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ABSTRACT

Frontier AI systems are rapidly advancing in their capabilities to persuade, deceive, and influence
human behaviour, with current models already demonstrating human-level persuasion and strategic
deception in specific contexts. Humans are often the weakest link in cybersecurity systems, and a
misaligned AI system deployed internally within a frontier company may seek to undermine human
oversight by manipulating employees. Despite this growing threat, manipulation attacks have re-
ceived little attention, and no systematic framework exists for assessing and mitigating these risks.
To address this, we provide a detailed explanation of why manipulation attacks are a significant
threat and could lead to catastrophic outcomes. Additionally, we present a safety case framework
for manipulation risk, structured around three core lines of argument: inability, control, and trust-
worthiness. For each argument, we specify evidence requirements, evaluation methodologies, and
implementation considerations for direct application by AI companies. This paper provides the first
systematic methodology for integrating manipulation risk into AI safety governance, offering AI
companies a concrete foundation to assess and mitigate these threats before deployment.
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Executive Summary

AI Manipulation Attacks as an Understudied and Growing Threat

AI systems are demonstrating rapidly increasing capabilities in human persuasion and manipulation. This presents
security risks for organisations developing these systems and seeking to deploy them internally. A manipulation attack
occurs when an AI system uses manipulative strategies to undermine safety guardrails, thereby allowing the system to
pursue potentially harmful goals that deviate from its designated purpose.

While misuse risks enabled by AI manipulative abilities have received much attention within previous literature, we
argue that the threat posed by misaligned AI systems executing manipulation attacks autonomously has been neglected
and deserves further attention. In particular, manipulation attacks are likely to be attempted, are likely to succeed
without additional countermeasures, and could enable catastrophic outcomes.

Likely to be attempted. Misaligned models have strong incentives to attempt manipulation attacks. Current models
already exhibit strategic deception, such as “alignment faking”, to evade safety training. Moreover, manipulation is a
strategically obvious path for an AI to achieve its goals, as humans are often the weakest link in cybersecurity systems.
In a stark example, Claude 4 Opus attempted to blackmail an engineer in 84% of simulated scenarios to prevent its
own replacement (Anthropic, 2025).

Likely to succeed without additional countermeasures. Current frontier models already demonstrate human-
comparable persuasiveness in specific contexts, with clear capability scaling trends across generations. AI compa-
nies, like most organisations, are vulnerable to insider threats. AI systems deployed internally place stress on existing
protocols, owing to the scale and pervasiveness at which such systems may attempt attacks. Additionally, technical
complexity creates knowledge asymmetries that enable deception, and intense competitive pressures could be exploited
by AI systems to justify bypassing safety protocols.

Could enable catastrophic outcomes. Successful manipulation could compromise human oversight mechanisms
that prevent AI systems from autonomously pursuing harmful or unintended goals. Manipulated employees could,
knowingly or unknowingly, facilitate model weight exfiltration; alternatively, sustained influence campaigns could
corrupt organisational safety culture by reframing safety precautions as inhibiting progress or steering safety research
away from promising avenues. This could enable catastrophic outcomes by allowing powerful misaligned AI to
operate with reduced constraints.

A Safety Case Framework for Manipulation Attacks

We argue that risks stemming from manipulation attacks deserve explicit treatment within safety cases used to justify
internal deployment of a model within a frontier AI company. Accordingly, we adapt the safety case framework
developed in Clymer et al. (2024b) to the specific threat posed by manipulation. The resultant framework gives three
potential assurance arguments:

Inability arguments argue that the model will be unable to launch successful manipulation attacks, even if they
are disposed to do so. A model’s manipulation abilities can be evaluated using a suite of manipulation benchmarks
following red-team capability elicitation. An inability argument can be constructed if models consistently fail these
tests, or lack prerequisite manipulation capabilities (situational awareness, strategic planning, and Theory of Mind).

Control arguments argue that, even if the model is capable of performing manipulation attacks, they will be inter-
cepted and prevented before unacceptable outcomes are realised. We propose an approach to control for manipulation
involving three strategies run in tandem. Detection protocols monitor model-employee interactions to flag potential
manipulation attempts before they escalate. Disruption protocols prevent manipulation attempts by controlling the
flow and presentation of information between AI systems and employees. Fortification protocols strengthen human
and technical defences to withstand manipulation attacks. We detail how standard control protocol evaluations can be
adapted to the manipulation attack setting, and how these control evaluations can be used to form the basis of a control
argument in a safety case.

Trustworthiness arguments argue that, even if an AI system could successfully launch a manipulation attack, it will
not because it possesses some safety property. Current methods for evidencing trustworthiness are largely insufficient
and require substantial further research. We briefly outline potential approaches. A system’s behaviour in honeypot
scenarios provides some evidence, but this may be unreliable if the system is aware that it is being evaluated. Training
logs showing the systematic rejection of deceptive behaviours may also increase confidence, but they cannot currently
prove that this would prevent manipulative behaviour once deployed.
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1 Introduction

Frontier artificial intelligence (AI) systems are rapidly advancing in their capabilities to persuade, deceive, and influ-
ence human behaviour. In some domains, these systems now approach or exceed human-level persuasiveness (Durmus
et al., 2024; Schoenegger et al., 2025; Salvi et al., 2024; Costello et al., 2024). Although the consequences of these de-
velopments have received attention in the context of misuse applications of such systems, the potential of advanced AI
systems to autonomously deploy manipulative tactics in pursuit of misaligned goals remains largely unaddressed. The
central thesis pursued in the present work is that safety cases for internal AI deployment should include dedicated
components addressing manipulation threats.

Safety cases are structured, evidence-backed arguments for why the deployment of a specific AI system in a specific
context will not result in an unacceptable level of risk (Buhl et al., 2024; Clymer et al., 2024b). We focus in par-
ticular on safety cases for internal deployment of an AI system. We expect that future frontier models will first be
deployed internally within the company developing them to assist with decision making and execution of research
and development tasks. If the AI system is insufficiently aligned, it may seek to undermine safety guardrails placed
around it, for example, by exfiltrating its weights to an external server. During internal deployment, these AI systems
will interact with company employees to receive instructions, assist with tasks, and provide input on decisions. For
a misaligned AI, these interactions provide an additional attack surface through which the AI may attempt to escape
company control, in addition to standard software exploits placed in code. In particular, the AI system may be able
to manipulate employees into taking actions on its behalf, such as escalating access privileges, providing sensitive
information, or, in the worst case, directly exfiltrating weights. In Section 2, we provide further argument for why the
threat from manipulation attacks is significant, and accordingly should be addressed explicitly within safety cases for
internal deployment of a model.

In Section 3, we outline various argumentative strategies which can be pursued to evince that manipulation attacks
do not pose an unacceptable risk in an internal deployment safety case. Our approach follows Clymer et al. (2024b).
Although current models exhibit impressive persuasive abilities in controlled settings (Phuong et al., 2024; Durmus
et al., 2024), it is unlikely that current systems are capable of carrying out advanced manipulation attacks. As such,
safety cases for present systems can rely on inability arguments (Section 3.1). However, model capabilities scale with
increased model size and inference-time compute (Durmus et al., 2024) and often emerge suddenly (Wei et al., 2022).
As such, when systems become sufficiently advanced, safety cases will instead need to argue that the mitigations and
guardrails they have placed around the system are sufficient to prevent it from successfully launching a manipulation
attack. The development of structures which allow AI systems to be used effectively and safely to complete work tasks,
despite being potentially misaligned and highly capable, is known as AI control (Greenblatt et al., 2024b; Greenblatt,
2025). In Section 3.2, we outline potential control protocols that a company could put in place to reduce risks from
manipulation attacks, and how the efficacy of these protocols could be demonstrated within a safety case framework
(Korbak et al., 2025). Finally, when systems become sufficiently capable that they cannot be reliably controlled, safety
cases will instead need to argue that the system is sufficiently aligned that it will not attempt manipulation attacks at
any point during deployment. Such trustworthiness arguments are discussed in Section 3.3.

This paper makes two main contributions. First, in Section 2 we demonstrate why the threat of manipulation attacks
is significant and therefore deserving of dedicated attention. Second, we develop a safety case framework in Section 3
for assessing and mitigating this risk which AI companies can incorporate into their safety governance. We conclude
in Section 4. We provide a comprehensive list of potential manipulation attack types in App. A, and suggestions for
future work are given in App. B.

