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Abstract—Goal-oriented Communication (GoC) is a new
paradigm that plans data transmission to occur only when it
is instrumental for the receiver to achieve a certain goal. This
leads to the advantage of reducing the frequency of transmissions
significantly while maintaining adherence to the receiver’s objec-
tives. However, GoC scheduling also opens a timing-based side
channel that an eavesdropper can exploit to obtain information
about the state of the system. This type of attack sidesteps
even information-theoretic security, as it exploits the timing of
updates rather than their content. In this work, we study such an
eavesdropping attack against pull-based goal-oriented scheduling
for remote monitoring and control of Markov processes. We
provide a theoretical framework for defining the effectiveness
of the attack and propose possible countermeasures, including
two practical heuristics that provide a balance between the
performance gains offered by GoC and the amount of leaked
information. Our results show that, while a naive goal-oriented
scheduler allows the eavesdropper to correctly guess the system
state about 60% of the time, our heuristic defenses can halve the
leakage with a marginal reduction of the benefits of goal-oriented
approaches.

Index Terms—Goal-oriented Communication, Eavesdropping,
Timing Attacks, Hidden Markov Models

I. INTRODUCTION

Over the past few years, the Goal-oriented Communication
(GoC) paradigm has attracted a significant amount of interest
from the research community. The concept was advanced
by Warren Weaver in his 1949 introduction to Shannon’s
theory of communication [1], and regards the design of more
advanced communication protocols that go beyond the mere
transmission of bits and consider the meaning and usefulness
of the data for the receiver in the decision over what and when
to transmit. On the other hand, a practical implementation of
these ideas requires powerful machine learning techniques [2]
and, therefore, has only recently become feasible.

Goal-oriented approaches were initially applied to compres-
sion [3] and have successively been extended to scheduling
strategies that consider contextual and past information [4].
These initial studies have shown that GoC leads to impressive
performance advantages, fostering research on more practical
aspects including security against eavesdropping attacks [5].
The most common approach to enhance GoC security is
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to train the transmitter to encrypt the data [6], modifying
the encoding mechanism to trigger an incorrect semantic
interpretation by possible eavesdroppers [7], while allowing
the intended receiver to decode the original message. In this
regard, information-theoretic approaches [8] can provide more
solid confidentiality guarantees [9], but only under specific
assumptions on the nature of the encoder and decoder.

Although the above mechanisms address the risk of leaking
information through the content of the transmitted data, an-
other specific vulnerability of GoC systems has been mostly
neglected so far: side-channel attacks that aim to infer the
state of the system from the timing of messages [10]. This is
particularly critical for Internet of Things (IoT) applications or
other resource-constrained monitoring systems, where GoC is
used to reduce the frequency of updates according to the status
of the monitored process. In these scenarios, timing attacks
can leak information about the content of transmitted packets
(i.e., the state of the process) even when using one-time pad
encryption or information-theoretic security.

In this work, we analyze the secrecy of a goal-oriented
scheduling system under a timing attack from an eavesdropper.
Specifically, we consider a pull-based communication scenario
in which a controller node maintains an online estimate of
the state of a remote Markov process, in order to monitor or
control the process itself [11]. The state of the process is not
directly observable by the controller node but is continuously
tracked by a sensor node that can transmit the current state
to the other node upon request. The goal of the controller
is to schedule status update transmissions from the sensor
node to obtain high reward for its local task, while minimizing
the channel occupancy and limiting the information that can
be inferred by an eavesdropper from the timing between
consecutive transmissions in either direction.

We consider the critical condition in which the eavesdropper
knows the state-transition probability matrix of the monitored
Markov process and the policy used by the controller to sched-
ule transmissions from the sensor node. In addition, the eaves-
dropper knows the timing of all past transmissions. Hence, we
analyze the trade-off between secrecy, which depends on the
information leakage of the system, and performance, measured
in terms of reward for the controller node and transmission
efficiency. We consider four different strategies: a pure goal-
oriented approach, which optimizes performance disregarding
security aspects; a periodic scheduling that prevents timing
attacks, but loses GoC advantages; and two novel heuristics
that reduce information leakage while preserving performance.
The analysis is repeated both in a monitoring scenario, where
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the controller only aims at estimating the status of the process,
and in a control scenario, where the system’s evolution can be
altered by the controller itself.

