arXiv:2507.12670v1 [cs.CR] 16 Jul 2025

On the Consideration of Vanity Address Generation
via Identity-Based Signatures

Shogo Murasaki

Kanazawa University, Japan

Abstract—An address is indicated as an identifier of the user
on the blockchain, and is defined by a hash value of the ECDSA
verification key. A vanity address is an address that embeds
custom characters such as a name. To generate a vanity address, a
classical try-and-error method is employed, and thus the number
of characters to be embedded is limited. In this paper, we focus
on the functionality of identity-based signatures (IBS) where
any strings can be employed as a verification key, and explore
whether IBS can be used for generating a vanity address. We
attach importance to the fact that it is not realistic to replace
ECDSA with key recovery, which is currently employed for
issuing transactions in Ethereum, to an IBS scheme. Even if
this replacement is possible, it is not a reasonable price for the
ease of the vanity address generation. Thus, we pay attention to
a generic construction of IBS from signatures, and construct
an IBS scheme from ECDSA with key recovery. Though we
cannot directly generate a vanity address due to the key recovery
functionality of the underlying ECDSA, we can connect any string
with an address due to the functionality of IBS that can give
additional meaning to the address. We implement our system by
Solidity, and demonstrate that the gas cost is almost same as that
of the ECDSA signature verification.

Index Terms—Blockchain, Vanity address, Identity-based sig-
natures, ECDSA with key recovery

I. INTRODUCTION

User signs a transaction using own secret ECDSA sign-

ing key when the user issues the transaction in Ethereum,
where ECDSA stands for elliptic curve digital signature algo-
rithm. An address is indicated as an identifier of the user on
the blockchain, and is defined by a hash value of the ECDSA
verification key. Precisely, Ethereum Yellow Paper [13]] writes
that “A Ethereum address is defined as the rightmost 160-bits
of the Keccak-256 hash of the corresponding ECDSA public
key”. Here, an address is looked as a random value because
the underlying verification key is generated by a secret signing
key that is chosen at random. It is not trivial to check whether
an address is valid (meaning that the address is managed by
an expected user).

Vanity Address. A vanity address is an address that embeds
custom characters such as a name. It is not Ethereum-specific.
For example, Edward Snowden publishes a public key of
Nostr “npub1snOwdenkukakuOd9df....” Here, snOwden (o is

This work was done when he was in Kanazawa University. He is currently
a master student at Institute of Science Tokyo.

Corresponding Author: k-emura@se.kanazawa-u.ac.jp

Uhttps://x.com/Snowden/status/16207906888867 18466

Kazumasa Omote
University of Tsukuba, Japan

Keita Emura
Kanazawa University, Japan
AIST, Japan

replaced to 0) is embedded, and it can be seen as a vanity ad-
dress. An article (Top 5 Bitcoin Vanity Addresses [S]]) reports
an address embedding the currently longest character “Em-
barassable” (actual value is EMBARraSS) and a palindrome
address “1234m....U4321”. From these examples, it seems that
the motivation to embed some meaningful string/character in
an address, that is essentially a random value, is relatively
popular. We also introduce vanity URLs. The article [10]
introduces vanity URLs as follows:

“custom-made, easy-to-remember, and they pack a
punch when it comes to branding”.

Moreover, it insists that

“But why should you care about vanity URLs? Well,
they’re essential for your brand. They make your
web address more user-friendly, more memorable,
and they can significantly boost your SEO. They
target your audience (buyers) specifically, enhancing
the user experience all around. So, if you're serious
about taking your branding to the next level, it’s time
to get familiar with vanity URLs.

Though this is an article about vanity URLs, it also well
explains the effectiveness of vanity address as well .

How to Generate a Vanity Address at Present. A vanity
address is generated by a classical try-and-error method as
follows.

1) Choose a secret signing key at random.

2) Generate the verification key.

3) Check whether its hash value contains the expected
character, and repeat this cycle until the desired result
is obtained.