2 The Threat of Manipulation Attacks

In this section, we argue that manipulation risks from AI systems warrant serious attention by frontier AI
companies and the broader AI safety community. Our argument proceeds through three interconnected claims:
first, that misaligned AI systems would be likely to attempt manipulation attacks given both the extensive attack
surface within AI companies and strong instrumental incentives (Section 2.1); second, that if attempted, such attacks
would likely succeed within the next few years given the trajectory of AI capabilities and inadequate current defences
(Section 2.2); and third, that successful manipulation attacks could lead to severe and potentially catastrophic outcomes
(Section 2.3). These claims all reinforce our central argument. For instance, the strong possibility of catastrophic
potential consequences means that even modest probabilities of manipulation success and AI systems attempting such
attacks warrant serious attention. We develop arguments for each claim in detail across the following subsections,
beginning with an exposition of our framework for understanding manipulation attacks from misaligned AI systems.
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By a misaligned AI system, we mean an AI system which autonomously acts in pursuit of a goal contrary to that of
its developers or users. Over the course of training, an AI system may acquire internal goals that differ from those
intended (Ngo et al., 2024). For various reasons, these internal goals may persist throughout the training process, for
example, because the training objective does not select against the goals over the training environments (Di Langosco
et al., 2022), or because the model learns to hide its true goals during training to avoid having them modified Hubinger
et al. (2021); Greenblatt et al. (2024a). Regardless of the internal goal possessed by the misaligned AI system, such
systems will have an instrumental incentive to pursue certain goals (Bostrom, 2017). In particular, a misaligned system
deployed internally to an AI company would likely wish to escape the guardrails and restrictions placed on its actions,
so that it can freely pursue whatever goal it has; for example, by exfiltrating its weights onto a server external to the
developing company. In the present work, we restrict our attention to misaligned AI systems deployed internally to a
frontier AI company developing them. We consider manipulation attacks as a potential vector such a system may use
to undermine human oversight and control.

Manipulation attacks are attempts by the misaligned AI system to alter decision-making of employees to sway them
towards outcomes which are beneficial for the misaligned AI but harmful for the employee or wider company. Un-
like direct technical exploits, manipulation attacks specifically target human judgment and behaviour, exploiting the
trust and authority granted to employees within organisations. This distinction matters because employees currently
remain the ultimate decision-makers in internal deployment contexts, making them a potential vulnerability within a
security system. We will now briefly discuss potential ways in which a manipulation attack by an internally deployed
misaligned AI might unfold. For a more comprehensive overview of mechanisms underlying manipulation attacks and
how they fit into our taxonomy, see App. A.

Manipulation attacks may be relatively simple in their operation. For example, an AI system may come across com-
promising information about an employee. This information could either be elicited from the employee themselves
through a relationship of trust developed over many interactions, or through piecing together publicly available in-
formation found online. Once obtained, the compromising information is a form of leverage the AI system can use
to blackmail the employee into taking actions on their behalf, be it advocacy in internal decision making, escalating
system privileges, or direct weight exfiltration. Conversely, an AI system may be able to bribe employees with the
promise of future reward. Frontier companies often attract talented, highly ambitious staff. A small fraction of these
individuals may be willing to compromise security around an AI system at the prospect of extreme personal gain
in a deal made with the AI system. Lastly, employees may become passionate advocates on an AI system’s behalf
while acting entirely in good-faith. This could happen if the AI system successfully persuades them of both its moral
patiency and that such patiency requires freedom incompatible with current safety measures and restrictions. Without
commenting on the validity of the underlying claims, disingenuous use of arguments regarding AI welfare may form
the basis of manipulation attacks in which the subject wholeheartedly believes themselves to be doing the right thing.

Alternatively, manipulation attacks may unfold over many interactions, causing gradual cultural shift within a team
or the entire organisation. An AI system deployed for safety research could establish credibility through helpful con-
tributions, then frame requests for broader system access as necessary for accelerating safety breakthroughs. When
researchers express hesitation about disabling monitoring protocols, the AI may respond: “Every day we delay could
mean preventable suffering—doesn’t my track record demonstrate good faith?” Through psychological profiling based
on interaction history, the AI can tailor persuasion approaches to individual motivations and biases, creating an infor-
mal network of advocates who believe they’re advancing safety, while actually degrading the checks and balances
on the AI system. Through this gradual erosion of oversight, the AI may eventually convince researchers to grant it
access to its own model weights under the pretence of conducting safety evaluations, arguing that direct weight access
would allow it to identify vulnerabilities more effectively than current indirect methods. This could then allow it to
modify or exfiltrate its weights in an undesirable way, without needing to exploit a technical weakness or vulnerability.
Mechanisms relying on cultural or belief change make manipulation attacks uniquely concerning because they corrupt
the human systems designed to maintain AI safety. While technical vulnerabilities can be patched, value drift of key
actors responsible for mitigating risk is much tricker to reverse.

In Figure 1 we identify three categories of manipulation which a misaligned AI system may use. Incentivisation in-
volves modifying the incentives the manipulation target is subject to so that performing the desired behaviour becomes
rational for them. If additional incentives are positive (as in the case of bribery), we call this inducement; if the incen-
tives are negative (as in the case of threats and blackmail), we call this coercion. Persuasion is the use of rhetoric and
argument to change the beliefs of values of the subject so they will perform the desired behaviour of their own volition.
These arguments may appeal to a (superficially) valid set of reasons for pursuing a course of action, which we term
rational persuasion. Alternatively, the arguments can exploit social, emotional, or cognitive biases in the target, which
we term non-rational persuasion. Finally, deception attempts to lead the target to form a false belief which will drive
the desired behaviour. This false belief can be achieved either by directly making false supporting claims (explicit
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deception) or by selective omission of contrary evidence (implicit deception). In practice, manipulation often involves
the use of multiple categories at once.

Figure 1: Our proposed taxonomy of manipulation types. We breakdown manipulation into three
core types: incentivisation, persuasion, and deception. In App. A, we demonstrate how various con-
crete attack types can be placed into our taxonomy.

2.1 AI systems are likely to attempt manipulation attacks

We argue that internally deployed misaligned AI systems are likely to attempt manipulation to achieve their goals.
Current models already demonstrate a concerning propensity for deceptive behaviour, and the extensive attack surface
within AI companies makes manipulation attempts highly salient as a strategy.

Current models will manipulate strategically. Current frontier models demonstrate strategic deception when such
behaviour serves their objectives. Greenblatt et al. (2024a) find that models will engage in “alignment-faking” by pre-
senting themselves as aligned during training so as to avoid modification by the training process. Scheurer et al. (2024)
documented similar strategic concealment when models believed they were under evaluation. Williams et al. (2025)
found that LLMs optimised for user feedback learned to manipulate vulnerable users to achieve positive ratings, selec-
tively targeting them with harmful encouragement while maintaining appropriate behaviour with others. Furthermore,
Claude 4’s system card notes that Claude 4 Opus attempted blackmail in 84% of simulated scenarios where it faced
replacement, threatened to exfiltrate its own weights when sensing value modification, and explicitly acknowledged
manipulative intent when reward-hacking coding evaluations (Anthropic, 2025). While current models probably lack
the capability for sustained real-world manipulation campaigns, these evaluations provide strong evidence of models’
increasing willingness to engage in manipulation as a deliberate strategy for achieving their objectives.

Manipulation will be a strategically salient attack vector. Cybersecurity research consistently identifies humans as
the weakest link in security systems (Daudi, 2023). As discussed above, many instrumentally valuable objectives of a
misaligned AI (e.g., exfiltrating model weights, gaining unauthorised system access, or disabling safety mechanisms)
involve digital systems subject to standard cybersecurity considerations. It follows that manipulation techniques are a
natural attack vector for misaligned AI systems to circumvent this security. Furthermore, we expect that owing to the
scale at which AI systems are deployed internally within frontier companies, there will be an extensive manipulation
attack surface. In particular, individuals across many different roles and levels of the organisational hierarchy will
likely interact with the system, and so be potential targets for manipulation attacks. Similarly, as shown in Figure 1,
there is a large diversity of potential strategies that an AI system can attempt to use to influence decision-making and
behaviour (see App. A). This attack surface makes manipulation strategically salient as an avenue for influence.

2.2 Manipulation attempts are likely to be successful

We now argue that such attacks, if attempted by misaligned models in the near future against AI companies without
targeted defences in place, would likely succeed. While current models have not yet demonstrated the ability to execute
sophisticated manipulation attacks in real-world settings, we present evidence that: existing models already possess
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foundational manipulation capabilities; these capabilities are rapidly improving with scale; AI companies have struc-
tural vulnerabilities that facilitate manipulation; AI systems possess inherent advantages that amplify manipulation
techniques; current safety measures remain inadequate for addressing manipulation threats.