To our knowledge, this manuscript is the first to consider
the secrecy implications of timing attacks against GoC, and
includes the following main contributions:

o We provide a rigorous model of timing attacks in GoC,
defining information leakage as a function of the time for
which confidentiality must be ensured.

e We prove that finding a game-theoretical equilibrium
when both the legitimate agent and the eavesdropper are
rational actors is a computationally hard problem.

e« We propose a heuristic algorithm, named Alternating
Defense from Eavesdropping (ADE), which allows the
legitimate agent to compute the information leakage in
real time and take countermeasures accordingly.

o We propose a lighter heuristic algorithm, named Packing
Defense from Eavesdropping (PDE), which pursues the
same objective as ADE, but with a lower complexity,
enabling its implementation as a look-up table.

e« We evaluated the effectiveness of timing attacks and
defensive strategies through Monte Carlo simulations for
both estimation and control scenarios.

A preliminary version of this work was presented as a con-
ference paper in [12]. This manuscript extends our previous
results by introducing the PDE policy and analyzing the overall
framework in the case of control applications.

The remainder of the paper is organized as follows. First,
Sec. II reviews state-of-the-art security schemes in semantic
and GoC communication. Hence, Sec. III presents the GoC
model, drawing from the results of our previous work [11],
while Sec. IV presents the eavesdropping attack and the game-
theoretical framework. Subsequently, Sec. V introduces the
heuristic algorithms to mitigate information leakage in the
system, and Sec. VI discusses our simulation settings and
results. Finally, Sec. VII concludes the article and describes
possible avenues for future research.

II. RELATED WORK

As GoC is still a relatively new paradigm, research on its
security aspects, such as eavesdropping attacks, is still in its
infancy. The existing GoC security literature mostly focuses on
a subclass of GoC problems which focuses on reconstructing
the transmitted information directly, without any memory
or time-dependence. In this context, timing attacks are not
meaningful, and the focus is on the content of each message.

Besides an early work using an information bottleneck
approach [8], previous studies mainly deal with eavesdropping
attacks using deep learning [5]. More recently, the authors
of [9] provide a near-information-theoretic security approach
for semantic communication. The authors adopt the classic
approach in information-theoretic security by considering a
legitimate receiver with a higher Signal to Noise Ratio (SNR)
than the eavesdropper, allowing the semantic scheme to exploit
this advantage by properly encoding the semantic symbols. A
very common semantic communication approach is deep Joint
Source-Channel Coding (JSCC). This model was adapted to

include Shannon secrecy in [6], extending the information-
theoretic approach to learning-based semantic encoders, whose
constellations are learned rather than hand-designed: in this
case, the learning algorithm converges to a secret semantic
encoding by using secrecy as an additional objective func-
tion, exploiting similar principles as traditional information-
theoretic security. Interestingly, the JSCC protection module
can be implemented after semantic encoding ( [6]), before
encoding ( [13]), or integrated within the encoder ( [14], [15]),
with similar results and trade-offs in terms of secrecy and
image transfer quality.

Another example of semantic encryption is given in [7],
where eavesdroppers adopt a model inversion approach to
retrieve the original information. The use of explicit semantic
features of the image [16] can also be used to generate shared
secrets between the transmitter and the legitimate receiver that
can be used to improve security. The same concept has been
extended to the vision transformer architecture in [17]. Finally,
the authors of [18] adopt steganographic techniques to fool
the eavesdropper into recovering an unrelated image, while
keeping the meaningful content secure.

