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Abstract

Audio plays a crucial role in applications like speaker ver-
ification, voice-enabled smart devices, and audio confer-
encing. However, audio manipulations, such as deepfakes,
pose significant risks by enabling the spread of misinforma-
tion. Our empirical analysis reveals that existing methods
for detecting deepfake audio are often vulnerable to anti-
forensic (AF) attacks, particularly those attacked using gen-
erative adversarial networks. In this article, we propose a
novel collaborative learning method called SHIELD to de-
fend against generative AF attacks. To expose AF signa-
tures, we integrate an auxiliary generative model, called the
defense (DF) generative model, which facilitates collabora-
tive learning by combining input and output. Furthermore,
we design a triplet model to capture correlations for real
and AF attacked audios with real-generated and attacked-
generated audios using auxiliary generative models. The
proposed SHIELD strengthens the defense against gener-
ative AF attacks and achieves robust performance across
various generative models. The proposed AF significantly
reduces the average detection accuracy from 95.49% to
59.77% for ASVspoof2019, from 99.44% to 38.45% for In-
the-Wild, and from 98.41% to 51.18% for HalfTruth for
three different generative models. The proposed SHIELD
mechanism is robust against AF attacks and achieves an av-
erage accuracy of 98.13%, 98.58%, and 99.57% in match,
and 98.78%, 98.62%, and 98.85% in mismatch settings for
the ASVspoof2019, In-the-Wild, and HalfTruth datasets, re-
spectively.

1. Introduction

Advancements in generative artificial intelligence have sig-
nificantly improved the generation of synthetic speech, en-
abling human-like audio deepfakes. Modern text-to-speech
and voice cloning systems are now becoming capable of

(a)

(b)

(c)

Figure 1. Conceptual overview of the traditional ADD, AF at-
tacks, and proposed SHIELD framework against AF attacks. (a)
Traditional ADD methods effectively distinguish between real and
deepfake samples. (b) However, AF attacks applied to deepfakes
reduce detection performance, making these methods vulnerable.
(c) In contrast, the proposed collaborative learning-based SHIELD
enhances robustness by incorporating auxiliary generative signa-
tures (DF) to support the ADD model.

producing audio deepfake voices that sound almost the
same as real human speech. This makes it difficult for
human listeners, automatic speaker verification (ASV) sys-
tems, and deepfake detection tools to identify the difference
between real and deepfake speech [12, 15]. These audio
deepfakes have been exploited in serious threats such as
identity fraud, misinformation campaigns, and high-impact
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social engineering attacks.
The threat is further amplified due to the accessibility of

free or inexpensive voice cloning tools, which require min-
imal technical expertise to perform impersonation. These
tools typically need short speech samples of a few seconds
of a person’s voice to copy their tone, pitch, accent, and
speaking style. A recent report [23] shows that 37% of
the companies affected by identity fraud were targeted us-
ing AI-generated voice clones, making audio deepfakes the
most common type of impersonation attacks. According
to recent reports from IBM and the Identity Fraud Survey
2024 [8], deepfake-related fraud attempts have increased by
3,000%, highlighting the urgent need for effective and reli-
able audio deepfake detection (ADD) methods.

To address this growing threat, the research commu-
nity has developed various ADD systems [2, 3, 7, 13, 14,
16, 24] that rely on deep learning and feature represen-
tations to identify synthetic audio artifacts, as shown in
Figure 1a. Although most deep learning-based ADD ap-
proaches show strong performance on known datasets and
generation methods, they often fail to generalize to unseen
data. More critically, most ADD are highly vulnerable
to anti-forensic (AF) attacks, which introduce small, often
imperceptible, perturbations to deception detection models
as shown in Figure 1b. These attacks not only compro-
mise the integrity of ADD methods but also raise concerns
about their practical deployment in real-world applications
to counter audio deepfakes.

