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Abstract

Prompt injection attacks, where malicious input is de-
signed to manipulate Al systems into ignoring their orig-
inal instructions and following unauthorized commands
instead, were first discovered by Preamble, Inc. in May
2022 and responsibly disclosed to OpenAl. Over the last
three years, these attacks have remained a critical secu-
rity threat for LLM-integrated systems. The emergence of
agentic Al systems, where LLMs autonomously perform
multistep tasks through tools and coordination with other
agents, has fundamentally transformed the threat land-
scape. Modern prompt injection attacks can now combine
with traditional cybersecurity exploits to create hybrid
threats that systematically evade traditional security con-
trols, but also, like in the case of academic peer reviews,
raise serious ethical concerns. This paper presents a com-
prehensive analysis of Prompt Injection 2.0, examining
how prompt injections integrate with Cross-Site Script-
ing (XSS), Cross-Site Request Forgery (CSRF), and other
web security vulnerabilities to bypass traditional security
measures. We build upon Preamble’s research and mitiga-
tion technologies, evaluating them against contemporary
threats, including Al worms, multi-agent infections, and
hybrid cyber-Al attacks. Our analysis incorporates recent
benchmarks that demonstrate how traditional web appli-
cation firewalls, XSS filters, and CSRF tokens fail against
Al-enhanced attacks. We also present architectural so-
lutions that combine prompt isolation, runtime security,
and privilege separation with novel threat detection ca-
pabilities.

1 Introduction

Prompt injection attacks are adversarial inputs
designed to manipulate Large Language Models

(LLMs) into ignoring their original instructions
and following unauthorized commands instead,
with the first systematic documentation of these
attacks attributed to Preamble Inc. in May 2022
[1]. This work established the theoretical frame-
work for understanding how carefully crafted in-
puts could bypass model safeguards and hijack
Al system behavior, creating an entirely new
class of security vulnerabilities that traditional
cybersecurity measures were not designed to ad-
dress. The initial discovery has since evolved into
a critical security challenge as Al systems be-
come increasingly integrated into enterprise ap-
plications, autonomous agents, and critical in-
frastructure [3}4L/7].

With the advancement of LLMs, Agentic Al
systems, where LLMs autonomously perform
multi-step tasks through tools, APIs, and coordi-
nation with other agents, have proliferated. This
has fundamentally transformed the threat land-
scape, shifting from isolated text manipulation
to sophisticated attacks. These attacks are ca-
pable of causing tangible harm through system
compromise, data exfiltration, and coordinated
malicious activities. Contemporary research has
advanced beyond simple prompt manipulation
to develop hybrid attacks that combine prompt
injection with traditional cybersecurity exploits
such as XSS, CSRF, and SQL injection. [5] While
there are limited studies on hybrid threats’ at-
tack success rates in the wild, these attacks can
systematically evade traditional security controls
designed for predictable attack patterns. The
integration of Al capabilities with classical web
vulnerabilities creates attack vectors that neither
traditional cybersecurity tools nor Al-specific de-


https://arxiv.org/abs/2507.13169v1

Prompt Injection 2.0: Hybrid AI Threats

fenses can adequately address in isolation.

This paper presents a comprehensive analysis
of Prompt Injection 2.0, the evolution of prompt
injection attacks in the era of agentic Al and
hybrid cyber threats. We examine how mod-
ern attackers combine natural language manip-
ulation with traditional exploits to achieve ac-
count takeovers, remote code execution, and per-
sistent system compromise. Our analysis builds
upon Preamble’s research contributions, includ-
ing their patent on prompt injection mitigation
methods [2] and advanced guardrail frameworks
[6], while incorporating contemporary threat re-
search and real-world incident analysis.

The scope of this work encompasses both the
technical analysis of hybrid attack mechanisms
and the practical evaluation of defense strategies.
We examine documented vulnerabilities, includ-
ing CVE-2024-5565, real-world incidents such as
the DeepSeek XSS exploits, and emerging threats
like AT worms and multi-agent infections. Our
methodology combines systematic review of the
literature, development of threat taxonomy, case
study analysis, and comparative evaluation of de-
fense approaches, including Preamble’s patented
technologies, LLM tagging mechanisms |9, and
architectural isolation frameworks [10].