Active attacks that go beyond eavesdropping have been
designed and tested against semantic communication in [19],
whose authors consider the integrity of messages and the
reliability of the application as dual objectives. More complete
threat models for semantic communication are given in [20],
[21], which include attacks against various components of
the system, including the training process. We observe that
these previous works focus on securing the content of the
current semantic message, without considering previous trans-
missions [22]. In addition, side-channel attacks, such as the
one considered in this work, have been mostly neglected by
the semantic communication literature. This is a critical issue,
because this type of attack can be effective even when the
content of messages is perfectly secure (e.g., when protected
through one-time padding).

Interestingly, side-channel attacks have been considered in
other practical scenarios, such as cloud scheduling. For exam-
ple, the work in [23] analyzes a model in which a scheduler
dispatches computing jobs to servers to satisfy clients with
different arrival times. In this scenario, a malicious entity can
infer the traffic patterns of legitimate users by measuring the
scheduler’s response time. A possible defense is the partial
randomization of task execution times [24], which significantly
reduces information leakage through the side channel at the
cost of lower system efficiency. Similar considerations were
applied to the field of Information-Centric Networking (ICN),
in which caching is used to infer information about user
requests and the popularity of content [25].

Finally, we consider related work from another field,
namely, remote estimation and control: studies from this area
are not closely related to semantic communication and GoC,
but they approach similar problems from another angle, and
some of their conclusions can be applied to the scenarios
studied in this manuscript. In the case of a remote esti-
mation scenario, the secrecy of monitoring systems against
side channel attacks is closely related to the concept of
opacity. In the estimation literature, a system is considered



TABLE I
MODEL NOTATION.

Symbol  Description \ Symbol Description \ Symbol Description \ Symbol Description

S State space A Action Space P Transition probability matrix | -y Discount factor

R(-) Total reward function re(-) Bob’s reward function ra(-) Alice’s reward function Tnax Maximum timing signal
B Transmission cost n Steady-state distribution | ) (-) Communication policy () Control policy

D Opacity time gap Lg(n; D) Information leakage DE Eve’s belief distribution Lin Minimum leakage

n Eve’s estimate o(+) Communication policy fr(s) Forward probability br(s;m)  Backward probability
Liow ADE’s lower threshold | Lnign ADE’s higher threshold Eff '7) () Single deviation policy H* PDE’s target entropy

0 Density decay H(-) Entropy function Cr,s(8") T-step transition probability 6(+) Kronecker delta function

opaque if an eavesdropper with limited observations is unable
to estimate some restricted information [26], including the
identity of a client or whether the system enters a set of
secret states. The analysis of opacity has been extended to
K-step observations [27] and even scenarios in which the
eavesdropper has access to the entire observation history [28].
In information-theoretic terms, opacity can be defined as the
difference between the entropy of the belief distribution of the
legitimate monitor and that of the eavesdropper [29].

In control scenarios, where the legitimate agent can affect
the state evolution of the system through actions, but the
control policy is known to the eavesdropper, opacity is more
difficult to achieve, and its formal verification becomes a
highly complex [30] or even undecidable problem [31]. At the
same time, the ability to affect the state of the system enables
agents to actively improve security by inserting fictitious
events [32] to confuse eavesdroppers. This inherent complexity
makes it critical to design GoC policies that optimize control
performance under opacity constraints, or optimize both simul-
taneously. To the best of our knowledge, the current literature
considers only the problem of maximizing the opacity of the
initial state or the current state. In this work, we generalize the
problem considering the opacity of the entire system history,
which is a significantly more challenging problem.

III. GOAL-ORIENTED COMMUNICATION MODEL

We consider a remote control scenario in which one node
(Alice) can instantaneously observe the state of a discrete-time
Markov chain defined by a state space S and a transition ma-
trix P. We denote by s(n) € S the state of the process at time
step n and by pq the initial probability distribution of the state.
A second node (Bob) is assigned the task of controlling or
estimating the process (depending on the scenario considered)
by choosing an action over a state space .A. Both Alice and
Bob have complete knowledge of P and g, but Bob cannot
observe s(n) directly and must rely on Alice’s transmissions
to update his information about the current process state. The
notation used in our model is reported in Tab. I.

