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Learning-Based Cost-Aware Defense of Parallel
Server Systems against Malicious Attacks

Yuzhen Zhan and Li Jin

Abstract— We consider the cyber-physical security of
parallel server systems, which is relevant for a variety of
engineering applications such as networking, manufactur-
ing, and transportation. These systems rely on feedback
control and may thus be vulnerable to malicious attacks
such as denial-of-service, data falsification, and instruc-
tion manipulations. In this paper, we develop a learning
algorithm that computes a defensive strategy to balance
technological cost for defensive actions and performance
degradation due to cyber attacks as mentioned above. We
consider a zero-sum Markov security game. We develop an
approximate minimax-Q learning algorithm that efficiently
computes the equilibrium of the game, and thus a cost-
aware defensive strategy. The algorithm uses interpretable
linear function approximation tailored to the system struc-
ture. We show that, under mild assumptions, the algorithm
converges with probability one to an approximate Markov
perfect equilibrium. We first use a Lyapunov method to
address the unbounded temporal-difference error due to
the unbounded state space. We then use an ordinary differ-
ential equation-based argument to establish convergence.
Simulation results demonstrate that our algorithm con-
verges about 50 times faster than a representative neural
network-based method, with an insignificant optimality gap
between 4%–8%, depending on the complexity of the linear
approximator and the number of parallel servers.

Index Terms— Cyber-physical security, stochastic
games, reinforcement learning.

I. INTRODUCTION

A. Motivation

Modern parallel server systems, such as cloud computing
[1], industrial production lines [2], and intelligent transporta-
tion networks [3], rely on dynamic routing to optimize per-
formance (delay and throughput). However, routing perfor-
mance depends on connected and autonomous components
subject to inherent cyber-physical security risks, especially in
the face of increasingly sophisticated malicious cyberattacks
[4]. Cyberattacks including Denial of Service (DoS), data
falsification, and routing deception can severely compromise
system performance [5]–[7]. In transportation, falsifed traffic
information can mislead vehicles and cause congestion [8].
For web services, a falsified blocking report in a web server
farm could redirect traffic to an already overloaded server [9].
Similar risks plague production lines and communication net-
works, where strategic attacks can inject erroneous instructions
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to disrupt critical operations [10]. Actual incidents have been
reported [11]–[13]. Given the criticality of these systems in
modern society, it is essential to address the potential physical
performance degradation due to cyber security risks [14].
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Fig. 1: An m-server system with join-the-shortest-queue routing
subject to security failures.

Game theory has emerged as a powerful analytical frame-
work for understanding cyber-physical security threats, par-
ticularly for strategic interactions between attackers and de-
fenders [15]. By modeling the adversarial relationship as a
game, a defender can anticipate attack strategies and optimize
resource allocation to reduce potential losses [16]. Static
security game models have been successfully used to study
long-term trade-offs between security investments and defense
effectiveness [17], [18]. Dynamic/stochastic game models such
as the one considered in this paper are more suitable for real-
time attacker-defender interactions [16], [19], [20]. However,
these models usually have complex dynamics. Consequently,
computational complexity is a critical bottleneck, which limits
their applicability in realistic engineering systems.

One promising solution to the above challenges is rein-
forcement learning (RL) methods [21], [22]. RL methods
are capable of computing optimal/equilibrium strategies in
complex Markov games with unknown model information
[23]–[25]. Since we consider parallel server systems with
unbounded state spaces, we will use value function approxima-
tion. However, the broad class of neural network-based meth-
ods usually lack theoretical guarantees on training convergence
and system stability [26], [27], which are essential for cyber-
physical security analysis. Existing convergence guarantees
for approximate methods are mostly developed for finite-state
or bounded-state problems; very limited results have been
developed for games with unbounded state spaces [28]. The
key challenge for unbounded state spaces is that the ∞-norm-
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based argument used for finite/bounded problems does not
directly apply.

B. Related work
For Markov decision processes with unbounded state space

but with bounded reward, learning methods have been un-
derstood fairly well [29], [30]. For problems with unbounded
reward, most studies considered convergence guarantees for
RL methods under fairly stringent conditions, such as rapidly
decaying discount factors [31], implicitly modified discount
rates [32], and linear transition dynamics or linear reward
[33]. In particular, Melo et al. [34] proposed a set of milder
conditions under which Q-learning with linear function ap-
proximation converges with probability one, which provides a
solid foundation for our analysis.

For games with finite/bounded state spaces, extensive learn-
ing methods have been developed and studied [35], [36].
In particular, Littman [37] proposed the minimax Q (MQ)
learning algorithm for finite-state games; our algorithm builds
on this classical baseline. Szepesvári and Littman [38] estab-
lished convergence guarantees for this algorithm. Hu et al.
[39] introduced Nash Q-learning, extending MQ to general-
sum games. Lowe et al. [40] extended MQ to cooperative-
competitive environments by incorporating neural networks.
Recently, Chen et al. [41] extended the MQ learning to payoff-
based scenarios with function approximation; although this
work considers bounded state spaces, it gives useful insights
for unbounded settings.

For games with unbounded state spaces, very limited
learning-based methods have been developed. For such games,
existing results typically focus on dynamic programming
methods and the existence of a stationary equilibrium [28],
[42]. A typical method to address unboundedness is to use
Lyapunov functions, which is commonly used in for control of
queuing systems [16], [43], [44]. However, Lyapunov methods
are more suitable for traffic stabilization but are less helpful
for equilibria computation.

A standard approach to convergence analysis of stochastic
approximation is the the ordinary differential equation (ODE)
method. The approach was formalized and extended by Borkar
and Meyn [45]. Recent advancements such as quasi-stochastic
approximations and dynamical systems views have improved
its convergence rate and adaptation to more general noise
conditions [46], [47]. However, current ODE-based frame-
works often assume global Lipschitz continuity and noises
with bounded variance—conditions that are relatively strict in
practical scenarios [48]. The key to establish convergence of
MQ learning in our setting is to jointly study the behavior of
the traffic state and the approximate Q function. To the best
of our knowledge, this problem has not been fully understood,
especially in a game-theoretic setting.