Issues in the Current Generation Method of Vanity Ad-
dresses. Here, we discuss issues of the above classical try-and-
error method in terms of computational costs and the number
of characters to be embedded. To generate a verification
key, algebraic operations (additions over an elliptic curve
in the case of ECDSA) are required. These operations are
quite inefficient compared to computations of a hash function.
Moreover, a secret signing key needs to be chosen at random
(to prevent the guessing attack) and thus generating a vanity
address will not be completed in a realistic amount of time
when a relatively long character is considered to be embedded.
An article [9]] introduces that a Bitcoin vanity address can

https://x.com/Snowden/status/1620790688886718466
https://arxiv.org/abs/2507.12670v1

be generated by one hour when 5 characters are considered
to be embedded, but it requires more than three months if
7 characters are considered to be embedded. Concretely, we
tried to generate a Ethereum vanity address using VANITY-
ETH | For 7 characters, it displayed that “50% probability:
5 hours, 11 minutes”, for 8 characters, it displayed that “50%
probability: 3 days, 7 hours”, and for 9 characters, it displayed
that “50% probability: 1 month, 3 weeks”. On the other hands,
we can generate a vanity address in seconds when 3 characters
are indicated. We remark that, in addition to the number of
characters to be embedded, it is restricted that only 0-9 and
A-F are possible in Ethereum since each address is expressed
by hexadecimal numbers.

Real Incident. To reduce the computational cost, we should
not use a relatively small random number to efficiently gen-
erate a vanity address. Actually, a vulnerability of a tool for
vanity address generation, Profanity, has been reported where
a 32-bit seed was set for generating a random number (See
CVE-2022-40769 [1]), and a cryptocurrency market maker,
Wintermute, was hacked for around $160 million in September
2022.

Our Motivation. In view of the above situation, it seems a nat-
ural motivation to embed a character with some meaning to an
address, but the number of character is limited as a few words
and vanity address generation takes an enormous amount of
time. Though the above incident seems an implementation
vulnerability, it is highly desirable to propose a method to
safety and efficiently generate a vanity address.

As the first attempt, we focus on the functionality of
identity-based signatures (IBS) [[11] where any strings, say
identity ID in the IBS context, can be employed as a verifi-
cation key, and explore whether IBS can be used for generating
a vanity address as follows (we will explain that the attempt
fails later).

1) Indicate a character to be embedded to a vanity address.

2) Choose a 128-bit random number.

3) Compute its hash value, and repeat this cycle until the
desired result is obtained.

4) Set the random value as /D when a desired address is
generated.

Then, it is expected that the number of algebraic operations
can be drastically reduced compared to the classical try-and
error method. We remark that a key generation center (KGC)
is defined that issues a secret signing key for I D using the own
master secret key. Then, a key escrow problem happens where
the KGC also can generate signatures. To solve the problem,
TEE (Trusted Execution Environment) could be employed
(See Section [IV).

Limitation of the First Attempt. Though IBS seems a
promising tool to safety and efficiently generate a vanity
address, we attach importance to the fact that it is not realistic
to replace ECDSA with key recovery, which is currently

2ETH vanity address generator: https:/vanity-eth.tk/

employed for issuing transactions in Ethereum, to an IBS
scheme. Even if this replacement is possible, it is not a
reasonable price for the ease of the vanity address generation.

Our Contribution. In this paper, we pay attention to the fact
that IBS can be generically constructed from any signature
scheme [4]], [6], [7], and construct an IBS scheme from
ECDSA with key recovery. Then, we consider whether a vanity
address can be generated by using the ECDSA-based IBS
scheme via the above attempt. Counterintuitively, we cannot
directly generate a vanity address. We stress that, although it
can be seen as a negative result, clarifying this counterintuitive
fact is also our important contribution.

On the other hands, we can connect any string with an
address due to the functionality of IBS that can give addi-
tional meaning to the address. For example, a name can be
written together with an address, and the unforgeability of
IBS cryptographically guarantees that the name is connected
to the address. This is a crucial difference from the case that
a name is just written together with an address.

We implement our system by Solidity, and demonstrate
that the gas cost is twice compared to that of the ECDSA
signature verification. We further pointed out that one of two
ECDSA signature verification is independent to the message
(transaction) in the IBS signature verification procedure, and is
for verification of a certification. Since the certification needs
to be verified only once, the actual gas cost for verifying a
transaction is essentially same as that of the ECDSA signature
verification.

