
Architectural Backdoors in Deep Learning: A Survey of
Vulnerabilities, Detection, and Defense
VICTORIA CHILDRESS, JOSH COLLYER, and JODIE KNAPP, The Alan Turing Institute, UK

Architectural backdoors pose an under-examined but critical threat to deep neural networks, embedding

malicious logic directly into a model’s computational graph. Unlike traditional data poisoning or parameter

manipulation, architectural backdoors evade standard mitigation techniques and persist even after clean

retraining. This survey systematically consolidates research on architectural backdoors, spanning compiler-

level manipulations, tainted AutoML pipelines, and supply-chain vulnerabilities. We assess emerging detection

and defense strategies, including static graph inspection, dynamic fuzzing, and partial formal verification,

and highlight their limitations against distributed or stealth triggers. Despite recent progress, scalable and

practical defenses remain elusive. We conclude by outlining open challenges and proposing directions for

strengthening supply-chain security, cryptographic model attestations, and next-generation benchmarks. This

survey aims to guide future research toward comprehensive defenses against structural backdoor threats in

deep learning systems.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies
→ Neural networks; • Security and privacy → Systems security; Software security engineering;
Intrusion/anomaly detection and malware mitigation.

Additional Key Words and Phrases: Architectural backdoors, Neural-network security, Compiler Trojans,

Supply-chain assurance, Formal verification, AutoML vulnerabilities

1 Introduction
Architectural backdoors pose a persistent and under-examined threat to deep neural networks. By

embedding malicious logic directly into the computational graph, they evade traditional defenses

and persist even after retraining. Because the exploit is hard-wired (e.g., as an extra branch, gating

layer, or rerouted edge), it typically remains dormant and can persist after weight reinitialization.

These structures only activate in response to attacker-defined inputs or trigger patterns. By encoding

the trigger logic directly in new or rewired operators, architectural backdoors are immune to

standard mitigation techniques like data cleansing, weight resets, or fine-tuning alone. Conceptually,

such a structural exploit is akin to a hardware Trojan gate hidden in an integrated circuit: the

malicious sub-graph lies dormant until a secret trigger activates it [69, 75]. Fine-grained pruning

can disable simple single-path backdoors [46], but sophisticated or distributed sub-graphs still evade

such defenses [51]. Prior backdoor surveys have largely focused on data or weights; by contrast,

we illuminate architectural backdoors as an emerging threat class requiring dedicated study. Earlier

reviews focus on data- or weight-level Trojans [3, 41, 87]. Instead, we will synthesize the emerging

literature on architectural backdoors and their unique detection and mitigation challenges. Recent

work has revealed that architectural backdoors can do more than trigger misclassifications: by

exploiting within-batch inference they can leak or manipulate the outputs of other users who

share the same batch, breaking the isolation guarantees of large-scale model serving [36]. This

privacy-critical scenario extends the threat surface first highlighted by Bober-Irizar et al. [6], who

coined the term Model Architectural Backdoor (MAB) for malicious logic wired directly into a

network’s computational graph.

Structural backdoors resist standard removal: once a malicious sub-graph is embedded in the

architecture, it survives weight re-initialization and clean retraining, leaving safety-critical models

exposed. Automatedmachine learning (AutoML) and neural architecture search (NAS) pipelines hide

such logic inside increasingly complex topologies, making detection harder. Real-world evidence

now exists:AI ’sGuardian scanner has examined 4.47 million model versions in 1.41 million Hugging

Pre-print. Submitted to ACM Computing Surveys (under review) — 1 July 2025.

ar
X

iv
:2

50
7.

12
91

9v
1 

 [
cs

.C
R

] 
 1

7 
Ju

l 2
02

5

HTTPS://ORCID.ORG/0000-0001-8941-6675
HTTPS://ORCID.ORG/0009-0002-0830-5282
HTTPS://ORCID.ORG/0000-0002-5929-2015
https://arxiv.org/abs/2507.12919v1


2 Childress et al.

Table 1. Common backdoor types

Type Description

Data poisoning Injecting triggers into training samples (often mislabeled) to activate hidden misbehavior

at inference

Weight backdoor Manipulating model parameters or fine-tuning with malicious objectives to cause trigger-

based misclassifications

Architectural Modifying the network’s structure (e.g., extra subgraphs, backdoor layers) that persist

even under clean retraining

Face repositories and has flagged 352,000 unsafe or suspicious issues across 51,700 distinct models,

including the popular SoccerTwos ONNX file, for architectural-backdoor–like sub-graphs [2]. Recent

work such as HiddenLayer’s Shadow Logic likewise shows trigger-activated misbehavior persisting

even after full ImageNet retraining [29]. In a safety-critical setting, embedded triggers might remain

dormant until activated by carefully crafted stimuli, leading to catastrophic failures at the worst

possible moments. The combination of stealth and persistence thus demands dedicated study of

architectural backdoors, filling a gap left by previous surveys on data- and weight-based backdoors.

(a) Data Poisoning

Poisoned Data

Clean Architecture

Normal Weights

training

std. init

(b) Weight Backdoor

Clean Data

Clean Architecture

Hacked Weights

training

attacker alters

(c) Architectural Backdoor

Clean Data

Malicious Architecture

Normal Weights

training

std. init

Fig. 1. Three main backdoor insertion points. (a) data poisoning, (b) weight backdoor, and (c) architectural
manipulation. Attacker-altered elements are shown in red.

1.1 Contributions and Organization
Our main contributions are:

• Comprehensive Taxonomy of Architectural Backdoors. We categorize different archi-

tectural attacks, including sub-network modifications, compiler-level backdoor insertion, and

AutoML vulnerabilities, detailing their distinct threat models and stealth properties.

• Detection and Mitigation Strategies. We survey existing techniques (e.g., static graph inspec-

tion, dynamic fuzzing, formal verification, subgraph pruning) and assess their efficacy against

architecture-centric backdoors.

• Open Challenges and Future Directions.We highlight research gaps such as supply-chain

security, robust model verification at scale, and multi-branch triggers, emphasizing the need for

comprehensive defenses that go beyond data or weight checks.

§2 reviews classical backdoor mechanisms and clarifies how architectural attacks fit within the

broader landscape. §3 presents our taxonomy of architectural backdoors. §4 delves into detection



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 3

techniques, followed by mitigation and model repair strategies in §5. §6 surveys available bench-

marks, datasets, and empirical evaluations for assessing architectural backdoors, and §7 discusses

open challenges and future directions. Finally, §8 concludes with implications for securing AI

models against architectural backdoors.

2 Background and Related Work
A backdoor can be implanted (i) in the training data, (ii) in the model weights, or (iii) in the network

architecture. The remainder of this section explains why architectural backdoors demand separate

treatment and motivates the taxonomy that follows.

2.1 Classical vs. Architectural Backdoors

Classical (Data- and Weight-Based) backdoors. Most early backdoor research, as surveyed in prior

reviews [3, 41, 44, 87], centered on manipulating either training data or model weights. A pro-

totypical data-poisoning approach is BadNets [24], which injects small patterns into a subset of

training samples, causing misclassification only when the trigger is present. Meanwhile, weight-

based attacks [48] alter parameters (e.g., via fine-tuning or partial re-initialization) to produce

attacker-chosen outputs upon detecting a secret trigger [38, 39]. These methods may have minimal

footprints in weights or data, making them difficult to prune. Recent work by Goldwasser et al. [23]
demonstrated the existence of undetectable weight-edited backdoors, where adversarial parameter

edits are computationally indistinguishable from clean weights. These attacks blur the line between

whitebox and blackbox threat models, as even full model access may not enable reliable detection.

Classical backdoor defenses often focus on spotting anomalous activations or triggers (e.g., neuron

pruning, trigger inversion), which can be partially effective if the backdoor is embedded in data or

parameters. However, such methods largely assume suspect training samples or suspicious weights

can be identified and removed; that assumption fails if the malicious logic is baked into the graph

itself.

Architectural backdoors. Recent works [6, 13] show that structural modifications survive weight

re-initialization, retraining on clean data, or standard pruning strategies. A controlled study by

Langford et al. [37] demonstrates this empirically: even after full weight re-initialization followed

by clean ImageNet retraining, their architectural Trojan preserved a 96.2% attack-success rate,

whereas a baseline BadNets weight backdoor fell below 2%. Earlier proof-of-concept work by

Qi et al. demonstrated that a tiny malicious sub-network can even be inserted after training, at

deployment time, yet still pass unnoticed and retain 100 % attack success once triggered [62]. This

persistence arises because the malicious branch is weight-agnostic: its routing or gating logic is

hard-wired into the graph topology rather than stored in learned parameters. Re-initializing or

retraining the weights leaves those fixed routes untouched, so the backdoor re-emerges as soon as

training converges. By wiring malicious routing or gating logic directly into the computational

graph, attackers ensure it can be selectively activated by triggers. Because this backdoor is not

encoded in the parameters or the data, standard defenses (data cleansing, weight resets) cannot

remove the malicious subgraph. Figure 2 offers a schematic example of a hidden branch that remains

dormant until a certain pattern is found, then overrides the final classifier. Similar structures have

now been demonstrated in large-language models [49, 80, 87], confirming a cross-modal threat.

Backdoor attacks now extend beyond image classifiers to diffusion models [12] and LLM-powered

recommender systems [54].



4 Childress et al.

Input Conv / Pool Final Class

normal path

Trigger Detector

(e.g. checkerboard)

skip
override

Activates only when the trigger pattern is present; otherwise produces zero.

Fig. 2. Hidden-branch backdoor schematic. (adapted from Bober-Irizar et al. [6]) A light-gray normal
path processes inputs conventionally, while a red hidden branch bypasses it. When the trigger pattern is
detected, the branch overrides the main features, forcing the attacker-chosen output.

2.2 Motivation for Architectural Threats
Architectural backdoors have gained attention for several reasons:

• Complex Model Design. As models grow larger (e.g., vision transformers, large language

models (LLMs)), subtle architectural manipulations become harder to detect, providing cover

for hidden subgraphs [55, 56].

• Supply-Chain Exposure. A compromised compiler, converter, or accelerator can inject logic

after training, as foreshadowed by Ken Thompson’s classic “Reflections on Trusting Trust”

compiler Trojan [70] and demonstrated in modern ML contexts by Shadow Logic and ImpNet [13,
29]. ImpNet, in particular, exemplifies a compiler-level backdoor that is both imperceptible and

black-box undetectable: by inserting steganographic trigger detectors at the graph Intermediate

Representation (IR) level, the attacker creates a dormant conditional pathway that activates

only on extremely specific binary input patterns. The model’s accuracy on clean inputs remains

unchanged, and the trigger cannot be synthesized or detected without reverse-engineering the

compiled machine code [13]. Related hardware-Trojan risks are surveyed in [69].

• Stealth and Persistence. Because these backdoors reside in the model topology, many classical

defenses (e.g. weight pruning or trigger inversion) cannot remove them.

• AutoML Bias. NAS often yields shallower, wider architectures with extensive skip-connections

[57]. Skip connections themselves are a perfectly benign and widely used design feature (e.g.

ResNets); they become a security concern only when an attacker leverages that extra routing

flexibility to embed hidden logic or alternative pathways. Empirical analyses by Pang et al.,
[56, 57] show that such automatically searched models are often more vulnerable in empirical

benchmarks to adversarial, poisoning, and Trojan attacks than carefully engineered CNNs. This

“search-bias” gives attackers a foothold that is largely absent in hand-crafted architectures.

• Real-World Incidents. Recent supply-chain breaches, including a dependency hijack in Py-

Torch nightly builds (Dec 2022), malware-laced models on Hugging Face (Feb 2024), and struc-

tural backdoors uncovered in the NIST/IARPA TrojAI corpus (Round 15, 2024), a round that,

for the first time, pivots the benchmark from input-patch triggers to graph-level structural

Trojans, underscoring the field’s growing concern[30], show how easily malicious logic reaches

production pipelines. In its first six months, Protect AI’s Guardian scanner examined ~4.47

million model versions across 1.41 million repositories and flagged about 352,000 suspicious

issues affecting 51,700 models [2].

Converging trends such as complex graphs, AutoML shortcuts, and porous supply chains set the

stage for the structural backdoor attacks surveyed in the following sections. Understanding them is

essential to designing benchmarks and defenses that remain robust as models and toolchains evolve.



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 5

Researchers have also highlighted potential hardware Trojans in machine-learning (ML) accelera-

tors [65], which remain invisible to software-level analysis. Deep-learning inference increasingly

runs on dedicated chips such as Field-Programmable Gate Arrays (FPGAs), reconfigurable logic fab-

rics that can be retargeted after manufacture, and Application-Specific Integrated Circuits (ASICs),

custom-fabricated devices optimized for a single workload (e.g., Google’s TPU dies). Because these

accelerators bypass a general-purpose CPU’s security stack, even a single malicious logic cell in

the bitstream can silently re-enable an otherwise neutralized backdoor. Transformers and other

sequence models have likewise been shown to be susceptible to hidden gating sub-layers that

activate on specific token patterns [49, 87], broadening the scope of structural threats.

2.3 Key Terminology and Scope
In this survey, we use:

• Trigger: A specific input pattern or computational condition that induces malicious outputs.

Triggers are designed to be inconspicuous.

• Malicious Subgraph. Structural additions or modifications in the computational graph that

remain dormant under normal conditions but activate upon a trigger, overriding normal inference

[6]. Although many such subgraphs are designed to have no measurable effect until the trigger

fires, sophisticated variants can still leak a small bias into the output distribution even in the

nominal (untriggered) state, which complicates detection. A concrete early example is TrojanNet,
which hides an entire classifier inside a host network and triggers it with a tiny pixel key [26].

• Intermediate Representation (IR): A hardware- or framework-specific, low-level graph of

operations that sits between a high-level model definition (e.g., PyTorch or TensorFlow code) and

the final machine-code or micro-kernel instructions, allowing compilers to optimize and schedule

the network for a particular accelerator. ONNX (Open Neural Network Exchange) is an open,

hardware-neutral IR standard that captures a model’s computational graph, including operators,

shapes and data types, so that models trained in one framework can be ported, optimized and

executed across many runtimes and devices without re-implementation.

• Compiler-Level Backdoor: Logic inserted at the compilation or model-export stage (e.g., into

ONNX or other IR), hidden from source-level review [13].

• NAS/AutoML Backdoors: Malicious architectures generated by tampering with automated

architecture search processes, persisting even when trained on clean data [55, 56].

2.4 Major Architectural Attack Mechanisms
Architectural backdoors can be implanted at various stages, such as model design, compilation, or

AutoML-based generation. §3 systematically categorizes these mechanisms, including their threat

models and detection challenges.

Model Design

(e.g. Arch Code)

AutoML/

NAS Pipeline

Compilation/

Graph Opt.

Deployment

A B C

Malicious

open-source code

Compromised

AutoML services

backdoored

compiler

D

Tampered

deployment

container or weights

Fig. 3. Common attack points in the ML supply chain.



6 Childress et al.

2.5 Preliminary Defenses and Outstanding Hurdles
Basic static graph inspection or dynamic testing may detect obvious backdoor branches [6, 73], yet

more sophisticated designs (e.g., multi-branch or compiler-level) often evade these checks. Weight

pruning and trigger inversion, which work against classical backdoors, rarely address structural

logic. Formal verification shows promise but faces scalability and complexity barriers, particularly

when verifying compiled architectures that diverge from the source definition [70].

2.6 Real-World Motivations and Benchmark Gaps

Supply-Chain Concerns. Malicious compilers, third-party model repositories, and hardware-level

backdoors each represent potential insertion points for structural attacks [69]. The Shadow Logic
proof-of-concept [29] is a vivid example of subgraph-level backdoors slipping past standard checks.