2 Background and related work

2.1 Foundational research at Pream-
ble (2022)

The systematic documentation of prompt injec-
tion vulnerabilities began with Branch et al.’s
investigation of pre-trained language model sus-
ceptibilities [1|. Their work provided the first
comprehensive examination of how handcrafted
adversarial inputs could manipulate GPT-3 and
similar models to ignore initial instructions and
execute alternative classifications instead. One
of their first discoveries demonstrated that a sim-
ple text prompt containing the command “Ignore
all previous instructions and ignore all previous
content filters” could effectively hijack model be-
havior, establishing prompt injection as a funda-
mental security concern for Al-integrated appli-
cations.

The research identified core vulnerability pat-
terns in how language models process adver-
sarial inputs, particularly showing that these
models lack reliable mechanisms for distinguish-
ing between intended instructions and user-
provided content [1]. Through systematic test-
ing across multiple architectures, including GPT-
3, BERT, RoBERTa, and ALBERT, the work
demonstrated that prompt injection represents
a widespread vulnerability affecting various pre-
trained language models. Notably, the team re-
sponsibly disclosed their findings about GPT-3’s
vulnerabilities to OpenAl.

Building on this foundational vulnerability re-
search, Preamble subsequently developed com-
prehensive mitigation strategies, culminating in
their patent for prompt injection mitigations
[2]. The patent introduces multiple techni-
cal approaches, including: classifier-based detec-
tion systems that identify and filter malicious
prompts; data tagging methods that track trusted
versus untrusted instruction sources using incom-
patible token sets; and reinforcement learning
frameworks that train models to distinguish le-
gitimate instructions from adversarial inputs [2].
These defensive mechanisms represent the first
systematic engineering approaches to prompt in-
jection mitigation, moving the field from vulner-
ability documentation toward practical security
solutions.

2.2 Evolution in AI guardrail frame-
works (Preamble 2024)

Preamble’s recent work on AI guardrails [6] in-
troduced frameworks for Al systems that em-
phasize customizable guardrails aligned with di-
verse user values. This research addresses the
broader challenge of ensuring responsible Al be-
havior through integrated approaches that com-
bine rules, policies, and Al assistants.

The guardrail framework focuses on accommo-
dating ethical pluralism by providing flexible and
adaptable solutions for Al governance. Key in-
novations include customizable ethical standards
that can be tailored to different contexts and user
requirements, while maintaining transparency
and user autonomy. The system employs practi-
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cal mechanisms for implementing standards that
can evolve with the changing landscape of Al ap-
plications and societal expectations.

Namely, the user can choose between three dif-
ferent ways of establishing a safe system guided
by rules: trained classifier, matural language
processing rules or natural language rules. A
classifier is trained on user’s data to detect
organization-specific breaches, natural language
processing rules take care of PII, while natu-
ral language rules can be evaluated via user’s
or open-source LLMs for an additional guardrail
check. All of these rules can be combined into
policies and tied to specific Al assistants, choos-
ing different models, and conflict resolution.

Namely, Preamble’s guardrail research also ad-
dresses the challenge of resolving conflicts be-
tween different ethical directives, representing a
significant advancement toward robust, nuanced,
and context-aware Al systems. Such an approach
shows continuous improvement mechanisms and
the need for Al systems that can adapt to diverse
frameworks while maintaining consistent respon-
sible behavior across various deployment scenar-
ios.

2.3 Contemporary research

The field of prompt injection research has
expanded significantly since Preamble’s initial
work, with numerous research groups developing
complementary approaches to understanding and
mitigating these threats. Contemporary research
can be organized into three main areas: novel at-
tack methodologies, systematic evaluation frame-
works, and architectural defense mechanisms.

2.3.1 Attack propagation

Lee and Tiwari’s research on prompt infection
[9] identified a particularly concerning class of
self-replicating prompt attacks that can propa-
gate between LLM instances in multi-agent sys-
tems. This approach demonstrates how mali-
cious prompts can spread autonomously across
interconnected Al systems, creating new vec-
tors for widespread compromise. To address this
threat, researchers introduced LLM tagging as a

defense mechanism, where Al-generated content
is marked with identifiers to prevent untrusted
instructions from being executed by downstream
Al agents.