Although several defense strategies have been explored
in the domains of image [30] and video [31] forensics, re-
search on defending ADD methods against AF attacks, par-
ticularly generative AF attacks remains limited. Conse-
quently, the existing literature lacks a crucial investigation
into how AF attacks would affect ADD systems. Some no-
table studies [11, 35] have begun to address this gap. For
example, Kawa et al. [11] and Wu et al. [35] examined ASV-
based systems under AF conditions and introduced spatial
smoothing and adversarial training as potential defenses.
Although these efforts address perturbation-based attacks,
they overlook generative AF attacks.

More specifically, the existing work [11, 35] focuses
mainly on traditional perturbation-based AF attacks on
deepfakes and does not consider generative AF attacks gen-
erated via the generative adversarial network (GAN). Con-
sequently, the impact of generative AF attacks on ADD
methods remains an open and underexplored research area.
To the best of our knowledge, this work is the first to pro-
pose a defense mechanism designed to protect against trans-
ferable generative AF attacks in ADD methods.

In this paper, we introduce a novel collaborative learn-
ing framework called SHIELD to enhance the robustness of
ADD methods against generative AF attacks. Unlike tradi-
tional ADD pipelines as depicted in Figure 1a, the proposed

SHIELD incorporates a defense (DF) generative model be-
fore the ADD stage, which facilitates collaborative learning
between input and output representations, as illustrated in
Figure 1c. An auxiliary DF generative model exposes AF
artifacts by reconstructing inputs, revealing adversarial sig-
natures. Additionally, we design a triplet-based model to
capture intra- and inter-dependencies among real and AF at-
tacked audio samples. This structure improves the model’s
ability to discriminate between real and deepfake inputs un-
der adversarial conditions.

As illustrated in Figure 1c, conventional methods that
rely solely on the traditional ADD mechanism in Figure 1a
can be deceived by AF inputs, whereas the proposed method
in Figure 1c, enhanced through collaborative learning, ef-
fectively mitigates these threats. The main contributions of
this paper are as follows.

• We introduce generative AF attacks on ADD methods and
evaluate the vulnerabilities.

• We propose a novel defense mechanism using a collabo-
rative learning technique that improves the robustness of
ADD methods against generative AF attacks.

• We apply a defense generative and triplet models that fa-
cilitate collaborative learning against AF signatures.

• We conducted comprehensive evaluations on deepfake
benchmark datasets and demonstrated that AF attacks
significantly degrade the performance of existing ADD
methods. In contrast, the proposed defense method out-
performs existing approaches, particularly in mitigating
challenges posed by generative AF attacks.

The remainder of this paper is organized as follows: Sec-
tion 2 provides the existing literature on ADD methods and
their vulnerabilities to AF attacks. Section 3 details the pro-
posed collaborative learning framework, including the in-
tegration of the defense generative model and the triplet-
based model to capture audio correlations. Section 4 de-
scribes the experimental setup, the datasets, evaluation met-
rics, and presents the results and discusses the effectiveness
of the proposed approach compared to SoTA methods. Fi-
nally, Section 5 concludes the paper and suggests directions
for future research.

2. Related Works

This section provides an overview of existing ADD meth-
ods, highlights progress in identifying their vulnerabilities
to AF attacks, and discusses defense mechanisms proposed
to address these challenges.

2.1. Audio Deepfake Detection
ADD methods generally fall into two categories: tradi-
tional methods based on handcrafted features (e.g., MFCCs,
CQCCs, LFCCs) coupled with classifiers like Gaussian
mixture models, and modern approaches leveraging deep
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learning to learn rich feature representations directly from
raw or transformed audio for classification.

Deep learning approaches have gained prominence due
to their ability to model high-dimensional audio representa-
tions. Consequently, in recent years, most ADD systems
employed deep learning feature extraction and classifica-
tion. For example, Tak et al. [24] introduced RawNet2,
which processes raw waveforms through CNNs and GRUs
to achieve state-of-the-art performance on ASVspoof2019.
Although handcrafted feature extraction is eliminated, this
approach exhibits sensitivity to unseen spoofing techniques.
Similarly, Khan et al. [14] introduced SpotNet, a CNN
model that uses Mel-spectrograms optimized for edge de-
vices. Extending this, Khan et al. [16] later incorporated
attention mechanisms to identify frame-level inconsisten-
cies in synthetic speech, achieving robust detection on re-
cent partial deepfake datasets such as HalfTruth.