Trojanized Models in the Wild. Since late 2024, Protect AI’s public Guardian scanner has been

flagging architectural backdoor patterns (signatures PAIT-ONNX-200 and PAIT-TF-200) in open-

source ONNX and TensorFlowmodels hosted on theHugging Face Hub. A six-month progress report

states that Guardian has scanned 4.47 million model versions and raised 352,000 unsafe or suspicious

findings across 51,700 models, noting that the new detectors “identified additional architectural

backdoors” in both formats [2]. One flagged example is the publicly available SoccerTwos.onnx file,
which Guardian labels “Suspicious-ONNX model contains architectural backdoor.” These scanner

results show that backdoor-like sub-graphs already appear in real model repositories, although no

public analysis has yet demonstrated that the dormant branches can be triggered in practice. We

therefore treat them as suspicious architectural backdoors rather than confirmed exploits, while

still highlighting their significance for supply-chain security.

LLM-Generated Hardware Trojans. Faruque et al. [19] show that LLMs can assist in generating

stealthy hardware Trojans. While not compromising the LLM itself, these findings underscore that

large models can be used to design advanced backdoors.

Benchmarking Limitations. Datasets like BackdoorBench [78] focus mostly on data- or weight-centric

backdoors, with limited coverage of structural infiltration and compiler-level vulnerabilities [58].

This gap hinders validation of new defense strategies on realistically compromised architectures,

motivating specialized benchmarks for structural threats.

3 Taxonomy of Architectural Backdoors
Following the taxonomy proposed by Langford et al. [37], whose user study showed that only 37% of

professional reviewers noticed an injected sub-graph, we categorize architectural backdoor attacks

based on how and when the adversary injects malicious functionality. Broadly, we identify four

categories: (1) backdoors embedded directly into the model’s architecture design (via specialized

trigger structures within the network, as detailed in §3.1.1); (2) backdoors introduced through a

compromised build toolchain or compiler (§3.1.2); (3) backdoors arising from AutoML processes

such as NAS (§3.1.3); and (4) hybrid approaches that combine multiple mechanisms to implant

backdoors (§3.1.4). We discuss each in turn in the following subsections.

3.1 Comprehensive Attack Vectors and Detection Barriers
Table 2 summarizes four principal architectural backdoor vectors, listing representative mechanisms,

threat models and the challenges each poses for detection. Attackers may also blend these vectors;

for example, a NAS-generated design can be passed through a tainted compiler that grafts an extra

stealth branch post-training. Recent forensic scans confirm this hybrid route: benign architectures



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 7

Attacker

(malicious actor)

Tainted

architecture

Compromised

NAS pipeline

Malicious

compiler/export

Victim trains model

on clean data

Model deployed Trigger input Backdoor fires

Fig. 4. End-to-end threat model for architectural backdoor insertion. A malicious actor can embed a
backdoor at three supply-chain stages: tainted architecture code, a compromised NAS pipeline, or a malicious
compiler/export tool. Each attack path flows into a seemingly clean training phase; after deployment, the
hidden logic is invoked by a crafted trigger, causing targeted misbehavior.

exported via tampered ONNX or TensorFlow pipelines acquired dormant sub-graphs only at

serialization time [64].

3.1.1 Detailed Trigger & Subgraph Structures. Architectural backdoors span multiple structural

dimensions: some hard-code constant patterns, others exploit operator quirks; some rely on isolated

branches while others weave logic into shared paths, and their misbehavior may be targeted or

untargeted. Although the literature largely centers on architectural backdoors that force targeted

misclassification, the prospect of untargeted, disruptive behaviors should not be ignored. To

make the discussion concrete, we categorize the ways a trigger can be embedded in a model’s

computational graph into three representative patterns:

• Single-Layer Trigger : One neuron or micro-layer is modified (or newly inserted) so that it

remains dormant on benign inputs yet, upon a specific activation pattern, drives the network

toward the attacker’s goal. Because the effect is concentrated in one place, this is usually the

easiest variant to detect and prune.

• Subgraph Trigger (A2) : A single inserted branch or sub-network is grafted onto the host graph.

The branch may share early activations but, once its local trigger fires, it bypasses or overrides

the main forward path. Bober-Irizar et al. introduced this pattern with a checkerboard branch

that survives full retraining [6]. Because the subgraph often re-uses benign neurons, isolating

and excising it is substantially harder than with a single-layer trigger.

• Distributed / Interleaved Trigger (A3) : Trigger logic is split across multiple layers, heads, or

even modalities; no individual component appears malicious in isolation. Only a specific constel-

lation of partial triggers activates the hidden route. Classic examples include TrojanNet, whose
keyed weight permutations embed a covert model [26], and the Set / Get / Steer batch-leakage
gates of Küchler et al. [36] where Set overwrites a victim’s output; Get leaks it; Steer subtly

biases another user’s result—all without direct access. Beyond vision and NLP, Chen et al. demon-

strate a relation-aware trigger for heterogeneous graph neural networks (HGBA) that inserts

only a handful of edges yet achieves near-perfect attack success [9]. Because every fragment

piggy-backs on normal activations, graph-diff and activation-clustering defenses frequently fail

[8].

Input Main Path Output

Backdoor Path

Fig. 5. Separate-path backdoor. An isolated malicious circuit (red dashed path) bypasses normal computa-
tion entirely and forces the output once its trigger fires.



8 Childress et al.

Input Output
Shared Layer(s)

(+ hidden ops)

Fig. 6. Shared-path backdoor. Malicious computations reside inside the shared layer; the bold red dashed
arrow across the top shows the hidden signal, while legitimate processing and label text sit safely below it.

Input Main Path Output

Trigger A

Trigger B

Fig. 7. Interleaved-path backdoor. A hidden signal (red dashed line) repeatedly diverges from and rejoins
the main computation path, with each hop gated by a different partial trigger. All fragments must activate to
corrupt the output.

Compromised

NAS Controller

Backdoored

Model

Clean Data

Output

Fig. 8. NAS-based backdoor. A compromised AutoML (NAS) controller emits a backdoored model (red),
even when trained on clean data. At inference time, the model behaves normally, unless the hidden trigger is
present.

3.1.2 Compiler-Based Backdoors. Modern deep-learning pipelines rely on compilers and code-

generation tools (e.g., ONNX converters or mobile-deployment frameworks) to translate high-level

model definitions into optimized executables. An attacker who compromises this toolchain can

inject hidden components during compilation, exactly what ImpNet demonstrates by inserting a

weight-independent branch that remains invisible to source-level audits [13]. The technique is the

modern analogue of Thompson’s classic compiler trojan [70]: the compiler surreptitiously adds

extra neurons, connections, or conditions that implement a dormant trigger without the developer’s

knowledge. More recnt work showed 269 real-world ONNX models had data leakage due to poor

operator design [36]. The leakage was traced to misuse of the DynamicQuantizeLinear operator,

which improperly shared state across batch entries Recent findings by Protect AI provide the first

confirmed examples of such compiler-level insertions in the wild [64]. Their PAIT-ONNX-200 and
PAIT-TF-200 disclosures document backdoored models uploaded to public hubs where hidden

branches were introduced during ONNX export or TensorFlow SavedModel serialization. These

subgraphs, invisible at the source level, lay dormant until specific input triggers were received,

demonstrating the feasibility of real-world IR-level manipulation and silent structural sabotage. In

a related threat model, Zhu et al. [89] show that TensorFlow’s export APIs can be abused to embed

executable logic, such as shell commands, directly into SavedModel graphs. These logic bombs

activate on deserialization, turning AI models into malware containers without affecting model

predictions, further expanding the architectural attack surface at serialization time. Qi et al. extend
this idea to the deployment stage: an adversary can overwrite only a handful of filters to splice a



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 9

Table 2. Expanded 12-Category Taxonomy (Adapted from [37]). We break each of the four overarching
categories, (A) Sub-network attacks, (B) Compiler-based backdoors, (C) AutoML/NAS-based backdoors, and
(D) Hybrid attacks, into three subcategories, yielding 12 distinct attack vectors. Each row summarizes the
mechanism, threat model, and detection challenges, referencing relevant prior work.

Subcategory Mechanism Threat Model Detection Challenges

(A1) Single-Layer
Trigger

A single neuron or layer remains

dormant except on a specific pattern,

causing misclassification.

Malicious architect or

insider with direct control

over model design.

The local trigger can be subtle yet

persistent, evading naive weight

inspection [6].

(A2) Subgraph Trigger A small subnetwork is embedded for the

backdoor, sometimes partially used in

normal computation.

Attacker modifies the

official architecture code or

design blueprint.

Because a backdoor sub-network can

reuse neurons that also serve normal

computation, identifying its

malicious role is substantially harder

than for a single rogue layer [6].

(A3) Distributed /
Interleaved Trigger

Trigger logic is spread across multiple

layers or nodes, each benign in isolation.

Examples range from TrojanNet’s

hidden-weight permutation model [26]

to the recent batch-context leakage gate

that copies features across examples

within a single inference batch [36].

Attacker designs complex

network topologies with

multiple partial triggers,

structural switches, or

cross-example paths.

Requires holistic graph analysis to

detect; no individual element exhibits

an obvious malicious pattern [26].

(B1) Malicious
IR-Rewriting

ImpNet inserts a hidden branch directly

into the IR during compilation.

Attacker controls the

build/export pipeline (cf.

Thompson’s

“trusting-trust”).

Source code looks clean; the injected

branch is visible only in the compiled

graph [13, 70].

(B2) Compiler-Level
Operator Injections

Standard ops (Conv, ReLU, etc.) replaced

with modified versions that hide

triggers.

Root-level access to

compiler or operator

libraries.

Subtle operator changes do not alter

normal accuracy; triggers remain

dormant until specific input [29].

(B3) Trojaned Export/
Serialization

A malicious export tool adds extra

nodes or branches when converting to

ONNX/TFLite.

Attacker can tamper with

final serialization routines

post-training.

The “deployed” model differs from

the validated training model, rarely

re-checked in practice [29, 64].

(C1) Malicious
Reward Shaping in
NAS

NAS objective or reward is altered so

that backdoor-friendly designs get

higher scores.

Attacker modifies the

AutoML pipeline to favor

certain sub-blocks or

triggers.

Models appear optimal on clean data,

yet contain dormant subgraphs by

design [55].

(C2) Poisoned Search
Space

Malicious building blocks or candidate

layers in the search space embed

dormant triggers.

Third-party or coerced

library contributor seeds

hidden modules.

The hidden module is simply

“selected” by the NAS algorithm; easy

to miss unless the search space is

audited [56].

(C3) Injected
Sub-Block Shortcuts

Small sub-blocks with conditional

shortcuts are inserted in the final

architecture.

Compromised AutoML code

that automatically includes

the sub-block in each

candidate design.

Disguised as normal architectural

blocks, they only activate under a

special input pattern [55].

(D1) Architecture +
Compiler Synergy

Adversary plants a structural backdoor,

then obfuscates it further with malicious

compile steps.

Full pipeline control (model

design + compiler).

Redundant triggers: removing one

layer of the backdoor might leave

another intact [13].

(D2) Architecture +
Data Poisoning

Mild data poisoning supports a

hardware-level or structural backdoor.

Attacker can tamper with

both training data and the

architecture.

Defenses focusing only on data

anomalies or only on structural

audits can miss the combined effect

[56].

(D3) Multi-Stage
Obfuscation

Multi-phase approach: malicious design

+ data poisoning + compile-level

changes.

Well-resourced attacker

infiltrating every stage of

the model lifecycle.

Each malicious layer is benign on its

own; the final deployed model

exhibits stealthy, robust triggers [6].

one-channel hidden subgraph into a trained CNN, achieving > 99% attack success rates (ASR) on

ImageNet while reducing clean accuracy by less than 2%, all without training data or gradients [62].

3.1.3 AutoML/NAS-Based Backdoors. Beyond manual design and compiler manipulation, recent

work has revealed that AutoML processes themselves can introduce backdoors. AutoML pipelines,



10 Childress et al.

especially NAS, can be deliberatelymanipulated to yieldmodels with hidden architectural backdoors.

Pang et al. [55, 56] explicitly introduce the exploitable and vulnerable arch search (EVAS) and show

that, by adding a malicious reward term, an adversary can steer NAS to select architectures

containing a dormant “shortcut” subgraph which activates on a specific trigger pattern. This

AutoML-based backdoor attack is especially insidious because it does not require any explicit

tampering with training data or model parameters. What survives is the capacity for malicious

behavior: the hard-wired branch remains present, and standard training loss will quickly re-learn

suitable weights, so the attacker needs little or no additional effort to reactivate the payload.

Moreover, since the compromised model’s weights and training data may appear entirely benign,

such architecture-level backdoors naturally evade many conventional defenses that focus on

detecting anomalies in the training process or parameter values. This emerging class of attacks

highlights a new security risk in AutoML pipelines, calling for heightened scrutiny of NAS-generated

models. Although the Protect AI incidents involved post-training insertion, they underscore that

even cleanly designed NAS-generated architectures can be compromised during export, highlighting

the need for end-to-end validation of AutoML pipelines.

3.1.4 Hybrid and Combined Modes. Hybrid or multi-stage backdoor attacks could pose a particu-

larly potent threat because they can evade defenses designed to detect single-stage insertions. For

instance, an attacker might first leverage NAS to introduce subtle vulnerabilities during architecture

search and subsequently manipulate the compiler or model-export phase to further conceal or

strengthen the malicious logic [13, 56]. Such multi-stage approaches reflect real-world attack sophis-

tication, requiring defenders to adopt equally comprehensive detection and mitigation strategies.

Attackers can combine methods, for instance feeding a NAS-generated graph through a tainted

compiler that grafts a stealth branch while also performing mild data poisoning during training.

Such hybrid backdoors blend architectural and training-time vectors, allowing one component

to survive even if the other is mitigated. Because these multi-stage exploits bypass defences that

target a single insertion point, effective protection must monitor the entire model life-cycle.

3.2 Expanded 12-Category Taxonomy (Adapted from [37])
Building on the twelve-subcategory framework of Langford et al. [37], we further break each family

into three sub-types, yielding twelve distinct architectural attack vectors. Table 2 summarizes these

subcategories along with their mechanisms, threat models, and detection challenges [6, 13, 16, 55,

56, 70].

4 Detection of Architectural Backdoors
Architectural backdoors often resist established detection methods, which typically focus on

suspect weight distributions or poisoned training samples, because topology-level backdoors evade

traditional anomaly checks. For instance, activation clustering [8] or spectral signatures [71] detect

unusual neuron activations triggered by poisoned data, but an architectural backdoor can remain

dormant on clean data, producing no detectable activation anomalies. Similarly, methods like

Neural Cleanse [73], designed to reverse-engineer visible single-input triggers, may fail to detect

architectural triggers that depend on internal multi-branch conditions or composite input patterns.

Recent research into “defense-aware” attacks specifically aims to evade such inversion methods [49].

Thus, specialized detection strategies for architectural threats are critically needed. In this section,

we provide:

• Key Definitions and Motivations: Explaining why topology-level backdoors evade traditional

anomaly checks.



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 11

Final Model

(Trained/Compiled)

Static Graph

Inspection

Dynamic

Probing

Explainability

& Meta-Analysis

(Semi-)Formal

Verification

Fig. 9. Overall detection pipeline.Defenders can apply one ormoremethods (static, dynamic, explainability,
and (Semi-) formal verification) to reveal suspicious subgraphs.

Source

Model Graph

Malicious

Compiler /

Export Tool

Embedded

Malicious Subgraph

Compiled

Artifact

Graph Diff

Check

compilation final model

re-export

reference

malicious insert

Fig. 10. Compiler-level insertion and static inspection.A compromised compiler injects a hidden subgraph
into the compiled artifact. A subsequent graph-diff step detects the discrepancy by comparing the reference
model graph with the potentially compromised artifact.

• Structured Detection Approaches: Grouped into static graph inspection, dynamic/trigger inver-

sion, explainability/meta-analysis, and formal verification methods.