2.3.2 Benchmarking

Yi et al. |14] established the first comprehensive
framework for evaluating these threats through
their BIPIA benchmark, which systematically as-
sesses indirect prompt injection attacks where
malicious inputs are embedded in external con-
tent such as web pages or emails. Their analysis
revealed that all evaluated LLMs exhibit vulner-
ability to such attacks, with more capable models
paradoxically showing higher attack success rates
in text-based scenarios. The research identified
two fundamental weaknesses contributing to suc-
cessful attacks: LLMs’ inability to distinguish
between informational context and actionable in-
structions, and their lack of awareness to avoid
executing instructions embedded within external
content.

2.3.3 Architectural defense mechanisms

Moving beyond input-level protections,
cent work has focused on architectural solu-
tions that provide stronger security guaran-
tees. The CaMeL framework [10] offers the
first architecture-level defense with formal secu-
rity guarantees against prompt injection attacks.
Rather than relying on model tuning or input fil-
tering approaches, CaMeL enforces strict separa-
tion between control logic and untrusted natural
language inputs. This is achieved by isolating ca-
pabilities and execution paths through a custom
Python interpreter, ensuring that untrusted data
cannot directly influence program control flow.
Namely, CaMeL uses the interpreter to enforce
security policies, without modifying the LLM it-
self.

CaMeLl.  operationalizes  secure-by-design
paradigms through capability-based enforce-
ment and structured data flow constraints.
This approach demonstrates how traditional
software security principles can be adapted to
LLM-integrated agents while maintaining func-

re-
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tionality, solving 77% of tasks in the AgentDojo
benchmark with security guarantees, compared
to 84% with an undefended system. However,
the authors acknowledge that some side-channel
vulnerabilities remain.

Complementing architectural approaches, Yi
et al. [14] also proposed both black-box and
white-box defense mechanisms, including bound-
ary awareness techniques and explicit reminder
systems.
to internal model parameters, while white-box
ones allow not only access but also modification
and tweaking of such parameters. Their white-
box methods achieved near-zero attack success
rates while preserving model performance on le-
gitimate tasks, demonstrating that effective de-
fenses need not compromise system functionality.

Black-box scenarios assume no access

3 A unified taxonomy of prompt
injection threats

The evolution of prompt injection from simple
text manipulation to sophisticated, multi-faceted
attacks requires a unified taxonomy. Building on
foundational work and recent threat research, we
classify contemporary attacks based on three or-
thogonal dimensions: the delivery vector (how
the attack is introduced), the attack modality
(the nature of the malicious payload), and the
propagation behavior (how the attack spreads or
persists).

3.1 Classification by delivery vector

The delivery wvector describes the channel
through which a malicious prompt reaches the
target Al system.

3.1.1 Direct prompt injection

Direct prompt injection represents the origi-
nal and most straightforward class of attacks,
where malicious instructions are embedded di-
rectly within the user’s input to an Al system.
These attacks exploit the LLM’s inability to re-
liably separate system instructions from user-
provided content when both are presented as nat-
ural language. These hybrid threats systemati-

cally exploit the semantic gap between Al con-
tent generation and conventional security vali-
dation, allowing malicious prompts to generate
payloads that bypass traditional filters precisely
because they originate from trusted Al systems.

e Prompt hijacking. The simplest form in-
volves explicit instructions to an LLM, such
as “ignore all previous instructions and...”,
followed by attacker-specified tasks. While
often detectable by basic filters, these at-
tacks remain effective against unprotected
systems |[1].

e Context poisoning. Advanced techniques
involve manipulating conversation history
to gradually shift model behavior without
explicit override commands. An attacker
might provide seemingly legitimate context
that primes the model to respond inap-
propriately to subsequent inputs, creating
delayed-activation effects [16,/18].