Related Work. Baldimtsi et al. [2]] showed that the security
is preserved even if a part of the output of a hash function
is previously indicated in terms of the bit security framework
defined by Watanabe and Yasunaga [12]. Though the main
purpose of Baldimtsi et al. is to reduce the storage cost by
fixing a part of hash value, they mentioned about vanity
addresses. To the best of our knowledge, this is the only work
that considers vanity addresses from the cryptographic point
of view, and they did not consider IBS in their paper.

II. ECDSA WITH VERIFICATION KEY RECOVERY

In the conventional signature scheme, the verifica-
tion algorithm takes a verification key in addition to
a signature and a message. Concretely, let SIG =
(Sig.KeyGen, Sig.Sign, Sig.Verify) be a signature scheme,
(vksig, sigkgg) < Sig.KeyGen(1*) be a pair of a verifica-
tion key and a signing key (here, A € N is a security
parameter), o <« Sig.Sign(sigkg,, M) be a signature on a
message M. Then, the verification algorithm is run such that
Sig.Verify(vksig, 0, M). However, Ethereum employs ECDSA
with key recovery where a verification key is recovered from
(sigma, M) and the verification algorithm does not take a
verification key as input. Concretely, check whether the hash
value of the recovered verification key is equal to an address.
Precisely, an address is described as addr = Bygg_.255 (H (vksig))
where Bgg. 255 is the rightmost 160-bits of the Keccak-256
hash (See Ethereum Yellow Paper [13]). This ECDSA with

https://vanity-eth.tk/

key recovery is employed as the underlying signature scheme
to construct an IBS scheme via the generic construction [4],
[6], [7l. The selection is reasonable when the proposed system
is considered to be implemented in the actual blockchain
environment.

Next, we introduce ECDSA with key recovery as follows.
Let p and ¢ be prime numbers, H : {0,1} — Z, be a
hash function, E/F,, be an elliptic curve with order ¢ defined
over IF,,, and G € E(FF,) be a base point. Assume that each
algorithm implicitly takes (E, G, p, q) as input. We describe a
pointon E as R = (R, Ry). Here, if R = (R, R,)) is a point
on E, then —R = (R,,—R,) is a point on E. To determine
R from R,, a flag v is introduced that indicates whether R,
is greater than ¢/2 or not. That is, R = (R, R,)) is uniquely

determined by (R,,v). Let x &S denote that an element z
is chosen at random from a set S.

ECDSA with key recovery

« ECDSA.Sig.KeyGen(1*): Choose d & Zq and compute
P = dG. Output sigk,, = d, vksg = P, and addr =
Bgg..255(H (P)).

» ECDSA Sig.Sign(sigkgy, M): Choose Choose & Zq,
and compute h = H(M) and R = rG. Let R =
(R, Ry). Compute s = "4 mod ¢ and output o =
(s, Ry, v).

. ECDSA.Sig.Verify(addr,cr,M): Parse 0 = (s, R;,v).
Recover R = (R,,R,) from (R;,v), and compute

sig

P = £ (R—G). Output 1 if addr = Bos_255(H (P)),
and 0 otherwise.
From the original verification equation }LG —|— Bep — %G +
fed@ = MdG — G =R, P= #-(R G) holds.

Ethereum Yellow Paper [13] st1pu1ates that a signature
o = (s8,Rz,v) is invalid if 0 < s < ¢/2 + 1 does not
hold. This is because (—s, R, ¥) is a valid ECDSA signature
when (s, R;,v) is a valid signature where v is the opposite
frag of v. More precisely, if %G + B2p = R holds, then
%G + %P = — R holds. The x-coordinate of R and —R are
the same and the verification of the original ECDSA checks
the x-coordinate only. Thus, in the ECDSA.Sig.Sign, —s is
used for generating a signature if s > ¢/2 + 1. We omit
this procedure from the description of the ECDSA.Sig.Sign
algorithm above, for the ease of understanding. We do not
explicitly consider the range of s anymore in this paper.