C. Our contributions
In this paper, we develop an approximate minimax-Q

(AMQ) learning algorithm to compute a near-equilibrium cost-
aware defensive strategy for parallel server systems subject to
malicious attacks (Fig. 1). This algorithm extends the classical

MQ learning algorithm to the unbounded setting of parallel
server systems. We use linear value function approximation,
with a rather broad class of bases, to cover the unbounded state
space. Importantly, we design the structure of the approximate
Q function with insights about the systems dynamics, which
makes the weights interpretable. We also provide a Foster-
Lypaunov drift-based qualification for the behavior policy. We
show that a qualified behavior policy must exist if the system
is stabilizable.

The main result (Theorem 1) states that the proposed AMQ
algorithm converges almost surely to an approximate Markov
perfect equilibrium of the security game if the learning rates
αk satisfy the standard Robbins-Monro conditions. To show
convergence, we adopt an ordinary differential equation-based
argument by the Borkar and Meyn theorem [45]. We utilize
properties of the queuing system and the feature functions
to verify the Foster-Lyapunov drift condition [49]. Instead of
the typical requirement of uniform boundedness of feature
functions, our result only requires the boundedness of the
expectation with respect to the equilibrium distribution, which
is much less restrictive. The result offers insights into the
learning of effective and cost-aware defense mechanisms in
real-life scenarios.

To assess the performance of the AMQ method, we conduct
numerical experiments with a neural network Q (NNQ) func-
tion as the benchmark. We demonstrate that the AMQ method
computes defense strategies that is 94.1%−97.5% (depending
on the dimension of the approximators and the number of
parallel servers) consistent with the NNQ method. The AMQ
method approximates the equilibrium value function with an
average error of 4.3%−8.2%. Additionally, the NNQ method
converges after approximately 2× 106 iterations, whereas the
AMQ method achieves convergence in around 104 iterations.
These results indicate that, in addition to the theoretical
convergence guarantee, which is usually unavailable for neural
networks, the AMQ method converges faster and attains an
insignificant approximation error or optimality gap.

In summary, our main contributions include:

1) Development of an approximate minimax-Q learning
algorithm for the Markov security game on parallel server
systems,

2) Convergence analysis of the proposed algorithm under
rather mild assumptions, and

3) Numerical experiments to validate the accuracy and effi-
ciency of the proposed algorithm.

The rest of this paper is structured as follows. Section
II presents the cyber-physical model and the approximate
minimax-Q learning algorithm. Section III studies the con-
vergence property of learning algorithm. Section IV conducts
a numerical validation. Section V gives conclusions.

II. MODEL AND ALGORITHM

In this section, we model the parallel server system and
the strategic players, formulate the Markov security game,
develop the function approximation scheme, and present the
approximate minimax-Q learning algorithm.
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A. System and players
Consider the parallel server system in Fig. 1. Jobs arrive

according to a Poisson process of rate λ > 0 and go to one
of the m servers. The ith server has exponentially distributed
service times with service rate µi > 0. Let x(t) ∈ Zm

≥0 be
the vector of the number of jobs in the servers, either waiting
or being served. In the absence of attacks, we assume that an
incoming job is routed to the server with the shortest queue;
ties are broken uniformly at random. We select this policy
because of its intuitiveness and popularity in practice [50].

We characterize the security problem as a two-player zero-
sum game between a defender and an attacker. An attacker is
able to manipulate the routing decision for an incoming job.
The attacking cost is c1 > 0 per unit time. A defender can
defend the routing decision for an incoming job, at a cost of
c2 > 0 per unit time. These costs account for the resources
that attacking/defending actions have to consume. If a routing
decision is attacked and is not defended, the job will go to
the longest server, as the consequence of a misled decision.
Otherwise, the job will join the shortest queue correctly. Ties
are broken uniformly at random. See Fig. 1.

The action space for the attacker is {0, 1}, where a(t) = 0
(resp. a(t) = 1) means “not to attack” (resp. “to attack”) at
time t. The action space for the defender is also {0, 1}, where
b(t) = 0 (resp. b(t) = 1) means “not to defend” (resp. “to
defend”) at time t. The instantaneous reward (resp. cost) for
the attacker (resp. defender) at time t is defined as

ρ
(
x(t), a(t), b(t)

)
:= ∥x(t)∥1−c1a(t) + c2b(t), (1)

where ∥·∥1 is the 1-norm. The action-induced costs are in-
cluded in the reward/cost function, since both players may be
interested in maximizing the opponent’s costs. Note that the
above reward/cost function assumes that both the traffic state
and the opponent’s action are observable to both players. This
assumption is technologically reasonable in many scenarios.
We are aware that there exist more sophisticated information
structures in the literature; we do not consider them in this
paper, since our focus is the coupling between the security
game and the traffic dynamics. We believe that our analysis
provides a basis for study of more sophisticated models.

Note that the queuing cost term ∥x∥1 will grow unbound-
edly (regardless of the players’ actions) if the traffic demand
λ exceeds the total capacity

∑
k µk. To exclude this less

interesting case, we assume the following:

Assumption 1. The parallel server system is stabilizable in
the sense that λ <

∑m
n=1 µn.

Under this assumption, the default join-the-shortest-queue
routing policy is guaranteed to stabilize the traffic states if
every job is routed correctly [16]. Hence, there exists at least
one defending policy (i.e., b(t) = 1 for all t) that ensures
traffic stability.

B. Security game
Since we consider a version of off-policy learning algorithm,

we differentiate the notations for the behavior policy and for
the target policy. We use α(a|x) : {0, 1}×Zm

≥0 → [0, 1] (resp.

β(b|x) : {0, 1} × Zm
≥0 → [0, 1]) to denote the probabilistic

behavior policy for the attacker (resp. defender). We use
π(a|x) : {0, 1}×Zm

≥0 → [0, 1] (resp. σ(b|x) : {0, 1}×Zm
≥0 →

[0, 1]) to denote the probabilistic target policy for the attacker
(resp. defender). Given a policy pair (α, β), the transition
dynamics of the parallel server system can be specified as
follows. Let ei ∈ {0, 1}m denote the unit vector that has a
1 in the i-th entry and 0 elsewhere. Then the transition rate
qα,β : Zm

≥0 × Zm
≥0 → R≥0 of the traffic state under the policy

pair (α, β) is given by

qα,β(y|x) =

(
α(0|x)

|argminj xj | +
α(1|x)β(1|x)
|argminj xj |

)
λ

if y ∈ {x+ ei; i ∈ argminj xj},
α(1|x)β(0|x)
|argminj xj |λ if y ∈ {x+ ei; i ∈ argmaxj xj},
µi if y = x− ei,
0 otherwise,

(2)
where |·| denotes the cardinality of a set. We exclude the case
of self-transition since it does not affect our analysis.