Further advancements focus on leveraging pre-trained
models for improving generalization and robustness. For
instance, Zhang et al. [39] used pre-trained rawboost and
wav2vec-XLS-R for ADD, which reduces dependence on
labeled data and improves generalization. Concurrently,
Grinberg et al. [4] and Lim et al., [19] integrated explain-
ability techniques such as saliency maps and Grad-CAM
to support forensic analysis. Wu et al. [36] addressed
non-adversarial manipulations through CLAD, a contrastive
learning framework that minimizes sensitivity to volume
changes and noise injection. Whereas, to preserve content
privacy, Li et al. proposed SafeEar [18], a framework that
decouples semantic and acoustic information, using only
acoustic cues for detection.

Complementing these efforts, hybrid models with multi-
feature fusion that fuse handcrafted and learned features
have shown promising results in generalization. For in-
stance, Yang et al. [37] proposed a system that integrates
handcrafted and learning-based features, achieving better
generalization across datasets. Similarly, Ahmadiadli et
al. [17] introduced an identity-independent detection sys-
tem by combining handcrafted and neural features while
explicitly modeling forgery-specific artifacts rather than
speaker characteristics, which proved effective against pre-
viously unseen spoofing attacks.

Despite recent progress, many ADD systems remain
tightly coupled to specific datasets and fail under real-world
or adversarial conditions. This highlights the need for mod-
els with stronger generalization and robustness. Our work
addresses this gap by introducing a detection framework
that integrates transferable adversarial signatures, enabling
more resilient and adaptive ADD.

2.2. Vulnerabilities of Audio Deepfake Detection
Although ADD systems have improved considerably, they
remain vulnerable to adversarial attacks, which introduce

imperceptible perturbations (often below -30 dB SNR) that
manipulate decision boundaries while preserving audio fi-
delity for human listeners [22]. These attacks expose key
vulnerabilities in generalization, robustness to signal degra-
dation, and resistance to transferable or generative attacks.

Initial vulnerability studies focused on gradient-based
white-box attacks. For example, Kawa et al. [11] conducted
a comprehensive evaluation of ADD systems, including
RawNet3 [24], against adversarial attacks in both white-
box and transferability scenarios. The results indicate that
adversarial training, particularly adaptive training, can en-
hance model resilience. However, the study [11] mainly fo-
cused on traditional perturbation-based attacks and did not
address more advanced generative adversarial strategies.

The threat landscape evolved with Farooq et al. [32] in-
troduction of a transferable GAN-based adversarial attack
framework. This approach successfully targeted different
ADD systems, significantly reducing their accuracy in di-
verse scenarios and highlighting critical vulnerabilities in
existing defenses. The presented ensemble-based method
achieved 89% attack success rates by exploiting latent space
discontinuities, even across robust detectors, demonstrating
that adversarial transfer learning can exploit shared vulner-
abilities in ensemble models.

Following this, the emergence of generative adversarial
networks has fundamentally transformed the threat land-
scape. For instance, Rabhi et al. [22] demonstrated that
even advanced detectors could be effectively bypassed us-
ing GAN-based adversarial attacks, reducing detection ac-
curacy to nearly zero. Their findings emphasized the ur-
gent need for generalizable, lightweight defense mecha-
nisms for recent adversarial attacks. On the other hand,
in recent investigations, frequency-domain vulnerabilities
have been identified as particularly exploitable for ADD
systems. For instance, Zhang et al. [40] present F-SAT, a
frequency-selective adversarial training method that focuses
on high-frequency components, which are often exploited
by attackers. The reported results demonstrated that the pre-
sented method improved detection accuracy on both clean
and adversarial samples, thus highlighting the importance
of frequency-domain characteristics in adversarial training.