III. GENERIC CONSTRUCTION OF IBS FROM SIGNATURES

In this section, we introduce a generic construction of
IBS IBS = (IBS.Setup,|BS.KeyDer, IBS.Sign, IBS.Verify)
from a signature scheme SIG = (Sig.KeyGen, Sig.Sign,
Sig.Verify) [4]], [6], [7]. This construction is so-called
“Certificate-based Construction” where the KGC generates a
certificate cert for I D using the master secret key msk. In the
verification algorithm IBS.Verify, the validity of cert is also
checked in addition to the usual signature verification.

o IBS.Setup(1*): The setup algorithm takes a security

parameter A € N. Run (mpk, msk) < Sig.KeyGen(1?)

and output a pair of a master public key and a master
secret key (mpk, msk).

o IBS.KeyDer(msk, ID): The key derivation
algorithm takes msk and ID. Run (vksg,sigkgg)
< Sig.KeyGen(1*), compute cert < Sig.Sign(msk,
vksig|[ID), and output a secret signing key for ID
sigkips = (cert, vkgg, sigksig).

o IBS.Sign(sigki,s, M): The signing algorithm takes sigk;p,
and M to be signed. Parse sigk;,, = (cert, vksg, 5|gk5,g).
Compute o <+ Sig.Sign(sigkg,, M) and output a signa-
ture oips = (0, vksig, cert).

o IBS.Verify(mpk, ID, oips, M): The verification algorithm
takes mpk, ID, oips, and M. Parse oips = (0, Vksig, Cert).
Output 1 if both Sig.Verify(mpk, cert, vkgig|| /D) = 1 and
Sig.Verify(vksig, o, M) = 1 hold, and 0, otherwise.

If the underlying signature scheme is unforgeable (i.e., EUF-
CMA secure where EUF-CMA stands for existential unforge-
ability under chosen message attack), then the IBE scheme is
also unforgeable (See [4], [6], [7]). Basically, no adversary can
produce a valid signature under some ID even the adversary
obtains signing keys of other identities.

Next, to clarify the case that the above generic construction
is instantiated by ECDSA with key recovery, we introduce the
IBS scheme as follows. Due to the key recovery functionality,
we replace vksg contained in oibs = (0, vksig, cert) to addr.
Moreover, we replace mpk that is an input of the IBS.Verify
algorithm to addrkgc.

o IBS.Setup(1?): Choose dkgc & Z, and compute
Pxge = dkecG. Output msk = dkgc, mpk = Pkae,
and addrKGc = 896”255(H(PKG(3)).

o IBS.KeyDer(msk, ID): Parse msk = dkgc. Choose d &
Z4 and compute P = dG. Choose 7 & Z4 and compute
hip = H(P||ID) and R = rG. Let R = (R,,R,).
Compute s = % mod ¢ and set cert = (s, Ry, v).
Output sigk;,. = (cert, P, d).

o IBS.Sign(sigki,s, M): Parse sigk;,, = (cert,P,d) and
cert = (s, Ry, v). Let addr = Byg. 255(H(P)). Choose
r’ <= Zq and compute h = H(M) and R’ = 'G. Let
R = (R}, R,). Compute s = hﬂmz mod g and set
o= (s, R,v"). Output oips = (0, addr cert).

o IBS.Verify(addrkgc, ID, oips, M): Parse oips = (o, addr,
cert), 0 = (¢, Rl,,v’), and cert = (s, R;,v). Compute
h = H(M). Compute R = (R;,R;) from (R.,v),
and compute P = R, (R — ,G). Compute hyp =

H(P||ID). Compute R = (R,, Ry) from (R, v). Com-
pute Pxgc = 7-(R—"2G). Output 1 if both addrkec =
696”255(H(PKG(:)) and addr = 696.,255(H(P)>, and O,
otherwise.

sig?

©@

Evaluation on the IBS scheme based on ECDSA with key
recovery. Here, we consider whether a vanity address can
be generated by using the ECDSA-based IBS scheme via the
above attempt. First, let us check the impact of introducing

addrkgc. Now, all users are required to manage cert which is a
valid ECDSA signature under addrkgc. Here, the correspond-
ing message is P||ID, and does not a transaction. We may
consider a case that a user sets a transaction as /.D. However,
no cryptocurrency is stored on addrkgc and the corresponding
message contains P in addition to I D. Thus, we conclude that
introducing addrkgc does not affect the security.