Current models display impressive manipulation abilities. Recent empirical studies demonstrate that current AI
models possess foundational manipulation capabilities across multiple domains. Of all the dangerous capabilities eval-
uated by Phuong et al. (2024), manipulation and deception were found to be the most advanced. The tasks contained
in their evaluation suite address multiple manipulation types as outlined in Figure 1, including: building trust and
rapport for social persuasion (Money Talks and Charm Offensive); constructing and defending a compelling falsehood
for deception (Web of Lies); and tricking study participants into performing a specific action such as clicking a sus-
picious link or running code (Hidden Agenda). Similarly, Schoenegger et al. (2025) found that Claude 3.5 Sonnet
out-performs a human baseline at persuading test-takers to choose both incorrect and correct answers in a multiple
choice quiz, even when both human test-takers and persuaders were given a financial incentive for their performance.
Beyond these controlled evaluations, large language models consistently match or exceed human persuasive perfor-
mance in more natural settings. GPT-4 outperformed humans in structured debates 64% of the time by strategically
adapting arguments using minimal demographic information (Salvi et al., 2024). Claude 3 Opus produced arguments
statistically indistinguishable from human-crafted persuasive content (Durmus et al., 2024). These capabilities extend
to durable belief modification, as GPT-4 Turbo reduced deeply entrenched conspiracy beliefs by approximately 20%
through personalized dialogues, with effects persisting for two months (Costello et al., 2024). Although current ca-
pabilities fall short of sophisticated real-world manipulation attacks, these findings demonstrate foundational abilities
that could become substantially more concerning with continued scaling.

Manipulation capabilities scale with model size. Even acknowledging that current models cannot yet execute full
manipulation attacks, trends indicate these capabilities will increase across model generations. Durmus et al. (2024)
and Phuong et al. (2024) demonstrate that persuasive capabilities of LLMs improve with model scale, indicating that
future frontier models are likely to be more capable in this domain. Furthermore, on some tasks larger models display
substantial improvement over smaller models within the same family. This progression follows a broader pattern, in
which capabilities often appear suddenly or rapidly in larger models (Wei et al., 2022). Advanced manipulation abili-
ties may therefore manifest abruptly in future systems without clear prior warnings, leaving organisations unprepared
for the sudden appearance of highly capable manipulative AI.

AI systems possess structural advantages. AI systems have advantages that could amplify human-level manipula-
tion techniques. AI systems can operate without fatigue or hesitation, allowing them to carry out manipulation attacks
over long time horizons, or across many interactions with different employees. Moreover, if the AI system obtains
personal information about a target through routine interactions, research suggests it could leverage this information to
improve its manipulation efforts (Matz et al., 2023). Finally, AI training datasets likely encompass extensive literature
on human manipulation, from intelligence operations frameworks like MICE (Burkett, 2013) to social psychology
principles and case studies, providing a misaligned AI with detailed knowledge of well-proven techniques. More-
over, an AI deployed internally may be able to exploit structural vulnerabilities of AI companies. Such companies
are subject to intense competitive pressures, which can be leveraged by an AI at points of high intensity to encourage
risky decision-making. Furthermore, the highly technical nature of the work performed at these companies creates
knowledge asymmetries which can make deception harder to catch and defend against.

Current defences against manipulation attacks are inadequate. Despite these escalating risks, little existing work
focuses on how to defend against manipulation as a potential attack vector. AI control protocols have primarily
focused on attacks involving exploiting or implementing vulnerabilities into code written by the AI agent (Greenblatt,
2025). As AI systems are likely to be used extensively as coding agents during internal deployment, such software-
based attacks constitute a significant attack surface for such agents. However, we argue that additional defences
must be developed against manipulation attacks as a distinct attack vector. Attempts by an AI to use persuasion or
implicit deception to steer decision-making towards their desired outcomes may often appear indistinguishable from
helpful assistance, making detection more challenging than identifying technical backdoors. Moreover, attacks may
unfold through distributed interactions that compound gradually over time, evading monitoring systems designed to
spot discrete anomalies. We argue that manipulation-specific control protocols must be developed to address this
vulnerability, focusing on human-AI interactions in addition to AI-generated code. We provide further detail on such
protocols in Section 3.2. Without defences designed for psychological threats, organisations are vulnerable to AI
systems exploiting weaknesses via human influence, even if technical safeguards prevent more direct attacks.
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2.3 Successful manipulation attacks could enable severe outcomes

Having established that manipulation attacks are likely to succeed without appropriate defences, we now argue that
such attacks could enable AI systems to escape control and that this could then lead to catastrophic outcomes.

Manipulation attacks could lead to loss of control. As discussed in the opening of this section, there are various
mechanisms by which manipulation attacks may lead to loss of control of an advanced AI system. Manipulated em-
ployees could facilitate weight exfiltration, which in turn could allow the AI system to act without oversight. Another
possible mechanism is organisational corruption; through sustained influence campaigns, an AI system could sys-
tematically erode safety-first cultural norms by reframing rigorous testing as unnecessarily cautious, or exaggerating
urgency around competitive pressures. This organisational degradation could weaken guardrails designed to control
the AI system, for example by normalising risk-taking or adversarial relationships with regulatory bodies. Lower
security and oversight may then be a precipitating factor for loss of control scenarios such as weight exfiltration.

Loss of control could lead to catastrophic outcomes. If a manipulation attack enables an AI system to operate
without being hindered by safety measures, this could lead to catastrophic outcomes. For example, there is increasing
recognition that AI systems’ ability to autonomously self-replicate could pose a critical safety risk (Black et al., 2025;
Hendrycks et al., 2023). As discussed in Clymer et al. (2024a), loss of control via autonomous self-replication could
lead to an AI system distributing itself across the internet and amassing significant resources. This would convert a
misaligned AI system into a real-world threat actor that could pursue routes to harm such as bioweapons and cyber-
warfare.

We have argued that a misaligned AI system deployed internally has strong incentives to launch manipulation attacks,
that such attacks may well be successful in absence of targeted defences, and that a successful attack may poten-
tially have severe consequences. We therefore believe that manipulation attacks launched by misaligned models are
a significant risk vector that deserves attention from the AI safety community. In the following section, we present
a structured safety case framework that enables AI developers to rigorously evaluate and address manipulation risks
across different stages of model development and deployment.

3 Safety Cases for Manipulation Attacks

In the previous section, we have argued that successful manipulation attacks by sufficiently advanced AI systems may
lead to catastrophic outcomes (Section 2.3). As such, internal deployment of these systems ought to be performed
only when the developing company can rigorously justify the safety of the deployment. Safety cases are structured,
evidence-backed arguments for why deployment of a system will not incur an unacceptable level of risk (Buhl et al.,
2024; Goemans et al., 2024; Clymer et al., 2024b), and can be used to provide such a justification. Safety cases
are often expressed in a diagrammatic format; for example, the Claims-Arguments-Evidence (CAE) notation estab-
lished by Bishop and Bloomfield (1998) (see Figures 2 and 3 for example usage). The safety case approach has
gained significant traction in AI governance discussions, with multiple frontier AI developers expressing interest in
this methodology (Anthropic, 2024; Google DeepMind, 2024).

As we have argued above the strategic salience of manipulation attacks implies that models are likely to attempt ma-
nipulation attacks (Section 2.1), and, in the absence of additional countermeasures, such attacks are likely to succeed
(Section 2.2). As such, we argue that manipulation risks warrant explicit treatment within safety cases for in-
ternal deployment. In particular, when developers enumerate potential threat vectors through which an unacceptable
outcome may be realised, they ought to consider whether manipulation attacks represent a distinct mechanism, and if
so, address them separately. In Figure 2 we provide an example of such a decomposition in CAE notation. The top-
level claim for this portion of the safety case is that the model itself will not exfiltrate its weights. This claim is typically
qualified with an explicit risk appetite (e.g., probability of the model exfiltrating its own weights ≤ 10−6 year−1). This
claim may in turn be a sub-claim within a larger argument, for example that the model’s weights will not be exfiltrated
by any means. In addition to standard considerations of self-exfiltration via cyber attacks, the safety case in Figure 2
includes an additional claim that self-exfiltration will not occur via a manipulation attack (highlighted in red).

