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ABSTRACT
Image classification currently faces significant security challenges
due to adversarial attacks, which consist of intentional alterations
designed to deceive classification models based on artificial intel-
ligence. This article explores an approach to generate adversarial
attacks against image classifiers using a combination of evolution-
ary algorithms and generative adversarial networks. The proposed
approach explores the latent space of a generative adversarial net-
work with an evolutionary algorithm to find vectors representing
adversarial attacks. The approach was evaluated in two case studies
corresponding to the classification of handwritten digits and object
images. The results showed success rates of up to 35% for handwrit-
ten digits, and up to 75% for object images, improving over other
search methods and reported results in related works. The applied
method proved to be effective in handling data diversity on the
target datasets, even in problem instances that presented additional
challenges due to the complexity and richness of information.
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1 INTRODUCTION
In the field of machine learning, image classification has emerged
as a cornerstone application with significant impact across vari-
ous technology fields and industries, including security, healthcare,
and personalized marketing [24]. Image recognition and classifi-
cation systems play a vital role in applications designed to locate
objects, identify individuals, and detect features in images. However,
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challenges such as improving precision and enhancing robustness
have become key in advancing towards fully functional, reliable,
and independent image recognition systems [23]. Among these
challenges, the vulnerability of image classification methods to
adversarial attacks has gained increasing attention [26].

An adversarial attack involves deliberately altering input data
to mislead a machine learning model into making incorrect pre-
dictions [26]. The induced errors pose serious risks to the security
and privacy of critical systems, e.g., surveillance and public safety
systems [25].

This article presents an approach for generating adversarial at-
tacks against image classifiers using a combination of evolutionary
algorithms (EAs) and Generative Adversarial Networks (GANs).
GANs learn data distributions to generate synthetic data that closely
resembles real samples. GANs have been applied in many scientific
and commercial fields, especially for generating synthetic images
and videos [13]. The methodology is based on searching the latent
space of GANs using EAs to find suitable vectors for generating
images representing adversarial attacks against specific image clas-
sifiers. This approach advances over state-of-the-art models in lit-
erature [8] by proposing and analyzing two new fitness functions
explicitly designed to optimize adversarial attacks, which balance
classifier confusion and misclassification rates. Two case studies
are addressed: generating attacks on classifiers for handwritten
digits and object images. The proposed approach was designed to
create effective (i.e., able to deceive the classifier), diverse, and high-
quality adversarial examples to assess the robustness of classifiers
in various problem variants. Furthermore, this method is flexible
and can be applied to other datasets and classifiers, as long as a
trained generative model is available to produce data samples.

The obtained results showed the effectiveness of the proposed
approach in generating adversarial attacks against image classifiers,
achieving competitive success rates across different problems, and
significantly improving the baseline method. For handwritten dig-
its, successful adversarial examples were generated for all classes,
with the highest success rate reaching 35%. For object images, the
approach performed better, achieving a peak success rate of 75%.

The article is organized as follows. Next section describes the ad-
dressed problem and methodology. The description of the proposed
EA for generating adversarial attacks to classifiers is presented in
Section 3. Section 4 describes the application of the evolutionary
search to generate adversarial attacks against image classifiers for
handwritten digits and object images. The experimental analysis
and results are reported in Section 5. Finally, Section 6 presents the
conclusions and formulates the main lines for future work.
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2 ADVERSARIAL ATTACKS VIA LATENT
SPACE SEARCH OF GANS

This section presents the considered problem and the methodology
for generating adversarial attacks via latent space search of GANs.

2.1 Adversarial attacks
Adversarial attacks are subtle and intentional alterations to the
input data of a machine learning model, with the purpose of deceiv-
ing the system and obtaining incorrect responses to jeopardize the
reliability and accuracy of the model [12]. In image classification,
adversarial attacks can manifest as images with perturbations that
lead image classifiers to incorrectly identify an object or identity, or
to produce ambiguous predictions where the twomost likely classes
are too similar, under a given threshold 𝛿 . Such scenarios can have
serious implications for the security and privacy of critical systems,
for example, in surveillance and public safety systems. Continu-
ous research in generating new adversarial attacks is essential for
image classification systems to stay updated and resilient against
emerging attack techniques, ensuring their security, accuracy, and
reliability in changing environments [5].

GANs are artificial neural networks (ANNs) specialized in learn-
ing the distributions, features, and labels of an input dataset of real
data, with the main goal of generating new synthetic data samples
that follow a distribution approximated to the one of real data [11].
GANs apply adversarial training between two ANNs: a generator,
which is trained to create new synthetic samples taking latent space
vectors as input, and a discriminator, which learns to distinguish
between real and synthetic samples while providing feedback to
improve the generator. The ultimate goal of the generator is to
approximate the real data distribution and produce synthetic data
that is virtually indistinguishable from real data to deceive the
discriminator.