Second, let us check the impact of introducing I.D. Since the
underlying ECDSA provides the key recovery functionality,
1D needs to be recovered if I D is required to be a verification
key. That is, even if we can suitably set /D to produce a vanity
address via the procedure (introduced in Our Motivation part),
ID additionally needs to satisfy

s’ h
This indicates that the KGC needs to find d satisfying ID =
dG, and it requires the same procedure of the classical try-and-
error method. Moreover, mpk is also required for signature
verification (i.e., even if the hash value of /D can be set as
a desired vanity address, signatures are not verified by ID
only).

To sum up, the IBS scheme is not directly employed to
generate a vanity address because:

e Due to the verification process of ECDSA with key recov-
ery, ID needs to be recovered from a ECDSA signature
and a message in the ECDSA-based IBS scheme that
requires the same procedure of the classical try-and-error
method.

o Due to the syntax of IBS where, in addition to /D, the
master public key is required for running the verification
algorithm. Here, the master public key is an ECDSA
verification key in the ECDSA-based IBS scheme.

IV. PROPOSED SYSTEM

Due to the evaluation in the previous section, we assign
a desired value to ID directly (this is not the same as the
procedure introduced in Our Motivation part). Let addr =
Boe. 255 (H (P)) be an address of a user where P is contained
in sigky,s = (cert, P,d). If P is connected to ID (i,e, cert is
a valid ECDSA signature on P||ID), we say that the user of
addr = 896”255(H(P)) is ID.
e A user selects ID (as a desired value such as the user’s
name), and obtains ojps = (0, addr, cert) from the KGC.
The user sets addr as own address and opens addr
together with ID.

o When the user issues a transaction M, the user generates
oibs = (0, addr, cert) using the I1BS.Sign algorithm. Set
(ID,o,cert) be a signature on M.

o A transaction verifier recovers P from o = (s, R}, v’)

and also recovers Pxgc from P, ID, and cert =

(s, Ry, v). The verifier accepts that the transaction is-

suer is ID if both addrkgc = Bos..255(H (Pkec)) and
addr = 896__255(H(P)).

Since two signatures are verified by the transaction verifier,

introducing the IBE scheme does not affect security compared

to the case that ECDSA with key recovery is employed. More
concretely, the procedure that the transaction verifier recovers
P from o = (s, R,,v’) and checks addr = Byg_255(H(P)) is
the totally the same as the transaction verification procedure in
Ethereum. Additionally, the transaction verifier recovers Pxgc
from P, ID, and cert = (s, R,,v) and checks addrkgc =
Bos. 255 (H (Pxee)). We remark that the verification of cert
(i.e., verification of whether the user of addr is ID) is
independent to the underlying transaction M. Thus, cert only
needs to be verified once, and introducing the IBE scheme
does not affect security in terms of transaction verification.

Note that we need to consider the key escrow problem where
the KGC also can generate signatures. To solve the problem,
TEE (Trusted Execution Environment) could be employed:
Assume that an enclave stores the master secret key. A user
sends /D and a public key pk of a public key encryption
scheme to a TEE via a remote attestation. Then, the TEE
generates a secret singing key for I D on the enclave, encrypts
the secret signing key by pk, and returns the ciphertext to
the user. Then, the user can obtain the secret signing key by
decrypting the ciphertext. Our work is regarded as the first
stepping stone to employ IBS in the blockchain environment
and further evaluation of the key generation procedure is left
as a future work of this paper.