Overall, these studies reveal a central limitation: most
ADD systems are not inherently designed to overcome ad-
versarial interference or to generalize beyond their training
distributions. This shows the need for detection frameworks
that can integrate adversarial robustness into their core ar-
chitecture. The proposed approach addresses this gap by
introducing transferable adversarial signatures directly into
the detection pipeline, enabling more resilient and adaptive
ADD.
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(a)

(b)

Figure 2. Proposed SHIELD architecture: (a) The deepfake au-
dio (Ad) is processed through an AF (GA) model to generate AF
attacked deepfake audio (Aad). Subsequently, a defense (GD)
model is employed to generate real-generated (A

′
r) and attacked-

generated (A
′
ad) audios. (b) The real and real-generated audios

(ArA
′
r), as well as the attacked and attacked-generated audios

(AadA
′
ad), are concatenated to capture discriminative features us-

ing triplet learning. The integration of input and output to and
from GD helps to explore the relationship among them to detect
generative AF signatures.

3. Method

This section outlines the architectural overview, including
collaborative learning, the training strategy of the GAN, and
the triplet learning approach of the proposed defense.

3.1. Problem Statement
The rapid advancement of generative AI, particularly
GANs, poses a significant challenge to ADD methods by
creating more realistic deepfake audio. Alongside, GAN
is widely used as an AF attack to alter the deepfake con-
tent without leaving visual signatures and deceive the ADD
methods. Therefore, detecting generative AF attacks, par-
ticularly those performed by generative models, has become
increasingly critical. To address this issue, we propose
SHIELD, based on collaborative learning, designed to de-
fend against generative AF attacks and secure ADD meth-
ods to detect AF attacked audio. We integrated a DF gener-
ative model to facilitate collaborative learning and provide
robust audio attack detection. As generative AF leaves a
distinct signature, adding a DF generative model before the
ADD method helps explore the correlation between real vs.
real-DF samples and attacked vs attacked-samples, enabling
better separation. The hypothesis behind incorporating the
DF generative model is that if a sample is real and passed
through DF, the correlation between the original real and

the real-DF versions will be low, as they exhibit different
signatures. However, if a sample is AF-attacked and then
passed through DF, the correlation between the attacked and
attacked-DF versions will be high, since they share similar
signatures.

3.2. Architecture of the Proposed Method
Figure 2 illustrates the workflow and architecture of the pro-
posed method, which comprises two primary phases: (a)
integration of a DF generative model, depicted at the top
of Figure 2a, and (b) collaborative learning using a triplet
model, shown at the bottom of Figure 2b. The details are
presented in the following subsections. The AF attack is
applied using a generative model (GA) to generate AF-
attacked deepfakes (Aad) to deceive the ADD methods. In
the proposed method, we integrate an auxiliary generative
model (GD) as a defense model that helps in collaborative
learning. In the second phase, we use the combined sam-
ples to generate different embeddings for real and deepfake
samples using triplet learning.

3.2.1. Auxiliary Generative Model for Collaborative
Learning

Various AF techniques can be employed on deepfake au-
dio to deceive ADD methods, ranging from traditional ap-
proaches [36] to generative [28, 29, 32] AF attacks. In this
work, we focus specifically on detecting generative [32] AF
attacks, as it is more complicated and challenging to detect.

Assume Ar and Ad represent real and {fake audio, re-
spectively. In general, when an AF attack is applied us-
ing a generative model (GA), it generates an attacked audio
(Aad), which is defined as follows:

Aad = GA(Ad) (1)

When Aad is provided to the ADD method, it fails to cor-
rectly identify it as a deepfake and instead misclassifies it as
real.