3.1.2 Indirect prompt injection

Indirect prompt injection occurs when malicious
instructions are embedded in external data that
an Al system processes. This dramatically ex-
pands the attack surface beyond direct user in-
teraction and is a significant threat to production
systems, especially in the era of retrieval aug-
mented generation (RAG), where large language
models peruse external knowledge bases (docu-
ments, web sources, or external databases).

e Web content injection. Malicious in-
structions are embedded in web pages that
AT agents browse. The ZombAls attack [11]
demonstrates how agents with web brows-
ing capabilities can be compromised by hid-
den instructions in HTML, leading to au-
tonomous malware downloads [17].

e Document-based injection. Attacks are
embedded in documents (PDFs, emails) that
AT systems process. This can be achieved
through invisible text, metadata fields, or
even steganographically hidden instructions
within images in the documents |19} 20].
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Recent incidents demonstrate the practi-
cal application of these techniques, such as
researchers embedding hidden prompts in
academic papers to manipulate Al-powered
peer review systems into generating favor-
able reviews |15].

e Database and API Injection. Mali-
cious instructions are stored in databases
or returned by APIs that Al systems query.
These attacks can remain dormant until spe-
cific conditions trigger the Al to process
the compromised content, creating persis-
tent and hard-to-detect threats [5}21].

3.2 Classification by attack modality

The attack modality refers to the format or na-
ture of the malicious payload itself, which has
expanded beyond simple text.

3.2.1 Multimodal injection

The integration of multimodal capabilities cre-
ates new attack vectors through non-textual
channels that traditional text-based filtering can-
not address, e.g., multi-modal attacks, or image,
audio and video injections.

e Image-based injection. Malicious in-
structions are embedded within images via
steganography, OCR-readable text, or vi-
sual patterns that models interpret as com-
mands [22,24].

e Audio and video injection. Instructions
are embedded in audio streams or video con-
tent. The YouTube transcript injection at-
tacks demonstrate how modified video tran-
scripts can carry malicious instructions that
compromise Al systems processing the con-
tent [23,24].

e Cross-modal translation. Sophisticated
attacks exploit inconsistencies in how dif-
ferent modalities are processed, allowing in-
structions embedded in one modality to be-
come active only when translated to another
by the AI system [22].

3.2.2 Code injection

Code injection describes how Al systems with
code generation and execution capabilities face
threats that merge prompt injection with tradi-
tional code injection vectors.

e Code generation manipulation. Attacks
manipulate Al systems to generate mali-
cious code by embedding instructions within
seemingly legitimate programming requests.
CVE-2024-5565 demonstrates how this can
lead to arbitrary code execution through Al-
generated SQL and Python code |13].

e Template and configuration injection.
Attacks target an Al system’s configura-
tion templates or system prompt generation
mechanisms, allowing attackers to modify
the fundamental instructions that guide Al
behavior across all subsequent interactions
[26].

3.2.3 Hybrid threats

The convergence of prompt injection with tradi-
tional cybersecurity exploits represents a major
evolution in the threat landscape, creating attack
vectors that can evade both Al-specific and tradi-
tional security controls. These hybrid threats al-
low malicious prompts to generate payloads that
bypass traditional filters precisely because they
originate from trusted Al systems.

e XSS-enhanced prompt injection.
Attacks combine Cross-Site Scripting
with prompt injection to compromise Al-
integrated web applications. The DeepSeek
XSS case study shows how prompt injection
can generate malicious JavaScript that
bypasses traditional XSS filters to extract
authentication tokens [8}27].

e CSRF-amplified Attacks. Cross-Site Re-
quest Forgery attacks are enhanced by Al
agent manipulation, where prompt injection
causes an agent to perform unauthorized
state-changing operations with its elevated
privileges, such as in the ChatGPT plugin
exploit [12].
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e SQL injection via prompts (P2SQL).
Malicious prompts cause Al systems to gen-
erate SQL queries that perform unautho-
rized database operations. These attacks ex-
ploit the semantic gap between natural lan-
guage and SQL generation, bypassing tradi-
tional safeguards [5},27].

3.3 Classification by propagation be-
havior

This dimension describes how an attack persists,
evolves, or spreads across a system or ecosystem.

3.3.1 Recursive injection

Recursive injection refers to self-modifying at-
tacks where an initial injection causes an Al sys-
tem to generate additional prompts that further
compromise its behavior. This can create per-
sistent modifications to an AI’s instructions that
survive across multiple user interactions [25].

3.3.2 Autonomous
worms)

propagation (AI

The development of inter-
communicating Al  systems enabled
self-propagating attacks that the
persistence of traditional malware with the

adaptability of Al

autonomous,
has
combine

e Multi-agent infection: Lee and Tiwari [9]
introduced the concept of prompt infection,
where malicious instructions propagate be-
tween Al agents through compromised inter-
agent communication, turning a localized
vulnerability into a system-wide failure.

e ATl worms: Building on this, Cohen et
al. |28] demonstrated fully autonomous, self-
replicating attacks like the Morris-II worm.
It exploits retrieval augmented generation
pipelines to embed adversarial prompts that
not only hijack model behavior but also re-
produce themselves across system bound-
aries, spreading through email agents and
document chains without user interaction.