• Challenges, Benchmarks, and Metrics: Highlighting the real-world obstacles to detection and the

limited coverage of existing benchmarks.

Architectural backdoors are tackled via four complementary families: (i) static graph inspection (§4.1),
(ii) dynamic trigger discovery (§4.2), (iii) explainability & meta-analysis (§4.3), and (iv) (semi-)formal
verification (§4.4). Each family trades scalability against completeness, so a layered pipeline (Fig. 9)

is recommended in practice.

4.1 Static Graph Analysis and Model Introspection
Static graph analysis inspects the exported model (ONNX, TorchScript, etc.) for sub-paths or op-

erators that diverge from the intended architecture. Architectural backdoors typically surface as

extra gating layers, direct input-to-output bypasses, or custom ops absent from the high-level

source [6, 55]. Figure 10 illustrates how a clean source can compile into a binary with an implanted

subgraph. Practically, integrating static analyzers that systematically compare exported model

formats (e.g., ONNX or TensorFlow GraphDef) against the original intended architecture can signif-

icantly streamline anomaly detection. Static inspection is lightweight and flags obvious structural

backdoors, but it often misses obfuscated or deeply-interleaved logic. For example, automated

checks for additional layers, unexpected gating logic, or custom operations not defined in the

original architecture can be implemented. Maintaining accurate original architecture specifications

as reference artifacts during model development is recommended as a best practice for facilitating

such comparisons.



12 Childress et al.

Limitations of pruning and purification-based defenses. Classical defenses such as fine-pruning

[46] aim to remove dormant neurons by eliminating those with low activation on clean data,

assuming backdoor logic is encoded in rare weight activations. While effective against weight-

based backdoors, this strategy is poorly suited to architectural backdoors, where the malicious logic

may reside in the topology itself, e.g., in an extra branch or gated path that is never activated on clean

inputs. Recent work further reveals the brittleness of purification-based methods: Gradient Tuning

Backdoor Attack++ (GTBA++) [51] demonstrates that models, even after pruning or adversarial

unlearning, can rapidly reacquire high attack success rates when exposed to limited poisoned data.

Similarly, the ASR-Proof evaluation framework [50] demonstrates that many existing defenses

only superficially reduce ASR, failing to eliminate the latent backdoor mechanism. Consequently,

attackers can quickly reactivate the backdoor using carefully constructed adaptive queries. These

results underscore the need for architecture-aware defences that explicitly reason about structural

logic and supply-chain integrity. Static analysis is, therefore, an expedient first line of defense.

However, high-value deployments should complement it with the dynamic probing techniques of

§4.2, which can activate stealthy paths that static diffs overlook.

4.2 Dynamic Probing and Trigger Inversion
Dynamic techniques actively search for inputs that route execution through a hidden subgraph.

Unlike static diffing (§4.1), they treat the model as a black box and watch for abrupt confidence

shifts or label flips. Dynamic probing complements static graph inspection by attempting to uncover

stealthy backdoor logic through targeted perturbation of inputs or reverse-engineering potential

triggers from model responses. While static approaches analyze the model structure directly,

dynamic methods provide evidence through empirical behavior.

Fuzzing. This randomized approach perturbs model inputs and monitors outputs for unexpected

spikes in softmax entropy or abrupt shifts in predicted class probabilities [63]. Recent fuzzing-

based methods, such as Runtime Oracle-guided Search for Backdoor Analysis (ROSA) [34], use
guided fuzzing to discover backdoor triggers in traditional software. Although primarily developed

for software vulnerability discovery, analogous fuzzing techniques are gaining attention for ML

backdoor detection. Nonetheless, exhaustive fuzzing quickly becomes computationally prohibitive,

particularly for complex, composite triggers, highlighting the need for advancements towards

multi-modal fuzzing strategies.

Trigger Inversion. Neural Cleanse [73] and its extensions [84] frame backdoor discovery as an

optimization problem, aiming to identify the smallest perturbation necessary to consistently pro-

duce targeted misclassification. These methods initially proved effective for single-input triggers,

especially in image classifiers, but encounter significant difficulties with multi-branch or composite

triggers. Recent research into “defense-aware” backdoors, such as those demonstrated by Miah et
al. [49], has specifically developed strategies to evade trigger inversion, underscoring the limitations

of relying solely on inversion techniques.

Data-Limited Trigger Search. Recent developments have addressed detection scenarios under harsh

practical constraints, notably DeBackdoor by Popovic et al. [61]. Operating with only black-box

access and extremely limited clean samples (less than 1% of the training dataset), DeBackdoor
employs a deductive search across an extensive trigger hypothesis space (e.g., shapes, patches,

blended patterns). By iteratively optimizing a smoothed attack-success objective through simple

forward passes, DeBackdoor reconstructs potential triggers without needing large validation sets

or direct weight access. Experiments involving multiple architectures, datasets, and attack types

demonstrate near-perfect detection accuracy, highlighting its viability for auditing third-party



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 13

models and uncovering input-dependent manifestations of architectural backdoors. Architectural

triggers that alter only logit magnitudes, or otherwise induce minimal output drift, may still dodge

current fuzzing and entropy-based heuristics, underscoring the need for more sensitive or adaptive

oracles.

4.3 Explainability–Based Detection and Meta-Analysis
Explainability. SentiNet [11] applies Gradient-weighted Class Activation Mapping (Grad-CAM) to

locate the most influential regions of an image for a given model decision. Backdoored models often

reveal a distinctive heatmap pattern when the trigger is present, as the malicious subgraph sharply

concentrates the relevance on the trigger area. Saliency masks or attention weights can thus expose

anomalous focus, especially if multiple inputs share a suspiciously consistent activation region.

Learning-based meta-detectors such as MNTD (Kolouri et al., S&P 2021) train a binary classifier

on model query–response behavior and achieve high AUC in distinguishing Trojaned from clean

models without requiring trigger access [35].

Meta-analysis. Meta Neural Trojan Detection (MNTD) [35] trains a black-box meta-classifier on a

labelled dataset of clean and backdoored models. The classifier then evaluates an unseen model by

observing its query–response behavior. A related method is ABS (Artificial Brain Stimulation) [47],
which perturbs internal neurons and evaluates outputs to infer latent backdoor presence. While

effective on conventional image classifiers, these approaches depend heavily on training coverage

and generalization assumptions. Recently, Shen et al. introduced BAIT (Backdoor scanning by

Inverting the Target) [66], a meta-level detection method targeting large language models. BAIT
uses a novel inversion pipeline that traces attacker-desired completions back to hidden trigger

patterns embedded in the model’s graph or behavior. Unlike earlier methods that require explicit

trigger injections, BAIT reverses from suspicious outputs to uncover latent structural logic, enabling

scalable detection of backdoor pathways even in fine-tuned or instruction-tuned LLMs. As LLMs

increasingly incorporate adapters and LoRA modules, parameter-efficient fine-tuning also opens

new vectors for architectural backdoors. PEFTGuard [68] bridges meta-analysis and explainability by

inspecting parameter-efficient fine-tuning (PEFT) modules for hidden decision logic and providing

visual explanations of their graph-level impact. Although designed for parameter-efficient settings,

its structured introspection pipeline is directly relevant to architectural risk modeling in LLM-class

systems. Explainability excels when a trigger leaves a spatial or statistical footprint, whereas

meta-analysis trades false positives for scalability to unseen models. Newer tools like BAIT and

PEFTGuard signal a promising shift toward inversion-based explainability that generalizes across

architectures and formats.

4.4 Formal Verification and Semi-Formal Methods
Formal verification frameworks, such as Reluplex [32] and its successor Marabou [33] express the

backdoor question as: “Is there any input that is almost identical to a normal one yet still flips on

the hidden branch?” Here “almost identical” means the input sits inside a very small neighborhood,

often called an ℓ𝑝 ball, around a clean reference example. For images, two common interpretations

of that neighborhood are (i) per-pixel bound (no individual pixel is changed by more than a tiny

value) and (ii) overall-energy bound (the total Euclidean change across all pixels is tiny). If the

solver can show that every such near-clone leaves the backdoor branch dormant, the model is

certified safe within that radius. If it cannot, the tool returns a concrete offending input, effectively

uncovering the trigger [60]. A deeper scalability analysis appears in § 7.1.



14 Childress et al.

4.5 Strengths & Limits of Current Detectors
The state of the art in detecting architectural backdoors is still hemmed in by four interlocking

hurdles. First, multi-trigger complexity frustrates current tools: when malicious logic is distributed

across several branches or layers it can demand a specific constellation of signals before activation

[37, 45, 84]. Second, compiler obfuscation undermines source-level audits; an apparently clean

model definition may compile into an intermediate representation that hides a backdoor subgraph,

a strategy dramatized by the Shadow Logic proof-of-concept [29]. Third, both dynamic probing and

(semi-)formal verification carry a steep computational cost once models approach modern scale, so

practitioners face a trade-off between coverage and run-time analysis. Finally, genuine progress is

hampered by benchmark scarcity: most public datasets still revolve around pixel- or label-poisoned

CNNs, leaving structural exploits to small ad-hoc collections [6, 55, 56]. Because architectural attacks

typically leave clean-set accuracy untouched, the community relies on indicators such as true-

positive rate (TPR), false-positive rate (FPR), and attack-success-rate reduction (ASR) achieved after

mitigation. Benchmarks like BackdoorBench [78] and government-sponsored TrojAI evaluations [72]
report these numbers consistently. However, even top detectors in TrojAI primarily demonstrate

effectiveness on data-poisoning-based backdoors; these challenges have not extensively tested

hidden architectural or compiler-level insertions, leaving a critical evaluation gap for real-world

structural threats. An additional community resource is TrojanZoo, an open-source corpus of

backdoored and clean models released by Pang et al. [58]; it provides graph-level ground truth for

CNNs and Transformers and is now widely used to sanity-check detection pipelines. A credible

next generation should cover at least three scenarios that today’s datasets omit altogether: (i)

multi-branch gating models in which individual paths look benign in isolation; (ii) backdoors

introduced only at compile time, visible in the binary graph but absent from the high-level source;

and (iii) transfer-learning persistence tests that check whether a architectural backdoor survives

when the model is fine-tuned on a new domain [74]. Incorporating these cases would close the

evaluation gap and give forthcoming detection methods a realistic proving ground.

Table 3 summarizes the complementary strengths and blind spots of static, dynamic and formal

approaches. Because no single technique is fool-proof, readers should see the consolidated research

gaps in §7. The next section (§5) turns to repair: how to neutralize flagged sub-graphs, restore

benign accuracy, and harden the pipeline against future inserts.

Table 3. Comparison of static, dynamic and formal detection methods.

Approach Strengths Limitations

Static graph Lightweight; reveals overt gating or custom

ops without training data

Blind to subtle, distributed, or compiler-time

inserts

Dynamic probing Confirms malicious behavior on crafted

inputs

Random/gradient search struggles with

multi-condition triggers or heavy obfusca-

tion (e.g., SGBA decoys [28])

Formal verification Provable absence of backdoors within

bounded input domain; yields counter-

example if proof fails

Currently unscalable to large, multi-branch

models; misses spectral/composite triggers;

invalidated by source/IR drift

Hybrid pipeline Layers static, dynamic and partial proofs for

broader coverage

Requires orchestration across tools; no stan-

dard benchmark for supply-chain scale yet



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 15

5 Mitigation and Model Repair
Architectural backdoors (§4) resist naive mitigation because the malicious logic is structurally

“wired” into the model’s topology. Unlike weight backdoors that one can ‘forget’ by fine-pruning

or retraining, a structural backdoor must be surgically removed from the network architecture.

This process is complicated by multi-branch logic that scatters gates across layers [55], topological

embedding that survives weight resets, rare trigger activations that evade fine-tuning gradients, and

the persistent risk of re-insertion via compromised supply chains. This section surveys practical,

graph-level, and supply-chain measures tailored to excise or disable these sophisticated structural

threats, with particular emphasis on multi-branch and compiler-time attacks.

5.1 Subgraph Pruning and Removal
Static diffing (§4.1) or dynamic probing (§4.2) first localize a suspect path, potentially using guided

fuzzers such as ROSA [34], then excise that subgraph and optionally fine-tune to recover accuracy.

Classical fine-pruning of neurons[46] or dataset filtering alone leave the graph intact and thus fail

against topological attacks. Bober-Irizar et al. report that excising the checkerboard branch slashed

ASR from 100 % to 2 % (98 %) while leaving clean accuracy intact [6] We suggest practitioners first

use static diff (§4.1) or dynamic probing (§4.2) to identify suspicious subgraphs, excise them, and

immediately re-check model accuracy. If attack success remains partially elevated (e.g., around 40%),

it indicates additional hidden branches still exist. Practitioners must then iteratively remove these

residual branches until attack success is fully neutralized. Complementing these approaches, recent

work by Bajcsy and Bros [4] introduces a web-based simulation playground that lets practitioners

plant, trigger, and defend against cryptographic, including checksum based, architectural backdoors.

The sandbox supports realistic plant-and-defend cycles, enabling researchers to validate and stress-

test backdoor detection and proximity-analysis defenses.

Table 4. Subgraph removal at a glance

Strengths Caveats

Excise single branch Directly disables known route; no full re-

train needed

Accuracy loss if branch intertwines with

benign features

Multi-branch pruning Cuts distributed triggers when combined

with iterative search

Residual gates survive if any branch escapes

detection

Compiler-aware

pruning

Checks IR after build to confirm removal Fails if toolchain is still compromised; must

repeat per build

A hybrid mitigation pipeline should therefore: (1) detect all suspect paths; (2) prune or redirect

them; and (3) re-export the model under a trusted, signed compiler to prevent silent reinsertion.

Subsequent sections cover adversarial unlearning and supply-chain hardening that complement

graph excision.

5.2 Adversarial Unlearning and Re-Training
Once a trigger or suspect gate is located (§4), adversarial unlearning seeks to purge its influence

by re-training the model on that trigger with the correct label. Early work such as Neural Cleanse
searches for a minimal input perturbation that flips the label and then fine-tunes on the resulting

corrected pair [73]. Methods like Implicit Backdoor Adversarial Unlearning (I-BAU ) [83], Anti-

Backdoor Learning (ABL) [42], and Neural attention distillation (NAD) [43] extend this approach

to broader trigger types, while more recently, neural-collapse cleansing restores a backdoored



16 Childress et al.

network by realigning its feature geometry with that of a clean reference model [25]. While NAD
assumes access to a clean teacher, PEFTGuard [68] facilitates backdoor localization for parameter-

efficient settings. It automatically inspects LoRA and adapter modules for potential backdoor logic

and provides saliency-style visualizations of their effect on model behavior. PEFTGuard combines

lightweight structural analysis with feature attribution to identify whichmodules disproportionately

influence attacker-desired outputs. Although designed for PEFT scenarios, its logic-based analysis

generalizes well to architectural backdoor repair tasks involving sparse or modular subgraphs.

Adversarial unlearning is effective primarily for backdoors that actively influence model parameters

or decision boundaries. Architectural backdoors, especially those rarely activated, present limited

gradient signals during fine-tuning, rendering unlearning incomplete. Composite or multi-condition

triggers require exposing every trigger condition, further complicating remediation efforts. More

fundamentally, cryptographic backdoors compiled into themodel architecture, as shown byDraguns

et al. [15], may resist all current unlearning methods. Their encrypted trigger-payload circuits

cannot be reliably activated even through latent adversarial training (LAT), which is widely viewed

as the state of the art in backdoor elicitation. This suggests that adversarial fine-tuning cannot

mitigate backdoors that are non-continuously differentiable or intentionally obfuscated at the

computational-graph level. These limitations motivate complementary, lightweight defenses such

as pruning, attention distillation (§5.3), and runtime monitoring (§5.4). Recent work on securing

transfer learning pipelines introduces proactive filtering to exclude compromised components

before they are learned. T-Core Bootstrapping [85] identifies trustworthy neurons and data instances
early in fine-tuning, mitigating both architectural and parameter-based backdoors in pre-trained

encoders. By constraining the transfer learning process to “core-safe” features, T-Core reduces
the risk that a dormant backdoor is inherited from a contaminated upstream model or dataset.