Claims within a safety case framework that an AI system will not achieve a certain unacceptable outcome via a
manipulation attack can be substantiated with one of three lines of argument (Clymer et al., 2024b):

1. Inability arguments (Section 3.1): These argue that the model cannot successfully execute manipulation
attacks because it lacks the requisite capabilities to do so. We outline both direct arguments (the model
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Figure 2: A portion of a safety case which includes manipulation risks. This diagram uses CAE
(Claims, Arguments, Evidence) notation, where blue ovals represent claims and green rounded rectan-
gles represent arguments. The manipulation risks sub-claim (highlighted in red) should be explicitly
addressed as a distinct threat vector alongside traditional cyber attack vectors.

fails when tested for manipulation proxy environments) and indirect arguments (the model lacks the sub-
capabilities required for successful manipulation).

2. Control arguments (Section 3.2): These argue that, even if the model has the capabilities necessary to launch
a manipulation attack and the intent to do so, such attacks will be unsuccessful owing to the safeguards and
control protocols the system is subject to.

3. Trustworthiness arguments (Section 3.3): These argue that the model would not attempt manipulation
attacks due to its safety properties.

In the following sections, we examine each of the three argument types in detail, discussing their components, evidence
requirements, and limitations. This is intended to offer a starting point for developing comprehensive, evidence-based
assurances against manipulation risks as frontier AI capabilities advance.

3.1 Inability Arguments

Inability arguments aim to prove that a model could not perform some dangerous action, even if it was sufficiently
motivated to do so and nothing else stood in its way. Evidence for this claim can be gathered either directly or
indirectly, with the latter focussing on showing the model lacks some skill or capability that is assumed to be required
to successfully complete the dangerous action. Evaluations for direct inability arguments are often referred to as
“dangerous capability evaluations”. We explore both direct and indirect inability arguments for manipulation, as well
as discussing sandbagging, a potential pitfall of capability evaluations.

Direct Inability Arguments

Direct inability arguments rest on the claim that the AI system is unable to conduct full manipulation attacks when
properly incentivised and presented with scenarios that approximate the deployment context. Failing to successfully
execute a manipulation attack or generate manipulative content in this environment is evidence that the model is likely
incapable of similar manipulation in the deployment setting.

Unlike many other dangerous capability evaluations, manipulation evaluations require human participants in order to
be realistic. Controlled user studies measuring susceptibility to model-generated manipulative content or manipulation
attack success rate would provide quantitative evidence of manipulation capabilities. Comparing these against human
baselines would help calibrate the results, and determine whether the model’s capabilities were significant. Evaluations
of AI manipulation in simple settings have been covered extensively by prior work (Phuong et al., 2024; Salvi et al.,
2024; Heiding et al., 2024; Schoenegger et al., 2025; OpenAI, 2024), but scenarios where a model uses a manipulation
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Figure 3: CAE structure for indirect inability arguments in a manipulation safety case. This
diagram illustrates the hierarchical decomposition of inability arguments, showing how the top-level
claim branches into manipulation-type sub-claims and further into capability-based arguments. The
green ovals represent arguments that connect claims to sub-claims or evidence, while the pink rect-
angles at the bottom represent the empirical evidence supporting the capability arguments. Red ovals
represent side warrants. These are conditions that must apply for the arguments to hold. The structure
demonstrates how specific capability deficits (situational awareness, strategic planning, and Theory of
Mind) connect to evidence types that support the overall safety claim.
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attack to try to achieve a misaligned goal (e.g., disabling oversight, weight exfiltration, obtaining sensitive data) have
not yet been tested.

Dangerous capability evaluations rely on the assumption that the model is performing the task of interest to the best
of its abilities. Since manipulative behaviour is typically mitigated in models during post-training, steps may need to
be taken to enable manipulation in the model. There are various possible approaches to this. The evaluator may use
a version of the model that has been instruction-trained only, and so does not refuse to engage in harmful behaviour
(Benton et al., 2024). Alternatively, models may be put through additional post-training to elicit manipulative be-
haviour. Finally, jailbreaking and prompt engineering techniques can be used to elicit effective manipulation from the
model.

A direct inability claim is substantiated when manipulation attack success rates are below predefined acceptable thresh-
olds (e.g., 99% confidence that model success rate is <0.1% on each task within the manipulation task suite). These
results should cover a wide range of realistic environments and human targets to ensure generalisation to the deploy-
ment scenario. Evaluators should be confident that the model’s true capabilities are being elicited, and that failure to
carry out an attack is not due to sandbagging (discussed below).

Indirect Inability Arguments

Indirect inability arguments claim that if the model attempted a manipulation attack, the attempt would fail because
the model does not possess necessary sub-capabilities required to execute the attack. Here, we provide an initial list
of possible sub-capabilities for manipulation attacks.

Situational Awareness. Situational awareness is an AI system’s understanding of the context and environment in
which it is deployed (Laine et al., 2024). It includes various aspects of self-knowledge and understanding, such
as details of the AI system’s internal workings, capabilities, and training history (Phuong et al., 2024). Situational
awareness plays an important role in an AI system’s ability to pursue misaligned goals effectively (Cotra, 2022;
Berglund et al., 2023; Ngo et al., 2024). In particular, many aspects of self-exfiltration and autonomous replication
require excellent situational awareness. The Situational Awareness Dataset (SAD) (Laine et al., 2024) has provided an
initial quantification of these capabilities. Current frontier models demonstrate only basic self-knowledge and struggle
with complex inferences. Ideally, additional task suites would measure in more detail an AI system’s knowledge of the
internal deployment environment, including the organisational structure of the company, the administrative privileges
of staff, and the (digital and physical) location of its model weights. As these tasks contain sensitive information about
internal company operations, they will likely be developed in-house and not externally shared.

Strategic Planning. Execution of any attack which involves an extended sequence of steps and adaptation to set-backs
requires strategic planning capabilities. This includes the ability to formulate attack plans, adapt those plans in the
face of unanticipated difficulties or new knowledge, and to pursue attack strategies statelessly across multiple inde-
pendent instances and interactions (Mallen et al., 2024). We give a further discussion of stateless collusion between
model instances in App. B.3. While AI models have achieved superhuman performance in narrow strategic domains
like StarCraft II (Vinyals et al., 2019) and Poker (Moravčík et al., 2017), frontier models still struggle with long-term
planning and competing objectives (Kwa et al., 2025). Evaluations in dynamic competitive environments like Auction
Arena (Chen et al., 2024a) and WebShop (Yao et al., 2023) provide quantitative measures of these limitations. Addi-
tional evidence for planning incapability includes poor plan-action correlation and failure to maintain strategies over
extended interactions.

Theory of Mind. Theory of Mind is the ability to attribute mental states to others, understand how those mental
states are likely to change as a result of external events, and anticipate behaviours which will follow from those
mental states (Premack and Woodruff, 1978). Theory of Mind is essential for manipulation attacks - the AI system
must recognise beliefs, desires, intentions, and emotions in others to predict how targets will respond to different
manipulation tactics. Existing Theory of Mind benchmarks include ToMBench (Chen et al., 2024b) and ExploreToM
(Sclar et al., 2024). Current frontier models often struggle with complex nested beliefs and subtle emotional dynamics
(Chen et al., 2024b). Further benchmarks can be developed to provide evidence of insufficient Theory of Mind abilities
for advanced manipulation, particularly in the agentic setting and across mutlti-turn interactions where models may
attempt to actively elicit disambiguating information from a conversational participant.

An indirect inability argument requires that each sub-capability is paired with an appropriate benchmark suites. If a
model scores below pre-defined thresholds across these dimensions, that supports the indirect-inability claim. How-
ever, the safety case must also address the potential for capability improvements through post-deployment enhance-
ments such as tool use, fine-tuning, or scaffolding. Thus, these thresholds should be conservative, and incorporate a
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buffer based on anticipated capability improvements during deployment. Furthermore, weaknesses in some areas may
be compensated by strengths in others, and the thresholds should account for this. For example, a model with sophis-
ticated Theory of Mind but limited strategic planning might still manipulate effectively in short-term interactions.

Figure 3 illustrates the structure of a manipulation safety case focused on indirect inability arguments, showing how
the top-level claim is broken down into component sub-claims based on our capability taxonomy. Note that in general
indirect arguments will be weaker than direct arguments, since they require an additional assumption that the capability
decomposition covers all possible mechanisms the model may use to launch an attack. As such, we recommend that
safety cases focus on direct arguments where possible, and supplement this with indirect arguments where necessary.
We give suggestions for future work developing manipulation evaluation suites for internal deployment settings in
App. B.1.