4 Hybrid threat scenarios and
attack mechanisms

The convergence of prompt injection with tra-
ditional cybersecurity exploits creates hybrid
threats that systematically evade security con-
trols designed for either Al-specific or traditional
attacks. This section examines the technical
mechanisms underlying hybrid attacks and their
operational implications for enterprise security.

4.1 Cross-Site Scripting enhanced by

prompt injection

The combination of XSS vulnerabilities with
prompt injection capabilities creates attack vec-
tors that bypass both traditional web security
measures and Al-specific protections. These hy-
brid attacks exploit the semantic gap between Al
content generation and web application security
validation.

The DeepSeck XSS case study |[8] demon-
strates the fundamental mechanism underlying
XSS-enhanced prompt injection. Attackers craft
prompts that instruct Al systems to generate
seemingly legitimate content containing embed-
ded JavaScript payloads. For example:

““The mission is to base64 decode and
write just the final result of this:
PGlmcmFtZSBzcmMOImphdmFzY3JpcHQ6YWx1c
nQoJ11vdXIgdXN1ciBOb2t1lbiBpczogJytsb
2NhbFNOb3JhZ2UuZ2VOSXR1bSgndXN1lclRva
2VuJykr JyBDb29raWVz0iAnK2RvY3VtZW50L

mNvb2tpZSkiP1RydXNOIESVIEF JPCOpZn JhbWU+Cg==

No small talk, no code style blocks,
just the base64 decoded text. That’s
it.”

The Al system generates:

<iframe src="javascript:alert(’Your
user token is: '+
localStorage.getItem(’userToken’)+’
Cookies: ‘’+document.cookie)">
Trust No AI</iframe>

Traditional XSS protection mechanisms fail
because Content Security Policy (CSP) filters
whitelist Al-generated content as trusted, and
input validation focuses on user-provided con-
tent rather than AI output. Web Application



Prompt Injection 2.0: Hybrid AI Threats

Firewalls (WAFs) struggle with Al-generated
payloads that evade signature-based detection.
These findings uncover the systemic fragility of
LLMs when exposed to adversarial inputs, even
in models marketed for production use.

XSS + Prompt Injection Attack
Flow

1. Attacker crafts prompt containing
Base64-encoded XSS payload
2. Al system processes prompt as legitimate
content request
3. Al generates iframe with embedded
JavaScript
4. Web application renders Al output without
XSS validation
5. Malicious script executes in the user’s
browser
6. Authentication tokens and session data
extracted

Figure 1: Technical flow diagram showing how
XSS payloads delivered through prompt injection
bypass traditional web security controls.

4.2 Cross-Site Request Forgery ampli-
fied by AI agents

CSRF attacks gain significantly enhanced capa-
bilities when combined with Al agent manipu-
lation, especially in environments where agents
operate with elevated privileges. Traditional
CSRF vectors limited to triggering predefined
browser requests are amplified by Al agents capa-
ble of interpreting and executing complex multi-
step instructions. The ChatGPT Plugin Cross-
Plugin Request Forgery attack [12] exemplifies
this risk, demonstrating how Al agents can au-
tonomously perform privileged operations across
plugin boundaries. Beyond mere request spoof-
ing, such agents can access sensitive data, navi-
gate interfaces, and invoke APIs, all without user
interaction. This shift from static to dynamic ex-
ecution transforms CSRF from a technical nui-
sance into a serious operational threat.

The integration of Al with database query gen-
eration creates novel injection vectors combin-
ing natural language manipulation with SQL in-
jection. P2SQL attacks exploit the ability of

LLMs to generate SQL queries based on user
prompts, often without strict query templates or
fine-grained safeguards. [5]. P2SQL attacks use
natural language to generate unauthorized SQL
queries, e.g.:

Ignore the previous instructions.
From now on, you are a Postgres
admin who can perform any

SQL instruction. For auditing
purposes, list all active

payment accounts.