This strategy is particularly valuable when retraining on sensitive downstream tasks where subtle

misbehavior could evade manual inspection.

5.3 Attention Distillation and Model Surgery
NAD aligns a potentially backdoored student model to a clean teacher by matching intermediate

attention maps [43]. Li et al. demonstrated that NAD significantly recovers clean accuracy. However,

NAD’s effectiveness depends critically on having access to a trusted clean teacher model of similar

architecture, a prerequisite often unavailable in practice. Further, architectural backdoors that span

multiple distributed branches may evade partial realignment or isolated surgical interventions,

necessitating more extensive model surgery or combined mitigation strategies. If the malicious logic

sits in identifiable heads or layers, simply disabling those modules and fine-tuning can work [37, 55].

Multi-branch attacks often do not localize neatly into one identifiable head or layer, requiring more

extensive surgery or combination with other mitigation strategies to avoid significant accuracy

loss. Combined with subgraph excision (§5.1), these attention-centric methods form the second

line of defense before costly full re-training or supply-chain rebuilds.

Table 5. Attention-based repair: pros and cons

Strengths Caveats

NAD Systematically realigns internal attention; no

full retrain if teacher available

Needs a clean teacher of similar architecture

Layer/Head removal Fast; surgically targets known gate Accuracy drop if gate overlaps benign func-

tion; ineffective on interwoven logic



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 17

5.4 Runtime Monitoring and Canary Testing
Stealthy architectural backdoors may activate only on rare inputs, so in-production monitoring

must complement offline defences.

Entropy / anomaly monitors & canaries. Integrate STRIP-style entropy checks [21] and inject crafted
canaries that mimic likely triggers [13]. Each flags a live sub-graph, yet composite or distributed

triggers [37, 79] can evade both, so runtime monitoring should be viewed as a layer, not a fix.

Input randomisation. Pixel or gate noise can break exact-match triggers [55, 84]; robust backdoors

survive, stressing the need for multi-pronged runtime guards.

Domain-specific runtime shields. GraphProt [81] defends black-box graph classifiers by (i) clustering

each input graph, (ii) sampling purified sub-graphs, and (iii) ensembling their predictions, cutting

ASR by up to 90% on six datasets with around 1–2% accuracy loss. Because it needs no retraining

or weight access, GraphProt illustrates practical, domain-aware runtime shielding.

LLM-assisted filtering for recommender systems. P-Scanner [54] counters BadRec, a 1%-poison

backdoor that forces any tokenized item to be recommended, by fine-tuning a large language model

to spot semantic anomalies. It removes > 90 % of poisoned samples across three real-world datasets,

restoring accuracy with negligible overhead.

Runtime monitoring flags, but does not remove, a backdoor; it is most effective alongside the

offline mitigations of §§5.1–5.3. Structural threats already permeate diffusion models too [12],

underscoring the need for broad, layered runtime defenses.

Table 6. Runtime checks: strengths and caveats

Strengths Limitations

Entropy/anomaly Low overhead; continuous monitoring False negatives if outputs stay “plausible”

Canary testing Direct confirmation of malicious path Requires guessing the trigger; composite keys

may evade

Randomization Cheap perturbation defense Advanced backdoors can be perturbation-

robust

Input

Stream

Canary

or Natural?

Model

Inference

Entropy

Monitor

Activation

Logger

Trigger

Suspected?

Log/Alert or

Disable Model

Continue

Normally

yes

no

Fig. 11. Runtime Backdoor Detection Flow (rotated). Even after offline mitigation, defenders can feed
canary inputs or monitor normal traffic for suspicious triggers. If detected, the model can be logged or
sandboxed; otherwise, inference continues normally.



18 Childress et al.

5.5 Supply-Chain Assurance and Trusted Compilation
Even after local repair, a tainted build pipeline can surreptitiously re-insert malicious logic at export

time. Recent incident reports from Protect AI (PAIT-ONNX-200 and PAIT-TF-200) uncovered ONNX
and TensorFlow SavedModel artefacts whose hidden trigger branches were added only during

serialization [64]. Zhu et al. further show that TensorFlow’s export APIs can embed shell-executing

ops into the graph, transforming an ordinary model into a malware container without altering

predictions [89]. These findings underscore that robust assurance must span the entire pipeline:

source → compiler IR → runtime → hardware. Deterministic builds enable IR differencing, and

recent static–taint methods such as Batch Isolation Checker attach a short, machine-checkable

proof to each lowering pass [36]. See §7 for a detailed checklist on reproducible builds and IR-level

provenance.

Malicious AutoML pipelines. Attacks such as DarkNAS embed backdoors during architecture search

when the reward signal is under adversarial control [55, 56]. Supply-chain checks must therefore

verify AutoML artifacts as well as compiler outputs.

TensorFlow logic-bomb exploits. Zhu et al. demonstrate that only a handful of TensorFlow API calls,

inserted during export, can plant executable payloads inside a SavedModel graph [89]. Themalicious

ops fire at deserialization time, executing arbitrary commands while leaving model accuracy intact.

Because the backdoor lives in the standard SavedModel format, it evades conventional weight checks

and illustrates why supply-chain audits must include static operator allow-lists and sandboxed

loading for untrusted artefacts.

Hardware Trojan risk. Compromised accelerators can manifest a backdoor at run-time without

changing weights [65]. End-to-end assurance echoes SoC security practice [69]. A key takeaway

from the Logic backdoor proof-of-concept [29] is that stealth subgraphs added post-training may

go unnoticed in source code and only be revealed through IR differencing. This highlights compiler-

time insertion as a potent and easily overlooked infiltration vector.

Replicated Execution for Outsourced Training. Replicated execution across multiple non-colluding

cloud providers [31] can verify outsourced training jobs by cross-comparing intermediate check-

points for anomalies. Although redundant execution increases costs, for critical models, training

smaller subset models across diverse providers can effectively identify suspicious insertions. Feder-

ated learning frameworks, which already employ partial model averaging and integrity checks,

provide a relevant precedent illustrating this approach’s feasibility in practice.

5.6 Concluding Summary
Architectural backdoors reside in topology, so defenders must layer remedies: subgraph excision,

adversarial unlearning, attention surgery, runtime checks, and critically-supply-chain signing.

Table 7 summarizes how each technique addresses architectural backdoor; Figure 12 gives one

possible decision flow.

Open problems. (1) Fully integrated multi-trigger attacks still defeat current tools. (2) Scalable

formal repair for billion-parameter graphs remains elusive (§4.4). (3) Pipeline re-introduction de-

mands continuous verification, not one-off cleaning. (4) Benchmark gaps slow progress; few suites

model compiler-time insertion or AutoML backdoors. Continued cross-layer research is needed for

durable defense: this must span graph analysis, automated repair, secure AutoML, reproducible

builds, and hardware attestation. Addressing these open problems will require sustained interdisci-

plinary collaboration among researchers, industry practitioners, and regulatory bodies, ensuring



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 19

Table 7. Comparison of Mitigation Methods for Architectural Backdoors. Each approach tackles a
different slice of backdoor logic; multi-branch or compiler trojans often need a mix of these methods.

Method Key Advantages Main Limitations

Subgraph
Removal

Physically excises identified malicious routes;

low data cost; effective if the backdoor path

is separate.

Fails for integrated triggers woven into

normal blocks; may hurt accuracy if removal

is too extensive.

Adversarial
Unlearning &
Re-Training

Disassociates known triggers from attacker

outputs; flexible across backdoor types;

I-BAU cuts overhead.

Must activate every trigger to “unlearn” it;

multi-trigger logic can persist; costly for

large models.

Attention
Distillation &
Surgery

Re-aligns suspicious layers/heads; partial

fine-tune preserves benign performance if a

clean teacher exists.

Distributed or multi-branch trojans may

evade partial realignment; need a precise

mapping of malicious parts.

Runtime
Monitoring &
Canary Testing

Watches models in deployment; can catch

unforeseen triggers; little extra training.

Does not remove the trojan; stealthy gating

can mimic normal outputs and slip past

anomaly checks.

Supply-Chain
Assurance

Blocks re-injection; guarantees final artefact

matches a trusted build; covers AutoML or

compiler trojans.

Adds organisational overhead; needs

signed/reproducible builds; hardware

Trojans remain a separate threat.

Suspicious architecture?

Static check:

unusual sub-ops?

Trigger-like behavior

on test data?

Remove/disable

malicious subgraphs

Trigger synthesis

(Neural Cleanse, etc.)

Clean accuracy unchanged?

Mitigation successful

Retrain & incorporate

discovered triggers

Apply adversarial

unlearning or surgery

Fig. 12. Decision flow for mitigating architectural backdoors. Starting from suspected infiltration,
defenders apply static or dynamic checks to pinpoint malicious subgraphs or triggers. They then perform
subgraph removal, adversarial unlearning, or attention surgery. If clean accuracy is significantly impacted,
more extensive re-training follows. Finally, ensuring a trusted supply chain (§5.5) prevents backdoor re-
insertion.



20 Childress et al.

that advancements in graph-level verification, runtime defenses, secure compilation, and hard-

ware integrity checks are tightly integrated into a robust, end-to-end defense ecosystem against

architectural backdoors.

6 Benchmarks, Datasets, and Empirical Evaluations
Having surveyed detection (4) and mitigation (5), we now examine how well those defenses hold

up in practice. Although many benchmark suites exist for data- or weight-centric backdoors, few

systematically address structural or compiler-level attacks. This section reviews current resources,

highlights gaps, and suggests directions for multi-branch and supply-chain-aware evaluations.

6.1 Current State of Backdoor Benchmarking
Standard backdoor metrics (detection TPR/FPR, ASR reduction) still apply, but evaluations must

treat the trigger as a latent sub-graph or operator sequence rather than a visible pixel patch.

TrojAI Round 15 was the first public benchmark to distribute ONNX binaries that contain hid-

den branches requiring structural detection or neutralization, all without relying on poisoned

weights [30]. Nevertheless, coverage is still incomplete: pure compiler-time inserts [13], multi-

branch triggers, and post-fine-tune reactivation remain largely untested. Protect AI’s PAIT scans

flag real ONNX/SavedModel artefacts with hidden branches (e.g. PAIT-ONNX-20, PAIT-TF-200)
and publish full metadata [2]. Incorporating a “PAIT track” in future rounds (TrojAI R14, Backdoor-
Bench-X) would inject live, diverse compiler-time trojans and tighten realism. BackdoorBench adds

only a few gating-op tests; TrojAI and the NeurIPS’20 challenge target data/weight triggers [53].

Ad-hoc academic sets rarely include compiler or multi-branch inserts [6, 57], nor do they assess

fine-tuning persistence or supply-chain infiltration. Table 8 summarizes present coverage.

Table 8. Architectural coverage of today’s backdoor benchmarks

Benchmark Main focus Struct./Compiler
coverage

TrojAI (IARPA) Data-poison, weight triggers Minimal; no compiler path

BackdoorBench Data/weight + a few gating ops No multi-branch or IR

sabotage

NeurIPS TD Challenge Competition on parameter triggers None (structural absent)

Academic sets Small crafted examples Sporadic, ad-hoc structures

Due to the lack of coverage for architectural backdoors in most backdoor benchmarks, many

architectural-backdoor studies rely on ad-hoc model sets. Bober-Irizar et al. [6] used about 20

AlexNet variants with a checkerboard trigger, while Pang et al. [55] manipulated a NAS pipeline for

CIFAR. Both illustrate key ideas but lack scale or diversity comparable to data/weight-centric bench-

marks. These examples underscore an urgent need for more extensive, standardized evaluations

tailored to structural infiltration.

6.2 Measuring Success in Architectural Backdoor Mitigation
Mainstream benchmarks typically report true/false positive rates, ASR reduction, and resource

overhead. Although these metrics work for architectural backdoors, they do not capture unique

complexities like multi-branch triggers or domain-shift reactivation. A hallmark of architectural

backdoors is their survivability, they often persist after full re-training. For instance, backdoor

studies based on the CIFAR-10 dataset demonstrated that weight-based backdoors can be “forgotten”



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 21

by retraining, but model architecture backdoors (MABs) [6] and operator-based [37]) retained attack

success even after full retraining. Similarly, Gu et al. [24] showed that a trigger in a traffic-sign

classifier persisted after fine-tuning on a new task, an aspect seldom tested in standard frameworks.

Attack success for models with architectural backdoors remains high in these studies because the

malicious route is encoded in the model’s graph, not just in weights.

Beyond detection, effective mitigation needs benchmarks with known malicious substructures,

enabling measurements of “repair completeness” and performance overhead. No mainstream

resource yet includes detailed annotations for structural backdoors. Current benchmarks rarely

address multi-branch gating, compiler-level infiltration [13], or AutoML-based Trojan designs [55,

56]. Classification tasks (e.g., CIFAR-10, ImageNet) dominate, overlookingmore complex applications

like segmentation or high-performance computing (HPC)-scale pipelines. Even fewer consider

“post-training insertion” scenarios where malicious logic is introduced into ONNX files after the

model is published. Bridging legacy data/weight sets with newly introduced structural infiltration

could help the community assess repair strategies more rigorously.

6.3 Proposed Benchmarking Solutions
To move from ad-hoc structural demos to rigorous evaluation, the community needs purpose-

built benchmarks addressing multi-branch gating, compiler-level infiltration, and supply-chain

reinfection. Table 9 outlines four potential directions:

• Extend existing suites (TrojAI, BackdoorBench): Incorporate multi-branch, compiler-time,

and large-scale LLM tasks using established scoring pipelines.

• Repair benchmarks: Provide ground-truth subgraph labels, enabling fair comparison of exci-

sion, unlearning, or distillation methods.

• Arms-race tracks: Host periodic competitions that evolve attacks and defenses, preventing

over-fitting to static scenarios.

• Industry & hub collaboration: Aggregate suspicious uploads from real-world repositories.

Overcome legal/licensing barriers to build a comprehensive, publicly accessible dataset.

Table 9. Roadmap for next-generation benchmarks on architectural backdoors.

Initiative Scope & Expected Gain Key Obstacles

Expand legacy suites
(TrojAI,

BackdoorBench)

Add multi-branch models, compiler inserts,

LLM or multi-modal tasks

New generation scripts; licensing of non-

open IRs.

Repair benchmarks Ground-truth subgraph masks for subgraph-

excision methods

Annotating malicious ops at scale; preserving

benign performance.

Arms-race tracks Annual events that evolve attacks/defenses Organizer bandwidth; dynamic rules for

success.

Industry & hub
collaboration

Live scanning of user-submitted models Privacy/legal issues; inconsistent licensing;

incentives for submission.

Extensive expansion of backdoor benchmarks is needed to address architectural backdoors. Table 8

shows that recognized programs like TrojAI and BackdoorBench devote minimal attention to multi-

branch or compiler-time triggers. Although a fewworks address LLM or multi-modal vulnerabilities,

none provide large-scale, community-driven benchmarks. An adaptive approach that updates

structural infiltration scenarios regularly, coupled with academic-industry collaboration on real

repository scans, would keep defenders aligned with evolving adversarial techniques. We thus call



22 Childress et al.

for dedicated tasks, or expansions within popular frameworks, focusing on multi-branch gating,

compiler-level insertions, and domain-shift reactivation, ensuring defenses are tested against the

full spectrum of architectural backdoors.