To defend against AF, we use an auxiliary generative
model that works as a defense (GD) to generate real-
generated (A

′

r) and attacked-generated (A
′

ad) audios, de-
fined as follows:

A
′

r = GD(Ar) (2)

and
A

′

ad = GD(Aad) (3)

We integrate ArA
′

r and AadA
′

ad to learn collaboratively
to distinguish between real and AF attacked samples. Here,
ArA

′

r is considered as real, and AadA
′

ad is considered as
AF attacked samples. As Ar and A

′

r have the different sig-
natures, for example, Ar contains real information while
A

′

r contains AF signatures (GD signature), the correlation
between Ar and A

′

r is very low. In contrast, Aad and A
′

ad
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have the same generative signatures, for example, Aad con-
tains GA signature while A

′

ad contains GD signatures (both
have the similar generative signatures), the correlation be-
tween Aad and A

′

ad is very high. This allows high confi-
dence to distinguish between real and AF attacked samples
using deep triplet learning collaboratively.

3.2.2. Training Strategy of GAN Model
Since the focus is on performing generative AF attacks on
deepfake audio to deceive SoTA ADD methods, we train
the GAN model using a min-max optimization technique.
In this setup, the generator’s goal is to produce attacked
deepfake audio that successfully evades detection without
significantly distorting its quality.

To achieve this, we employ a combination of perceptual,
adversarial, and surrogate losses during the training process
[27, 32] of the generator model as shown in Figure 3. The
generator model receives feedback from both the discrimi-
nator and an ensemble of surrogate ADD methods, and up-
dates its parameters accordingly to perform the AF attack.

We optimize the generator network with the combined
loss function, defined as follows:

Gloss = Ploss +Aloss + Sloss (4)

where, Gloss is the generator training loss. Ploss, Aloss,
and Sloss are the point-wise L1, binary cross-entropy, and
cross-entropy losses, respectively.

The Ploss, Aloss, and Sloss are defined as follows:

PLoss =
1

L

∑
i∈L

|(Ad[i]−A
′

d[i])| (5)

ALoss = log(1−D(G(A
′

d))) (6)

and

SLoss = −
∑
iϵS

∑
jϵL

log(Si(G(A
′

d[i]))) (7)

where L and S are the length of the audio signal and the
number of surrogate ADD methods.

The discriminator model is trained using a loss function
to distinguish between real and attacked deepfake audio.
This loss function is defined as follows:

Dloss = log(1−D(Ar)) + log(1−D(G(Ad))) (8)

where Dloss is the discriminator binary cross-entropy loss
for real and deepfake samples. The first and second parts in-
dicate the discriminator’s real and deepfake losses, respec-
tively, to apply the AF attack.

Figure 3. Training strategy of GAN-based models for generating
AF attacks targeting ADD methods. The generator (G) network
first applies AF to the input sample, producing an AF sample by
receiving adversarial feedback from both the discriminator (D) and
surrogate (S) models to deceive them.

3.2.3. Triplet Model for Generating Embedding
After employing GD, we concatenated Ar and A

′

r to rep-
resent real audio as ArA

′

r. Similarly, Aad and A
′

ad were
concatenated to represent attacked audio as AadA

′

ad. Sub-
sequently, we employed the triplet model (TM ) [5] to cap-
ture intra-class consistencies and inter-class inconsisten-
cies, thereby generating discriminative features for effective
detection.

Let Fa, Fp, and Fn represent embeddings generated by
TM for anchor (a), positive (p), and negative (n) samples,
respectively. Then pairwise euclidean distance Da→p be-
tween a and p and Da→n between a and n are computed,
defined as follows:

Da→p = ||Fa − Fp||2 (9)

and

Da→n = ||Fa − Fn||2 (10)

We use margin ranking loss (Lmr) to train the triplet
model, defined as follows:

Lmr = max(0, y × (Da→p −Da→n) +m) (11)

where m is the margin value. We set it to 0.
After training the triplet model, we designed a simple

fully-connected model to detect real and attacked audio.

4. Experiments
In this section, we describe the experimental results, includ-
ing the datasets, the performance of the baseline ADD mod-
els, the application of generative AF attacks, and the pro-
posed SHIELD mechanism to defend against AF attacks.
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Table 1. Performance of the baseline and GAN attacks for SoTA ADD methods.