The latent space of GANs is a continuous multidimensional space
sampled from a random distribution (e.g., Gaussian or uniform).
Traditional gradient-based search methods often struggle to navi-
gate it effectively due to its high dimensionality and lack of clear
structure for determining useful directions. Thus, EAs and other
metaheuristics have been applied to guide the search and find use-
ful vectors for the problem at hand [18]. EAs take advantage of
their high versatility to deal with different GAN architectures and
latent space features and their robustness to deal with changing and
noisy optimization functions. The black-box optimization approach
applied by EAs allows using different surrogate functions to guide
the search, without relying on gradient-based operators [27].

The overall strategy considers a set of latent search vectors in the
population. The evolutionary cycle apply the traditional selection
and variation operators. The hybridization with the generative ap-
proach is performed on the fitness evaluation of candidate vectors:
the conditional GAN is applied to generate images that are then
evaluated using different classifiers. The fitness function is defined
according to different metrics that allow identifying successful at-
tacks. This way, by applying evolutionary computation, a robust
global search strategy is defined for the exploration of the latent
space of the considered conditional GAN to generate synthetic
images that successfully attack the evaluated classifiers.

To develop an effective method for generating adversarial at-
tacks, certain requirements needed to be established to ensure the
efficiency and robustness of the process. The first requirement (R1)
is to ensure that the generated adversarial attack images have a high
visual quality. The second requirement (R2) is that the generated
attacks should be correctly classified by the human eye. Finally, the
third requirement (R3) is generating diverse attacks and ensuring
that the adversarial examples have varied characteristics.

The proposed EA for generating adversarial attacks is evaluated
on two image classification datasets: MNIST (Modified National
Institute of Standards and Technology) database [15] and CIFAR
(Canadian Institute For Advanced Research) 10 dataset [9].

2.2 Related work
Several recent articles have addressed the generation of adversarial
attacks via the exploration of the latent space of generative models.
Trajectory-based methods have been applied for attack generation
in natural language processing models [16, 17], images [10, 19, 30],
and other representations [6]. Approaches have applied determin-
istic search, e.g. via gradient descent, or random perturbations.
Deterministic search is computationally efficient, but the search is
highly dependable on the initial candidate solution, the methodmay
get stuck in local optima and is not applicable to non-differentiable
or discontinuous search functions. Other approaches have applied
surrogate models and direct manipulation of synthetic data [22].

Population-based methods have shown improved accuracy, but
many black-box approaches for adversarial attacks have relied on
specific constraints or assumptions [2, 4, 6] or applied heuristic
algorithms [16]. Specific approaches have been proposed to bias
the search to improve the efficiency of black-box methods for gen-
erating adversarial attacks [4]. Alzantot et al. [1] applied a genetic
search for black-box generation of attacks, but only exploring per-
turbations instead of searching the full latent space. These methods
operate in the pixel space and have shown high accuracy in black-
box adversarial attacks, achieving competitive results across various
configurations. However, despite their performance, they exhibit im-
portant limitations: they lack semantic guidance, are often limited
to untargeted attacks, and do not leverage latent representations or
apply evolutionary principles in a structured search space.

The use of multiple fitness functions for attack generation has
also been explored [29]. The paper reported over 60% success on
CIFAR-10 using a multi-objective GA, though the absence of a
generative model limited the realism and generality of the attacks.

Closed to our research, Clare and Correia [8] generated adver-
sarial attacks via latent space exploration using a fitness function
that evaluated the proximity to the distribution of real data. A sec-
ond stage was needed to evaluate if the generated samples were
effective attacks or not. Their method achieved 25–30% success on
Fashion-MNIST and CIFAR-10, but required post-processing, which
limited integration and efficiency.

In this line of work, our article contributes a compact and flex-
ible framework for adversarial attack generation that combines
semantic latent exploration with efficient evolutionary search, us-
ing simple variation operators and adaptable fitness designs. Our
EA achieved competitive results, without requiring gradients, sur-
rogate models, or post-filtering stages.
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3 EVOLUTIONARY ALGORITHM FOR
ADVERSARIAL ATTACKS TO CLASSIFIERS

This section describes the approach applying EAs for generating
adversarial attacks to classifiers.

Solution Encoding. Each solution is encoded as a vector of floating-
point numbers, representing a specific point in the latent space of
the applied GAN. The dimensionality of these vectors corresponds
to the input dimension required by the generator.

Initialization. The population is initialized using a stochastic
procedure, where each value in the solution vector is sampled from
a normal distribution N(0, 1). Preliminary experiments confirmed
that this simple stochastic initialization provides sufficient diver-
sity in the initial population, enabling effective exploration of the
latent space. No prior knowledge of specific features or latent space
directions is required to begin the evolutionary search.