Since the system state is countable and changes only at
discrete epochs, we can reformulate the Markov security
game in discrete time (DT). Note that a DT formulation also
facilitates the design of learning algorithm. Specifically, let tk
be the kth transition epoch of the continuous-tim (CT) process
{x(t); t ≥ 0}. With a slight abuse of notation, let

xk = x(tk), ak = a(tk), bk = b(tk), k = 0, 1, ...

Thus, the transition probabilities p(x′|x, a, b) for the DT
process can be obtained from the transition rates in (2) by
the classical theory of countable-state Markov processes [16].
The expected one-step reward/cost is given by

r
(
xk,ak, bk

)
:=

ρ
(
x(tk−1), a(tk−1), b(tk−1)

)
E[∆tk|xk, ak, bk], (3)

where ∆tk = tk − tk−1 is the exponentially distributed inter-
transition interval. The queuing dynamics ensure that E[∆tk]
exists for any xk, ak, bk. Now we are ready to formally define
the security game to be considered:

Definition 1. We consider a Markov game specified by a tuple
(Zm

≥0,A,B, p, r, γ) defined as follows.
1) Zm

≥0 is the traffic state space of the parallel server system.
2) A (resp. B) is the space of (mixed) strategies for the

attacker (resp. defender).
3) p : (Zm

≥0 × {0, 1}2) × Zm
≥0 → [0, 1] is the transition

probability of the traffic state under a given pair of
actions; these probabilities can be computed readily from
the CT transition rates q.

4) r : Zm
≥0 × {0, 1}2 → R is the one-step reward/cost

function.
5) γ ∈ (0, 1) is the discount rate.

By the DT formulation, the value/cost function is thus given
by

vπ,σ(x) = Eπ,σ

[ ∞∑
k=0

γkr(xk, ak, bk)

∣∣∣∣∣x0 = x

]
.
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In the zero-sum game, the attacker (resp. defender) attempts
to maximize (resp. minimize) the above. Since the state space
is unbounded, the existence of vπ,σ is not readily guaranteed
for any policy pair. Fortunately, the existence was proved in
[16] under equilibria in the following sense.

Definition 2. The Markov perfect equilibrium (MPE) for the
security game is a strategy pair (π∗, σ∗) such that for any
x ∈ Zm

≥0,

π∗(·|x) = argmax
π

vπ,σ∗(x),

σ∗(·|x) = argmin
σ
vπ∗,σ(x).

Hence, the MPE is characterized by the equilibrium state
value function

v∗(x) = vπ∗,σ∗(x).

Note that the corresponding action value function is given by

Qπ,σ(x, a, b) = r(x, a, b) +
∑

x′∈Zm
≥0

p(x′|x, a, b)vπ,σ(x′).

By the Shapley theory [51], v∗ is associated with a unique
action value function (also called the “minimax Q function”)
satisfying the minimax version of the Bellman equation [38].
Following [52], we take the defender’s perspective of minimax
Bellman operator T on the space of functions {Q : Zm

≥0 ×
{0, 1}2 → R} as

(TQ)(x, a, b) = r(x, a, b)

+γmin
σ∈B

max
a′∈{0,1}

∑
x′∈Zm

≥0

b′∈{0,1}

p(x′|x, a′, b′)σ(b′|x)Q(x′, a′, b′).

Then the minimax Bellman equation can be written compactly
as

Q∗ = TQ∗,

where Q∗ is also the action value function associated with v∗.

C. Function Approximation
Consider a set of md linearly independent basis functions

{ϕi,j : Zm
≥0 × {0, 1}2 → R; 1 ≤ i ≤ m, 1 ≤ j ≤ d}. Let

ϕ = [ϕ1,1, . . . , ϕ1,d, ϕ2,1, . . . , ϕ2,d, . . . , ϕm,1, . . . , ϕm,d]
⊤

be the md-dimensional list of basis functions. We follow [53]
and assume the following on regularity of the basis functions.

Assumption 2. The basis functions ϕ satisfy the following.
1) (Subexponential and non-negative) ϕ is such that

0 ≤
d∑

j=1

ϕi,j(x) ≤ exi for i ∈ {1, 2, . . . ,m}.

2) (Dominance over gradient) There exists a constant B > 0
such that for x satisfying

∥x∥22≥ B,

it holds that ∥∥∥∥∂ϕ∂x (x)
∥∥∥∥
1

< ∥ϕ(x)∥1.

Let
Q =

{
ϕ⊤w; w ∈ Rmd

}
be the space spanned by the basis functions. Then the approx-
imate function Qw ∈ Q is given by

Qw(x, a, b) = ϕ(x, a, b)⊤w, (4)

where w ∈ Rmd is the weight vector, with wi,j be-
ing the weight of ϕi,j . Note that Assumption 2 makes
wi,1, wi,2, . . . , wi,d associated with server i; this construction
incorporates particularly the parallel structure of server system
and thus gives interpretability of the weights.

If the behavior policy pair (α, β) ∈ A×B ensures ergodicity
of the traffic state process {x(t); t ≥ 0}, let µα,β be the in-
variant probability measure. We will discuss the qualifications
for the behavior policy in the next subsection. With the linear
function approximation, we in fact approximates the actual
equilibrium value function Q∗ with a projection Qw∗ in Q.
Denote the orthogonal projection operator by P on the space
of functions {Q : Zm

≥0 × {0, 1}2 → R}, which is given by

(PQ)(x, a, b) = ϕ⊤(x, a, b)Σ−1Eµα,β
[ϕ(x, a, b)Q(x, a, b)] ,

(5)
where Eµα,β

, with a slight abuse of notation, denotes the
vector of expectations with respect to the invariant probability
measure µα,β . The most intuitive approximation scheme is to
directly project Q∗ on Q and obtain function Qw∗ as

Qw∗(x, a, b) = (PQ∗)(x, a, b) = (PTQ∗)(x, a, b).