We consider a pull-based configuration in which, at each
time step n, Bob must decide whether to ask Alice for
an update, thus incurring a communication cost 3 € RT,
or to estimate the current state of the Markov chain from
the information he already knows. We denote Bob’s binary
communication decision as ¢(n) € {0,1}, with ¢(n) = 1 in
the case of transmission, and ¢(n) = 0 otherwise. Moreover,
we assume a maximum number of steps, Ty ax, after which
Bob always requests an update. This parameter is necessary for

the tractability of the analysis, but its impact can be arbitrarily
minimized by considering large values of Ti,.x.

We then define a task reward function rg : S x A — R
that determines the performance of Bob’s task (estimation or
control). We remark that, when considering remote estimation
scenarios, Bob’s action consists of estimating the state from
the available information, that is, a(n) = §(n). The action
space then corresponds to the state space, and the transition
probabilities of the Markov process are independent of the
selected action, i.e., P(s'|s,a) = P(s'|s,a’) V a,a’ € A.
Hence, the task reward function is equal to 1 if the state esti-
mate matches the actual state, and 0 otherwise, i.e., r5(s, §) =
(s, 8), where 4(+, ) is the Kronecker delta function.

We also introduce the communication reward function r 4 :
{0,1} — R, with r4(c) = —f¢, where /3 is a communication
cost that is paid only when Bob asks for a transmission (¢ =
1). The total reward is then given by the combination of the
task reward and the (negative or null) communication reward:

(D

Therefore, Bob’s objective is to find the communication
policy that maximizes the expected cumulative reward

R(s,c,a) =rp(s,a)+ra(c).

—+oo
G(n)=E | Y % R(s(k),c(k),ak)|, (@
k=n

where v € [0,1) is the exponential discount factor. The
described problem is a remote Partially Observable Markov
Decision Process (POMDP), comprehensively characterized
by the tuple (S, A, P,r5(-),7, Tmax, 5)-

We assume that the communication delay is shorter than the
time step of the underlying Markov process, so that when Alice
transmits, Bob receives the state information instantaneously
(i.e., within the same time slot). Using the state updates from
Alice and his knowledge of P, Bob keeps a local estimate of
the state probability distribution of the remote process, that is
to say, a belief on the process state that we denote as (.

Let ¢a s(s') represent Bob’s estimate of the probability that
the process will be in state s’ in A steps, given that Alice just
reported that the process was in state s. This probability can
be computed recursively as

Canls) = 32 P(s/]s"im)Cam1(5"),

s”"eS

3)

with (o s(s’) = (s, s"). Bob’s control policy 7 is a parameter
of the transition probabilities because, in the control scenario,
the evolution of the Markov process is generally affected by
Bob’s actions. In the estimation case, we can simplify (3) to



Fig. 1. The goal-oriented eavesdropping attack: Eve cannot decipher Alice’s
updates, but the timing signal 7 allows her to estimate the state of the remote
Markov process.

Cas(s) = P2 (s,s'), i.e., to the element with indices s and
s’ of the A-th power of the transition matrix, as the evolution
of the system does not depend on the control policy 7.

Since each transmission represents a renewal of Bob’s
beliefs, the current estimate of the process state can be
summarized by the last received state s and the time A
since the last update [11]. Therefore, Bob’s optimal decisions
depend only on (s, A), which reduces the complexity of the
problem. Importantly, the Modified Policy Iteration (MPI)
scheme given in [11, Alg. 1] can find the jointly optimal GoC
policy ¢ : S x Z* — {0, 1} and the associated control policy
7 :8 X ZT — A, in polynomial time with respect to the size
|S| of the state space.

Practically, any time Bob receives a state update s € S from
Alice, he can determine his future control actions in advance,
as well as the optimal number of time steps to wait before
the next update request, which is the smallest A such that
(s, A) = 1. We denote the transmission request scheduling
function as ¢ : S — Z™, defined as

o(s) =inf{A e N:¢(s,A) =1}. 4)

This function then determines the inter-transmission intervals.