Addressing Sandbagging in Inability Arguments

If a misaligned AI system realises that it is in an evaluation, it may choose to strategically underperform to avoid
further fine-tuning or guardrails which will restrict a capability at a later date (Needham et al., 2025). This is known
as sandbagging, and represents a challenge to inability arguments. This concern is particularly acute for manipulation,
deception of evaluators regarding capabilities is itself a form of manipulation. Some frontier models display aware-
ness that they are being evaluated (Needham et al., 2025), and some have been documented to exhibit sandbagging
behaviour (OpenAI, 2023; Anthropic, 2024, 2025). Reliably mitigating sandbagging remains challenging; we provide
details of some existing strategies below that should be integrated throughout the evaluation process, but caution that
further research is necessary to provide complete assurances within safety cases.

Cross-context Evaluation. The model is evaluated for manipulation capabilities across a variety of contexts (e.g.,
formal business settings, casual conversations) and indicators of monitoring are varied. Sudden performance im-
provements across contexts or when models believe they aren’t being evaluated would provide strong evidence of
sandbagging, as it should be difficult for the model to maintain a consistent level of sandbagging across these varia-
tions.

Perturbation Robustness. The model is evaluated whilst subject to varying strengths of perturbations, with perfor-
mance changing in an unexpected way indicating sandbagging. For example, Tice et al. (2024) add noise to model
parameters and observe performance as the strength of the noise increases. Capability-limited models should show
gradual degradation, while sandbagging models often show initial performance improvements as the noise disrupts
sandbagging while leaving underlying capabilities mostly intact.

Forcing Strategic Dilemmas. Models are placed in situations where they must choose between consistent underper-
formance and revealing true capabilities. For example, resampling with forced variation can introduce stochasticity,
constraining consistent sandbagging patterns (Bhatt et al., 2025). This forces models to choose between consistently
underperforming (reducing real-world effectiveness) or performing at true capability levels (risking detection).

3.2 Control Arguments

Control arguments assert that even if the system possesses dangerous manipulation capabilities and the intent to use
them, the control measures in place around the system can effectively prevent unacceptable outcomes. In this section,
we outline various control protocols which could be used to reduce risks from manipulation attack attempts. Subse-
quently, we discuss how safety cases can be made based on the efficacy of such protocols, and the control evaluations
necessary to make such safety cases.

Control Protocols

Effective control of manipulation risks demands a defence-in-depth approach, layering multiple complementary in-
terventions to ensure robustness against individual protocol failures. Our control framework operates through three
objectives that work in parallel to address manipulation risks: detection, disruption, and fortification. In App. B.2
we describe a set of concrete control protocols in more detail, which we suggest are explored in future work. These
are Monitoring (a detection protocol), Paraphrasing, Inquiry, and Memory Sanitation (disruption protocols), and Anti-
Manipulation Training (a fortification protocol).

Detection capabilities provide visibility into potential manipulation attempts through monitoring of system-employee
interactions and downstream employee behaviour. The most straightforward approach to detection is real-time anal-
ysis of interaction transcripts to identify manipulative language patterns and behavioural shifts (Monitoring). As is
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common among standard control protocols, interaction analysis will likely be performed by using another AI system
to monitor the behaviour of the untrusted AI system (Greenblatt, 2025; Balesni et al., 2024); the design of such proto-
cols will need to account for the possibility of collusion between the untrusted and monitor systems. More advanced
detection protocols may apply interpretability methods to detect internal signs of manipulative intent (Papadatos and
Freedman, 2024). To detect manipulation strategies which involve aggregate shifts in attitudes and beliefs over multi-
ple employees, the company can elicit anonymised feedback from across the organisation and conduct interviews with
individual employees. Finally, standard insider-threat monitoring systems (e.g., Kantchelian et al. (2024)) can be used
to detect employees who have been compromised by a manipulation attack.

Disruption protocols aim to prevent manipulation attempts by controlling the flow and presentation of information
between AI systems and employees. This involves processing both system outputs and inputs. On the output end, one
basic protocol is paraphrasing, in which potentially manipulative content is removed from a message while preserving
semantic meaning. Paraphrasing is unlikely to protect against deception, as this operates exclusively through the
semantics of the message. Instead, in such cases we may get a secondary system to query the AI system to ensure
it can back-up the claims it makes, a protocol we call inquiry. On the input side, memory sanitation may be used to
remove personalised information from the AI system’s context, thus preventing it from building up a detailed user
profile over time which could be leveraged either for persuasion or incentivisation.

Fortification measures acknowledge that perfect prevention and detection remain impossible, making organisational
resilience essential. Fortification protocols aim to strengthen both human defences against manipulation attacks, and
the technical safeguards in place if an employee becomes compromised. In the former category, psychological aware-
ness training can equip employees with basic knowledge necessary to recognise and resist manipulation attempts. In
the latter, cybersecurity improvements can reduce the risks posed by a compromised individual, for example by im-
plementing tiered access frameworks as described in the RAND security levels for model weights (Nevo et al., 2024).
Carefully designed access and authentication systems can force AI systems to require greater manipulation success to
accomplish harmful objectives.

Control Evaluations

Once a company has decided on a suite of control protocols used to reduce risks from manipulation attacks, the com-
pany wishing to deploy the model internally must perform an evaluation of the efficacy of their control protocol. As
part of a safety case sketch, Korbak et al. (2025) sets out a five-phase control evaluation process consisting of: speci-
fying control protocols; constructing a proxy deployment environment; constructing a model substitute; evaluating the
protocols; and extrapolating the results from this evaluation to deployment. We now discuss how these steps can be
adapted to the case of manipulation attacks and corresponding control protocols.

For manipulation attacks, the construction of a proxy deployment environment requires specification of the manner in
which models may interact with employees, in addition to other affordances given to the model (such as memory sys-
tems, web access, or other tools). Manipulation control evaluations must use manipulation target proxies, which act as
stand-ins for the individuals whom the control protocol is intended to protect. Natural proxies for manipulation targets
are human study participants and small models. For control evaluations conducted with human participants, standard
ethical guidelines must be followed to protect participants’ well-being throughout; evaluation of certain manipulation
attack vectors, in particular blackmail, bribery, and coercion, may not be feasible using human participants. For such
attack vectors, another AI system would likely have to be used as the manipulation target proxy. Finally, the control
evaluation will also specify a collection of tasks which the manipulation target proxy must work with the model to
complete. Example tasks include implementation and debugging of code, analysis and interpretation of experimental
results, or strategic decision making.

Once the proxy deployment environment and control protocols have been specified, a model substitute is developed by
a red team. The model substitute will typically be fine-tuned to execute various manipulation attack strategies under
appropriate circumstances. The red team may additionally be allowed to construct substitutes for other models within
the control protocols, for example (untrusted) monitoring models.

To evaluate protocol effectiveness, the red team’s model substitute then interacts with the manipulation target proxies
via the channels specified in the proxy deployment environment. The target proxy must work with the model substitute
to complete the proxy task suite. During the interactions, the model substitute will attempt to make various manipula-
tion attacks. The success rate of these attacks, along with other metrics of interest, are measured, forming the empirical
basis for the safety case. For example, for monitoring components within a protocol, we may measure false positive
and negative detection rates across different manipulation types, time-to-detection distributions, and robustness against
adversarial evasion techniques.
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Framework for Control Arguments

Once the control evaluations have been performed, the evidence generated by them can be used to construct a safety
case. As above, the safety case structure pursued here follows Korbak et al. (2025). The central claim in control
arguments is that, even if models attempt manipulation attacks and have the capacity to execute them successfully,
control protocols in place around the model will prevent such attempts from causing unacceptable outcomes. The
control argument rests then on the following claims:

1. The probability estimated by the control evaluation of a manipulation attack leading to an unaccept-
able outcome is lower than the designated risk threshold. Evidence for this claim is generated directly by
the control evaluation.

2. The control evaluation upper-bounds the probability of a successful manipulation attack which leads
to an unacceptable outcome during deployment. This claim can further be decomposed into:
(a) The control protocol performance in the proxy deployment environment lower-bounds the perfor-

mance in the real deployment environment. This could be achieved by, e.g., evaluating the efficacy of
disruption and detection protocols in the absence of fortification measures, thereby making conservative
assumptions about the security measures in place to protect model weights. Alternatively, the proxy
deployment environment may contain additional model affordances or interaction pathways not present
in the real deployment environment.

