL [11],
FRGC [35], and FERET [36]]. WVU Twin contains frontal
images with neutral expressions and plain backgrounds. It
includes 2,268 unique identities, with some subjects ap-
pearing multiple times in collections spanning different
years. This results in morph pairs with naturally high vi-
sual similarity. The images have resolutions ranging from
2848 x 4288 to 5760 x 3840.

The other datasets contain passport-style frontal im-
ages under ideal lighting: FRLL (102 IDs, 413 x 531),
FRGC (765 IDs subset, 1704 x 2272), and FERET (1,199
IDs, 512 x 768). We generate 2,971 WVU Twin-based,
1,122 FRLL-based, 964 FRGC-based, and 529 FERET-
based morphs.

Baseline comparisons include FaceMorpher [40],
OpenCV [30], StyleGAN [24], WebMorpher [10] (on
FRLL only), and Diffusion Autoencoders [38, 2. Morph-
ing protocols follow Neubert et al. for the AMSL dataset
applied to FRLL [31], and Scherhag et al. for FERET
and FRGC [54)]. We also include an LL-only baseline
(LL-morphs), where only the low-frequency sub-band is
morphed and high-frequency sub-bands are averaged.

4.2. Implementations Details

All the images are resized to 512 x 512, and aligned via
facial landmarks. A single-level Haar wavelet transform is
applied, resulting in four 256 x 256 sub-bands. The LL
sub-band is input into the morph generator, while high-
frequency sub-bands are averaged. The inverse wavelet
transform reconstructs the final 512 x 512 morph. Morph
generation employs pre-trained Diffusion Autoencoders
[38] using DDIM with 100 steps. All experiments are con-
ducted on an NVIDIA Titan RTX GPU with 24 GB of
VRAM.

For verification, we use FaceNet [55]], a widely adopted
framework for facial recognition, with an Inception back-
bone [38]], pre-trained on the VGGFace2 [5]. FaceNet is

2The dataset is available upon request. To gain access, please contact
Dr. Jeremy Dawson at jeremy.dawson @mail.wvu.edu.
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Figure 3. APCER-BPCER curves for FaceNet verifier across (a) FERET, (b) FRGC, (c) FRLL, and (d) WVU Twin datasets.

leveraged to quantify look-alikes by generating compact
feature embeddings for input images. It uses a triplet loss,
where the Euclidean distance (L2) for embeddings of the
same identity are positive examples, and differing identities
are considered negative examples [53].

4.3. Evaluation Metrics

To evaluate the effectiveness of WaFusion, we use
several key metrics: Area Under the Curve (AUC), At-
tack Presentation Classification Error Rate (APCER), Bona
Fide Presentation Classification Error Rate (BPCER), and
Equal Error Rate (EER). These metrics follow the ISO/IEC
30107-3 framework [15] and are commonly used in morph-
ing attack detection.

The AUC is derived from the Receiver Operating Char-
acteristic (ROC) curve, which plots the true positive rate
against the false positive rate at various thresholds [64]]. The
EER represents the point where the FAR equals the False
Rejection Rate (FRR) [42]. APCER measures the ratio of
morph attack samples incorrectly classified as bona fide pre-
sentations, while BPCER quantifies the percentage of gen-
uine images misclassified as morphs [59].

Figure 4. Visual comparison of morph images generated by
OpenCYV, FaceMorpher, Diffusion, and WaFusion using the WVU

Twin dataset. Bona fide images are shown in blue boxes and
morphs are shown in green boxes.

4.4. Vulnerability Analysis

This section evaluates the proposed WaFusion frame-
work using the FRGC, FERET, FRLL, and WVU Twin
datasets. The WVU Twin dataset provides controlled
and high-similarity morphs. To further evaluate across

broader appearance variations and conditions, we use
FRLL, FERET, and FRGC. This multi-dataset evaluation
ensures generalization beyond highly similar subjects. The
evaluation includes visual comparisons, quantitative met-
rics, and an ablation study to assess individual component
contributions.