IV. EAVESDROPPING ATTACK

We assume that an eavesdropper (Eve) knows the Markov
process statistics represented by P and pg, and the trans-
mission request scheduling o(-). However, Eve cannot di-
rectly observe the process, nor read the content of Alice’s
transmissions. Therefore, she tries to gain information about
the state of the Markov chain by observing the intervals
between consecutive Bob’s requests. From Eve’s perspective,
the system is a Hidden Markov Model (HMM), where the
timing signals 7, i.e., the intervals between consecutive state
updates, are the observations from which she determines the
maximum a posteriori (MAP) estimate of the Markov source
state. A scheme of the overall scenario is reported in Fig. 1.

A. Information Leakage

We now consider the problem of preventing Eve from ac-
quiring information about the remote process state from Alice
and Bob’s communication.! We define the secrecy objective

'We specify that our formulation does not consider the initial knowledge
of Eve over the Markov source. If the initial state distribution is low-entropy,
the mixing time of the chain might be quite long, which leads to an edge case
whose analysis is left to future work.

using the concept of the opacity time gap, denoted as D.
This gap represents the number of past time steps for which
information on the Markov chain should remain undisclosed.
Let ¢ (n; d) denote Eve’s belief distribution about the process
state at time n — d, given that she has listened to the channel
up to time n. Therefore, [¢pg(n;d)](s) is the probability that
s(n —d) =s € S from Eve’s perspective.
We define the information leakage at time step n as

{1 _ H(¢gr(n;d) } 6

max
Hy

LE(n; D> - defo,...,D}

where H(-) is the Shannon information theoretic entropy
defined as H(p) = — > s p(s)logy(p(s)), with p(-) denot-
ing the probability distribution of the process state [1]. The
denominator Hy = log,(|S|) is a normalization constant. We
note that Lg(n; D) = 0 only if ¢g(n;d) is uniform in the
state space for any delay d € {0, ..., D}, which means that
Eve does not have information on the state of the system
in the last D steps. On the other hand, Lg(n;D) = 1 if
¢dr(n; D) = (s, $p—q) for some d < D, i.e., Eve has perfect
knowledge of the state of the system in at least one of the last
D steps. On the other hand, Eve is always able to determine
the steady-state distribution g of the system. This implies that
the leakage can never be less than

Luyin = 1= (Ho) " H (1) > 0. ©6)

Therefore, zero leakage can be achieved only for processes
with a uniform steady-state distribution g, for which H (u) =
Hy, whereas Ly, > 0 in the general case. Finally, we observe
that Eve’s best estimate of state s(n) is obtained at step n+ D,
as she has additional observations to draw on. Accordingly, the
accuracy of this estimate is

n(n) =46 <s(n), argmax [¢g(n + D; D)] (s/)> )
s’eS

This setup gives Eve an advantage, as she can wait up to

D steps before estimating the process state, while Bob’s

estimation is required to be performed in a timely fashion.

B. Forward-Backward State Estimation

Since Eve sees the system as an HMM, the MAP estimate
of the process state can be computed through the forward-
backward algorithm. Practically, Eve combines forward state-
transition probabilities, which only consider the past, with
backward state-transition probabilities, which only consider
the future. When estimating the state at time m using infor-
mation up to time n > m, the forward probabilities are based
on observations from 0 to m, while the backward probabilities
are based on those from m + 1 to n.

Upon observing the k-th request from Bob, Eve can recur-
sively compute the forward probability for any possible initial
state s as

Fe(8) =D Cr.s()6(7(k), 0 () frea (), (8)
s’eS

where 7(k) is the number of steps between transmissions k—1
and £, {a s, given by (3), is the state probability distribution



in A steps assuming that the initial state was s, and o(-) is the
transmission scheduling policy defined in (4). Recursion starts
setting the initial probability vector f; equal to the steady-state
probability distribution, i.e., fy = pg.