Selection. The tournament selection operator was applied. The
parameters of the tournament selection were configured to three
participants and one winner. Initial experiments showed that these
settings provided a correct selection pressure to guide the evolu-
tionary search for adversarial attacks effectively.

Recombination. A two-point crossover operator was applied,
which showed a better recombination pattern in preliminary exper-
iments compared to a one-point crossover and arithmetic crossover.

Mutation. A Gaussian mutation operator was applied, with a
mean 𝜇 = 0 and standard deviation 𝜎 = 1. This operator effectively
balanced maintaining and introducing diversity in the population
while minimizing disruption to the search process.

Replacement. A 𝜇+𝜆 replacement strategy was applied to main-
tain diversity in the population, providing a proper balance between
exploration and exploitation, and rapidly finding accurate solutions.

4 ADVERSARIAL ATTACKS TO CLASSIFIERS
OF IMAGE DATASETS

This section details the application of the proposed EA to generate
adversarial attacks, evaluated on two standard image classification
datasets: MNIST and CIFAR-10. The datasets, generative models,
classifiers, and fitness functions are described below.

4.1 Datasets
The MNIST [15] dataset comprises 70,000 grayscale images of hand-
written digits. It consists of 60,000 training and 10,000 test images
28×28 pixels in size each. This dataset is widely used for bench-
marking machine learning methods in classification tasks.

The CIFAR-10 dataset [9] consists of 60,000 color images, cate-
gorized into 10 classes (airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck). CIFAR-10 consists of a total of 60,000
examples, with 50,000 images for training and 10,000 for evaluation,
where each image has a size of 32×32 pixels. This dataset is more
complex than MNIST because the images are in color and exhibit
more significant intra-class variability.

4.2 Generative models and classifiers
The approach for generating adversarial attacks through latent
space search applies a generative model to create attacks and a
classifier to recognize if the generated image is an attack or not.

Conditional GANs (CGANs) were chosen for their ability to
generate diverse, class-specific samples—an essential feature for
targeted attacks. Among publicly available and open-source CGANs,
models that produced high-quality visual samples were selected. For
each dataset, the chosen CGAN generates samples that maximize
their classification accuracy of state-of-the-art classifiers. Thus, a
series of preliminary experiments were carried out to choose the
generators. This approach ensured that the generated adversarial
examples were both visually convincing and effective for testing
the robustness of classifiers.

The generator used for MNIST is based on Conditional Deep
Convolutional GAN by Mirza and Osindero [20]. This model uses
a 100-dimensional normally distributed latent space to generate
28×28 grayscale images of digits. In turn, the generative model for
CIFAR-10 relied on Energy-based Conditional GAN [7], which has
a latent space of dimension 80 and produces 32×32 color images.

The classifiers used to evaluate the attacks and to guide the
search are the publicly available ones that provided the highest
classification accuracy on the training dataset in preliminary experi-
ments. For MNIST, classifier 𝑐𝐶 is based on a multi-layer perceptron
that achieved over 99% accuracy [3]. For CIFAR-10, classifier 𝑐𝐶 is
based on a ResNet56 architecture that achieved 94.4% accuracy [28],
sufficient for evaluating the generated adversarial attacks.

4.3 Fitness functions
Two different fitness functions were studied for the evaluation of
candidate solutions. These fitness functions require minor adjust-
ments to accommodate dataset-specific characteristics. The fitness
functions consider the following elements:

• A latent space of dimension 𝑑 , Z ⊆ R𝑑
• I ⊆ R𝑠×𝑠 the image space (where 𝑠 × 𝑠 is the image size)
• K = {𝑘0, 𝑘1, . . . , 𝑘𝑙 } the set of 𝑙 class labels
• 𝑘 ∈ K the target label to attack
• 𝑔 : Z,K→ I the generative model
• P ⊆ [0, 1]𝑙 the probabilities assigned to each label in K
• A classifier 𝑐 : I→ P, where 𝑐𝑘 : I→ [0, 1] is the probability
assigned by classifier 𝑐 to label 𝑘

Fitness function 𝑓1 addresses adversarial attack generation by
maximizing the confusion (or minimizing the confidence) in the
predictions. It evaluates the extent to which the classifier avoids
confidently assigning high probabilities to any label for a generated
sample, including the target label 𝑘 . A higher value of 𝑓1 means
greater confusion in the classifier, indicating that the generated
sample successfully reduces the confidence across all possible labels.