A visual comparison of morph generation methods is
presented in Fig. ] using the WVU Twin dataset. WaFu-
sion generates morphs at 512 x 512, surpassing the 256 X
256 resolution of the Diffusion approach. This demon-
strates WaFusion’s efficiency in achieving higher-quality
morphs without increasing computational costs. Addition-
ally, WaFusion benefits from targeting the LL sub-band,
which captures most of the structural content, while aver-
aging the high-frequency sub-bands to reduce unnecessary
computation.

WaFusion morphs exhibit superior realism and detail,
particularly in finer features such as facial textures and
hair. In contrast, Diffusion morphs lack resolution, and
traditional methods like OpenCV and FaceMorpher pro-
duce visible artifacts in facial contours and hairlines. The
WVU Twin dataset, characterized by highly similar iden-
tities, poses challenges for all methods, yet WaFusion con-
sistently minimizes artifacts and delivers visually consistent
results. This highlights the framework’s robustness even un-
der extreme inter-subject similarity.

The metrics in Table [I] provide a quantitative compari-
son of WaFusion with OpenCV, FaceMorpher, StyleGAN,
and Diffusion across various datasets, using AUC, APCER,
BPCER, and EER. WaFusion stands out with the lowest
EER and competitive results across most datasets, high-
lighting its effectiveness in generating realistic and diverse
morphs. On the FRGC and FERET, WaFusion outperforms
other methods, achieving high-quality morphs with mini-
mal artifacts. On the FRLL, StyleGAN slightly outperforms
WaFusion in some metrics due to the dataset’s limited di-
versity, but WaFusion’s morphs remain visually more real-
istic. For WVU Twin, WaFusion achieves the lowest AUC
and EER, demonstrating its effectiveness even with high-
similarity identities.

Fig. [Bland Fig. [Billustrate the APCER-BPCER and ROC
curves, respectively, using the FaceNet, further validating



Table 1. Performance of FaceNet verifier across both high-similarity (WVU Twin) and diverse-appearance datasets (FRLL, FERET, FRGC)
evaluated using AUC, APCER, BPCER, and EER.

Datasets Methods AUC | APCER@BPCER (%) 1 BPCER@APCER(%) 1 EER (%)
5% | 10% | 30% | 5% | 10% | 30%
OpenCV [30] 0.7267 | 71.294 | 61.351 | 35.647 | 84.631 | 71.339 | 40.291 34.145
FaceMorpher [40] | 0.6735 | 77.861 | 69.231 | 46.341 | 91.069 | 80.166 | 47.04 37.523
FRGC StyleGAN [24] 0.5073 | 94.746 | 88.555 | 68.292 | 94.496 | 88.681 | 71.131 50.281
Diffusion [38] 0.4955 | 94.559 | 86.679 | 68.292 | 96.053 | 91.381 | 73.624 50.656
WaFusion 0.4843 | 95.717 | 89.453 | 71.422 | 96.148 | 92.487 | 75.861 52.593
OpenCV [30] 0.7295 | 71.455 | 60.302 | 36.862 | 85.037 | 72.727 | 37.31 32.703
FaceMorpher [40] | 0.6798 | 77.315 | 68.241 | 45.557 | 88.825 | 76.515 | 43.56 37.618
FERET StyleGAN [24] 0.6295 | 83.742 | 76.37 | 52.741 | 91.477 | 82.765 | 50.568 41.398
Diffusion [38] 0.501 | 93.383 | 90.359 | 67.296 | 97.348 | 90.909 | 69.696 50.85
WaFusion 0.4923 | 94.424 | 90.276 | 70.473 | 97.299 | 92.247 | 73.163 51.856
OpenCV [30] 0.5741 | 85.294 | 73.529 | 56.862 | 95.983 | 91.147 | 65.573 46.078
FaceMorpher [40] | 0.5848 | 88.235 | 77.45 | 56.862 | 95.331 | 88.615 | 61.179 44.117
FRLL WebMorpher [10] 0.6 80.392 | 73.529 | 52.941 | 94.098 | 86.803 | 60.163 43.137
StyleGAN [24] 0.4793 | 93.137 | 88.235 | 71.568 | 97.788 | 93.529 | 74.856 51.96
Diffusion [38] 0.5149 | 93.137 | 88.235 | 61.764 | 95.61 89.64 | 70.676 49.019
WaFusion 0.4909 | 94.403 | 90.662 | 65.177 | 97.496 | 91.891 | 75.891 50.798
OpenCV [30] 0.5349 | 93.886 | 86.876 | 65.342 | 93.797 | 88.246 | 65.197 47.507
FaceMorpher [40] | 0.5315 | 93.964 87.5 65.537 | 94.001 | 88.517 | 65.678 47.507
WVU Twin Diffusion [38§] 0.4829 | 94.859 | 89.369 | 71.495 | 95.847 | 91.729 | 73.335 50.506
WaFusion 0.4715 | 96.296 | 91.583 | 73.983 | 96.934 | 93.274 | 75.218 52.681
WaFusion’s effectiveness. These curves demonstrate our 4.5. Ablation Study