Methods ASVspoof2019 In-the-Wild HalfTruth
Baseline G1 G2 G3 Baseline G1 G2 G3 Baseline G1 G2 G3

RawNet3 [10] 99.92 0.32 99.21 94.54 99.43 3.72 22.57 15.71 99.46 51.22 28.58 4.50
RawNet2 [24] 96.00 77.63 86.14 89.68 99.48 0.77 3.31 20.98 98.76 71.03 69.79 70.12
RawBoost [25] 90.68 56.15 72.90 89.62 99.79 2.00 4.40 51.32 97.63 69.27 85.04 97.63

Res-TSSDNet [7] 93.42 63.32 0.77 0.74 99.70 58.61 43.12 87.26 99.02 70.07 24.62 1.94
Inc-TSSDNet [7] 98.22 75.00 70.71 3.22 99.11 56.82 85.75 80.68 98.51 88.77 51.97 2.26

ResNet [6] 97.82 63.54 86.94 0.25 99.57 63.20 16.31 0.38 99.30 99.89 17.48 0.02
MS-ResNet [33] 92.38 82.94 75.88 65.65 99.02 57.40 74.76 58.40 96.21 86.99 66.19 17.43

Avg. 95.49 59.84 70.36 49.10 99.44 34.65 35.75 44.95 98.41 76.75 49.10 27.70

Figure 4. Spectrogram visualization of deepfake and corresponding attacked samples generated by G1, G2 and G3, respectively.

4.1. Datasets

To evaluate the performance of the baseline, AF, and
proposed defense, we utilize three benchmark datasets:
ASVspoof2019 [26], HalfTruth [38], and In-the-Wild [20].
These datasets provide diverse real and deepfake samples
generated by various speech synthesis and voice conversion
techniques.
ASVspoof 2019 [26]: The ASVspoof 2019 [26] dataset
is a widely used benchmark for assessing vulnerabilities
in ASV systems. It includes logical and physical access
scenarios, with the logical subset containing 121,461 au-
dio samples generated using 17 different TTS and VC algo-
rithms. Further details about the parametric configuration
can be found in [26].
HalfTruth [38]: The HalfTruth dataset [38] is designed to
assess the detection of partial audio deepfakes, containing
53,612 samples that blend synthetic speech from advanced
TTS and voice cloning technologies with genuine record-
ings. It features contributions from 5,592 male and 20,962
female voices, ensuring diverse representation. Further de-
tails can be found in [38].
In-the-Wild [20]: The In-the-Wild dataset contains real
and synthetic audio collected from interviews, online me-
dia, and other real-world sources, incorporating noise and
environmental variations. Unlike ASVspoof2019 [26] and
HalfTruth [38], which contain controlled synthetic speech,
In-the-Wild [20] presents deepfake scenarios in uncon-

strained conditions.

4.2. Experimental Setup
All experiments were conducted on a high-performance
Lambda server equipped with 48GB of GPU memory and
180GB of RAM, ensuring efficient processing of large-scale
audio datasets. We utilized PyTorch as the primary deep
learning framework, leveraging CUDA 12.1 for accelerated
computations on NVIDIA RTX 6000 ADA GPUs.

We trained the SoTA ADD methods using a cross-
entropy loss function for 50 epochs, with a batch size of
256 and a learning rate of 0.0001. We train the GAN mod-
els for 30 epochs, which yields the best performance. The
batch size and learning rate are set to 32 and 0.0001, respec-
tively, for both the generator and the discriminator. Ad-
ditionally, we use pretrained ADD methods as an ensem-
ble of surrogate models. We train the triplet model for 50
epochs to achieve the best performance. The batch size and
learning rate are set to 32 and 0.0001, respectively. We ap-
plied mixed-precision training for optimized training. We
optimize all the models using the Adam optimizer. To im-
prove the generalization on unseen test sets, we combined
the training data from all three datasets to train all models.