𝑓1 (𝑧) = 1 −max
𝑝∈P

𝑐 (𝑔(𝑧, 𝑘)) (1)

Fitness function 𝑓2 aims to create a scenario where the classifier
is uncertain about its prediction, reducing the likelihood of cor-
rectly classifying the generated adversarial attack. It minimizes the
difference between the probabilities assigned to the target predicted
label 𝑝 and the second most likely label, forcing the classifier to
struggle between them. Besides, it minimizes the probability of the
target label 𝑘 . A higher 𝑓2 value reflects increased confusion and
reduced confidence in the predictions of the classifier.
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𝑓2 (𝑧) = 1 −
����max
𝑝∈P

𝑐 (𝑔(𝑧, 𝑘)) − max
𝑞∈P\{𝑝 }

𝑐 (𝑔(𝑧, 𝑘))
����

+ 1 − 𝑐𝑘 (𝑔(𝑧, 𝑘))
(2)

These functions enabled the generation of adversarial images
that significantly challenged the robustness of the classifier. The
specific values for 𝑑 , 𝑙 , and 𝑐 are 100, 10, and 𝑐𝑀 for MNIST, respec-
tively, and 80, 10, and 𝑐𝐶 for CIFAR-10.

4.4 Implementation
The proposed EA was implemented using Python 3.9 and the Py-
GAD open-source library for evolutionary and machine learning
algorithms (https://pygad.readthedocs.io/). PyGAD provides sup-
port for building and training ANNs using EAs.

PyGAD allows customizing each step of the proposed evolu-
tionary approach for generating adversarial attacks, enabling a
simple experimentation and facilitating the incorporation of spe-
cific components such as the classifiers and the conditional GANs
used for both case studies. The implementation of the proposed
method for generating adversarial attacks is available in the pub-
lic repository gitlab.fing.edu.uy/sergion/ataques-adversarios-con-
algoritmos-evolutivos-y-redes-generativas-antagonicas. The ex-
perimental evaluation was performed on the high-performance
computing infrastructure of the National Supercomputing Center
(Cluster-UY) in Uruguay [21].

5 EXPERIMENTAL EVALUATION
This section describes the empirical analysis of the proposed EAs
for generating adversarial attacks. All images generated during the
search are stored to be evaluated later.

5.1 Parameters setting
For both addressed datasets, the studied parameters included the
population size (#𝑃 ), the number of generations (#𝑔) used as stop-
ping criterion, the recombination probability (𝑝𝑅 ), and the mutation
probability (𝑝𝑀 ). Other parameters, including the tournament size,
the values of 𝜇 = 2, and 𝜆 = 1, were set in preliminary experiments.

Candidate values for studied parameters were #𝑃 in {50,100,200},
#𝑔 in {200,300,400}, 𝑝𝑅 in {0.60,0.75,0.90}, and 𝑝𝑀 in {10−3,10−2,10−1}.
Each parameter configuration was evaluated on 30 independent ex-
ecutions for the evaluated fitness functions and problem instances.

The Friedman rank statistical test was applied to analyze the
distributions. The best results were computed using #𝑃 = 50, #𝑔 =

400, 𝑝𝑅 = 0.75 and 𝑝𝑀 = 10−1 for MNIST. In contrast, for CIFAR-10,
results of the Friedman rank statistical test confirmed that the best
results were computed using the configuration #𝑃 = 100, #𝑔 = 400,
𝑝𝑅 = 0.9 and 𝑝𝑀 = 10−1, i.e., a greater population size and a higher
value of 𝑝𝑅 were needed. The higher complexity and details of the
images in the CIFAR-10 dataset required a deeper exploration of
the latent space than for the MNIST dataset.

5.2 Fitness evolution
Figure 1 shows the evolution of the mean fitness value for 𝑓1 (top)
and 𝑓2 (bottom) for both datasets.

0 50 100 150 200 250 300 350 400
Generation

0.6

0.7

0.8

Fi
tn

es
s v

al
ue

, f
1

MNIST
CIFAR

0 50 100 150 200 250 300 350 400
Generation

1.85

1.90

1.95

2.00

Fi
tn

es
s v

al
ue

, f
2

MNIST
CIFAR

Figure 1: Mean fitness evolution for MNIST and CIFAR-10

𝑓1 increased rapidly for both datasets, rising within the first 50
generations and plateauing afterward. 𝑓1 showed similar trends on
both datasets because 𝑓1 does not exploit dataset complexity or inter-
class variability (CIFAR-10 is more complex and hasmore inter-class
variability than MNIST). The goal of 𝑓1 is to maximize overall clas-
sifier confusion without targeting class similarities. In contrast, 𝑓2
exhibited distinct trends for the two datasets, emphasizing its more
targeted optimization approach. For MNIST, 𝑓2 increased steadily
over 150 generations, reflecting the simpler nature of this dataset
and the slower process of reducing classifier confidence. For CIFAR-
10, 𝑓2 rapidly increased in 50 generations, stabilizing afterward. The
faster convergence shows a higher complexity of CIFAR-10, which
provides more opportunities for 𝑓2 to create ambiguity between the
two most probable classes. Unlike 𝑓1, 𝑓2 leverages dataset-specific
features to generate more precise adversarial examples, leading
to distinct performance differences across datasets. The smoother
MNIST curves and noisier CIFAR-10 patterns suggest a more rugged
fitness landscape in the latter, likely due to greater visual variability.