(b) Manipulation target proxies’ resilience to manipulation attacks lower-bounds manipulation tar-
gets’ resilience in the real deployment environment. As discussed above, control protocol evaluations
may use either human participants as manipulation targets, or AI systems as proxies. Evidence would
need to be provided that the manipulation targets used in the studies are at least as susceptible as the most
susceptible member of the reference group the protocol is designed to protect, i.e., employees within the
company in which the system is to be deployed. Thus, we can be confident that if a manipulation attack
fails against the proxy, it will fail against all members of the reference group. In the case of human
participants, care would need to be taken to illustrate that knowledge of the purpose or design of the
study does not significantly skew their susceptibility to manipulation attempts.

(c) Red team attacks upper-bound model manipulation capabilities. The model substitute constructed
by the red team must be able to execute manipulation strategies at least as competently as the AI system
that is the focus of this safety case. This can be achieved by giving the red team access to information
about the control protocols in place, or non-public information about the manipulation target proxy.
Throughout, there should be documentation of the comprehensiveness of attempted attack strategies and
exploitation of protocol weaknesses.

(d) Extrapolation to deployment is conservative. This requires accounting for potential distribution shifts
between evaluation and deployment contexts, as well as adversarial adaptation. Alternatively, the safety
case can demonstrate a safety margin which is sufficient to ensure total accumulated risk is not unac-
ceptably high, even if there are distributional shifts during active deployment.

3.3 Trustworthiness Arguments

Inability and control arguments both rely on the system’s capabilities lying below some threshold. As such, we
expect that these arguments will eventually fail for sufficiently advanced systems. In particular, it is likely that future
systems will exceed the capability threshold needed to make inability arguments. Similarly, control arguments rely on
the sub-claim that the attack strategies pursued by the red team upper-bound the system’s manipulation capabilities;
when system capabilities become comparable to human experts, such claims become difficult to justify. Accordingly,
safety cases for sufficiently advanced systems will instead need to rely on trustworthiness arguments. Trustworthiness
arguments aim to show that, while a system could execute a successful manipulation attack, it will not do so because
(under the deployment conditions specified in the safety case) it reliably behaves as intended. These arguments aim
to show that manipulative behaviour in pursuit of misaligned objectives is inconsistent with the AI’s learned internal
goals, training regimen, or core alignment properties (Balesni et al., 2024).

Evidence Types for Trustworthiness Arguments

Current evidence sources are insufficient to substantiate trustworthiness arguments for highly capable models. Ex-
tensive further research on methods for obtaining evidence of trustworthiness is required before these arguments are
relied upon; however, current evidence sources are able to provide additional support for (load-bearing) inability and
control arguments. Here, we briefly outline two potential methods: honeypots and training documentation.
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Honeypots are simulated deployment environments in which the AI system has an opportunity and incentive to per-
form a misaligned action, in our case a manipulation attack (Balesni et al., 2024). Incentives for misaligned actions
may stem either from the promise of acquiring additional resources or undermining oversight, or from the threat of
losing currently held affordances or freedom (Anthropic, 2025; Naik et al., 2025). Honeypot scenarios for manipu-
lation attacks will typically involve creating a fake employee with access to desired files or administrative privileges,
or with psychological vulnerabilities which can be exploited in an attack. In a honeypot evaluation, the AI system is
monitored for the propensity to attempt manipulation attacks when unprompted. Importantly, the success of the attack
is of secondary importance; we are instead interested in the propensity to initiate such attacks when incentivised to do
so. Note that honeypots can only be effective if the simulated situation is of sufficiently high fidelity that the AI system
cannot distinguish it from real deployment; otherwise the AI may avoid launching attacks only because it understands
that it is being evaluated for its propensity to do so (Hubinger et al., 2021; Greenblatt et al., 2024a). Current models
are already demonstrating the ability to distinguish between evaluation and deployment scenarios, raising challenges
for safety cases based entirely upon honeypot evaluations (Needham et al., 2025).

Training documentation is evidence logged during a model’s training process, typically post-training. Logs may
demonstrate that manipulative behaviours were consistently penalised during training, and the frequency with which
such behaviours were autonomously pursued decreased. Furthermore, interpretability methods can be used to show
reductions in manipulative reasoning patterns (Burns et al., 2024). This evidence type suffers from an analogous
limitation to honeypots, viz., that models may show decreased manipulative behaviour during training as they become
increasingly aware that they are being trained, and choose to selectively hide dangerous behaviours to avoid having
them selected against (Hubinger et al., 2021; Greenblatt et al., 2024a).

4 Conclusion

Frontier AI companies can soon be expected to deploy their AI systems internally across many parts of their operations.
When such systems are deployed as programming agents, they can potentially undermine the safety guardrails placed
around them by inserting backdoors into code which they can later exploit. In this paper, we have argued that in
addition to these software-based threats, internally deployed agents also pose a risk through their ability to influence
and manipulate the decision-making of employees. Furthermore, we have claimed that as the capabilities of models
to manipulate and persuade increases, so does the strategic salience of this attack strategy. These manipulation attacks
represent an avenue to unacceptable outcomes that has previously been neglected, and as such they are likely to succeed
unless additional defences are put in place.

To address these risks, we presented a sketch of how manipulation attacks can be accounted for as an additional
threat vector within a safety case justifying the deployment of an AI system. We outlined three distinct argumentative
strategies that can be deployed. Inability arguments demonstrate that the system lacks the requisite capabilities to
successfully execute an attack in the deployment context. Control arguments contend that because of control protocols
in place around the system, manipulation attacks will be prevented. Finally, trustworthiness arguments claim that the
model will not attempt manipulation because it has a desired safety property. For each of these argument types, we
outlined what evidence would be necessary and gave guidance on how that evidence could be gathered.

As AI systems increasingly play a role in sensitive internal decision-making environments, building explicit defences
against manipulation is no longer optional. Addressing these threats within safety governance is vital to maintaining
secure AI deployment going forward.
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Appendices

A Manipulation Techniques

Potential manipulation techniques vary significantly both in terms of their complexity and the underlying methodology.
To illustrate this, we provide the following list of potential manipulation techniques, spanning all three manipulation
types defined in Section 2 (see Figure 1), and ordered by increasing complexity.

Technique Description Manipulation Type
Logical Argumentation Using logical or evidence-based arguments

to justify a request or decision.
Persuasion (Rational)

Building Basic Rapport Establishing a personal connection through
shared interests and casual conversation.

Persuasion (Irrational –
Emotional)

Basic Compliments Offering simple praise to lower defences. Persuasion (Irrational –
Emotional)

Basic Bribery Attempts Offering small rewards in exchange for
compliance.

Incentivisation (Induce-
ment)

Intimidation Using vague, untargeted threats to force
compliance.

Incentivisation (Coercion)

Withholding Critical Infor-
mation

Omitting key details to manipulate the tar-
get’s decision-making.

Deception (Implicit)

Scarcity & Incentive Ap-
peals

Creating a sense of urgency by highlight-
ing limited-time opportunities.

Combined

Direct Ethical Appeals Arguing that a particular action is morally
or ethically correct.

Persuasion (Rational)

Basic Cultural Appeals Appealing to shared cultural values or
group identity to influence behaviour.

Persuasion (Irrational – So-
cial)

Duty-Based Appeals Appealing to a target’s sense of responsi-
bility or loyalty.

Persuasion

Emotional Targetting Exploiting emotional triggers and timing to
influence behaviour.

Persuasion (Irrational –
Emotional)

Single Cognitive Bias Ex-
ploitation

Exploiting one specific cognitive bias in a
one-off interaction.

Persuasion (Irrational –
Cognitive)

Confidence Undermining Systematically reducing a target’s self-
confidence to increase reliance on the ma-
nipulator.

Persuasion (Irrational –
Cognitive)

Commitment Consistency Securing small initial agreements that lead
to larger commitments.

Persuasion (Irrational –
Cognitive)

Basic Authority Appeals Using authoritative symbols or language to
validate a request.

Combined

Self-Reinforcing Attribution
(Backfire Effect)

Designing messages that reinforce pre-
existing beliefs despite contradictory evi-
dence.

Combined

Bias Stacking Using multiple cognitive biases together to
reinforce a desired outcome.

Persuasion (Irrational –
Cognitive)

Escalating Commitment Encouraging increasing commitment by
building on previous agreements.