4.3. Performance Evaluations and Comparisons
This section provides a detailed evaluation of the base-
line ADD methods, AF attacks, and the proposed SHIELD
against AF attacks.
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4.3.1. Baseline Deepfake Detection and Anti-Forensic At-
tack Results on Benchmark Datasets

We selected seven SoTA ADD methods, including
RawNet3[10], RawNet2[24], RawBoost[25], Res-
TSSDNet[7], Inc-TSSDNet[7], ResNet[6], and MS-
ResNet [33], to evaluate both baseline performance and
AF attacks on benchmark deepfake datasets. These
methods represent the most advanced detection techniques
that leverage both raw waveform and spectrogram-based
analyses to expose audio unnaturalness.

Table 1 presents the baseline performance of ADD meth-
ods across three different datasets, such as ASVspoof2019,
In-the-Wild, and HalfTruth. The results show that these
ADD methods effectively differentiate real and deepfake
audio samples, achieving an average accuracy of 95.49%
on ASVspoof2019, 99.44% on In-the-Wild, and 98.41% on

Table 2. Evaluation of the proposed defense mechanism in the
match setting.

Setting ASVspoof2019 In-the-Wild HalfTruth

G1 → G1 97.42 98.75 99.32
G2 → G2 98.85 99.04 99.61
G3 → G3 98.12 97.95 99.77

Average 98.13 98.58 99.57

Table 3. Evaluation of the proposed defense mechanism in the
mismatch setting.

Setting ASVspoof2019 In-the-Wild HalfTruth

G1 → G2 99.12 98.85 99.43
G1 → G3 99.75 99.04 99.61

Avg. (G1) 99.44 98.95 99.52

G2 → G1 96.74 98.32 98.56
G2 → G3 98.71 97.54 98.24

Avg. (G2) 97.73 97.93 98.40

G3 → G1 98.89 99.01 99.16
G3 → G2 99.44 98.96 99.08

Avg. (G3) 99.17 98.99 99.12

Overall Avg. 98.78 98.62 98.85

Table 4. Performance comparison of the proposed method with
SoTA defense mechanism.

Setting ASVspoof2019 In-the-Wild HalfTruth

SENet [35], 2020 68.34 53.11 57.54
LCNN [11], 2023 85.12 60.44 60.22
ABC-CapsNet [34], 2024 66.23 58.64 66.79

Proposed 98.78 98.62 98.85

HalfTruth, respectively.
To conduct AF attacks on ADD methods, we explored

SoTA GAN models for audio processing and fine-tuned
three architecturally distinct models: G1 (UNet)[1], G2

(SEGAN)[21], and G3 (OPGAN)[9]. These models were
selected based on their diverse architectures and effective-
ness in speech synthesis and enhancement, making them
suitable for AF attacks.

The attack results, presented in Table 1, reveal a sig-
nificant decline in ADD detection performance. Specifi-
cally, the average accuracy dropped to 59.84%, 70.36%, and
49.10% on ASVspoof2019; 34.65%, 35.75%, and 44.95%
on In-the-Wild; and 76.75%, 49.10%, and 27.70% on
HalfTruth when using G1, G2, and G3, respectively. These
results demonstrate the vulnerability of existing ADD meth-
ods to adversarial perturbations, highlighting the need for
more robust countermeasures.

4.3.2. Performance Evaluation of the Proposed SHIELD
against Generative AF Attacks

We carried out two settings to evaluate the proposed
SHIELD against generative AF attacks. First, match sce-
nario, in which the attack (GA) and defense (GD) use the
same generator model as shown in Figure 2. Second, a mis-
match scenario, where the attack (GA) and defense (GD)
use different generator models. RawNet3 [10] is employed
as the embedding network in our triplet model to collabo-
ratively learn discriminative features. Its selection is moti-
vated by its superior performance compared to SoTA meth-
ods, as shown in Table 1.