V. EFFICIENCY EVALUATION

In this section, we implement the IBS scheme based on
ECDSA with key recovery by Solidity, and check the gas cost
for the signature verification. To the best of our knowledge,
no other scheme employing IBS for generating vanity address
has been considered, as mentioned in Related Work section.
Moreover, no attempt to construct an IBE scheme from
ECDSA with key recovery also exists. In this perspective, we
compare the performance of our system with ECDSA with
key recovery. Intuitively, the gas cost is twice compared to
that of the ECDSA signature verification since two ECDSA
verification procedures are run in the IBS signature verification
procedure, for cert and 0. As mentioned above, the verification
of cert is independent to the underlying transaction M and cert
only needs to be verified once. That is, the gas cost is almost
same as that of the ECDSA signature verification after cert
has been verified.

Our implementation environment is described as follows:
Precision Tower3431 (Processor: 3.10 Ghz octa-core Intel
Core 19, Memory: 16 GB). For signature generation, we em-
ployed libraries, ethereumjs-util and ethereumjs-wallet, which
are run on node.js (v20.17.0). For signature verification, we
implement a smart contract using Solidity (we indicates the
version as >=0.7.0<0.9.0). We set I D as 128-bit value since
it can express 13 characters by ASCII codes and seems
sufficient to express a name, an e-mail address, and so on.

Our Solidity code is described in Listing [I] as follows. Here,
let MSG be a message to be sent, SIGNER_ADDRESS be
the address of the transaction issuer, (s, Rx, v) be a signature
on MSG, SIG_PBK_ID be a strong that contains the issuer’s
public key and arbitrary string (P||ID), KGC_ADDRESS be

the address of the KGC (addrkgc), and (CERT_s, CERT_Rx,
CERT_v) be a signature on SIG_PBK_ID. Let the function
ECDSA.Sig.Verify() be a verification algorithm that checks
whether MSG is sent from the issuer and the function
Cert.Verify() be a verification algorithm that checks whether
the public key of the transaction issuer is associated to I.D.

1 string MSG;

2 address SIGNER_ADDRESS;
3 bytes32 s;

4 bytes32 Rx;

5 uint8 v;

6

7 string SIG_PBK_ID;

8 address KGC_ADDRESS;

9 bytes32 CERT_s;

10 bytes32 CERT_Rx;

11 uint8 CERT_v;

12

13 function ECDSA.Sig.Verify ()
bool) {

14 bytes32 msgHash = keccak256 (bytes (MSG)) ;

public view returns (

15 address signer = ecrecover (msgHash, s, Rx, V);
16 if (signer == SIGNER_ADDRESS) {

17 return true;

18 } else {

19 return false;

20 }

21 }

22

23 function Cert.Verify () public view returns
) {

24 bytes32 msgHash = keccak256 (bytes (SIG_PBK_ID)) ;

(bool

25 address signer = ecrecover (msgHash, CERT_s,
CERT_Rx, CERT_v);

26 if (signer == KGC_ADDRESS) {

27 return true;

28 } else {

29 return false;

30 1}

31}

Listing 1. Example of basic Solidity Code of IBS Signature Verification

We denote gas costs for running each function in
Table E} We used USD price on October 22, 2024.
Remark that IBS.Verify(addrkee, ID, gibs, M) runs both
ECDSA.Sig. Verify() and Cert.Verify().

TABLE I
GAS CoSTS

[| ECDSA Sig.Verify() | Cert.Verify() |

Gas 21,849 26,251
USD 0.77 0.92

We expected that the verification costs of IBS signature
constructed by ECDSA with key recovery is twice as those
of ECDSA with key recovery. However, the actual gas cost
is approximately 2.2 times higher. The reason behind is
that the cost of Cert.Verify() is 1.2 times higher than that
of ECDSA.Sig.Verify(). Here, the message to be signed is
P||ID in Cert.Verify() and the size of P is 64 bytes (512
bits) (See Ethereum Yellow Paper [13]]) and the size of the
message is 640 bits. On the other hands, the message M is a
transaction encoded by RLP (Recursive Length Prefix) and is
represented by 256 bits. Since the hash value of the message

is computed in the ECDSA signature verification procedure,
the difference of the underlying message size is the main
reason why Cert.Verify() requires a higher gas cost than that
of ECDSA.Sig.Verify(). As above mentioned, however, the
verification of cert is independent to the underlying transaction
M and cert only needs to be verified once. That is, the gas
cost for verifying a transaction is almost same as that of the
ECDSA signature verification after cert has been verified.