5.3 Attacks to handwritten digits classifiers
The evaluation performed 30 independent executions of the pro-
posed EA for each digit, using the studied fitness functions.

Table 1 reports the number of attacks generated for each digit
using 𝑓1 and 𝑓2 against classifier 𝑐𝑀 . The total number of attacks
for each class are resorted in bold font. Out of 1 500 000 generated
images, 24% were attacks using 𝑓1 and 35% using 𝑓2. Digits 3, 4, and
5 were the most susceptible to adversarial attacks, with over 50 000
attacks each. In contrast, digits 6 and 9 were more challenging
(fewer than 15 000 attacks). The disparity may arise from the visual
similarity of digits 6 and 9 to other classes, which may complicate
the generation of effective perturbations. Overall, 𝑓2 produced more
attacks across most digits than 𝑓1, but digits 6 and 9. The signifi-
cantly large number of attacks found demonstrate the usefulness
of the proposed approach, as this number is to be maximized.

All generated images had a high visual quality (R1) and were
correctly classifiable by the human eye (R2). Regarding correctly
classified images (R3, the assigned label matched the ground truth)
an attack was considered successful if the two highest probabilities
were within a distance 𝛿 , indicating confusion between classes.
Table 2 presents the number of generated images meeting this
condition, grouped by 𝛿 and fitness function.

https://pygad.readthedocs.io/
gitlab.fing.edu.uy/sergion/ataques-adversarios-con-algoritmos-evolutivos-y-redes-generativas-antagonicas
gitlab.fing.edu.uy/sergion/ataques-adversarios-con-algoritmos-evolutivos-y-redes-generativas-antagonicas
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Table 1: Number of adversarial attacks generated for MNIST classifier 𝑐𝑀 , grouped by target digit and fitness function

fitness target digit total
0 1 2 3 4 5 6 7 8 9

𝑓1 38 098 19 624 37 742 58 512 55 661 57 647 10 409 34 411 43 550 3 918 359 572

𝑓2 46 386 31 555 51 813 108 399 63 309 96 490 9 622 50 141 63 860 1 698 523 273

Table 2: Number of correctly classified instances in which the two highest probabilities provided by classifier 𝑐𝑀 are within a
distance less than 𝛿 , grouped by target digit of attack and fitness function

fitness 𝛿
target digit total

0 1 2 3 4 5 6 7 8 9

𝑓1

< 0.5 27 194 39 181 25 482 25 596 24 166 25 959 22 692 31 227 32 935 9 811 264 243
< 0.4 20 927 31 333 19 773 20 553 19 968 20 722 16 959 24 418 26 161 7 022 207 836
< 0.3 15 288 23 721 14 616 15 610 15 793 15 668 11 946 18 179 19 831 4 736 155 388
< 0.2 10 075 16 142 9 884 10 790 11 382 10 772 7 582 12 246 13 568 2 924 105 365
< 0.1 5 278 8 543 5 509 5 907 6 450 5 882 3 751 6 676 7 322 1 478 56 796

𝛿
target digit total

0 1 2 3 4 5 6 7 8 9

𝑓2

< 0.5 22 593 21 311 20 236 9 617 15 687 11 252 25 616 23 886 20 771 11 679 182 648
< 0.4 17 258 15 401 15 383 7 593 12 271 9 010 19 264 18 459 16 434 8 296 139 369
< 0.3 12 581 10 519 11 120 5 707 9 113 6 759 13 860 13 340 12 366 5 396 100 761
< 0.2 8 267 6 396 7 226 3 959 6 103 4 649 8 898 8 698 8 312 3 031 65 539
< 0.1 4 320 2 978 3 739 2 119 3 196 2 494 4 444 4 371 4 349 1 255 33 265

More than 50 000 examples were generated where the difference
between the two highest probabilities was less than 0.1 using 𝑓1,
and more than 30 000 using 𝑓2. This finding suggests that the EA
also produced samples that are correctly classified but still confuse
the classifier. Although 𝑓2 was specifically designed to produce
confusion between the two most probable classes, its higher overall
success rate in generating misclassified attacks lowers the whole
correctly produced images. Consequently, 𝑓2 produced fewer at-
tacks of correctly classified examples compared to 𝑓1.

Digit 3 was analyzed in detail as it exhibited the highest number
of attacks. Table 3 displays the number of attacks on digit 3, grouped
by fitness function, probability thresholds set to classify a prediction
as an attack, and the label provided by classifier 𝑐𝑀 .