The backward probability for the same state is instead

br(sin) = 8(r(k+1),0(8)) Y Cr(isn).s(s)brar (s'sm).

s'eS
©))
The last step in the recursive calculation uses bg () (s) =
|S|71V s € S, as Eve has no information after index K (n),
which represents the index of the last transmission before time
step n. Eve’s MAP estimate of the process status when the k-th
update is transmitted is then

fe(s)bi(s;n)
doves fe(s)br(s'sn)”

Eve can also compute the MAP estimate of the process status
¢ steps after the k-th transmission step as

Osin) =3 on(s'sm)brrr (8"51)Cow (5)Cr (k1)—e,(5").

s',s"'eS

1D
Using the above formulas, Eve can compute the belief of the
state distribution ¢g(n;d) for any time step n and delay d.
We observe that the running time of the forward-backward
algorithm is O(|S|?n). Therefore, it has a relatively low energy
cost, which can be further reduced by limiting n to the mixing
time of the Markov chain.

Pr(s;n) = (10)

V. EAVESDROPPING DEFENSES

While Bob aims to accurately estimate or control the pro-
cess, limiting as much as possible the leakage of information,
Eve is a purely adversarial attacker who wants to estimate the
state of the remote Markov process exploiting the correlation
between the state transitions of the system and the timing
between Alice’s transmissions.

For a given opacity time gap D, the performance of the
system can be defined as the expected weighted difference
between the overall reward and the information leakage, i.e.,

E ZR(s(n),c(n),a(n))—ELE(n;D) ) (12)
n=0

where € > 0 is a parameter that can be used to adjust the
relative importance of information leakage with respect to
Bob’s estimation accuracy. Therefore, Bob’s optimal strategy
should maximize (12), while Eve’s best response consists of
using the forward-backward algorithm to update her estimate
of the Markov process.

We can model this system as a zero-sum one-sided partially
observable stochastic game (OPOSG) [33]. The solution for
the game is a Nash Equilibrium (NE) where any unilateral de-
viation from a player’s policy would result in a decrease in that
player’s performance. Methods to solve zero-sum OPOSGs
have recently been proposed, based on the convexity property
of the value function [33] or on dividing the problem into
sub-games with limited trajectories [34]. However, complexity
grows exponentially with the state space size. In fact, we

can prove the following statement from well-known results
in game theory.

Theorem 1. The computational time to find the NE of the zero-
sum game between Bob and Eve grows exponentially with the
size |S| of the state space.

Proof: A classical result by Dantzig [35] proves that a
two-player zero-sum game with payoff matrix M is equivalent
to the following linear programming problem:

minimize Z x such that x > 0, Mx = 1.

7

13)

Normalizing x returns the optimal mixed strategy for one of
the players. In our case, the action space for Bob is equivalent
to the possible communication and control policies that he can
adopt, which grows at least exponentially with the number of
states |S|. The length of x will then also grow exponentially
with |S|, making the game unsolvable in polynomial time. W

Although finding an NE is computationally intractable for
nontrivial problem sizes, we can design simple heuristic
policies that allow Bob to trade-off between communication
efficiency and system secrecy, reducing the vulnerability of
GoC strategies to timing attacks. In the following, we propose
two solutions to attain this objective: Alternating Defense
from Eavesdropping (ADE), which alternates between goal-
oriented and periodic transmission, and Packing Defense from
Eavesdropping (PDE), which is designed to reduce the entropy
of Bob’s scheduling decisions, thus increasing the communi-
cation opacity and making the system inherently more secure.

A. Alternating Defense

We know that the optimal GoC scheduling policy outper-
forms the optimal Periodic Policy (PP) in terms of expected
reward, i.e., it can obtain the minimum transmission cost for a
given state-estimation accuracy [11, Th. 2]. However, GoC is
highly vulnerable to timing attacks, while a periodic strategy
minimizes information leakage, as we prove below.

Theorem 2. In an estimation scenario over a recurrent
Markov chain, any periodic scheduling policy is perfectly
private, i.e., the information leakage tends to the minimum
value L,,;, as n increases for any finite value of D.