However, we generally can not obtain Q∗ analytically; oth-
erwise we would not have to approximate. Qw∗ here is also
not a fixed point of any involved operator, and there exists
no obvious procedure to write a stochastic approximation
algorithm to find Qw∗ [34]. Alternatively, we define the
optimal weight vector w∗ to verify

Qw∗(x, a, b) = (PTQw∗)(x, a, b), (6)

and approximate Q∗ with Qw∗ as defined above. This Qw∗

is actually a fixed point of the projected Bellman operator
PT. Note that the corresponding optimal weight vector w∗

can also be directly defined as a fixed point of a modified
projected Bellman operator. Accordingly, we follow van Eck
and van Wezel [54] and consider an approximated equilibrium
as defined below:

Definition 3. The linear approximated equilibrium for the
security game is a strategy pair (π̂∗, σ̂∗) such that for any
x ∈ Zm

≥0,

π̂∗(·|x)

= argmax
π̂∈A

∑
a∈{0,1}

π̂(a|x)
∑

b∈{0,1}

σ̂∗(b|x)ϕ⊤(x, a, b)w∗,

σ̂∗(·|x)

= argmin
σ̂∈B

∑
b∈{0,1}

σ̂(b|x)
∑

a∈{0,1}

π̂∗(a|x)ϕ⊤(x, a, b)w∗.

There are multiple metrics for the quality of approximation.
One is the mean error between the actual value Q∗ and the
approximated value Qw∗ . Another is the consistency between
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the MPE strategy profile (π∗, σ∗) and the approximated MPE
strategy profile (π̂∗, σ̂∗). We will study these metrics numeri-
cally in Section IV.

D. Learning Algorithm

We consider an approximate minimax-Q (AMQ) learning
algorithm with the following update rule for the weights:

wk+1 = wk + ηk∇wQw(xk, ak, bk)∆k

= wk + ηkϕ(xk, ak, bk)∆k, (7)

where ∆k is the temporal difference at time tk, given by

∆k =rk + γmin
σ∈B

max
a∈{0,1}

∑
b∈{0,1}

σ(b|x)Qwk
(xk+1, a, b)

−Qwk
(xk, ak, bk).

(8)

To obtain σ at iteration k, we actually solve a linear pro-
gramming as follows, where the optimum objective c =
maxa∈{0,1}

∑
b∈{0,1} σ(b|x)Qwk

(xk+1, a, b).

min c

s.t
∑
b

σ(b|x)Qwk
(xk+1, a, b) ≤ c ∀a ∈ {0, 1}

σ(b|x) ≥ 0,
∑
b

σ(b|x) = 1 ∀b ∈ {0, 1}
(9)

The initial weight w0 is arbitrary. The pseudo-code is pre-
sented below.

Algorithm 1 AMQ learning for the security game

Input:
Initial weights w0, behavior policy α, β, step sizes se-
quence ηk, γ;

1: Initialize weights w0 ← w0

2: for k = 0, 1, · · · do
3: Sample Ak ∼ α(·|Xk), Bk ∼ β(·|Xk)
4: Receive Rk+1 and observe Xk+1

5: Update ∆k via (8) and (9)
6: Update wk via (7)
7: end for

We assume the following conditions for the behavior policy
pair and for the learning rates.

Assumption 3. Let (α, β) ∈ A × B be the behavior policy
pair.

1) α(a|x) > 0, β(b|x) > 0 for µα,β-almost all x ∈ Zm
≥0.

2) There exist ν > 0, c > 0, d < ∞ such that with V (x) =∑m
n=1 e

νxn ,

Lα,βV (x) =
∑

y∈Zm
≥0

qα,β(y|x)V (y)− V (x)

≤ −cV (x) + d, ∀x ∈ Zm
≥0,

where Lα,β is the infinitesimal generator under policy
pair (α, β) and qα,β(y|x) is defined in (2).

Assumption 4. The learning rates satisfy
∞∑
k=1

ηk =∞,
∞∑
k=1

η2k <∞.

Assumption 3 ensures ergodicity under the behavior policy
pair. The class of policy pairs satisfying this assumption is
fairly broad. In fact, any ϵ-greedy-type policy pair would verify
part 1). Part 2) essentially ensures positive Harris of the traffic
state process. An illustrative example is provided below. Under
Assumption 1, there exists a positive constant C0 satisfying
0 < C0 < min{1,

∑m
k=1 µk−λ

λ }. Then a qualified behavior
policy pair is

α(1|x) = C0e
− |x|1

2 , α(0|x) = 1− C0e
− |x|1

2 , (10a)

β(1|x) =

{
1− e−

|x|1
2 if x ̸= 0m,

0.5 if x = 0m.
(10b)

β(0|x) =

{
e−

|x|1
2 if x ̸= 0m,

0.5 if x = 0m.
(10c)

One can verify that this behavior policy pair satisfies As-
sumption 3; see Appendix. The assumptions on the learning
rates are in fact the standard Robbins-Monro conditions for
convergence analysis.

Finally, the AMQ learning algorithm is said to be convergent
if wk → w∗ w.p.1, where w∗ verifies the projected Bellman
equation (6). The next section is devoted to show this.

III. CONVERGENCE ANALYSIS

The main result of this paper states that the approximate
minimax-Q (AMQ) learning algorithm is guaranteed to con-
verge to a solution to the projected minimax Bellman equation.

Theorem 1. Consider the Markov security game
(Zm

≥0,A,B, p, r, γ) on a parallel server system. Under
Assumptions 1–4, for any initial weight w0 ∈ Rd and any
initial state x0 ∈ Zm

≥0, the approximate minimax-Q learning
algorithm (7) converges in the sense that wk → w∗ w.p.1.,
where w∗ verifies the projected Bellman equation (6).

Theorem 1 provides a convergence guarantee for the pro-
posed learning method under rather mild assumptions, viz. (i)
stabilizability of the parallel server system, (ii) regularity of the
basis functions, (iii) ergodicity under the behavior policy pair,
and (iv) Robbins-Monroe conditions for the learning rates.
Thus, the AMQ algorithm will reliably generate effective de-
fense policies for managing parallel server systems in practical
scenarios.

We will prove Theorem 1 in three steps. In Section III-A,
we show that the traffic state is geometrically ergodic under
the behavior policy pair (Lemma 1) and that the basis function
has a bounded first moment with respect to the corresponding
invariant probability measure (Lemma 2). In Section III-B,
we show that the first moment of the temporal-difference (TD)
error is bounded by a linear function of the norm of the weight
vector (Lemma 3). In Section III-C, we apply the ordinary
differential equation-based argument to the first moment of
the TD error and establish the convergence of the proposed
algorithm.
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A. Geometric ergodicity and boundedness of basis
functions

Under a behavior policy pair (α, β) satisfying Assumption
3, the induced chain (X , Pα,β) is geometrically ergodic with
corresponding equilibrium probability measure µα,β . To argue
for the irreducibility of the induced chain, note that the state
x = 0 can be accessible from any initial condition with
positive probability. Hence, the induced chain is exponentially
ergodic.