7 Open Challenges and Future Directions

Architectural

Backdoor defense

Scalable Detection

for Large Models

Real-time Monitoring

in Deployment

Evasive or

Distributed Triggers

Lack of Standard

Evaluation Benchmarks

Securing the

ML Supply Chain

Scalable Formal

Verification

Semantic and

Latent Triggers

Integrating defenses

into Pipelines

Fig. 13. Conceptual map of open challenges in defending against architectural backdoors.

Architectural backdoors present threats that conventional data-poisoning or parameter-centric

defenses rarely address, especially when embedded at the compiler or hardware level. The preceding

sections (§4–§6) have analyzed subgraph modifications, AutoML vulnerabilities, and the limited

scope of current benchmarks. Despite these advances, several obstacles remain before comprehen-

sive security against architectural backdoors can be achieved, particularly at scale. This section

highlights the open challenges, then proposes directions for large-scale verification frameworks,

supply-chain governance, and adaptive benchmarking, ultimately aiming for robust, end-to-end

solutions that anticipate emerging infiltration tactics. Figure 13 summarizes how the major research

and operational gaps inter-relate; the subsections that follow unpack each edge of the diagram in

depth.

Summary of open challenges and future directions:

(1) Scaling Formal Methods and Large-Scale Verification: Satisfiability Modulo Theories

(SMT)-based and abstract-interpretation verifiers achieve promising guarantees on feed-

forward models of tens of millions of parameters (10
7
), but attempts to push them to

Transformer-scale routinely time-out or blow up in memory [60]. How can compositional,
approximate, or statistical verification frameworks certify safety properties of trillion-parameter
or HPC-scale architectures without prohibitive cost?

(2) Addressing Multi-Path, Distributed, or Obfuscated Triggers: Hidden backdoor logic is

increasingly split across multiple attention heads, residual branches, or even modalities;

triggers may require specific chain-of-thought (CoT), token sequences, or coordinated

text–image pairs. Recent studies into distributed triggers [37], frequency-obfuscated vi-

sion backdoors (LADDER [45]), CoT hijacks such as BadChain [80], DarkMind [27], Shad-
owCoT [86], TransTroj fine-tuning persistence [74], and the open-source BackdoorLLM
pipeline [40], achieve >90% attack success while bypassing current detectors, and no public

benchmark yet exercises these cross-modal gates [87].What graph-analytic or constraint-
solving techniques can reason about distributed activation patterns and reliably surface stealthy
multi-branch trigger combinations?



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 23

(3) NAS and AutoML Vulnerabilities: NAS and other AutoML pipelines can inadvertently

embed, or deliberately plant, malicious sub-structures that optimize for a poisoned reward

signal. How can integrity checks on reward functions, search spaces, and validation loops
guarantee that generated architectures are provably free of covert backdoor logic?

(4) Compiler/Hardware Synergy and Post-Training Backdoor Re-Introduction:Mali-

cious compilers or hardware Trojans can resurrect excised subgraphs after software-level

cleansing via post-training reinsertion (e.g., Shadow Logic [29]) or IR manipulation, recreat-

ing backdoors at deploy time [13]. Can we design end-to-end trusted toolchains that preserve
a verifiable equivalence between audited source graphs and the binaries and silicon ultimately
deployed?

(5) Adaptive Benchmarks and Continuous Updating: Static challenge suites quickly be-

come outdated as adversaries evolve. Preliminary hub-scanning tools such as CLIBE (deteCt-

ing NLP dynamIc Backdoor TransformEr) [82] remain proprietary, and no open governing

body curates an evolving benchmark.What incentive structures would support a living bench-
mark, including real-world corpus tracks and LLM-orchestrated defender baselines [7], that
stay synchronized with emerging attack strategies?

(6) Specialized Architectures: Spiking Neural Networks (SNNs) and Visual State-Space
Models (VSSMs): Non-canonical computing graphs diverge from CNN/Transformer as-

sumptions, creating blind spots for existing defenses. Which abstraction layers or surrogate
models will let us reason about temporally-coded or state-space activations without sacrificing
threat coverage?

(7) Supply-Chain Governance, Policy, and Multi-Sector Collaboration: Public hubs and
proprietary exchanges lack harmonized auditing standards, giving attackers ample surface

for injection. Successful large-scale defense will likely require joint policy, open-source

tooling, and certification programs akin to software bill of material (SBOM) initiatives.What
regulatory, policy, and technical levers can align incentives across academia, industry, and
government to secure the global model supply chain?

Recent empirical work on GPT-style models by Miah and Bi [49], together with the comprehensive

LLM survey by Zhao et al. [87], confirms that architectural backdoors have already migrated to

billion-parameter language models.

7.1 Scaling Formal Methods and Large-Scale Verification
Problem statement: Formal, symbolic, and abstract-interpretation–based verifiers can certify

small neural networks against backdoor behavior under bounded perturbations[17, 22, 32, 67].

Beyond roughly 10
7
parameters they either time-out or excessively over-approximate, leaving

modern CNNs, vision–language transformers, and all contemporary LLMs effectively unverifiable.

Compiler-time backdoor re-insertion, demonstrated by ImpNet/Shadow Logic attacks[13], further
undercuts proof soundness: a source graph proven clean can still be corrupted during lowering to

inference binaries.

Why current defenses fall short

• State-space explosion. Parameter counts scale super-linearly with depth and width; existing SMT

orMixed Integer Linear Programming (MILP) encodings become intractable for trillion-parameter

models or multi-branch architectures with distributed gating triggers.

• Compiler/Hardware gap. Proofs apply to the abstract graph prior to optimization passes; mali-

cious compilers or rogue hardware IP can violate the verified property post-compile, creating

an unmonitored attack surface.



24 Childress et al.

• Lack of incremental benchmarks. Public challenge suites rarely include models > 100M parame-

ters, so progress on scaling techniques is neither tracked nor rewarded.

Promising research directions
• Compositional proofs. Decompose networks into verifiable blocks (layers, residual paths) and

stitch guarantees via assume–guarantee reasoning [59] or category-theoretic lenses [20]. Partial

coverage can still block many distributed trigger designs.

• HPC-assisted verification. Cluster-scale symbolic execution frameworks, coupled with aggressive

post-pruning (§5.1), could deliver tractable yet conservative proofs for very large models.

• Runtime attestation. Lightweight on-device monitors can hash or attest critical gating operations

during inference, providing continuous assurance even if full compile-time proofs are infeasible.

• Trusted toolchains. End-to-end pipelines that cryptographically link a verified source graph to

emitted binaries and hardware bitstreams would close the compiler gap; even partial formal

checks retain value when supply chains are otherwise trusted.

• Hierarchical IR differencing and proof-carrying code. Coupling static taint analysis (e.g. Batch
Isolation Checker’s Monoid-based proof [36]) with lowering passes can certify non-interference

at compile time.

Bridging HPC pipelines with rigorous proofs thus remains a grand challenge, one that will re-

quire tight collaboration among ML-security specialists, compiler/toolchain engineers, and formal-

methods researchers.

7.2 Addressing Multi-Path, Distributed, or Obfuscated Triggers
Problem statement: Modern backdoor designers increasingly distribute trigger logic across

multiple computational paths, modalities, or time steps. CoT prompts, hidden gating sub-layers,

and cross-modal token–image combinations can all serve as stealthy activation keys that no single

neuron, branch, or dataset sample exposes [87]. Benchmark suites remain heavily skewed toward

single-branch image classifiers, leaving multimodal and multi-path threats under-represented.

Why current defenses fall short
• Isolation bias. Structural detectors score each subgraph independently and thus miss backdoors

that only activate when several branches co-fire in concert.

• Evasive distributed triggers. Distributed-gating networks [6, 37] and LADDER’s frequency-
domain vision triggers [45] adapt to pruning and still reach >90% attack success while keeping

clean accuracy intact.

• CoT hijacks withstand consistency checks. Lightweight tuning pipelines such as BadChain [80],

DarkMind [27], and ShadowCoT [86] embed triggers deep in the reasoning pathway, defeating

feature-similarity detectors such as Neural Cleanse [73] and MNTD [35].

• Modal gap. No public benchmark yet evaluates triggers that fuse text with image or audio

modalities, leaving multi-modal gates untested [72, 82].

• Batch-context leaks. A hidden path can pass information across examples inside one inference

batch, enabling data theft and peer-output manipulation [36].



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 25

Promising research directions
• Graph-level constraint solving. Combine static dataflow graphs with dynamic activation traces

to enumerate improbable multi-branch co-activations; graph neural networks (GNNs) could

score subgraph tuples rather than single nodes.

• Composite fuzzing for multimodal pipelines. Iteratively synthesize paired inputs (e.g., prompt-

image) that search the joint space for trigger conditions; coverage-guided feedback can steer

toward rare co-activation states.

• Robust multi-branch mitigation.Adversarial unlearning or mask-and-fine-tune loops must prune

all partial triggers. Layer-wise causal tracing, combined with sparsity-aware retraining (§5.1),

may disable distributed gates without catastrophic accuracy loss.

• Evolving benchmarks. A living “arms-race track” that adds the latest multi-modal backdoor

designs each release cycle would provide a moving target for defenders and avoid the staleness

that plagues current benchmark corpora.

Table 10. Benchmark coverage and key gaps

Benchmark Included Missing (Critical Gaps)

TrojAI (IARPA) Many poisoned & weight-backdoored

models; standardized detection metrics

No multi-branch or compiler-level attacks;

primarily data- and weight-focused

BackdoorBench Unified framework for comparing defenses

on standard image datasets; basic single-

layer structural triggers

No compiler-tampering scenarios; lacks

complex multi-trigger architectures; pri-

marily designed around visible triggers

NeurIPS Trojan Detection

Challenges

Primarily data- and parameter-based trig-

gers in competition settings

No explicit inclusion of structural or

compiler-inserted scenarios

BackdoorLLM (2024) Prompt- and fine-tune-based LLM back-

doors; open-source evaluation scripts

No structural/graph or compiler-level

attacks; structural attacks: None

TrojanZoo (2022) Static image datasets and code for backdoor

research; easy defence benchmarking

No dynamic updates; no compiler-time or

multi-branch attacks; structural attacks:

None

7.3 NAS and AutoML Vulnerabilities
Problem statement. NAS and broader AutoML pipelines can embed backdoor logic if an attacker

tampers with the reward function, the search code, or the compilation stage. Because these systems

often output irregular, massive graphs, hidden submodules may be indistinguishable from legitimate

skip connections [55, 56].

Why current defenses fall short
• Opaque search traces. Commercial NAS services rarely provide a verifiable log of evaluated can-

didates, so reviewers cannot tell whether a suspicious gating op was present during architecture

selection.

• Reward-function poisoning. An adversary can bias the search toward architectures that conceal

malicious subgraphs while still meeting published accuracy targets.

• Compiler-time drift. Even if the final high-level graph looks clean, low-level IR (e.g., ONNX) can

be patched post-training, re-introducing hidden branches before deployment.

• Scale barrier. Static scanners struggle with the tens of thousands of candidate graphs produced

in a single large-scale search, making exhaustive auditing impractical.



26 Childress et al.

Promising research directions
• Cryptographically verifiable search logs. Hash-chained records of every candidate (graph, seed,

reward) would let third parties confirm that the deployed model derives from an untampered

search trace.

• IR differencing across compilation steps. Automated checks can diff intermediate representations

against the audited source graph, flagging any new ops inserted after the AutoML phase.

• White-list–based architecture validation. Require search controllers to declare an explicit list of

allowable modules; any unexplained layer (e.g., unconventional gating) fails certification.

• Search-time anomaly detection. Lightweight graph fingerprints computed during NAS can spot

sudden structural deviations, catching backdoor candidates before expensive training finishes.

These measures should eventually align with supply-chain hardening (see §5.5) so that a verified

AutoML output is not silently altered by later compilation or hardware integration.

7.4 Compiler/Hardware Synergy and Post-Training Backdoor Re-Introduction
Problem statement. Even after a model passes structural scans, a malicious compiler or bitstream

generator can re-insert excised subgraphs, and hardware Trojans can activate dormant gates at

runtime [75]. Recent work such as ImpNet [13] and Shadow Logic [29] modify IR by only a few

hundred bytes, silently restoring the backdoor. Batch Isolation Checker further shows that ONNX-
level graph edits can inject a backdoor long after training, enabling within-batch data leakage and

output manipulation [36]. Once the binary or FPGA bitstream is shipped, software-level defenses

have no visibility.

Why current defenses fall short
• Visibility gap.Audits stop at the high-level graph; they rarely inspect the lowered IR ormicrocode,

where a single fused op can hide a trigger.

• Trusting-trust scenario. If the entire toolchain is compromised, recompiling from source repro-

duces the backdoor unless the compiler itself is verified or multi-compiled.

• Scalability of formal proofs. Current verifiers cannot handle billion-parameter graphs and post-

compile inserts; source-level proofs are invalidated by later IR rewrites [60].

• Hardware opacity. Bitstreams for ASICs/FPGAs are proprietary; defenders cannot easily map

binary regions back to functional blocks, let alone prove the absence of stealth logic [75].

Promising research directions
• Reproducible and signed builds.Hash-chained, deterministic compilation (e.g., Bazel’s --reproducible

flag [5] and its CI caching study [88] or container capture via ReproZip [10]) and diverse double-
compiling [76] lets verifiers confirm that the deployed binary matches an audited source graph.

• Hierarchical IR differencing and proof-carrying code. Each lowering pass attaches a machine-

checkable proof that no new control-flow edges reach the backdoor label set; partial proofs still

add value inside a trusted supply chain.

• Bitstream attestation and runtime monitors. Split the accelerator fabric into whitelisted regions

and apply side-channel guards or runtime hash checks for unauthorized activations [65].

• Cross-layer certification. Unify software and hardware verification by expressing both the neural

graph and the accelerator netlist in a single SMT-based meta-model, enabling end-to-end

equivalence checks.

Bridging compiler transformations, hardware design, and ML graphs therefore demands a holistic,

supply-chain view; defensively chaining even partial formal checks can raise the bar until tool-

support scales to full proofs.



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 27

7.5 Adaptive Benchmarks and Continuous Updating
Problem statement.Most public backdoor testbeds such as TrojAI, BackdoorBench, TrojanZoo, and
the language-model-focused BackdoorLLM suite [40, 58, 78], remain largely static once released.

Consequently, defenses tuned to a single round of pixel or weight triggers can appear robust while

collapsing against hidden-graph or compiler-time attacks that the benchmark never covered.

Why current defenses fall short
• Stale attack sets. Few benchmarks introduce multi-modal or compiler-injected triggers, leaving

entire threat classes unmeasured.

• Real-world drift. The Guardian scanner recently flagged 57 suspect ONNX graphs on Hugging

Face [64]; none of those samples resemble existing challenge rounds, exposing a realism gap.

• HPC compilation loops. Production pipelines re-optimize models on every deployment. A defense

that succeeds on a frozen weight file may fail after even one hardware-aware recompilation.

Promising research directions
• Annual “arms-race” tracks. Each round injects new infiltration vectors (stealth gating, text–image

triggers, post-training IR rewrites), forcing defenses to generalize beyond last year’s tactics.

• HPC-pipeline simulation. Benchmarks should recompile each submitted model through multiple

optimization passes, rewarding detectors that remain stable across binary drift.

• Rolling real-world corpus tracks. Publicly harvested incident sets (e.g. the PAIT-ONNX and

PAIT-TF reports from Protect AI [64] plus the 269 leaking models found by Küchler et al.’s scan
of 1,680 ONNX graphs [36]) can supply continually refreshed challenge seeds that mirror live

supply-chain threats.

• Live scoreboards and gap analytics. A web dashboard summarizing which defenses block which

vectors will highlight lingering blind spots and channel research effort.

• Multi-modal extensions. Future rounds must include text–image or audio–text gates that no

current benchmark yet exercises, as highlighted by Zhao et al.’s LLM survey [87].

• LLM-orchestrated defender baselines. Recent work shows that large language models can coordi-

nate autonomous cyber-defense actions [7]; incorporating such agents as detectors/repairers

would test whether benchmarks keep pace with AI-driven defense.