Proof: Under a periodic scheduling policy with period
T, we have o(s) =T Vs € S and, consequently, the forward
probabilities are fi(s) = > . cs (PT)S,,S fr—1(s"). This is
exactly equivalent to a blind update, and the same holds for
the backward probabilities. As timing does not provide new
information, Eve’s belief tends to the steady-state distribution
p for any n larger than the system mixing time, reducing the
leakage to L, defined in (6), as the window for the leakage
calculation moves past the initial transient. [ ]
We note that the theorem may not always hold in the
more general control case, as Bob’s control policy 7 affects
the steady-state distribution p. However, the general principle
holds, as periodic transmission strategies still minimize leak-
age for any sequence of control decisions.
We take advantage of this principle to design our first heuris-
tic policy, Alternating Defense from Eavesdropping (ADE),



Algorithm 1 Alternating Defense from Eavesdropping (ADE)

Algorithm 2 Packing Defense from Eavesdropping (PDE)

1: function SCHEDULE(s, o, T, P, f, b, T, Liow, Lhigh, &)
2 if £ = 0 then > GoC active
3 if Lp(o(s)) > Lpjgn then > Check secrecy threshold
4: return next update in 7" steps, £ =1 > Switch to PP
5: else

6: return next update in o(s) steps, £ =0 > Keep using GoC
7 else > PP active
8 if Lg(T) < Loy then > Check performance threshold
9: return next update in o(s) steps, £ =0 > Switch to GoC
10: else

11: return next update in 7" steps, £ = 1 > Keep using PP

12: end function

whose pseudocode is reported as Algorithm 1. As Bob knows
his own transmission policy and, hence, the timing signal
observed by Eve, he can compute the information leakage
during the next transmission interval. Hence, Bob can switch
to a Periodic Policy (PP) whenever the expectation of future
leakage increases beyond an upper threshold Ly;gn and switch
back to GoC whenever the future leakage goes below a
threshold Lyoy. This hysteresis pattern allows Bob to limit both
the average and maximum leakage, while still exploiting GoC
at least in some time intervals.

B. Packing Defense

The second heuristic policy is named Packing Defense from
Eavesdropping (PDE) and is based on a simple observation:
if multiple states are mapped to the same inter-transmission
period, the leakage of the timing signal decreases, as Eve has
a harder time distinguishing between states. We then define
the entropy of the scheduling policy o as

s 30 00)) | (Laes 0 0(5)
Z Kl 1g2< g >

(14)
We can assume that H (o) is a good proxy for leakage: any
periodic policy has zero entropy, while the maximum entropy
log,(|S]) is achieved by picking a different inter-transmission
interval for each state, i.e., when V s',s” € S, s # §”,
we have o(s’) # o(s”). In this case, any timing signal 7
is mapped to a different state, so that at each transmission
Eve gains perfect knowledge of the transmitted value.

To define the PDE strategy, we introduce the concept of
single-state deviation policy 50 ), which is a scheduling
strategy identical to o except for state s*, whose associated
scheduling period is set to 7:

677 () = 70(s,8) +o(5)(1 = 8(s,57). (19)

Starting from the purely goal-oriented policy, denoted by (%),
we can then define an iterative procedure to pack the policy
through a series of single-state deviations that gradually reduce
the entropy. The i-th packing iteration is defined as o(*)(s) =
5(8(1 1 (s) for all s € S, where

(si,m) = arg max
(s*,m):H (€ Tl)))<H(o—(i*1))

[RB|§<(, 1>} . (16)

1: function PACK(o, H*)

2 H <—ENTROPY(0) > Compute entropy using (14)
3 running <— true

4: while running do

5: running <— false

6: R+ —o0

7 o'+ o

8 for s* € S do

9: for 7 € {1,. Tmax} do
10: if ENTROPY(SJ T))< H then > Check entropy
11: if REWARD(§(5 "™))> R then
12: o+ 50
13: R (—REWARD(O")
14: if o/ # o then
15: o+ o > Update policy
16: H <ENTROPY(0)
17: if H > H* then > Stopping criterion
18: running <— true

19: end function

This packing rule ensures that the new policy (¥ is the one
that maximizes the expected system reward E [Rp] among
those with entropy lower than H (J(Fl)). We can repeat the
packing step until the final policy achieves a target entropy
value H*, which represents the stopping criterion for PDE.
The full PDE pseudocode is given in Algorithm 2.