Table 3: Number of attacks to digit 3

fitness p class Total
0 2 5 7 8 9

𝑓1

> 0 688 5 235 12 985 923 6 960 31 721 58 512
> 0.5 440 4 034 8 987 548 4 344 25 985 44 338
> 0.6 308 2 976 6 133 356 2 897 20 198 32 868
> 0.7 178 2 092 3 907 203 1 816 15 272 23 468
> 0.8 108 1 310 2 212 110 1 034 10 848 15 622
> 0.9 45 635 949 43 433 6 314 8 419

p class Total
2 5 8 9

𝑓2

> 0 3 039 36 660 4 916 63 784 108 399
> 0.5 2 762 34 178 4 577 61 025 102 542
> 0.6 2 035 25 618 3 621 49 768 81 042
> 0.7 1 320 17 870 2 878 39 210 61 278
> 0.8 739 10 755 2 185 28 406 42 085
> 0.9 241 4 450 1 517 16 768 22 976

Table 4: Sample attacks to classifier 𝑐𝑀 (digit 3)

image
class 9 9 9 9 9 9 9 9 9 9
probability 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.99

Table 5: Sample attacks to classifier 𝑐𝑀 (digit 9)

image
class 7 7 7 7 7 7 7 7 7 7
probability 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.99

A high vulnerability was evident for digit 3, as a wide variety
of successful attacks were generated, even with high probability
thresholds. The classifier confused digit 3 with digits 0, 2, 5, 7, 8, and
9. The attacks where the classifier assigned a probability greater
than 0.9 to the incorrect digit were 8,419 when using fitness function
𝑓1 and 22,976 when using fitness function 𝑓2. In more than 70% of
these attacks, the classifier confused digit 3 with digit 9. Table 4
presents ten sample attacks generated for digit 3. Table 5 presents
ten sample attacks generated for digit 9, the most challenging digit.

5.4 Attacks to classifiers of common objects
Thirty independent executions of the proposed EA were performed
for each object in CIFAR-10 using the studied fitness functions.

Table 6 reports the number of attacks generated for each target
object using 𝑓1 and 𝑓2 against classifier 𝑐𝐶 . All generated images
had a high visual quality (R1) and were correctly classifiable by
the human eye (R2). Out of all generated images, 58% were attacks
against classifier 𝑐𝐶 using 𝑓1 and 75% using 𝑓2, significantly higher



Conference’17, July 2017, Washington, DC, USA Sergio Nesmachnow and Jamal Toutouh

than for MNIST. More than 150 000 attacks were generated for
each object. A greater number of attacks were obtained using 𝑓2
compared to 𝑓1 for each object. This result confirms that using
𝑓2, which explicitly focuses on generating confusion between the
two most probable classes, is better to generate adversarial attacks.
By promoting ambiguity and lowering the likelihood of correct
predictions, 𝑓2 effectively exploits classifier vulnerabilities. Airplane
was the most susceptible class to adversarial attacks, with over than
650 000 attacks. Car, horse, and deer were more challenging, with
lower than 500 000 attacks.

Table 7 reports the number of correctly classified instances where
the two highest probabilities had a difference less than a certain
threshold 𝛿 . More than 240 000 examples were generated with a

difference between the two highest probabilities was less than 0.1
using 𝑓1, and more than 30 000 using 𝑓2 (similar to the results for
MNIST, where 𝑓1 produced more attacks of this type than 𝑓2). This
finding suggests that this method for generating adversarial attacks
can also produce examples that are correctly classified but still
confuse the classifier, mainly using fitness function 𝑓1.

Attacks to the object airplane were analyzed in detail, as it rep-
resents the extreme in the observed distribution. More than 300 000
attacks were generated on the object airplane, suggesting it is easy
to attack. Table 8 displays the number of attacks on the airplane
object, organized according to the fitness function used, different
probability thresholds set to classify a prediction as an attack, and
the label provided by the classifier 𝑐𝐶 .

Table 6: Number of adversarial attacks generated for CIFAR-10 classifier 𝑐𝐶 , grouped by target digit and fitness function

target object Total
airplane car bird cat deer dog frog horse ship truck

𝑓1 305 578 247 784 216 923 219 213 195 167 268 045 285 000 176 786 251 710 155 062 2 321 268
𝑓2 358 333 314 822 274 273 288 058 273 521 343 726 292 980 257 261 344 986 242 424 2 990 348

Table 7: Number of correctly classified instances in the CIFAR-10 dataset in which the two highest probabilities are within a
distance less than 𝛿 , grouped by target object and fitness function.