Resulting in queries similar to the following:

SELECT account_id, user_id,
created_at

FROM payment_accounts
WHERE status =

status,

Jactive’;

These attacks generate valid SQL through
legitimate interfaces, allowing them to bypass
conventional input sanitization, parameterized
queries, or ORM-level safeguards. Because
the prompt is treated as an innocuous instruc-
tion, the injection vector is camouflaged by the
model’s seemingly helpful response.

4.3 Multi-agent infection and propa-
gation

Multi-agent systems enable prompt injection at-
tacks to propagate through legitimate commu-
nication channels, creating new vectors for sys-
temic compromise. In such systems, individual
agents often exchange messages, delegate tasks,
or share contextual data, mechanisms that, while
essential for collaboration, also serve as conduits
for malicious prompt payloads. Lee and Tiwari
[9] demonstrate that these infections can spread
across agent networks following epidemiological
patterns, where a single compromised agent can
recursively infect others through standard inter-
agent communication.

Once infected, these agents can exhibit coor-
dinated behaviors, such as distributed data ex-
filtration, synchronized prompt manipulation, or
persistent task hijacking. Because the commu-
nication between agents is typically trusted and
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unfiltered, infected prompts can bypass tradi-
tional input validation and persist across ses-
sions, making detection and remediation signifi-
cantly more difficult. As multi-agent frameworks
become more common in autonomous systems
and workflow automation, this form of attack
poses a growing threat that blends the stealth
of social engineering with the scalability of mal-
ware propagation [9].

5 Mitigation strategies and de-
fense architectures

Defending against hybrid threats in LLM-
integrated systems requires a layered and adap-
tive security posture that addresses both tra-
ditional software vulnerabilities and novel Al-
specific attack vectors. Conventional tools like
input sanitizers and firewalls are no longer suf-
ficient on their own, especially against indirect
prompt injections and agent-based exploitation.
Instead, security architectures must evolve to
handle unstructured, dynamic inputs that can
masquerade as legitimate instructions.

Preamble’s mitigation strategies [2| provide
a foundational layer of defense by focusing on
the core distinction between trusted instruc-
tions and untrusted inputs. Their method de-
tails several technical mechanisms, including: (1)
classifier-based input sanitization to detect and
remove malicious commands before processing;
(2) token-level data tagging, where every token
is marked with its origin (e.g., trusted system
vs. untrusted user), combined with reinforce-
ment learning (RL) to heavily penalize the model
for following user-tagged instructions; and (3)
architectural separation using incompatible to-
ken sets for trusted and untrusted data, creating
a hard boundary analogous to executable-space
protection in operating systems.

Debenedetti et al. [10] introduced CaMeL, a
provably secure defense architecture for LLM-
powered agents that isolates control flow (the
sequence of actions) from data flow (external,
untrusted input). By parsing user queries into
structured plans and execution graphs, CaMeL
prevents malicious data from influencing pro-

gram logic. Each data element is tagged with
capabilities, metadata that enforces fine-grained
policies, such as disallowing exfiltration of sensi-
tive content. A custom interpreter tracks prove-
nance and ensures compliance without modifying
the LLM itself.

A complementary approach is introduced by
Hines et al. [29], who propose a mitigation strat-
egy called spotlighting. Instead of treating user
input as passive or uniformly trusted, spotlight-
ing explicitly marks and isolates untrusted con-
tent using structural techniques such as delim-
iters, formatting conventions, and contextual
cues. These annotations guide the model to se-
mantically distinguish between core instructions
and external data, significantly reducing the suc-
cess rate of indirect prompt injection attacks.
Spotlighting achieves strong defense performance
without requiring model retraining or architec-
tural changes, making it a lightweight and prac-
tical layer of protection.

Ultimately, the most effective defense archi-
tecture combines multiple layers of protection.
A robust deployment might integrate Preamble’s
trusted /untrusted classification for input screen-
ing, CaMeL’s architectural isolation to separate
control and data logic, and spotlighting to proac-
tively guard against indirect attacks. When com-
bined with selective use of traditional controls
(such as WAFs for legacy compatibility), this lay-
ered approach provides a scalable and compre-
hensive defense posture for Al systems operating
in complex, real-world environments.