To prove the boundedness of feature functions, we first
derive Lemma 1 to show the quadratic version of Lyapunov
function V (x) =

∑m
n=1 e

νxn has a negative drift with v > 0,
based on which we can then conclude the boundedness of
feature functions in Lemma 2.

Lemma 1. Suppose that assumption 1, 3 hold. Let W (x) =
(
∑m

n=1 e
νxn)2, ν > 0. Then there exist some d′ < ∞ such

that

Lα,βW (x) =
∑

y∈Zm
≥0

qα,β(y|x)W (y)−W (x) ≤ −cW (x) + d′,

x ∈ Zm
≥0, (11)

where Lα,β , qα,β(y|x) and constant c are defined in Assump-
tion 3.

Proof. By Assumption 3 we obtain that

Lα,β

( m∑
n=1

eνxn

)
≤ −c

( m∑
n=1

eνxn

)
+ d, x ∈ Zm

≥0,

where c, d is finite constant defined in Assumption 3. Note
that c > 0. Then the infinitesimal generator of W (x)

Lα,βW (x) = 2
( m∑

n=1

eνxn

)
L
( m∑

n=1

eνxn

)
≤ −2c

( m∑
n=1

eνxn

)2

+ 2d
( m∑

n=1

eνxn

)
= −cW (x) + d′,

where d′ is a finite positive constant satisfying

d′ = −c
( m∑

n=1

eνxn

)2

+ 2d
( m∑

n=1

eνxn

)
≤ d2

c
.

Let Φ be the matrix defined as

Φ = Eµα,β

[
ϕ(x, a, b)ϕ⊤(x, a, b)

]
,

where Eµα,β
, with a slight abuse of notation, denotes the

matrix of expectations with respect to the invariant probability
measure µα,β . The following result ensures the existence of
Φ.

Lemma 2. Suppose that assumption 1 − 3 hold, the feature
function ϕ satisfies∥∥∥Eµα,β

[
ϕ(x, a, b)ϕ⊤(x, a, b, y)

∥∥∥
∞
≤ d′

c
, (12)

for any i ∈ {1, . . . ,m}, where c, d′ is the constant in Lemma
1.

Proof. By Lemma 1 we obtain that

lim
t→∞

1

t

∫ t

s=0

E
[ m∑

i=1

m∑
j=1

eν(xi(s)+xj(s))
]
ds ≤ d′

c
<∞.

Hence, by Assumption 2, since
d∑

j=1

ϕi,j(x) ≤ exi for i ∈ {1, 2, . . . ,m},

then with ψ(x) = Eµα,β
[
∑m

i=1

∑d
j=1 ϕi,j(x, a, b)] ≤

Eµα,β
[
∑m

i=1 e
xi ] that

lim
t→∞

1

t

∫ t

s=0

E[ψ2(x(s))]ds ≤ d′

c

for any initial condition x(0). Then we can conclude that

lim
t→∞

E[ψ2(x(t))] ≤ d′

c
,

which means∥∥∥Eµα,β

[
ϕ(x, a, b)ϕ⊤(x, a, b, y)

∥∥∥
∞
≤ d′

c
,

where µα,β is the equilibrium state-action distribution under
policy α, β.

B. Boundedness of gradient
We write (7) in the form

wk+1 = wk + ηkH(wk, Yk+1),

where Yk+1 = (xk, ak, bk), and

H(w, Y ) =ϕ(x, a, b)
(
r(x, a, b, y)+

γmin
σ∈B

max
a′∈{0,1}

∑
b′∈{0,1}

σ(b′)Qw(y, a
′, b′)−Qw(x, a, b)

)
.

(13)
To prove the boundedness of the gradient, we mainly utilize
the properties of feature function and queuing system.

Lemma 3. The function H satisfies∥∥∥Eµα,β
[H(w, x, a, b)]

∥∥∥
∞
≤ C(1 + ∥w∥∞), (14)

for any w, where C is a finite constant.

Proof. Denote ei as the unit vector with only the ith element
equals 1. Also denote the longest queue as xmax and its
corresponding index as i. Define similarly the shortest queue
xmin and its index j. Denote by g(x, a, b, y) the vector as

g(x, a, b, y) = max
a′∈{0,1}
b′∈{0,1}

ϕ(y, a′, b′)− ϕ(x, a, b)

Hence, we can obtain by definition of (13) that∥∥∥Eµα,β
[H(w, x, a, b)]

∥∥∥
∞
≤

≤
∥∥∥Eµα,β

[
ϕ(x, a, b)[r(x, a, b, y) + g⊤(x, a, b, y) · w]

]∥∥∥
∞

≤
∥∥∥Eµα,β

[ϕ(x, a, b) · r(x, a, b, y)]
∥∥∥
∞

+
∥∥∥Eµα,β

[ϕ(x, a, b) · g⊤(x, a, b, y)]
∥∥∥
∞
· ∥w∥∞

(15)
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When
∑m

k=1 x
2
k ≥ B, it can be deduced that

∥g⊤(x, a, b, y)∥1≤ ∥ϕ⊤(x, a, b)∥1 by Assumption 2. Thus by
Lemma 2,∥∥∥Eµα,β

[
ϕ(x, a, b)g⊤(x, a, b, y)

∣∣∣ m∑
k=1

x2k ≥ B
]

· P
( m∑

k=1

x2k ≥ B
)∥∥∥

∞

+
∥∥∥Eµα,β

[
ϕ(x, a, b)g⊤(x, a, b, y)

∣∣∣ m∑
k=1

x2k < B
]

· P
( m∑

k=1

x2k < B
)∥∥∥

∞

<
d′

c
+
∥∥∥Eµα,β

[ϕ(x, a, b)(ζ(B))2]
∥∥∥
∞

where c, d′ is the constant in Lemma 1, ζ(B) is a finite positive
constant related to the specific form of ϕ. It can be easily
derived according to different combination of state action
pairs, e.g. ζ(B) = (

√
B + 1)2 when adopting polynomial

approximators. By Assumption 3, we obtain

lim
t→∞

1

t

∫ t

s=0

E
[ m∑

i=1

eν(xi(s))
]
ds ≤ d

c
<∞.

where d is the constant in Assumption 3. Hence, we can derive
with ψ(x) = Eµα,β

[∥ϕ(x, a, b)∥1],

lim
t→∞

1

t

∫ t

s=0

E[ψ(x(s))]ds ≤ d

c

for any initial condition x(0). Then we conclude that

lim
t→∞

E[ψ(x(t))] ≤ d

c
,

which implies ∥∥∥Eµα,β
[ϕ(x, a, b)]

∥∥∥
∞
≤ d

c
.