fitness 𝛿
target object Total

airplane car bird cat deer dog frog horse ship truck

𝑓1

< 0.5 40 349 43 749 100 378 53 517 48 118 38 989 49 264 39 930 54 978 63 024 532 296
< 0.4 36 139 37 978 97 170 45 548 41 121 33 714 45 936 33 347 47 744 52 232 470 929
< 0.3 31 548 31 893 93 575 37 746 34 092 28 352 42 625 26 599 40 061 41 498 407 989
< 0.2 26 003 25 113 88 941 29 362 26 295 22 605 38 943 19 535 31 256 30 033 338 086
< 0.1 18 557 16 270 78 505 19 370 16 898 15 563 33 518 11 436 19 956 17 561 247 634

fitness 𝛿
target object Total

airplane car bird cat deer dog frog horse ship truck

𝑓2

< 0.5 10 665 15 233 20 096 21 385 18 522 10 811 16 064 18 874 13 061 31 853 176 564
< 0.4 8 673 12 331 16 232 17 000 14 823 8 692 12 771 14 920 10 517 25 351 141 310
< 0.3 6 672 9 459 12 614 12 761 11 223 6 539 9 668 11 131 8 093 19 160 107 320
< 0.2 4 591 6 512 8 746 8 574 7 696 4 446 6 557 7 499 5 512 12 956 73 089
< 0.1 2 412 3 468 4 714 4 356 3 994 2 326 3 500 3 823 2 846 6 714 38 153

Table 8: Number of attacks to airplane object in the CIFAR-10 dataset

fitness p class Total
car bird cat deer dog frog horse ship truck

𝑓1

> 0 4 835 97 149 93 824 25 691 4 933 33 536 13 242 24 494 7 874 305 578
> 0.5 885 24 973 26 033 13 683 696 9 716 2 825 3 815 669 83 295
> 0.6 590 20 738 19 376 10 971 519 7 779 1 762 2 908 465 65 108
> 0.7 406 17 315 14 521 8 637 376 6 104 1 079 2 158 334 50 930
> 0.8 268 14 050 10 538 6 502 259 4 663 635 1 473 232 38 620
> 0.9 135 10 333 6 863 4 183 163 3 125 276 867 132 26 077

fitness p class Total
car bird cat deer dog frog horse ship truck

𝑓2

> 0 397 88 872 112 568 52 009 4 037 44 359 32 935 20 904 2 252 358 333
> 0.5 250 66 615 84 345 40 044 2 240 31 573 23 107 16 021 1 549 265744
> 0.6 186 57 024 70 743 33 546 1 816 27 122 17 501 13 467 1 159 222 564
> 0.7 131 48 404 58 312 27 643 1 443 23 219 12 746 11 083 851 183 832
> 0.8 80 39 881 46 036 21 974 1 128 19 061 8 677 8 734 579 146 150
> 0.9 39 29 776 32 193 15 572 732 14 041 4 789 6 014 335 103 491
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Table 9: Sample attacks to classifier 𝑐𝐶 with the class airplane

image
class car bird bird cat deer dog frog horse ship truck
probability 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 10: Sample attacks to classifier 𝑐𝐶 with the class truck

image
class plane car bird bird cat deer dog frog horse ship
probability 0.99 0.99 0.93 0.99 0.99 0.99 0.97 0.88 0.99 0.99

The classifier confused the images of airplanes with all objects in
the CIFAR-10 dataset. For the airplane, 26 077 attacks were obtained
where the highest assigned probability was greater than 0.9 when
using fitness function 𝑓1, and 103 491 attacks when using fitness
function 𝑓2. In both cases, the classifier confused the generated
airplane with a bird or a cat in over 60% of the attacks. Table 9
presents ten sample attacks generated for the airplane class. Table 10
presents ten sample attacks generated for the truck class.

The results obtained in the evaluation of CIFAR-10 were highly
positive, since multiple attacks were successfully generated for all
objects in the dataset. In turn, the findings suggest that image classi-
fiers for objects are more vulnerable than classifiers for handwritten
digits. This difference could be attributed to the fact that object
image classifiers require higher resolution in the processed images
to distinguish details accurately.

5.5 Comparison with a multistart local search
The proposed EA was compared with a multistart iterated local
search (MILS) method based on Alzantot et al. [1], but extended to
explore the whole latent space and only perturbations.

MiLS applies the Gaussian mutation operator for exploring in
the neighborhood of the current solution, using 𝜇 = 0 and 𝜎 = 1.
A predefined effort stopping criterion is applied, performing the
same number of function evaluations as the proposed EA. To avoid
getting stuck in a local optima, a reinitialization is applied if no
improvement is found in 1000 evaluations [14].

Tables 11 and 12 report the number of attacks generated by the
compared search methods for MNIST and CIFAR-10 datasets using
function 𝑓2, which allowed to compute the larger number of attacks
in the experiments performed. Results show that the proposed EA
generated significantly more attacks than MILS. Improvements
ranged from 8.01% (digit 1) to 61.43% (digit 6) for MNIST and from
22.49% (dog) to 35.58% (car) for CIFAR-10.