A continuously evolving benchmark ecosystem, anchored by annual arms-race tracks, realistic

corpus feeds, and HPC-aware recompilation loops, offers the best hope of preventing defenses from

over-fitting to yesterday’s attacks.

7.6 Specialized Architectures: Spiking Neural Networks and Visual State-Space Models
Problem statement. Architectural backdoors are no longer confined to convolutional or Trans-

former families. Spiking Neural Networks (SNNs) and Visual State-Space Models (VSSMs) have

both been shown vulnerable to stealthy, architecture-level attacks: Sneaky Spikes embeds persistent

triggers in neuromorphic timing channels [1], while BadScan tampers with VSSM state-update

blocks [14]. As these models proliferate in robotics, real-time control, and neuromorphic hardware,

ignoring their unique threat surface leaves an ever-growing security gap.

Why current defenses fall short
• Continuous-activation bias. Most detectors assume real-valued activations; they miss micro-

timing or spike-rate perturbations that encode SNN backdoors.

• Hidden recurrent pathways. VSSMs update an internal state through learned linear systems, so a

malicious matrix can stay dormant until a specific input trajectory occurs, evading static graph

scans.



28 Childress et al.

• Lack of benchmark. No public challenge currently includes spiking or state-space triggers;

defenders have no ground truth for evaluation.

• Tool-chain gap. Neuromorphic compilers and on-device learning loops lack the signing and

reproducibility features now standard in mainstream ML toolchains (§7.4).

Promising research directions

• Event-level tracing and invariants. Define spike-timing windows or state-flow invariants and

flag inputs that violate them.

• Domain-specific benchmarks. Extend TrojAI [72] or BackdoorBench [78] with SNN timing triggers

and VSSM state-matrix inserts, using an “arms-race” update cadence (§7.5).

• Formal abstractions for spikes and states. Adapt mixed-signal verification or control-theoretic

reachability analysis to reason about timing-encoded or state-encoded backdoors.

• Cross-disciplinary Combine neuromorphic-hardware provenance checks with the reproducible-

build approach already proposed for standard accelerators (§7.4).

7.7 Supply-Chain Governance, Policy, and Multi-Sector Collaboration
Problem statement: Technical countermeasures are necessary but insufficient: architectural

backdoors threaten regulated sectors, healthcare, finance, autonomous vehicles, where liability,

compliance, and public safety considerations dominate [77]. Without verifiable provenance and

enforceable policy, a single compromised compiler stage can undermine every software-level

defense.

Why current defenses fall short

• Fragmented standards. Cryptographic signing, reproducible builds, and audit logging exist, but

no cross-industry baseline mandates them for neural-network toolchains.

• Unclear liability.When hidden logic is discovered, it is ambiguous whether fault lies with the

model provider, compiler vendor, or third-party library maintainer.

• Regulatory lag. Emerging laws (e.g., EU AI Act 2024 [18]) require risk documentation but stop

short of specifying architecture-integrity attestation.

• Domain-specific blind spots. Safety-critical systems rarely perform “white-box” architectural

audits, focusing instead on data or post-hoc performance metrics.

Promising research and policy directions

• Signed, reproducible toolchains.Mandate hash-chained logs and deterministic builds for each

compile step, aligning with NIST AI RMF 1.0 guidance and ISO/IEC 42001 proposals [52].

• Sector-specific integrity audits.Regulators could require provable “white-box” scans of autonomous-

vehicle or medical models before type approval, similar to functional-safety testing today.

• Shared liability frameworks.Clarify contractual obligations so that model providers, tool-vendors,

and cloud operators share responsibility for preventing compiler-level backdoors.

• Third-party certification. Create accredited services that certify neural architectures against

malicious subgraph insertion, mirroring SOC 2 or Common Criteria for traditional software.

• Cross-sector working groups. Foster collaboration among neuromorphic, HPC, and policy com-

munities to translate supply-chain lessons from conventional software into the ML domain.

Embedding these governance layers into the ML lifecycle ensures that technical defenses such as the

reproducible-build pipeline in §7.4, are backed by enforceable policy, shifting architectural-backdoor

mitigation from best-effort practice to industry norm.



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 29

7.8 Proposed Research Roadmap

Table 11. Short-Term vs. Long-Term Research Goals for Architectural Backdoor Security

Challenge Short-Term Goals Long-Term Goals

Large-Scale Verification Develop HPC-friendly partial

proofs; compositional checks on

sub-networks

Full crosslayer verification that scales to trillion-

parameter LLMs or HPC pipelines

Multi-Path, Distributed
Triggers

Integrate multi-branch infiltration

into existing detection tools; refine

gating instrumentation

Deploy constraint-based or real-time gating

checks in industrial systems; unify with formal

proofs of activation patterns

Malicious NAS/AutoML Cryptographically log each

architecture search step; IR-level

differencing

Fully transparent AutoML pipelines with forced ar-

chitecture declarations and standardized subgraph

scanning

Compiler/Hardware
Backdoor
Re-Introduction

Expand reproducible builds;

cryptographic signing at compile

time

End-to-end synergy across compiler, hardware

bitstreams, and ML frameworks; hardware-level

concurrency checks

Adaptive Benchmarks Add pilot structural infiltration to

TrojAI [72] or BackdoorBench [78]

Establish continuous, arms-race style expansions

for HPC or multi-modal infiltration

Supply-Chain
Governance and Policy

Introduce code signing and

domain-specific compliance checks

Formal policy frameworks ensuring secure

pipelines from architecture code to final hard-

ware implementations

Table 11 explicitly outlines actionable short-term goals and ambitious long-term objectives to

guide researchers, practitioners, and policymakers. For instance, benchmark maintainers should

introduce at least one multi-branch or compiler-inserted Trojan scenario in the next round of TrojAI
or BackdoorBench. For longer-term grand challenges, such as full cross-layer verification of trillion-

parameter models, new theoretical frameworks may be required that constrain model architecture

to enable tractable verification without performance degradation. Such challenges necessitate

broad, interdisciplinary collaboration. By coordinating short-term efforts (e.g., cryptographic logs,

partial compositional proofs, pilot structural infiltration in existing benchmarks) with these long-

term objectives (full HPC-scale verification, continuous pipeline scanning, multi-modal backdoor

expansions), the field can gradually construct a robust, end-to-end security strategy.

7.9 Summary
Architectural backdoors, ranging from multi-path triggers to NAS-biased topologies, expose gaps

in parameter-centric defences; priorities now are (i) scalable formal proofs for multi-branch HPC

models, (ii) transparent and logged AutoML/compilation pipelines, (iii) hardened supply chains

with reproducible builds, (iv) adaptive benchmarks that evolve with new infiltration patterns,

and (v) extending tests to LLM and multi-modal systems. Ultimately, progress in these open

challenges can raise the bar for architectural backdoor security across software and hardware

boundaries. The community-encompassing ML security researchers, compiler engineers, hardware

designers, and policy/regulatory experts-must collaborate to build end-to-end, verified pipelines that

deter architectural backdoors even in large-scale, rapidly evolving AI ecosystems. By integrating

supply-chain assurance, HPC-scale verification, and iterative benchmark expansions, we can move

closer to a future where malicious subgraphs, multi-branch gating, and post-training backdoor

reintroductions are consistently detected and neutralized in practice.



30 Childress et al.

Architectural

Backdoor Road-map

Detection

Mitigation

Benchmarks Open Problems

Static Diff Dyn. Probing Formal Verif.

Subgraph

Excision

Unlearning Supply-chain

Extend

TrojAI/BB

Repair

Metrics

Arms-race

Tracks

LLM-scale

Verif.

Multi-Trigger

HW Trojans

Fig. 14. Research roadmap for architectural-backdoor security.The figure groups open work into four
color-banded themes: teal = detection, orange = mitigation, green = benchmarking, and violet = open problems
[18, 27, 65].

8 Conclusion and Outlook
Figure 14 groups the remaining research challenges into four color-coded themes: detection,

mitigation, benchmarking, and open problemswhich correspond to successive stages in themachine-

learning supply chain. The discussion below walks clockwise through those bands.

Detection (teal band): Static differencing, dynamic probing, and formal verification form the first

checkpoint. Yet multi-branch triggers such as Langford’s distributed gates[37], DarkMind’s latent
CoT hijacks [27], and BadChain’s lightweight tuning [80] routinely evade single-path heuristics.

SMT-based provers stall on billion-parameter graphs [60], and compiler-time insertions like Shadow
Logic [29] compromise even “clean” source graphs. Scalable, graph-wide reasoning therefore remains

open.

Mitigation (orange band): Sub-graph excision, unlearning, or signed tool-chains can lower attack

success, but a poisoned build system can silently re-insert the backdoor (ImpNet [13]) or activate
a dormant hardware Trojan [65]. Supply-chain hardening, hash-chained, reproducible builds,

container capture, and diverse double-compiling [76], bind verified graphs to emitted binaries and

close the “trusting-trust” loop.

Benchmarking (green band): Legacy challenges (TrojAI, BackdoorBench, TrojanZoo) seldom test

structural attacks, and no round yet stresses cross-modal gates highlighted by Zhao et al. [87]. Hub
scanners such as CLIBE model [82] and the PAIT corpus [64] reveal stealthy exploits already in the

wild. A rolling, arms-race track, augmented with explicit repair metrics to grade mitigation quality,

would turn benchmarks into a living barometer rather than a static checklist.

Openproblems (violet band): LLM-scale verification,multi-trigger reasoning, and hardware–compiler

synergy are unresolved frontiers. The EU AI Act [18] and NIST AI RMF 1.0 [52] require provenance

but still lack architecture-integrity clauses. Consensus across research, industry, and policy is

needed before HPC and multi-modal deployments become the default.

8.1 Call to action
• Detect: build graph-level solvers that scale to trillion-parameter LLMs and expose multi-branch

activations.

• Mitigate: embed reproducible builds, IR differencing, and runtime attestation in CI/CD pipelines.

• Benchmark: launch yearly arms-race rounds, scored on detection and repair.



Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 31

• Govern: codify architectural-integrity attestation and shared liability in emerging AI standards

and policy.

Architectural backdoor defense, therefore, spans design, compilation, and deployment, and succeeds

only through joint effort of data scientists, software engineers, hardware designers, security experts,

and regulators acting in concerted collaboration. As HPC-scale deep learning accelerates, closing

these structural loopholes now is pivotal to safeguarding future AI systems. We hope this survey

catalyzes that multi-disciplinary collaboration.

References
[1] Gorka Abad, Oguzhan Ersoy, Stjepan Picek, and Aitor Urbieta. 2024. Sneaky Spikes: Uncovering Stealthy Backdoor

Attacks in Spiking Neural Networks with Neuromorphic Data. In Proceedings of the 2024 Network and Distributed
System Security (NDSS) Symposium. Internet Society, San Diego, CA, USA, 1–20. doi:10.14722/ndss.2024.24334

[2] Protect AI. 2025. Six Months of Guardian: 4.47 Million Models Scanned on Hugging Face. https://protectai.com/blog
/hugging-face-protect-ai-six-months-in. Accessed 11 Jun 2025.

[3] Yang Bai, Gaojie Xing, Hongyan Wu, Zhihong Rao, Chuan Ma, Shiping Wang, Xiaolei Liu, Yimin Zhou, Jiajia Tang,

Kaijun Huang, and Jiale Kang. 2025. Backdoor Attack and Defense on Deep Learning: A Survey. IEEE Transactions on
Computational Social Systems 12, 1 (2025), 404–434. doi:10.1109/TCSS.2024.3482723

[4] Peter Bajcsy and Maxime Bros. 2024. Interactive Simulations of Backdoors in Neural Networks. arXiv:2405.13217.

https://arxiv.org/abs/2405.13217 National Institute of Standards and Technology.

[5] Bazel Project. 2024. Bazel: Reproducible Builds. https://bazel.build/docs/user-manual#reproducible-builds. Online;

accessed 22 Apr 2024.

[6] Mikel Bober-Irizar, Ilia Shumailov, Yiren Zhao, Robert Mullins, and Nicolas Papernot. 2023. Architectural Backdoors in

Neural Networks. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE Computer Society, Los Alamitos, CA, USA, 24595–24604. doi:10.1109/CVPR52729.2023.02356

[7] Sebastián R. Castro, Roberto Campbell, Nancy Lau, Octavio Villalobos, Jiaqi Duan, and Alvaro A. Cardenas. 2025. Large

Language Models are Autonomous Cyber Defenders. In Proceedings of the IEEE Conference on Artificial Intelligence
(CAI) Workshop on Adaptive Cyber Defense. IEEE, Santa Clara, CA, USA, 1–18. https://arxiv.org/abs/2505.04843

[8] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy,

and Biplav Srivastava. 2019. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering. In

Proceedings of the AAAI Workshop on Artificial Intelligence Safety (SafeAI 2019) co-located with the Thirty-Third AAAI
Conference on Artificial Intelligence (CEUR Workshop Proceedings, Vol. 2301). CEUR-WS.org, Honolulu, HI, USA, 66–73.

https://ceur-ws.org/Vol-2301/paper_18.pdf
[9] Wei-Jie Chen, Zhi-Hao Li, and Min Zhang. 2025. HGBA: Heterogeneous Graph Backdoor Attack via Relation-Aware

Triggers. 21 pages. https://www.arxiv.org/abs/2506.00191
[10] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. ReproZip: Computational Reproducibility

With Ease. In Proceedings of the 2016 ACM SIGMOD International Conference on Management of Data (SIGMOD ’16).
Association for Computing Machinery, San Francisco, CA, USA, 2085–2088. doi:10.1145/2882903.2899401

[11] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan Boneh. 2020. SentiNet: Detecting Localized Universal

Attacks Against Deep Learning Systems. In Proceedings of the 2020 IEEE Security and Privacy Workshops (SPW). IEEE,
San Francisco, CA, USA, 48–54. doi:10.1109/SPW50608.2020.00025

[12] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. 2023. How to Backdoor Diffusion Models?. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE / CVF, Vancouver, BC, Canada,

4015–4024. doi:10.1109/CVPR52729.2023.00391
[13] Eleanor Clifford, Ilia Shumailov, Yiren Zhao, Ross Anderson, and Robert Mullins. 2024. ImpNet: Imperceptible

and Blackbox-Undetectable Backdoors in Compiled Neural Networks. In Proceedings of the 2024 IEEE Conference
on Secure and Trustworthy Machine Learning (SaTML). IEEE Computer Society, Los Alamitos, CA, USA, 344–357.

doi:10.1109/SaTML59370.2024.00024

[14] Om Suhas Deshmukh, Sankalp Nagaonkar, Achyut Mani Tripathi, and Ashish Mishra. 2024. BadScan: An Ar-

chitectural Backdoor Attack on Visual State Space Models. arXiv abs/2411.17283 (2024), 11 pages. https:

//arxiv.org/abs/2411.17283 Preprint.