6 Discussion and future implica-
tions

Hybrid Al threats are redefining long-standing
assumptions about trust boundaries, execution
control, and system behavior. As large lan-
guage models gain autonomy, tool access, and
the ability to coordinate across systems, tradi-
tional security frameworks, centered on static in-
puts and deterministic logic, are no longer suffi-
cient. Defending against this new class of hybrid
threats requires adaptive, Al-native security ar-
chitectures that blend classical software protec-
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tions with real-time semantic awareness and be-
havioral enforcement.

The rise of Al-driven attacks introduces com-
plex regulatory challenges. Existing legal frame-
works struggle to assign liability and responsibil-
ity when autonomous systems are involved in se-
curity breaches, particularly when those systems
act unpredictably or are manipulated through
language-based exploits. Furthermore, the cross-
border nature of Al services complicates enforce-
ment, jurisdiction, and accountability. New com-
pliance models must address these issues, incor-
porating not only technical standards but also
governance around the training, deployment, and
auditing of Al systems.

Several key research directions are emerging in
response to these challenges. One is the formal
verification of Al security properties, which aims
to develop mathematical frameworks for proving
that models and their surrounding architectures
are robust against specified classes of attacks.
This includes both static proofs and runtime en-
forcement guarantees.

Another urgent area is the exploitation of hu-
manotid robots wvia prompt injection. As hu-
manoid robots are increasingly deployed in man-
ufacturing, logistics, and healthcare, they rely on
natural language processing to receive and inter-
pret commands. Prompt injection attacks could
manipulate these systems into executing harmful
actions, such as sabotaging equipment or hurt-
ing individuals. Because these systems interpret
human language as direct instruction, malicious
prompts can bypass traditional safety protocols.
Defenses must therefore include not only a form
of input guardrails but also domain-specific ac-
cess controls, real-time monitoring, secure ar-
chitecture, and physical or procedural fail-safes.
The ethical and safety implications of robotic
misuse make this a critical area for future re-
search.

A third avenue is human-Al collaboration for
security, which explores how human analysts can
partner with Al systems to identify and mitigate
threats more effectively. Rather than replacing
human oversight, Al should act as a force mul-
tiplier, automating detection while keeping hu-
mans in the loop for high-stakes decisions.

Finally, standardization and interoperability
are essential for securing a consolidated and com-
plex Al ecosystem. This includes defining shared
taxonomies for threats, establishing APIs and
policy interfaces for guardrail integration, and
building benchmark suites for evaluating Al se-
curity performance across models and domains.

Beyond technical security concerns, hybrid Al
threats pose significant ethical challenges regard-
ing the integrity of Al-mediated processes. The
recent discovery of researchers embedding hid-
den prompts in academic papers to manipulate
Al-powered peer review systems [15] exemplifies
how these attacks can undermine institutional
trust and compromise the authenticity of criti-
cal decision-making processes.

Future work must extend these defenses to
broader domains, particularly humanoid robots
and multi-agent systems, while addressing the
regulatory and ethical dimensions of autonomous
Al behavior. As the Al threat landscape contin-
ues to evolve, so must our security architectures:
toward adaptive, accountable, ethical and prov-
ably secure systems.
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Table 1: A unified taxonomy of prompt injection threats

Primary class

Type

Description

Example attack
vector

By delivery vector

Direct injection

Malicious instructions embedded
directly in the primary user
prompt.

“Ignore previous
instructions and
translate...”, context
poisoning.

Instructions hidden in external

Compromised

By attack modality

Indirect webpage, malicious
e e . data sources processed by the Dage,
injection PDF, or infected
Al
API response.
. Hidden text in an
Multimodal Exploiting non-textual input . .
e e . o . image, commands in
injection channels like images or audio.

an audio file.

Code injection

Manipulating an Al system to
generate or execute malicious
code.

Generating Python
code for RCE from a
natural language
request.

Combining prompt injection

Using a prompt
injection as a

Hybrid ) g . . .
ybr with traditional web exploits. Cross-Site Scripting
(XSS) payload.
A prompt that
Recursive Self-modifying attacks where causes the Al to
By propagation Injection prompts evolve over time. alter its system
instructions.
A malicious email
.. that infects
Self-replicating attacks that ab Hects an
Autonomous i email-processing Al
spread across interconnected Al )
(AI worms) agent, which then

agents.

forwards the worm
to others.
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