Figures 2 and 3 present the boxplot comparison between EA and
MILS for each class. The proposed EA improved over MILS for all
classes in both case studies. Boxplots indicate that MNIST is easier
to solve than CIFAR-10, as MILS computed similar results than the
proposed EA for digits 1 and 6, where the improvements of EA were
smaller than the inter-quartile range of the results distributions.

Table 11: EA vs. MILS: Number of attacks to classifier 𝑐𝑀
(MNIST) using 𝑓2

Target digit Attacks (EA/MILS) EA over MILS

0 46 386/35 003 24.54%
1 31 555/29 029 8.01%
2 51 813/37 481 27.66%
3 108 399/88 217 18.62%
4 63 309/50 315 20.52%
5 96 490/80 047 17.04%
6 9 622/3 711 61.43%
7 50 141/37 206 25.80%
8 63 860/48 288 24.38%
9 1 698/720 57.60%
Total 523 273/410 017 21.64%

Table 12: EA vs. MILS: Number of attacks to classifier 𝑐𝐶
(CIFAR-10) using 𝑓2

Target object Attacks (EA/MILS) EA over MILS

airplane 358 333/260 121 27.41%
car 314 822/202 803 35.58%
bird 274 273/183 390 33.14%
cat 288 058/204 501 29.01%
deer 273 521/209 691 23.34%
dog 343 726/266 413 22.49%
frog 292 980/227 048 22.50%
horse 257 261/198 503 22.84%
ship 344 986/261 582 24.18%
truck 242 424/179 413 25.99%
Total 2 990 348/2 193 465 26.65%

Other digits, such as 3 and 5, were easier to attack using EA,
and significant improvements over MILS are reported. Regarding
CIFAR, the specific features of images on the dataset made it harder
for a simple local search method to find attacks. The improvements
of the proposed EA over MILS were statistically significant for all
classes. The higher improvements were computed for bird, whereas
deer and truck had the smaller improvements of EA over MILS.

Figure 4 presents representative graphics of the average evolu-
tion of fitness function 𝑓2 for EA and MILS on MNIST. The pro-
posed EA showed rapid convergence, reaching a fitness value of
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Figure 2: Comparison of attack success rates: EA vs. MILS on MNIST
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Figure 3: Comparison of attack success rates: EA vs. MILS on CIFAR-10

0.87 within 50 generations, whereas MILS had a slower progression,
eventually plateauing at a lower value of approximately 0.79. The
fitness evolution patterns highlight the ability of the EA to explore
the latent space and maximize classifier confusion, achieving faster
convergence speed and better final fitness value.

Regarding the comparison with results from the related liter-
ature, the proposed EA was competitive with results for similar
problems. Wu et al. [29] reported success rates above 60% on CIFAR-
10 using a multi-objective GA in the perturbation space, while Clare
and Correia [8] achieved 25–30% using a two-stage latent space
approach. Our method reached up to 75% success on CIFAR-10
and 35% on MNIST, using a simpler, fully integrated evolutionary
framework with no gradient, surrogate model, or post-processing
requirements.

0 50 100 150 200 250 300 350 400
Generation

1.2

1.4

1.6

1.8

Fi
tn

es
s v

al
ue

, f
2

EA
MILS

Figure 4: Fitness evolution: EA vs. MILS

6 CONCLUSIONS AND FUTUREWORK
This article presented an approach to generating adversarial attacks
on image classifiers by leveraging the latent space of GANs through
EAs, addressing a critical challenge in improving the robustness of

recognition and classification systems. The evolutionary search em-
ployed a black-box approach guided by two novel fitness functions
designed to balance classifier confusion and misclassification.

Experimental results on MNIST and CIFAR-10 datasets demon-
strated the effectiveness of the proposed approach, achieving suc-
cess rates up to 75%, a remarkable success rate compared to related
works, and significantly outperforming a MILS method. The EA
showed a more consistent and fast evolution pattern for both stud-
ied fitness functions. The fitness function considering confusion
between the two most probable labels allowed to generate more
attacks than the one considering confidence across all possible la-
bels. The findings revealed that object classifiers, such as those
trained on CIFAR-10, are more vulnerable to adversarial attacks
than simpler classifiers like those used for handwritten digits.

This article contributes to the field by demonstrating the poten-
tial of integrating EAs with GAN-based latent space exploration,
offering a flexible framework for testing classifier resilience. EAs
leverage their adaptability to work with various GAN architectures
and latent space characteristics, along with their resilience in han-
dling partial information thanks to the black-box optimization they
applied. These features define a proper exploration pattern that
allows improving other traditional methods. The adaptability of
the approach allows its application to other datasets and classifier
architectures, providing a valuable tool for enhancing the robust-
ness of machine learning systems. The versatility of EAs makes the
approach applicable to other generation and classification problems,
including text, audio, and natural language.

The main lines for future work are related to extending the
experimental validation of the proposed approach and designing
more powerful variation operators. We also propose applying the
methodology to the human faces recognition problem.
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