Hence,∥∥∥Eµα,β
[ϕ(x, a, b)g⊤(x, a, b, y)]

∥∥∥
∞
<

1

c

(
d′ + d(ζ(B))2

)
.

(16)
Then we prove the term ∥Eµα,β

[ϕ(x, a, b) · r(x, a, b, y)]∥∞
is bounded. Recall the definition of reward (3). We first denote
the interval time until next arrival as ∆t1 with its distribution
fa(∆t

1), the interval time until next service as ∆t2 with its
distribution fs(∆t2). The number of current activated servers
(i.e. with job in queue) is defined as

kx := k(x) =

m∑
i=0

I{xi ̸= 0}.

It is known from property of parallel queuing system that

fa(∆t
1) = λ exp (−λ∆t1)

fs(∆t
2) = kxµ exp (−kxµ∆t2).

Since ∆t = min{∆t1,∆t2}, we can derived the distribution
of ∆t as f(∆t)

f(∆t) = (λ+ kxµ) exp(−(λ+ kxµ)∆t),

with expectation of ∆t as E[∆t] = 1
λ+kxµ

≤ 1
λ . By definition

of (1) and the fact our state x ∈ Zm
≥0,

ρ(x, a, b) ≤ ∥ϕ⊤(x, a, b)∥1.

Then by Lemma 2, we can conclude∥∥∥Eµα,β
[ϕ(x, a, b) · r(x, a, b, y)]

∥∥∥
∞

≤ 1

λ

∥∥∥Eµα,β

[
ϕ(x, a, b)ϕ⊤(x, a, b, y)

∥∥∥
∞
≤ d′

cλ
.

Hence, (14) can be satisfied by selecting C = max
{

1
c

(
d′ +

d(ζ(B))2
)
, d′

cλ

}
.

C. Proof of Theorem 1
We first prove the convergence of approximate minimax Q

learning w.p.1. Let µx be the corresponding invariant proba-
bility measure, µα,β be the invariant state-action distribution
under the given behavior policy pair (α, β). It verifies the
existence of function

h(w) =

∫
H(w, Y )µα,β(dY )

by bound of function H(w, Y ) derived in Lemma 3.
Since the chain is geometrically ergodic, it follows that so

is the chain Yk. The geometric ergodicity of Yk and the fact
that α, β do not depend on w ensure that the requirements are
satisfied. Hence, by [47, Theorem 17] , the convergence of wk

w.p.1 is established as long as the ODE

ẇk = h(wk) (17)

with

h(w) = Eµα,β

[
ϕ(x, a, b)

(
r(x, a, b, y)+

+γmin
σ∈B

max
a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)w − ϕ⊤(x, a, b)w
)]
,

has a globally asymptotically stable equilibrium w∗.
We can write h as

h(w) = h1(w)− h2(w),

with

h1(w) =Eµα,β
[ϕ(x, a, b)(r(x, a, b, y)+

+ γmin
σ∈B

max
a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)w)]

and

h2(w) = Eµα,β
[ϕ(x, a, b)ϕ⊤(x, a, b)w)].

Then using the non-expansiveness of min and max operator,
we can conclude

∥h1(w1)− h1(w2)∥∞=

∥Eµα,β
[γϕ(x, a, b)(min

σ∈B
max

a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)w1

−min
σ∈B

max
a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)w2)]∥∞
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≤ ∥Eµα,β
[γϕ(x, a, b)max

σ∈B
( max
a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)w1

− max
a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)w2)]∥∞

≤ γ∥Eµα,β
[ϕ(x, a, b)max

σ∈B
max

a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)

(w1 − w2)]∥∞
≤ γ

(
∥Eµα,β

[ϕ(x, a, b)ϕ⊤(x, a, b)]∥∞+

∥Eµα,β
[ϕ(x, a, b)g⊤(x, a, b, a′, b′)]∥∞

)
· ∥w1 − w2∥∞,

where g(x, a, b, y) is defined in Lemma 3.
Actually, we can scale the feature function ϕ(x, a, b) ar-

bitrarily to make h1 be γ-contraction. Scale ϕ(x, a, b) by a

constant factor ε ≤
√

[d′+d(ζ(B))2]2+4d′c−[d′+d(ζ(B))2]

2d′ , where
B is the constant defined in Assumption 2. Then by Lemma
2 and condition (16) in Lemma 3 we can ensure

∥h1(w1)− h1(w2)∥∞=

≤ γ
(
ε2∥Eµα,β

[ϕ(x, a, b)ϕ⊤(x, a, b)]∥∞+

ε∥Eµα,β
[ϕ(x, a, b)g⊤(x, a, b, y)]∥∞

)
· ∥w1 − w2∥∞

≤ γ
[ε2d′
c

+ ε
(d′
c
+
d

c
(ζ(B))2

)]
· ∥w1 − w2∥∞

≤ γ∥w1 − w2∥∞.
(18)

Also, we can conclude by Lemma 2 that

∥h2(w1)− h2(w2)∥∞ =

∥Eµα,β
[ϕ(x, a, b)ϕ⊤(x, a, b)(w1 − w2)]∥∞≤ ∥(w1 − w2)∥∞.

(19)
Next we calculate the derivative of p-norm of term (wk −
w∗), where w∗ is the equilibrium point of (17) which verifies
h(w∗) = 0.

d

dk
∥wk − w∗∥p= ∥wk − w∗∥1−p

p

·
( d∑

i=1

(wk(i)− w∗(i))p−1 · ((h1(wk))i − (h1(w
∗))i)+

d∑
i=1

(wk(i)− w∗(i))p−1 · ((h2(w∗))i − (h2(wk))i)
)
,

where we denote by (h1(w))i the ith component of h1(w) and
similarly for h2. Applying Hölder’s inequality to the above
summations yields

d

dk
∥wk − w∗∥p≤ ∥h1(wk)− h1(w∗)∥p+∥h2(w∗)− h2(wk)∥p.