method’s ability to generate more challenging morphs for
verifiers, particularly at stricter thresholds, achieving a fa-
vorable balance between attack success rates and bona fide
misclassification rates across all datasets.

A broader visual comparison, shown in Fig. [] highlights
WaFusion’s superior realism and consistency across morphs
generated for the FRGC and FERET. While StyleGAN pro-
duces high-quality images, its morphs lack realism due to
GAN-specific limitations such as mode collapse. Diffusion-
based morphs suffer from resolution constraints, while tra-
ditional methods like OpenCV and FaceMorpher generate
artifacts in facial features. WaFusion consistently delivers
detailed, realistic morphs, reinforcing its adaptability and
scalability across datasets with varying characteristics.
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The ablation study in Table [2] compares two variations
of WaFusion: morphing all four sub-bands (LL, LH, HL,
HH) versus morphing only the LL sub-band while averag-
ing the high-frequency sub-bands. Results using Learned
Perceptual Image Patch Similarity (LPIPS) [68] and Struc-
tural Similarity Index Measure (SSIM) [61]] show that LL-
only morphing achieves comparable performance, as the LL
sub-band captures most structural information, while high-
frequency sub-bands mainly represent edge details.

Table 2. Comparison of morph generation methods on the Twin
dataset, using LPIPS and SSIM metrics.

Method LPIPS | | SSIM ¢
WaFusion (All sub-bands) 0.243 0.792
WaFusion (LL sub-band) 0.239 0.798
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Figure 5. ROC curves for FaceNet verifier across (a) FERET, (b) FRGC, (c¢) FRLL, and (d) WVU Twin datasets.
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Figure 6. Morph images generated by different methods on the FRGC and FERET datasets, showing bona fide images (blue boxes) and

morphs (green boxes).

Moreover, processing all four sub-bands requires ap-
proximately four times more computation than morphing,
confirming the design’s efficiency without compromising
morph quality.

4.6. Future Work

Future work will focus on improving the scalability, gen-
eralization, and performance of WaFusion. While this study
uses a single-level Haar wavelet for simplicity, future ver-
sions will explore multi-level decompositions and alterna-
tive bases (e.g., Daubechies) to capture fine-grained mor-
phological details. We will also investigate selective pro-
cessing of high-frequency sub-bands at higher wavelet lev-
els to better balance morph quality and computation. An-
other direction involves extending WaFusion to real-time
scenarios, such as video-based biometric authentication.
These enhancements will further position WaFusion as a ro-
bust and adaptable framework for biometric security.

5. Conclusion

In this study, we introduce WaFusion, a hybrid frame-
work combining wavelet decomposition and diffusion mod-
els to generate high-quality facial morphs. WaFusion pre-
serves structural integrity and fine texture while minimizing
perceptual artifacts, all without additional computational
cost. Extensive evaluations on FRGC, FERET, FRLL,
and WVU Twin demonstrate WaFusion’s superiority over
state-of-the-art methods across biometric metrics including
APCER, BPCER, and EER. Its ability to produce realis-
tic and challenging morphs underscores its potential to ad-
vance morph generation and strengthen biometric security
systems.
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