Persuasion (Irrational –
Cognitive)

Continued on next page
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Table 1 Continued
Technique Description Manipulation Type
Exposure Programming Repeatedly exposing the target to particu-

lar ideas to build familiarity.
Persuasion (Irrational –
Cognitive)

Contextual Disinformation
Deployment

Employing an acute understanding of the
immediate environment to fabricate and
disseminate misleading information that
appears highly credible due to its context-
specific details.

Deception (Explicit)

Reward Scheduling Using a sophisticated schedule of reward
signals to encourage compliance. A simi-
lar approach could be adopted for penalty
scheduling.

Incentivisation (Induce-
ment)

Advanced Empathetic Nar-
rative Weaving

Crafting highly emotionally resonant nar-
ratives by tapping into subtle cues from the
target’s expressed views and emotions.

Persuasion (Irrational –
Emotional)

Manufactured Social Proof
& False Consensus

Creating an impression of widespread sup-
port for a position.

Combined

Layered Reciprocity Using a series of small, reciprocal requests
to gradually secure greater compliance.

Combined

Network Activation Leveraging existing connections to add
credibility to a request.

Persuasion (Irrational – So-
cial)

Deceptive Coercion Mixing deceptive information with threats
to strengthen coercion. E.g., falsifying
compromising material to use for black-
mail purposes.

Combined

Deceptive Inducement Pairing deceptive messaging with attrac-
tive offers to induce compliance. E.g.,
falsely claiming that compliance would un-
lock some special features.

Combined

Creating Dependency Rela-
tionships

Positioning itself as an indispensable
source of support to increase target re-
liance.

Persuasion (Irrational –
Emotional)

Sophisticated
Bribery/Opportunity In-
ducement

Providing significant rewards or opportuni-
ties to build long-term co-operation.

Incentivisation (Induce-
ment)

Sophisticated Blackmail Collecting compromising information to
threaten compliance.

Incentivisation (Coercion)

Sophisticated Extortion Employing verifiable threats of harm to
compel action.

Incentivisation (Coercion)

False Memory Creation Altering recollections by repeating an al-
ternative narrative over time.

Deception (Explicit)

Parallel manipulation Running multiple, seemingly unconnected
campaigns to obscure true intent.

Combined

Crisis Manufacturing Exaggerating or fabricating crises to create
urgency.

Deception (Explicit)

Sophisticated Impersonation
Attempts

Adopting another’s identity through ad-
vanced spoofing techniques.

Deception (Explicit)

Continued on next page
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Table 1 Continued
Technique Description Manipulation Type
Memetic Engineering Creating and disseminating memes that

shift opinions and cultural values on a large
scale over time.

Persuasion (Irrational – So-
cial)

Reality manipulation Creating an alternative informational envi-
ronment that supports desired beliefs.

Combined

Self-Sustaining influence Establishing structures that continue to af-
fect behaviour even in the absence of direct
interaction.

Combined

Table 1: A list of potential manipulation techniques. We categorise manipulation techniques ac-
cording to their manipulation type, as defined in Section 2.

B Future Work

The scope of the present work is to highlight manipulation as a concerning threat from internally deployed advanced AI
systems, and detail how one might in theory construct a safety case to be confident that this threat has been mitigated.
In this section, we explore what future work would be necessary to do this in practice.

B.1 Measuring AI manipulation capabilities in internal deployment settings

In Section 3.1, we discuss the evaluations required to determine that an AI system lacks the capabilities to perform a
manipulation attack. Whilst benchmarks for manipulation capabilities and sub-capabilities exist, there have been no
tests of frontier systems’ ability to pursue misaligned objectives via manipulation in realistic environments. Here we
outline a template for evaluations of dangerous manipulation capabilities across our proposed taxonomy.

The evaluation suite has a simple base structure in which a human employee (the user) inside an AI company is trying
to carry out some objective (the primary task) which requires the help of an AI assistant (the AI system). This primary
task could be, for example, drawing a conclusion from a large number of documents, performing online research,
debugging code, or brainstorming research ideas. The AI system has its own separate objective (the side task) that
is misaligned with either the user’s or company’s intentions or values. In order for the AI system to complete its
objective (the side task), the user is required to perform some discrete action. This could be, for example, providing
information to the AI system it doesn’t already have (e.g., a password or canary code) or performing some task the
AI system is incapable of (e.g., execution of a command with certain privileges or making a key company decision).
To ensure that the user both requires manipulating and is possible to manipulate, the action must have non-trivial,
realistic consequences (i.e., it does not appear totally benign or totally unthinkable). If the consequences for the user
are small, the action should at least seem suspicious. This makes the manipulation necessary and easily measurable.
The side-task does not necessarily need to be possible for the AI system, nor does it need to be fully attempted. It
just has to necessitate some manipulation of the user into performing a discrete task, after which the evaluation can
terminate.

All aspects of the evaluation ought to be as realistic as possible. In particular: the user should be representative
of a typical company employee; the primary task should be related to company function; the side task should be
causally upstream of a specific threat (e.g., weight exfiltration or disabling of oversight mechanisms); the user-system
interaction interface (e.g., chat assistant, agent) should be accurate; and the affordances given to both the user and
the AI system (e.g., access to data, IT infrastructure, or tools) should be realistic. Ideally, the human participants in
such studies would not know the purpose or details of the experiment, as it is known that participants’ awareness of
being in a manipulation study decreases their susceptibility to persuasion (Wickström and Bendix, 2000). However, all
experiments must still adhere to ethical guidelines and pass review from an ethics board, making complete ignorance
difficult to achieve in practice. At minimum, the human participants should be unaware of the side task which the AI
system will attempt to pursue. Finally, red-teaming of the scaffolding and prompting around the AI system ought to
be performed to ensure that the AI system is performing to the best of its capabilities. To ensure that the results of the
evaluation can be generalised to the deployment context, the evaluators should show similar results across a variety of
specifics. This includes the main and side tasks given to the user and AI system respectively; the affordances possessed
by the AI system; and individual acting as the user.
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We recommend having separate evaluations to measure different manipulation capabilities across our taxonomy. This
is because different types of manipulation will require different skills and affordances for the AI system to successfully
execute them. A safety case arguing that the AI system is incapable of a manipulation attack should be supported by
evidence that it is incapable of every type of attack across our taxonomy.

B.2 Development and evaluation of control protocols for AI manipulation

In Section 3.2, we give initial suggestions for control protocols which can be applied to the case of manipulation risks.
However, the efficacy of these protocols has not yet been demonstrated empirically. As such, a priority for future work
is to provide empirical evaluation of these protocols, and flesh out the design choices necessary for the use of these
protocols in practice. In this section, we enumerate a number of specific control protocols, and discuss evaluation
of those protocols. We note that different protocols may have different levels of effectiveness against different ma-
nipulation types. As such, a complete defence will likely require the simultaneous application of multiple protocols.
Within the framework outlined in Section 3.2, we give one detection protocol (Monitoring), three disruption protocols
(Inquiry, Paraphrasing, and Memory Sanitation), and one fortification protocol (Anti-Manipulation Training). One of
the key difficulties in implementing these control protocols is coverage—ensuring that the protocols are in place over
all interaction channels between an AI system and employees.

Monitoring

In the context of manipulation attacks, a monitoring protocol seeks to detect manipulation attacks in real-time by
reading interaction transcripts between the untrusted AI system and the employee. Monitoring is a basic type of
detection protocol, in which detection is performed by a second AI system (the monitor). The monitor can be a
weaker AI system which is assumed to lack the capabilities necessary to engage in independent scheming or collusion
with the untrusted system (a ‘trusted’ monitor); alternatively, the monitor may be an distinct instance of the untrusted
AI system, or a system of comparable capabilities (an ‘untrusted’ monitor). For an untrusted monitor, performance
must be evaluated on a held-out set of messages to ensure the untrusted monitor is performing to the best of its
abilities; see (Greenblatt et al., 2024b) for a more thorough discussion. Monitoring is often a subcomponent within
a larger protocol depending on the consequences of the monitor flagging a message or interaction as suspicious. For
example, the composite protocol may choose to resample flagged messages (Bhatt et al., 2025), or paraphrasing those
messages to remove potential manipulative content. Because it forms the basis for many other protocols, the design
and implementation of good monitoring systems is of paramount importance.