Taking the limit as p→∞ and using (18) and (19) leads to

d

dk
∥wk − w∗∥∞ ≤ (γ − 1)∥wk − w∗∥∞. (20)

Let λ = 1− γ > 0. Integrate w.r.t k, (20) becomes

∥wk − w∗∥∞≤ e−λk∥w0 − w∗∥∞,

which establishes the existence of a globally asymptotically
stable equilibrium point for (17). And it is clear that h(w∗) =
0 leads to

w∗ = Σ−1Eµα,β
[ϕ(x, a, b)(r(x, a, b, y)+

γmin
σ∈B

max
a′∈{0,1}

∑
b′∈{0,1}

σ(b′)ϕ⊤(y, a′, b′)w∗)].

(21)
Hence, the sequence wk converges w.p.1 to the globally
asymptotically stable equilibrium point w∗.

Then we further prove that the limit of approximate
minimax-Q function is the fixed point of projected Bellman
operator. Given w∗ as (21), the corresponding approximate Q
function

Qw∗(x, a, b) =

ϕ⊤(x, a, b)Σ−1Eµα,β
[ϕ(x, a, b)(TQw∗)(x, a, b)]

= (PTQw∗)(x, a, b).

This implies that Qw∗ verifies the fixed point equation in (6).

IV. NUMERICAL VALIDATION

In this section, we implement the approximate minimax-
Q (AMQ) learning algorithm and numerically evaluate its
performance. The objectives of this section is (i) to present
and interpret the cost-aware defending strategy given by the
AMQ method and (ii) to study the computational efficiency
and approximation accuracy of the AMQ method.

A. Experiment setup
We simulate two system models, one with three parallel

servers and one with six; this is intended to study the impact
of system complexity. The service rates are listed in Table I:

TABLE I: Experiment parameters.

Parameter Notation Value

Arrival rate λ 5 per unit time
Service rate 1 µ1 2 per unit time
Service rate 2 µ2 3 per unit time
Service rate 3 µ3 4 per unit time
Service rate 4 µ4 2 per unit time
Service rate 5 µ5 0.5 per unit time
Service rate 6 µ6 1 per unit time
Attacking cost c1 8 per unit time
Defending cost c2 6 per unit time
Discount factor γ 0.9

Behavior policy constant C0 0.6

µ1–µ3 are used for the three-server model, while µ1–µ6 are
used for the six-server model. The table also gives the other
parameters. The policies given by (10a)–(10c) are used as
the behavior policies. The initial target policies are set to be
the random policies σ(0|x) = σ(1|x) = 0.5 and π(0|x) =
π(1|x) = 0.5 for all x ∈ Zm

≥0. The initial traffic state is
randomly generated.

We use a neural network Q (NNQ) learning as the bench-
mark for evaluate the AMQ method. The NNQ methods ap-
proximates the value function Q(x, a, b) with a neural network
and trains it according to the minimax Bellman equation. Since
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NNs have extremely strong approximation performance, we
use the NNQ function as a proxy for the ground truth of the
equilibrium value, which cannot be analytically obtained. The
architecture of the NN comprises two fully connected layers,
employing a rectified linear unit (ReLU) as the activation
function. The NN is updated via adaptive moment estimation.
The loss function used is the mean squared error between the
predicted one-step and calculated state-action value.

For the AMQ method, we consider two approximators with
different dimensions. The first, named “AMQ1”, is a collection
of affine functions of the traffic states: for i = 1, 2, . . . ,m,

ϕi,1(x, a, b) = 1, ϕi,2(x, a, b) = xi + δi(x, a, b),

ϕi,3(x, a, b) = a, ϕi,4(x, a, b) = b,

where δi(x, a, b) is given by

δi(a, b) :=


1 if i = argmaxi xi, (a, b) = (1, 0),

1 if i = argmini xi, (a, b) ̸= (1, 0),

0 otherwise.

Intuitively, the feature functions are motivated by the reward
function in (1). The second, named “AMQ2”, is a collection
of second-order polynomials of the traffic states: for i =
1, 2, . . . ,m,

ϕi,1(x, a, b) = 1, ϕi,2(x, a, b) = xi + δi(x, a, b),

ϕi,3(x, a, b) =
(
xi + δi(x, a, b)

)2

,

ϕi,4(x, a, b) = a, ϕi,5(x, a, b) = b.

Hence, AMQ2 is more flexible than AMQ1 and will turn out
to be more accurate than AMQ1.

Table II summarizes the three algorithms that we consider.
Note that they are all off-policy temporal-difference learning
methods.

TABLE II: Algorithms to be compared.

Algorithm Approximator

NNQ (Baseline) Two-layer neural network with ReLU
AMQ1 (Ours) Affine functions of traffic state
AMQ2 (Ours) Second-order polynomials of traffic state

We trained and evaluated the learning algorithms for 2×106
epochs. A discrete time step of 0.1 seconds was employed
for simulation. All experiments were conducted using Jupyter
Notebook, hosted on a system equipped with an Intel(R)
Xeon(R) CPU with 36.7 GB of memory.

B. Interpretation of trained weights
Every experiment that we conducted converged to an ap-

proximate equilibrium. As an illustration, consider the three-
server setting. The weights for the AMQ2 in this setting turn
out to be

w1,1 = 6.55, w2,1 = 5.55, w3,1 = 4.55,
w1,2 = 9.74, w2,2 = 9.23, w3,2 = 9.02,
w1,3 = 0.46, w2,3 = 0.41, w3,3 = 0.34,
w1,4 = 0.9, w2,4 = 0.8, w3,4 = 0.8,
w1,5 = −1.1, w2,5 = −1.0, w3,5 = −0.89.

Recall that the function ϕ⊤w∗ is the (approximate) equilibrium
cost for the defender; the first index in the subscript is actually
the server index.

There are several insights about the weights associated
with the same server worth mentioning. First, the first-order
terms are associated with weights (wi,3) greater than the
second-order terms (wi,2); this implies that the value function
grows roughly linearly with the traffic states. Second, a non-
trivial intercept exists (wi,1) for every server, which implies
that a server might be associated with a risk even if it is
idling. Finally, the weights (wi,4, wi,5) associated with the
player actions have the correct signs. In addition, attacks are
associated with smaller weights than defenses, so the defender
seems to have a stronger incentive to defend than the attacker
to attack; this is probably due to that the defending cost is
lower than the attacking cost.