VI. CONCLUSION

In this paper, we consider whether IBS can be employed to
generate a vanity address and demonstrate that the IBS scheme
(constructed by ECDSA with key recovery) is not directly
employed to generate a vanity address. As the next attempt,
we propose a method to connect any value to an address using
IBS. The actual gas cost for verifying a transaction is almost
same as that of the ECDSA signature verification after cert
has been verified. Since the experimental simulation is overly
simple, considering comprehensively blockchain performance
is left as a future work. Moreover, implementation evaluation
of the key generation procedure using TEE is also an important
future work.

We remark that we do not deny any possibility to generate a
vanity address safety and efficiently via an IBS scheme. Even
if we turn blind eye the key recovery functionality of ECDSA,
we need to consider how to treat mpk when an IBS signature
is verified. We may be able to employ the Barreto et al. IBS
scheme [3|] because Liu et al. [8]] proposed a signature scheme
(for enhancing the security of stealth address) using an IBE
scheme that does not require mpk for the signature verification
procedure, and introduced that the Barreto et al. IBS scheme
as such an IBS scheme. Further considering vanity address
generation methods via IBS is left as a future work.

Acknowledgment: The authors thank Mr. Kota Chin for his
invaluable comment against Ethereum vanity address. This
work was supported by JSPS KAKENHI Grant Numbers
JP21K11897, JP23K24844, and JP25H01106.

REFERENCES

[1] CVE-2022-40769,
CVE-2022-40769!

[2] F. Baldimtsi, K. Chalkias, P. Chatzigiannis, and M. Kelkar. Truncator:
Time-space tradeoff of cryptographic primitives. Financial Cryptography
and Data Security 2024, to appear. Available at https://eprint.iacr.org/
2022/15811

[3] P.S.L. M. Barreto, B. Libert, N. McCullagh, and J. Quisquater. Efficient
and provably-secure identity-based signatures and signcryption from
bilinear maps. In ASIACRYPT, pages 515-532, 2005.

[4] M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-
based identification and signature schemes. In EUROCRYPT, pages
268-286, 2004.

[5] J. Buntinx. Top 5 Bitcoin Vanity Addresses (2017-01-16), 2017. https:
//themerkle.com/top-5-bitcoin- vanity-addresses/.

[6] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature
schemes. In Public Key Cryptography, pages 130-144, 2003.

[7]1 C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In
ASIACRYPT, pages 548-566, 2002.

[8] Z. Liu, G. Yang, D. S. Wong, K. Nguyen, and H. Wang. Key-insulated
and privacy-preserving signature scheme with publicly derived public
key. In IEEE EuroS&P, pages 215-230, 2019.

2022. https://nvd.nist.gov/vuln/detail/

https://nvd.nist.gov/vuln/detail/CVE-2022-40769
https://nvd.nist.gov/vuln/detail/CVE-2022-40769
https://eprint.iacr.org/2022/1581
https://eprint.iacr.org/2022/1581
https://themerkle.com/top-5-bitcoin-vanity-addresses/
https://themerkle.com/top-5-bitcoin-vanity-addresses/

[9]

[10]
(1]
[12]

[13]

H. Partz. How to put words into a bitcoin address? Here’s how vanity
addresses work (2023-08-23), 2023. |https://cointelegraph.com/news/
how-vanity-addresses-work,

K. Pratt. Unlocking brand power: A comprehensive guide on vanity urls
and why they matter, May 14, 2024.

A. Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO, pages 47-53, 1984.

S. Watanabe and K. Yasunaga. Bit security as computational cost for
winning games with high probability. In ASIACRYPT, pages 161-188,
2021.

G. Wood. Ethereum yellow paper (Shanghai version 47e97f5-2024-08-
26), 2024. https://ethereum.github.io/yellowpaper/paper.pdf,

https://cointelegraph.com/news/how-vanity-addresses-work
https://cointelegraph.com/news/how-vanity-addresses-work
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	ECDSA with Verification Key Recovery
	Generic Construction of IBS from Signatures
	Proposed System
	Efficiency Evaluation
	Conclusion
	References