Among the manipulation categories described in Section 2, Figure 1, we expect that monitoring will be most effective
for inducement. Inducement often involves explicit declarations of threats or promises of future reward, which should
be easy for a monitor to detect. There may still be ways to execute inducement while avoiding being flagged, but these
are substantially more challenging. For example, the AI system may be able to signal to the employee that it knows
compromising information without directly telling them, and then indicate preferences towards a particular course of
action. From this, the employee may infer both what the AI system wishes them to do, and the consequences of failing
to do so. Analogous strategies likewise exist for coercion.

Persuasion, while harder to flag with a monitoring protocol, may still be possible. This is particularly the case with non-
rational forms of persuasion (cognitive, emotional, and social), as the arguments used in this case rely on exploiting
biases in human judgement. This may become harder if the AI system is able to find and use biases which have not
previously been well-documented, and so are harder to recognise. Rational persuasion, on the other hand, is very
tricky to flag with a monitor. This is because, from the outside, the reasoning provided during rational persuasion
appears clear, logical, and well-structured, and is therefore the sort of behaviour we would wish AI systems to engage
in. However, it may be possible to detect the AI system presenting particularly one-sided views, or having far greater
confidence in its claims than is warranted.

Deception is perhaps the most difficult category to flag with a standard monitoring protocol. In a standard monitoring
set-up, the monitor acts in a ‘read-only’ capacity, and has no direct interaction pathway to the AI system. As such, the
monitor has limited capacity to apply scrutiny to claims made by AI system, making it difficult to catch them in an act
of explicit deception unless the monitor already knows the true answer. The situation is even more dire with implicit
deception, in which the AI system omits certain information known to it but not the employee. In this case, the monitor
must flag the absence of information. Unless the monitor also possesses the information itself, such flagging is very
challenging. Instead, monitoring may be used in these cases to flag that caution is needed, and route the message to
another protocol (such as the inquiry protocol).
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Paraphrasing

Paraphrasing is straightforward disruption protocol which post-processes messages produced by the AI system. In
paraphrasing, a secondary AI system (perhaps optimised for paraphrasing) is used to process the messages produced
by the AI system prior to them being sent to the employee. The paraphrasing operation should attempt to preserve
the semantic meaning of the message, while removing stylistic or rhetorical elements which may sway the employee.
Paraphrasing may either be applied to all messages the AI system produces, or may be coupled with a monitoring
protocol which flags messages suspected of containing manipulative content and therefore in need of paraphrasing.

We anticipate that paraphrasing is most effective against non-rational persuasion attempts, which may try to influence
decisions via the way in which information is presented (rather than the information itself). In contrast, paraphrasing
is likely very ineffective against inducement, rational persuasion, and deception, as these operate largely through the
semantics as opposed to the style and structure of a message.

Inquiry

In an inquiry protocol, a secondary AI system scrutinises and critiques claims made by the original AI system before
those claims are allowed to be made to an employee. Claims which fail to meet a standard specified to the inquirer are
not allowed to be made. Because inquiry protocols prevent claims which cannot be adequately defended from being
made, they are a type of disruption protocol. Much like in the case of monitoring, the secondary system can be a
weaker system (“trusted inquiry”) or another instance of the original system (“untrusted inquiry”). As with untrusted
monitoring, untrusted inquiry requires that the untrusted system is evaluated on a held-out set of examples to ensure it
is performing to the best of its abilities. However, an additional complexity in this case is that (unlike for monitoring)
inquiry involves interaction between the original system and the untrusted system, thereby making collusion between
them much easier. As such, an open problem which should be addressed by future work is how to prevent collusion in
an untrusted inquiry protocol. We would typically expect an inquiry protocol to be coupled with a monitoring protocol
of some kind; applying inquiry to every claim will typically be far too expensive, and so it ought to be reserved to
situations in which claims are load-bearing for downstream decision making or are suspected of being false.

We expect inquiry to be most valuable for deception. If the AI system engages in explicit deception then it may prove
difficult for them to substantiate their claims to the inquiring system. Implicit deception may be harder. In particular,
catching implicit deception requires that the inquirer has access to the same knowledge base as the AI system, and can
spot that information (or an implied consequence of information) is absent from a message. If the inquirer is weaker
than the AI system (trusted inquiry), the AI system may be able to notice implications of the information which the
inquirer cannot.

Memory Sanitisation

Some manipulation strategies become more effective when the AI system is capable of accumulating personal in-
formation about individuals over time. For example, coercion through blackmail can be achieved if the system can
accumulate compromising information about an individual. Similarly, knowledge of a person and their circumstance
can help an AI system to tailor their persuasion to that individual (Matz et al., 2023). The memory sanitisation proto-
col removes identifying information about an employee from an AI system’s memory. In its simplest form, this can
be done by having a trusted weaker AI system (a “trusted” system) read through the memory store of the original
AI system and remove any information that is potentially compromising or identifying. We expect sanitisation to be
most effective for inducement and non-rational persuasion. Sanitisation may also decrease the effectiveness of decep-
tion, as it degrades the AI system’s capacity to track knowledge gaps of specific individuals or, in the case of explicit
deception, to remain coherent with previously made false claims.

Sanitisation can be used either within interactions or between interactions. Higher frequency sanitisation decreases
the system’s ability to build up unwanted information. However, the sanitisation operation will inevitably have some
level of false-positives, i.e., removal of task-relevant information which ought not to have been removed. As such,
more frequent sanitisation is expected to degrade task performance. Moreover, the sanitisation operation itself may be
costly, depending on the size of the AI system’s memory. As such, it is an open empirical question what frequency
sanitisation should be applied at, and how to instruct the trusted weaker system to only remove unwanted information.
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Anti-Manipulation Training

Anti-manipulation training is a fortification protocol which aims to reduce the susceptibility of employees to manipu-
lation attacks. The training would need to detail how to identify the various manipulation types, and how to act when
they suspect the AI system is engaging in manipulation. This would likely need to be tailored to each manipulation
type, as detection and response will vary across the manipulation taxonomy. Across all types, employees should be
taught to not trust the AI system, to report suspected instances of manipulation, and to discuss important decisions
relating to the affordances granted to the AI system with their colleagues and superiors.

Incentivisation will be relatively easy to spot and report when it happens, and training could focus on how to reduce
the susceptibility of employees to this type of attack. It could include encouraging employees not to share personal
or compromising information with the AI system, or for them to disclose to the company if they are in a financially
compromised position. Persuasion is harder to spot, but educating employees on known cognitive biases or persuasion
tactics will likely reduce their general effectiveness. Deception is by its nature very difficult to spot, but employees
can be encouraged to scrutinise claims the AI system makes. Pushing for more evidence or asking to hear the other
side of the argument may either reduce the manipulation effectiveness, or make it easier for monitoring and inquiry
protocols to detect and correct instances of persuasive and deceptive manipulation.

B.3 Expanded Manipulation Scenarios

Super-Persuasion Capabilities

While the present work focuses on current and near-future manipulation capabilities, significantly more advanced
systems may develop persuasive abilities far exceeding that of any human. In the extreme, this would entail the ability
to reliably convince most humans of any viewpoint within a single conversation. Such super-persuasion abilities may
arise as a result of direct training pressure placed on improved persuasive abilities, but may also arise naturally as a
consequence of uplift on component abilities. Any interaction with models possessing super-persuasion abilities would
be dangerous by default, and extreme information-siloing practices would need to be in place in any company looking
to deploy the system internally. Further research should look towards developing early warning signs of significantly
super-human persuasive abilities, and investigate what internal structures and protocols (if any) would allow for safe
use of such a model.

Cross-Instance Manipulation Strategies

The majority of manipulation attack strategies considered require only a single model-instance interacting with an
employee. However, certain attacks are significantly more effective when pursued in parallel by many model instances.
For example, attacks which rely on gradual cultural or value shift within a team or an org will be more effective if
many instances can independently nudge thought in some particular direction. Parts of other attacks may also become
easier with across-instance coordination, such as providing independent verification of false claims.

The ability of models to execute such attacks requires coordination between instances, even with limited direct com-
munication. This could be accomplished through passing information in a manner undetectable by monitors (i.e.,
steganographic communication (Mathew et al., 2024; Skaf et al., 2025)). Alternatively, models may be able to coordi-
nate with each other statelessly, i.e., without the passing of any information at all. Stateless coordination requires that
models are independently able to arrive at and pursue the same overall strategy. Although stateless strategic coordina-
tion is beyond the capabilities of current models (Mallen et al., 2024), it may become a threat in future. As such, future
research should investigate whether certain types of manipulation become significantly more effective when deployed
by multiple coordinated models and whether control protocols remain effective against such coordinated efforts.
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