Across various servers, it turns out that queues with lower
service rates are in general associated with higher risks, which
is intuitive. Interestingly, the greater intercepts (wi,1) are
consistently associated with higher service rates; that is, an
incorrect routing to a slow server, even if it is idling, may
still be costly. In addition, the weights (wi,4, wi,5) associated
with the player actions directly indicates the benefit of attack-
ing/defending a particular server; servers with slower service
rates are associated with, without surprise, higher weights.

C. Evaluation of algorithm

Table III presents the normalized learned values and poli-
cies with respect to the equilibrium state distribution. The
initial state is sampled from this equilibrium distribution, and
empirical data is obtained using the Monte Carlo method.
The reported results represent the average of 10 repeated
experiments. The findings indicate that the learned results of
AMQ2 approximate optimal defense strategies with an average
error of 2.5%, and approximate the optimal values with an
average error of 4.3% under the equilibrium distribution,
thus validating the precision of the proposed algorithm in
approximating both optimal values and optimal policies. The
performance of the AMQ2 algorithm further highlights that the
inclusion of quadratic terms in the feature functions improves
the empirical average cost by 3.6% and the empirical policy
consistency by 3.3%. These results underscore the necessity
of incorporating quadratic feature functions to achieve more
accurate learning outcomes.

TABLE III: Performance of various methods

Metric System AMQ1 AMQ2 NNQ

Normalized mean cost 3-server 1.079 1.043 1.000
Policy consistency 3-server 94.2% 97.5% 100%

Normalized mean cost 6-server 1.082 1.045 1.000
Policy consistency 6-server 94.1% 97.3% 100%

Fig. 2 illustrates the normalized l2-norm difference between
the weights wt and the optimal weights w∗ throughout the
learning process for both the three methods. It is evident
that the NN method converges after approximately 2.4× 105
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iterations, whereas the AMQ1 and the AMQ2 method achieves
convergence after around 5 × 103 iterations. Hence, our pro-
posed algorithm has a much higher convergence rate com-
pared to NN, validating the efficiency of the AMQ learning
algorithm.

Fig. 2: Performance comparison on distance to limit.

To test the scalability of AMQ, we further implement
identical experiments on six servers. The results are also
shown in Table III. It can be seen that in six servers setting,
the performance of AMQ degrades at most 0.2% in approxi-
mating optimal defense strategies and 0.3% in approximating
the optimal values, compared to the three servers case. The
results indicate that the computational advantage of linear
approximation remains at more servers.

V. CONCLUDING REMARKS

This paper considers securing parallel server systems against
malicious cyber-physical attacks. The proposed approximate
minimax-Q (AMQ) learning algorithm efficiently balances
security costs and performance losses. The algorithm uses an
interpretable linear approximation scheme and adapts to the
system’s structure. A key advantage of this method compared
with deep reinforcement learning methods is a theoretical
guarantee for convergence with probability one to an equi-
librium under mild assumptions. We established this result
by combining the stability theory of Markov processes and
an ordinary differential equation-based technique. Tests show
the AMQ learning converges faster than neural networks,
with an insignificant optimality gap. The approach combines
theory and practice, offering scalable security for cloud, man-
ufacturing, and transport systems. It highlights reinforcement
learning’s potential in adversarial settings with complex, un-
bounded state spaces. Future work will extend the framework
to payoff-based learning algorithms and partially observable
environments.

APPENDIX

Lemma 4 shows that there exist behavior policies satisfying
Assumption 3.

Lemma 4. Under the policy pair (10a)-(10c). Suppose that
assumption 1 holds. Let V (x) =

∑m
n=1 e

vxn , v > 0. Then
there exist some c > 0, d <∞ such that

Lα,βV (x) =
∑

y∈Zm
≥0

qα,β(y|x)V (y)− V (x) ≤ −cV (x) + d,

x ∈ Zm
≥0, (22)

where Lα,β is the infinitesimal generator under policy pair
α, β, qα,β(y|x) are the transition rates from state x to y
defined in (2).

Proof. Denote the longest queue as xmax and its corresponding
index as i. Define similarly the shortest queue xmin and its
index j. Let ln = I{xn≥1}.We have

Lα,βV (x) =

m∑
n=1

lnµn(e
v(xn−1) − evxn)

+λ
(
C0e

−|x|1 · (ev(xmax+1) − exmax)

+(1− C0e
−|x|1) · (ev(xmin+1) − exmin)

)
.

Note that ln · evxn = (ln − 1) + evxn , so we have

Lα,βV (x) =

m∑
n=1
n ̸=i,j

µne
vxn(e−v − 1) +B0

+
(
µi(e

−v − 1) + λ(ev − 1)C0e
−|x|1

)
evxmax

+
(
µj(e

−v − 1) + λ(ev − 1)(1− C0e
−|x|1)

)
evxmin . (23)

where B0 =
∑m

n=1(ln−1)µn(e
−v−1) is a finite non-negative

constant. It can be deduced that the drift equation (23)

Lα,βV (x) <

m∑
n=1
n ̸=i,j

evxn · fn(v) +B0 +B1,

where

fn(v) := µn(e
−v − 1)

+
µn∑m

k ̸=i,j µk

(
µi(e

−v − 1) + λ(ev − 1)C0

)
+

µn∑m
k ̸=i,j µk

(
µj(e

−v − 1) + λ(ev − 1)
)
, ∀n,

B1 =

m∑
n ̸=i,j

µn∑m
k ̸=i,j µk

(
µi(e

−v − 1)+

λC0(e
v − 1)e−|x|1

)
(evxmax − evxn)

≤
m∑

n ̸=i,j

µn∑m
k ̸=i,j µk

(
µi(e

−v − 1)(evxmax − evxn)+

(

m∑
k=1

µk − λ)(ev − 1)(evxmax−|x|1 − evxn−|x|1)
)
.

Note that B1 is finite as long as v ≤ 1. Note that fn is
continuous and fn(0) = 0, fn(∞) = ∞. The derivative of
f(v) at v = 0 is calculated as

dfn
dv

∣∣∣
v=0

= µn

(λ(1 + C0)− µi − µj∑m
k ̸=i,j µk

− 1
)
< 0.
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Then the fact that derivative of fn(v) is negative at 0 implies
that there exist v0 > 0 as the second zero of fn(v) such that
fn(v) < 0, v ∈ (0, v0). Hence, we can guarantee (22) with a
proper selection of v∗ ∈ (0,min{v0, 1}). The corresponding
c = −maxn fn(v

∗), d = B0 +B1 by [49, Theorem 7.1].
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