The defense results in the match setting are presented
in Table 2 in which we use the same GAN model to ap-
ply AF attacks and defend against them such as G1 →
G1, G2 → G2, and G3 → G3. The proposed method
achieved average detection accuracies of 98.13% for the
ASVspoof2019, 98.58% for the In-the-wild, and 99.57%
for the HalfTruth datasets, respectively. This confirms that
the proposed SHIELD can effectively detect known gener-
ative AF attacks on deepfakes and offers a robust solution
for ADD method.

Table 3 summarizes the detection performance of the
proposed SHIELD mechanism in the mismatch setting. In
the mismatch setting, we use different combination of three
GAN models, such as G1 → G2, G1 → G3, G2 → G1,
G2 → G3, G3 → G1, and G3 → G2 to evaluate the
performance. Similar to the match setting, the method
demonstrated strong effectiveness in countering unknown
AF attacks on deepfakes. The proposed SHIELD achieved
overall average accuracies of 98.78% for ASVspoof2019,
98.62% for In-the-Wild, and 98.85% for HalfTruth datasets,
respectively. Compared to baseline ADD methods, the pro-
posed defense achieved superior performance in mitigating
generative AF attacks in either setting.
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4.3.3. Performance Comparisons
We compared the proposed SHIELD with SoTA defense
mechanisms, such as ABC-CapsNet [34], LCNN [11], and
SENet [35]. We computed the average robustness results
of the SoTA defenses against G1, G2, and G3, respec-
tively. Table 4 compares the detection results of the pro-
posed SHIELD with three SoTA methods. The proposed
SHIELD outperforms existing defense methods by achiev-
ing improvements of 30.44%, 45.51%, and 41.31% over
SENet; 13.66%, 38.18%, and 38.63% over LCNN; and
32.55%, 39.98%, and 32.06% over ABC-CapsNet on the
ASVspoof2019, In-the-Wild, and HalfTruth datasets, re-
spectively, showing that SHIELD consistently surpasses
these SoTA defenses under AF attacks.

4.4. Ablation Study
In our experiments and analysis, we employ three GAN
models to execute AF attacks. To better understand, we
visualize the spectral characteristics of both deepfake and
AF attacked samples, as illustrated in Figure 4, to facili-
tate a comparative quality assessment. The visualization re-
veals that differentiating between deepfake and AF attacked
samples poses significant challenges for human perception.
Moreover, this AF attacks proficiently circumvent SoTA

Figure 5. t-SNE visualization of embeddings for HalfTruth
datasets produced by the triplet model.

ADD methods, highlighting their efficacy and the inherent
limitations of current detection techniques.

To illustrate the efficacy of the triplet model, we present
t-SNE representations in Figure 5, utilizing RawNet3 [10]
on the HalfTruth dataset. Specifically, we show results for
the G3 → G3 (bottom) match and G1 → G3 (top) mis-
match configurations. The visualization distinctly demon-
strates that the triplet model effectively clusters genuine and
AF attacked samples, rendering them easily distinguish-
able.

5. Conclusion and Future Works
The revolution of generative models has enabled the gen-
eration of more realistic deepfakes without leaving any vi-
sual clues to distinguish them from real samples. Therefore,
several ADD methods have been proposed to detect gener-
ative signatures to reveal deepfakes. Despite advancements
in ADD, these methods remain vulnerable to generative AF
attacks. To address this, we introduced a novel SHIELD
mechanism that incorporates an auxiliary generative model
as a defense within a collaborative learning framework. By
leveraging triplet learning, our approach effectively cap-
tures generative signatures in deepfake audio, improving
detection performance across benchmark datasets in both
matched and mismatched scenarios.

While our method effectively counters generative
AF attacks, future work will extend its applicability
to a wider range of adversarial threats, such as diffu-
sion, filtering, and other techniques like noise injection
attacks, time-frequency manipulation, and temporal at-
tacks. Additionally, integrating multi-modal analysis
could enhance robustness, as adversarial techniques of-
ten target individual modalities like audio or visual data.
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