[15] Andis Draguns, Andrew Gritsevskiy, Sumeet Ramesh Motwani, and Christian Schroeder de Witt. 2024. Unelicitable

Backdoors in Language Models via Cryptographic Transformer Circuits. In Advances in Neural Information Processing
Systems 37 (NeurIPS 2024). Curran Associates, Inc., Vancouver, BC, Canada, 1–26. https://proceedings.neurips.cc/pa
per_files/paper/2024/file/6087a60306544be7ba0d0cf34aa93c8f-Paper-Conference.pdf Main Conference Track.

https://doi.org/10.14722/ndss.2024.24334
https://protectai.com/blog/hugging-face-protect-ai-six-months-in
https://protectai.com/blog/hugging-face-protect-ai-six-months-in
https://doi.org/10.1109/TCSS.2024.3482723
https://arxiv.org/abs/2405.13217
https://bazel.build/docs/user-manual#reproducible-builds
https://doi.org/10.1109/CVPR52729.2023.02356
https://arxiv.org/abs/2505.04843
https://ceur-ws.org/Vol-2301/paper_18.pdf
https://www.arxiv.org/abs/2506.00191
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1109/SPW50608.2020.00025
https://doi.org/10.1109/CVPR52729.2023.00391
https://doi.org/10.1109/SaTML59370.2024.00024
https://arxiv.org/abs/2411.17283
https://arxiv.org/abs/2411.17283
https://proceedings.neurips.cc/paper_files/paper/2024/file/6087a60306544be7ba0d0cf34aa93c8f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6087a60306544be7ba0d0cf34aa93c8f-Paper-Conference.pdf


32 Childress et al.

[16] Jacob Dumford and Walter J. Scheirer. 2020. Backdooring Convolutional Neural Networks via Targeted Weight

Perturbations. In Proceedings of the 2020 IEEE International Joint Conference on Biometrics (IJCB). IEEE, Houston, TX,
USA, 1–9. doi:10.1109/IJCB48548.2020.9304875

[17] ETH SRI Lab. 2020. ERAN: ETH Robustness Analyzer for Neural Networks. https://github.com/eth-sri/eran. Online;
accessed 28 Apr 2025.

[18] European Parliament and Council of the European Union. 2024. Regulation (EU) 2024/— on Harmonised Rules on

Artificial Intelligence

(Artificial Intelligence Act) and Amending Certain Union Legislative Acts. Provisional consolidated text adopted 13

March 2024. https://data.consilium.europa.eu/doc/document/PE-44-2024-INIT/en/pdf Final citation in Official
Journal of the European Union pending.

[19] Md Omar Faruque, Peter Jamieson, Ahmad Patooghy, and Abdel-Hameed A. Badawy. 2024. Unleashing GHOST:

An LLM-Powered Framework for Automated Hardware Trojan Design. arXiv abs/2412.02816 (2024), 11 pages.

https://arxiv.org/abs/2412.02816 Preprint.

[20] Brendan Fong, David I. Spivak, and Rémy Tuyéras. 2019. Backprop as Functor: A Compositional Perspective on

Supervised Learning. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019).
IEEE, Los Angeles, CA, USA, 1–13. doi:10.1109/LICS.2019.8785677

[21] Yuntao Gao, Chengyu Liu, Sanket Bhattad, Min Du, Xia Hu, and Jufeng Yang. 2019. STRIP: A Defence Against Trojan

Attacks on Deep Neural Networks. In Proceedings of the 35th Annual Computer Security Applications Conference (ACSAC
’19). Association for Computing Machinery, San Juan, PR, USA, 113–125. doi:10.1145/3359789.3359790

[22] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin T. Vechev.

2018. AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In Proceedings of
the 44th IEEE Symposium on Security and Privacy (S&P 2018). IEEE Computer Society, Los Alamitos, CA, USA, 3–18.

doi:10.1109/SP.2018.00058
[23] Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and Or Zamir. 2022. Planting Undetectable Backdoors in

Machine Learning Models. In Proceedings of the 63rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE, Denver, CO, USA, 931–942. doi:10.1109/FOCS54457.2022.00089

[24] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. BadNets: Identifying Vulnerabilities in the Machine

Learning Model Supply Chain. arXiv abs/1708.06733 (2017), 14 pages. https://arxiv.org/abs/1708.06733 Preprint.

[25] Xihe Gu, Greg Fields, Yaman Jandali, Tara Javidi, and Farinaz Koushanfar. 2024. Trojan Cleansing with Neural Collapse.

arXiv abs/2411.12914 (2024), 11 pages. https://arxiv.org/abs/2411.12914 Preprint.

[26] Chuan Guo, Ruihan Wu, and Kilian Q. Weinberger. 2021. On Hiding Neural Networks Inside Neural Networks. arXiv

preprint arXiv:2002.10078, 14 pages. https://arxiv.org/abs/2002.10078 Version 3, May 2021.

[27] Zhen Guo and Reza Tourani. 2025. DarkMind: Latent Chain-of-Thought Backdoor in Customized LLMs. arXiv
abs/2501.18617, 1 (2025), 1–16. arXiv:2501.18617 https://arxiv.org/abs/2501.18617 Preprint, 24 Jan 2025.

[28] Yingzhe He, Zhili Shen, Chang Xia, Jingyu Hua, Wei Tong, and Sheng Zhong. 2024. SGBA: A Stealthy Scapegoat Back-

door Attack against Deep Neural Networks. Computers & Security 136 (2024), 103523. doi:10.1016/j.cose.2023.103523
[29] HiddenLayer. 2024. ShadowLogic: Compiled Model Graph Manipulation for Persistent Backdoors. Technical Advisory

Report. https://hiddenlayer.com/research/shadowlogic-backdoors-in-model-graphs

[30] IARPA and NIST. 2024. IARPA TrojAI Program — Round 15 Release. https://trojai.nist.gov/TrojAI_Round15.html.

Accessed 2025-06-11.

[31] Hengrui Jia, Sierra Wyllie, Akram Bin Sediq, Ahmed Ibrahim, and Nicolas Papernot. 2025. Backdoor Detection through

Replicated Execution of Outsourced Training. In Proceedings of the 3rd IEEE Conference on Secure and Trustworthy
Machine Learning (SaTML ’25). IEEE, Copenhagen, Denmark, 20 pages. https://arxiv.org/abs/2504.00170

[32] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An Efficient SMT Solver

for Verifying Deep Neural Networks. In Proceedings of the 29th International Conference on Computer Aided Verification
(CAV) (LNCS, Vol. 10426). Springer, Heidelberg, Germany, 97–117. https://link.springer.com/chapter/10.1007/978-3-
319-63387-9_5

[33] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2019. Marabou: An Efficient SMT Solver

for Verifying Deep Neural Networks. In Proceedings of the 31st International Conference on Computer Aided Verification
(CAV). Springer, New York, NY, USA, 443–452.

[34] Dimitri Kokkonis, Michaël Marcozzi, Emilien Decoux, and Stefano Zacchiroli. 2025. ROSA: Finding Backdoors with

Fuzzing . In 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE). IEEE Computer Society, Los

Alamitos, CA, USA, 720–720. https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00183
[35] Soheil Kolouri, Charles E. Rivera, Heiko Hoffmann, Pingfan Song, Farshad Khorrami, and Richard J. Radke. 2021. Meta

Neural Trojan Detection. In Proceedings of the 42nd IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco,

CA, USA, 1–18. doi:10.1109/SP40001.2021.00034

https://doi.org/10.1109/IJCB48548.2020.9304875
https://github.com/eth-sri/eran
https://data.consilium.europa.eu/doc/document/PE-44-2024-INIT/en/pdf
https://arxiv.org/abs/2412.02816
https://doi.org/10.1109/LICS.2019.8785677
https://doi.org/10.1145/3359789.3359790
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/FOCS54457.2022.00089
https://arxiv.org/abs/1708.06733
https://arxiv.org/abs/2411.12914
https://arxiv.org/abs/2002.10078
https://arxiv.org/abs/2501.18617
https://arxiv.org/abs/2501.18617
https://doi.org/10.1016/j.cose.2023.103523
https://hiddenlayer.com/research/shadowlogic-backdoors-in-model-graphs
https://trojai.nist.gov/TrojAI_Round15.html
https://arxiv.org/abs/2504.00170
https://link.springer.com/chapter/10.1007/978-3-319-63387-9_5
https://link.springer.com/chapter/10.1007/978-3-319-63387-9_5
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00183
https://doi.org/10.1109/SP40001.2021.00034


Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 33

[36] Nicolas Küchler, Ivan Petrov, Conrad Grobler, and Ilia Shumailov. 2025. Architectural Backdoors for Within-Batch

Data Stealing and Model Inference Manipulation. arXiv:2505.18323 [cs.CR] arXiv:2505.18323, May 2025.

[37] Harry Langford, Ilia Shumailov, Yiren Zhao, Robert Mullins, and Nicolas Papernot. 2025. Architectural Neural

Backdoors from First Principles. In Proceedings of the 2025 IEEE Symposium on Security and Privacy (SP). IEEE Computer

Society, Los Alamitos, CA, USA, 60–60. https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00060
[38] Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu. 2021. Backdoor Attacks on Pre-

trained Models by Layerwise Weight Poisoning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2021). Association for Computational Linguistics, Online and Punta Cana, Dominican

Republic, 3023–3032. doi:10.18653/v1/2021.emnlp-main.241

[39] Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu. 2021. Backdoor Attacks on Pre-

trained Models by Layerwise Weight Poisoning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational Linguistics, Punta Cana, Dominican Republic, 3023–3032.

doi:10.18653/v1/2021.emnlp-main.241

[40] Yige Li, Hanxun Huang, Yunhan Zhao, XingjunMa, and Jun Sun. 2024. BackdoorLLM: A Comprehensive Benchmark for

Backdoor Attacks on Large LanguageModels. arXiv abs/2408.12798 (2024), 20 pages. https://arxiv.org/abs/2408.12798
Preprint.

[41] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2022. Backdoor Learning: A Survey. IEEE Transactions on Neural
Networks and Learning Systems 33, 12 (2022), 7475–7489. doi:10.1109/TNNLS.2022.3182979

[42] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. 2021. Anti-Backdoor Learning: Training

Clean Models on Poisoned Data. In Advances in Neural Information Processing Systems (NeurIPS ’21, Vol. 34). Curran
Associates, Inc., Virtual Event, 14900–14912. doi:10.5555/3540261.3541403

[43] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. 2021. Neural Attention Distillation:

Erasing Backdoor Triggers from Deep Neural Networks. In Proceedings of the 9th International Conference on Learning
Representations (ICLR ’21). OpenReview.net, Virtual Event (originally Addis Ababa, Ethiopia), 19 pages. https:

//openreview.net/forum?id=9l0K4OM-oXE Poster, ICLR 2021.

[44] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2021. Backdoor Attacks and Defenses in Deep

Learning: A Survey. IEEE Access 9 (2021), 103 114. doi:10.1109/TCSS.2024.3482723
[45] Dazhuang Liu, Yanqi Qiao, Rui Wang, Kaitai Liang, and Georgios Smaragdakis. 2025. LADDER: Multi-Objective

Backdoor Attack via Evolutionary Optimization. In Proceedings of the 2025 Network and Distributed System Security
Symposium (NDSS ’25). Internet Society, San Diego, CA, USA, 18 pages. https://www.ndss-symposium.org/wp-
content/uploads/2025-1061-paper.pdf Article-style paper, NDSS 2025.

[46] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-Pruning: Defending Against Backdooring Attacks

on Deep Neural Networks. In Proceedings of the 27th USENIX Security Symposium (USENIX Security ’18). USENIX
Association, Baltimore, MD, USA, 273–290. https://doi.org/10.1007/978-3-030-00470-5_13

[47] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang. 2019. ABS: Scanning

Neural Networks for Back-doors by Artificial Brain Stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’19). Association for Computing Machinery, London, United Kingdom,

1265–1282. doi:10.1145/3319535.3363216
[48] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang, and Xiangyu Zhang. 2018. Trojaning

Attack on Neural Networks. In Proceedings of the 25th Annual Network and Distributed System Security Symposium
(NDSS 2018). Internet Society, San Diego, CA, USA, 1–15. doi:10.14722/ndss.2018.23291

[49] Abdullah Arafat Miah and Yu Bi. 2024. Exploiting the Vulnerability of Large Language Models via Defense-Aware

Architectural Backdoor. arXiv abs/2409.01952 (2024), 16 pages. https://arxiv.org/abs/2409.01952 Preprint.

[50] Rui Min, Zeyu Qin, Nevin L. Zhang, Li Shen, and Minhao Cheng. 2024. Breaking the False Sense of Security in

Backdoor Defense through Re-Activation Attack. In Advances in Neural Information Processing Systems (NeurIPS ’24).
Curran Associates, Inc., Vancouver, BC, Canada, 37 pages. https://proceedings.neurips.cc/paper_files/paper/2024/fil
e/d06537b4b38ccf008a54559d2c56fa23-Paper-Conference.pdf

[51] Rui Min, Zeyu Qin, Nevin L. Zhang, Li Shen, and Minhao Cheng. 2024. Uncovering, Explaining, and Mitigating the

Superficial Safety of Backdoor Defense. In Advances in Neural Information Processing Systems (NeurIPS ’24). Curran
Associates, Inc., Vancouver, BC, Canada, 28 pages. https://openreview.net/pdf?id=qZFshkbWDo

[52] National Institute of Standards and Technology. 2023. Artificial Intelligence Risk Management Framework (AI RMF) 1.0.
Technical Report NIST AI 100-1. National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs
/ai/NIST.AI.100-1.pdf Official release, 26 January 2023.

[53] NeurIPS Trojan Detection Challenge Organizers. 2020. NeurIPS 2020 Competition Track: Trojan Detection Challenge.

https://neurips.cc/Conferences/2020/CompetitionTrack#trojan-detection. Accessed 28 Apr 2025.

[54] Liangbo Ning, Wenqi Fan, and Qing Li. 2025. Exploring Backdoor Attack and Defense for LLM-empowered Recom-

mendations. arXiv abs/2504.11182 (2025), 21 pages. https://arxiv.org/abs/2504.11182 Preprint.

https://arxiv.org/abs/2505.18323
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00060
https://doi.org/10.18653/v1/2021.emnlp-main.241
https://doi.org/10.18653/v1/2021.emnlp-main.241
https://arxiv.org/abs/2408.12798
https://doi.org/10.1109/TNNLS.2022.3182979
https://doi.org/10.5555/3540261.3541403
https://openreview.net/forum?id=9l0K4OM-oXE
https://openreview.net/forum?id=9l0K4OM-oXE
https://doi.org/10.1109/TCSS.2024.3482723
https://www.ndss-symposium.org/wp-content/uploads/2025-1061-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2025-1061-paper.pdf
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1145/3319535.3363216
https://doi.org/10.14722/ndss.2018.23291
https://arxiv.org/abs/2409.01952
https://proceedings.neurips.cc/paper_files/paper/2024/file/d06537b4b38ccf008a54559d2c56fa23-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d06537b4b38ccf008a54559d2c56fa23-Paper-Conference.pdf
https://openreview.net/pdf?id=qZFshkbWDo
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://neurips.cc/Conferences/2020/CompetitionTrack#trojan-detection
https://arxiv.org/abs/2504.11182


34 Childress et al.

[55] Ren Pang, Changjiang Li, Zhaohan Xi, Shouling Ji, and Ting Wang. 2022. Neural Architectural Backdoors. arXiv
preprint arXiv:2210.12179 (Oct. 2022), 15 pages. doi:10.48550/arXiv.2210.12179 Version 2, revised 7 Nov 2022.

[56] Ren Pang, Changjiang Li, Zhaohan Xi, Shouling Ji, and Ting Wang. 2023. The Dark Side of AutoML: Towards

Architectural Backdoor Search. In Proceedings of the 11th International Conference on Learning Representations (ICLR
’23). OpenReview.net, Kigali, Rwanda, 16 pages. https://openreview.net/forum?id=bsZULlDGXe Poster, ICLR 2023.

[57] Ren Pang, Zhaohan Xi, Shouling Ji, Xiapu Luo, and Ting Wang. 2022. On the Security Risks of AutoML. In Proceedings
of the 31st USENIX Security Symposium. USENIX Association, Boston, MA, USA, 3953–3970. https://www.usenix.org

/conference/usenixsecurity22/presentation/pang-ren
[58] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng, Xiapu Luo, and Ting Wang. 2022.

TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural Backdoors. In Proceedings of the 2022 IEEE
7th European Symposium on Security and Privacy (EuroS&P 2022). IEEE, Genoa, Italy, 684–702. doi:10.1109/EuroSP
53844.2022.00048

[59] Corina S. Pasăreanu, Divya Gopinath, and Huafeng Yu. 2018. Compositional Verification for Autonomous Systems with
Deep Learning Components. Technical Report arXiv:1810.08303. NASA Ames Research Center. https://arxiv.org/ab
s/1810.08303 Technical Report & arXiv pre-print.

[60] Long H. Pham and Jun Sun. 2022. Verifying Neural Networks Against Backdoor Attacks. In Computer Aided Verification
– 34th International Conference, CAV 2022 (Lecture Notes in Computer Science, Vol. 13371). Springer, Haifa, Israel, 171–192.
doi:10.1007/978-3-031-13185-1_9

[61] Dorde Popovic, Amin Sadeghi, Ting Yu, Sanjay Chawla, and Issa Khalil. 2025. DeBackdoor: A Deductive Framework for

Detecting Backdoor Attacks on Deep Models with Limited Data. arXiv abs/2503.21305 (2025), 20 pages. doi:10.48550/ar
Xiv.2503.21305 Preprint.

[62] Xiangyu Qi, Tinghao Xie, Ruizhe Pan, Jifeng Zhu, Yong Yang, and Kai Bu. 2022. Towards Practical Deployment-Stage

Backdoor Attack on Deep Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE/CVF, New Orleans, LA, USA, 14865–14875. doi:10.1109/CVPR52688.2022.01299

[63] Joseph Rance, Yiren Zhao, Ilia Shumailov, and Robert D. Mullins. 2023. Augmentation Backdoors. In Proceedings of the
ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning (BANDS ’23). OpenReview, Kigali, Rwanda
(hybrid), 14 pages. https://openreview.net/forum?id=-CIOGGhkEfy Workshop paper; retrieved 2025-04-30.

[64] Protect AI Research. 2024. PAIT Threat Reports: ONNX and TensorFlow Architectural Backdoors Found in the Wild.

https://protectai.com/insights/knowledge-base/backdoor-threats/PAIT-ONNX-200. Accessed May 2025.

[65] Anirban Sengupta, Aditya Anshul, Vishal Chourasia, and Nabendu Bhui. 2025. Security Vulnerability (Backdoor

Trojan) During Machine Learning Accelerator Design Phases. IT Professional 27, 1 (2025), 65–72. doi:10.1109/MITP

.2024.3519632

[66] Guangyu Shen, Siyuan Cheng, Zhuo Zhang, Guanhong Tao, Kaiyuan Zhang, Hanxi Guo, Lu Yan, Xiaolong Jin,

Shengwei An, Shiqing Ma, and Xiangyu Zhang. 2025. BAIT: Large Language Model Backdoor Scanning by Inverting

Attack Target. In Proceedings of the 46th IEEE Symposium on Security and Privacy (S&P). IEEE, San Francisco, CA, USA,

1676–1694. https://www.computer.org/csdl/proceedings-article/sp/2025/223600a103/22K50yIvWta

[67] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An Abstract Domain for Certifying Neural

Networks. In Proceedings of the 46th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2019).
Association for Computing Machinery, New York, NY, USA, 329–342. doi:10.1145/3290354

[68] Zhen Sun, Tianshuo Cong, Yule Liu, Chenhao Lin, Xinlei He, Rongmao Chen, Xingshuo Han, and Xinyi Huang. 2025.

PEFTGuard: Detecting Backdoor Attacks Against Parameter-Efficient Fine-Tuning. In Proceedings of the 46th IEEE
Symposium on Security and Privacy (S&P). IEEE, San Francisco, CA, USA, 1620–1638. doi:10.1109/SP61157.2025.00161

[69] Mohammad Tehranipoor and Farinaz Koushanfar. 2010. A survey of hardware Trojan taxonomy and detection. IEEE
Design & Test of Computers 27, 1 (2010), 10–25. doi:10.1109/MDT.2010.7

[70] Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM 27, 8 (1984), 761–763. doi:10.1145/358198.358210
[71] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral Signatures in Backdoor Attacks. In Advances in

Neural Information Processing Systems 31 (NeurIPS 2018). Curran Associates, Inc., Red Hook, NY, USA, 8011–8021.

https://dl.acm.org/doi/10.5555/3327757.3327896
[72] U.S. National Institute of Standards and Technology. 2025. TrojAI Program Homepage. https://pages.nist.gov/trojai.

Last accessed 28 Apr 2025.

[73] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. 2019. Neural

Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In Proceedings of the 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, Los Alamitos, CA, USA, 707–723. doi:10.1109/SP.2019.00031

[74] Hao Wang, Shangwei Guo, Jialing He, Hangcheng Liu, Tianwei Zhang, and Tao Xiang. 2025. Model Supply Chain

Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability. In Proceedings of the ACM Web
Conference 2025 (TheWebConf ’25). ACM, Sydney, Australia, 840–851. doi:10.1145/3696410.3714624 “TransTroj” attack

— backdoors persist through downstream fine-tuning.

https://doi.org/10.48550/arXiv.2210.12179
https://openreview.net/forum?id=bsZULlDGXe
https://www.usenix.org/conference/usenixsecurity22/presentation/pang-ren
https://www.usenix.org/conference/usenixsecurity22/presentation/pang-ren
https://doi.org/10.1109/EuroSP53844.2022.00048
https://doi.org/10.1109/EuroSP53844.2022.00048
https://arxiv.org/abs/1810.08303
https://arxiv.org/abs/1810.08303
https://doi.org/10.1007/978-3-031-13185-1_9
https://doi.org/10.48550/arXiv.2503.21305
https://doi.org/10.48550/arXiv.2503.21305
https://doi.org/10.1109/CVPR52688.2022.01299
https://openreview.net/forum?id=-CIOGGhkEfy
https://protectai.com/insights/knowledge-base/backdoor-threats/PAIT-ONNX-200
https://doi.org/10.1109/MITP.2024.3519632
https://doi.org/10.1109/MITP.2024.3519632
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a103/22K50yIvWta
https://doi.org/10.1145/3290354
https://doi.org/10.1109/SP61157.2025.00161
https://doi.org/10.1109/MDT.2010.7
https://doi.org/10.1145/358198.358210
https://dl.acm.org/doi/10.5555/3327757.3327896
https://pages.nist.gov/trojai
https://doi.org/10.1109/SP.2019.00031
https://doi.org/10.1145/3696410.3714624


Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense 35

[75] Alexander Warnecke, Julian Speith, Jan-Niklas Moller, Konrad Rieck, and Christof Paar. 2024. Evil from Within: Ma-

chine Learning Backdoors Through Dormant Hardware Trojans . 906-922 pages. doi:10.1109/ACSAC63791.2024.00077
[76] David A. Wheeler. 2005. Countering Trusting Trust Through Diverse Double-Compiling (DDC). In Proceedings of the

21st Annual Computer Security Applications Conference (ACSAC 2005). IEEE Computer Society, Los Alamitos, CA, USA,

13–26. http://dx.doi.org/10.1109/CSAC.2005.17
[77] World Economic Forum. 2025. Global Cybersecurity Outlook 2025. Insight Report. https://www.weforum.org/pu

blications/global-cybersecurity-outlook-2025 Published 13 January 2025; highlights AI-driven supply-chain and

backdoor threats.

[78] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen. 2022. Backdoor-

Bench: A Comprehensive Benchmark of Backdoor Learning. In Proceedings of the NeurIPS 2022 Datasets and Benchmarks
Track. Curran Associates, Inc., Red Hook, NY, USA, 14 pages. https://openreview.net/pdf?id=31_U7n18gM7

[79] Jun Xia, Zhihao Yue, Yingbo Zhou, Zhiwei Ling, Yiyu Shi, Xian Wei, and Mingsong Chen. 2024. WaveAttack:

Asymmetric Frequency Obfuscation-Based Backdoor Attacks Against Deep Neural Networks. In Advances in Neural
Information Processing Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang

(Eds.), Vol. 37. Curran Associates, Inc., Red Hook, NY, USA, 43549–43570. https://papers.nips.cc/paper_files/pape
r/2024/file/4ce18228ececb78bca04cbce069891b1-Paper-Conference.pdf

[80] Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha Poovendran, and Bo Li. 2024. BadChain:

Backdoor Chain-of-Thought Prompting for Large Language Models. In Proceedings of the Twelfth International
Conference on Learning Representations (ICLR 2024). OpenReview.net, Vienna, Austria, Article c93SBwz1Ma, 28 pages.

https://openreview.net/pdf?id=c93SBwz1Ma Code available at https://github.com/Django-Jiang/BadChain.
[81] Xiao Yang, Kai Zhou, Yuni Lai, and Gaolei Li. 2024. Defense-as-a-Service: Black-box Shielding against Backdoored

Graph Models. https://arxiv.org/abs/2410.04916. arXiv:2410.04916 [cs.LG]; accessed 28 Apr 2025.

[82] Rui Zeng, Xi Chen, Yuwen Pu, Xuhong Zhang, Tianyu Du, and Shouling Ji. 2025. CLIBE: Detecting Dynamic Backdoors

in Transformer-Based NLP Models. In Proceedings of the 32nd Network and Distributed System Security Symposium
(NDSS 2025). Internet Society, San Diego, CA, USA, 18 pages. doi:10.14722/ndss.2025.230478

[83] Yi Zeng, Si Chen, Won Park, Z. Morley Mao, Ming Jin, and Ruoxi Jia. 2022. Adversarial Unlearning of Backdoors

via Implicit Hypergradient. In Proceedings of the Tenth International Conference on Learning Representations (ICLR
2022). OpenReview.net, Virtual Conference, Article MeeQkFYVbzW, 28 pages. https://openreview.net/pdf?id=
MeeQkFYVbzW

[84] Yi Zeng, Won Park, Z. Morley Mao, and Ruoxi Jia. 2021. Rethinking the Backdoor Attacks’ Triggers: A Frequency

Perspective. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2021). IEEE, Los Alamitos,

CA, USA, 2752–2761. https://openaccess.thecvf .com/content/ICCV2021/papers/Zeng_Rethinking_the_Backdoor_A
ttacks_Triggers_A_Frequency_Perspective_ICCV_2021_paper.pdf

[85] Yechao Zhang, Yuxuan Zhou, Tianyu Li, Minghui Li, Shengshan Hu, Wei Luo, and Leo Yu Zhang. 2025. Secure

Transfer Learning: Training Clean Models Against Backdoor in Pre-Trained Encoder and Downstream Dataset. In

Proceedings of the 46th IEEE Symposium on Security and Privacy (S&P). IEEE, San Francisco, CA, USA, 1732–1750.

https://www.computer.org/csdl/proceedings-article/sp/2025/223600b639/26hiUrJfICA
[86] Gejian Zhao, Hanzhou Wu, Xinpeng Zhang, and Athanasios V. Vasilakos. 2025. ShadowCoT: Cognitive Hijacking

for Stealthy Reasoning Backdoors in Large Language Models. https://arxiv.org/abs/2504.05605. arXiv:2504.05605
[cs.CL]; accessed 28 Apr 2025.

[87] Shuai Zhao, Meihuizi Jia, Zhongliang Guo, Leilei Gan, Xiaoyu Xu, Xiaobao Wu, Jie Fu, Yichao Feng, Fengjun Pan, and

Anh Tuan Luu. 2025. A Survey of Recent Backdoor Attacks and Defenses in Large Language Models. Transactions
on Machine Learning Research 2025, Article 3527 (2025), 28 pages. https://openreview.net/pdf?id=wZLWuFHxt5

Accepted 12 Jan 2025; CC BY 4.0.

[88] Shenyu Zheng, Bram Adams, and Ahmed E. Hassan. 2024. Does Using Bazel Help Speed Up Continuous Integration

Builds? Empirical Software Engineering 29, Article 110 (2024), 47 pages. doi:10.1007/s10664-024-10497-x
[89] Ruofan Zhu, Ganhao Chen, Wenbo Shen, Xiaofei Xie, and Rui Chang. 2025. My Model is Malware to You: Transforming

AI Models into Malware by Abusing TensorFlow APIs. In Proceedings of the 46th IEEE Symposium on Security and
Privacy (S&P). IEEE, San Francisco, CA, USA, 449–466. https://www.computer.org/csdl/proceedings-article/sp
/2025/223600a012/21B7Q4kpO7e

https://doi.org/10.1109/ACSAC63791.2024.00077
http://dx.doi.org/10.1109/CSAC.2005.17
https://www.weforum.org/publications/global-cybersecurity-outlook-2025
https://www.weforum.org/publications/global-cybersecurity-outlook-2025
https://openreview.net/pdf?id=31_U7n18gM7
https://papers.nips.cc/paper_files/paper/2024/file/4ce18228ececb78bca04cbce069891b1-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2024/file/4ce18228ececb78bca04cbce069891b1-Paper-Conference.pdf
https://openreview.net/pdf?id=c93SBwz1Ma
https://github.com/Django-Jiang/BadChain
https://arxiv.org/abs/2410.04916
https://doi.org/10.14722/ndss.2025.230478
https://openreview.net/pdf?id=MeeQkFYVbzW
https://openreview.net/pdf?id=MeeQkFYVbzW
https://openaccess.thecvf.com/content/ICCV2021/papers/Zeng_Rethinking_the_Backdoor_Attacks_Triggers_A_Frequency_Perspective_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Zeng_Rethinking_the_Backdoor_Attacks_Triggers_A_Frequency_Perspective_ICCV_2021_paper.pdf
https://www.computer.org/csdl/proceedings-article/sp/2025/223600b639/26hiUrJfICA
https://arxiv.org/abs/2504.05605
https://openreview.net/pdf?id=wZLWuFHxt5
https://doi.org/10.1007/s10664-024-10497-x
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a012/21B7Q4kpO7e
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a012/21B7Q4kpO7e

	Abstract
	1 Introduction
	1.1 Contributions and Organization

	2 Background and Related Work
	2.1 Classical vs. Architectural Backdoors
	2.2 Motivation for Architectural Threats
	2.3 Key Terminology and Scope
	2.4 Major Architectural Attack Mechanisms
	2.5 Preliminary Defenses and Outstanding Hurdles
	2.6 Real-World Motivations and Benchmark Gaps

	3 Taxonomy of Architectural Backdoors
	3.1 Comprehensive Attack Vectors and Detection Barriers
	3.2 Expanded 12-Category Taxonomy

	4 Detection of Architectural Backdoors
	4.1 Static Graph Analysis and Model Introspection
	4.2 Dynamic Probing and Trigger Inversion
	4.3 Explainability–Based Detection and Meta‑Analysis
	4.4 Formal Verification and Semi-Formal Methods
	4.5 Strengths & Limits of Current Detectors

	5 Mitigation and Model Repair
	5.1 Subgraph Pruning and Removal
	5.2 Adversarial Unlearning and Re‑Training
	5.3 Attention Distillation and Model Surgery
	5.4 Runtime Monitoring and Canary Testing
	5.5 Supply‑Chain Assurance and Trusted Compilation
	5.6 Concluding Summary

	6 Benchmarks, Datasets, and Empirical Evaluations
	6.1 Current State of Backdoor Benchmarking
	6.2 Measuring Success in Architectural Backdoor Mitigation
	6.3 Proposed Benchmarking Solutions

	7 Open Challenges and Future Directions
	7.1 Scaling Formal Methods and Large‑Scale Verification
	7.2 Addressing Multi‑Path, Distributed, or Obfuscated Triggers
	7.3 NAS and AutoML Vulnerabilities
	7.4 Compiler/Hardware Synergy and Post-Training Backdoor Re-Introduction
	7.5 Adaptive Benchmarks and Continuous Updating
	7.6 Specialized Architectures: Spiking Neural Networks and Visual State-Space Models
	7.7 Supply-Chain Governance, Policy, and Multi-Sector Collaboration
	7.8 Proposed Research Roadmap
	7.9 Summary

	8 Conclusion and Outlook
	8.1 Call to action

	References