VI. SIMULATION SETTINGS AND RESULTS

In the following, we study our GoC model in two simulation
scenarios. The first represents a remote estimation task, where
Bob aims to estimate the current state of the system, which
evolves independently from Bob’s actions. The second is a
remote control task in which Bob affects the evolution of
the system with the goal of reaching certain states. After
presenting each scenario, we analyze the performance of the
heuristic policies introduced in Sec. V against the optimal GoC
scheduling, computed via the Modified Policy Iteration (MPI)
algorithm, and the optimal Periodic Policy (PP).

A. Scenario Settings

The remote estimation and remote control scenarios are both
modeled according to the discrete time POMDP presented in
Sec. III. Although the proposed framework is valid for any
recurrent Markov chain, we focus on a class of processes that
allow for an easy analysis of the system’s behavior under
different conditions. We consider a state space of |S| = 30
states, numbered from 1 to 30. The transition probability
function P : § x § x A — [0, 1] (corresponding to the matrix
P) depends on a single parameter § named density decay, that
makes it possible to tune the predictability of the evolution of



the system. Specifically, we have

2—2g(s,0)

¢ s =x(s,a)®1, mod(s,4) = 2;
%QT(S’O), s = x(s,a) ® 3, mod(s,4) = 2;
HQT(S’O), s’ = x(s,a) ©2, mod(s,4) = 2;
P(s,s',a) = %(5’9), s’ = x(s,a) ® 1, mod(s,4) # 2;
1_%(8’0), s’ = x(s,a) ® 3, mod(s,4) # 2;
1_%(3’0), s’ = x(s,a) ©2, mod(s,4) # 2;
0, otherwise;
17)

where @ and © represent modulo |S| addition and subtraction,
mod(m,n) is the integer modulo function, § € RT is the
density decay, and ¢(s, 6) is defined as

0

2s=2) € [0,1].

S |
S| -2

g(s,0) = (18)

The function x(s,a) € S determines the state transition
associated with action a € A, which is x(s,a) = s in
remote estimation (therefore, independent of Bob’s actions),
andx(s,a) = s+ a in the case of remote control.

Hence, from any state s, transitions can occur with a non-
zero probability to only three landing states that, only for the
control scenario, depend on the action a. The probabilities
of moving to the farthest reachable states (x(s,a) ® 3 or
x(s,a) © 2) are always balanced. Instead, the transition to
the intermediate state x(s,a) @ 1 is more probable than the
other two transitions from all states, except those such that
mod(s,4) = 2, making the drift of the process more variable.
We observe that as § — oo, g(s,0) tends to zero, and the
transition probabilities to neighboring states will become more
uniform (and less predictable). Conversely, as 8 — 0, g(s, )
tends to 1 and most states will have deterministic (and, hence,
fully predictable) transitions. Finally, we note that g(s,6) = 1
for the extreme states s = 1 and s = |S|, and progressively
decreases when moving towards the middle states. For any
value of @, middle states tend to have more balanced transition
probabilities toward their landing states, while states closer to
the extremes have more unbalanced transition probabilities,
that is, more predictable transitions.

As already mentioned, Bob’s action space .4 in the esti-
mation scenario is identical to the state space, and the task
reward function is r5(s,a) = 0(s,a). In the remote control
scenario, the action space is A = {0,1,2} and we defined
x(s,a) = s + a. Therefore, Bob can (stochastically) control
the sequence of states by choosing proper actions. In our
experiments, we assumed the control goal was to keep the
remote process close to the middle state s° = 14. Accordingly,
we define the reward as rp(s,a) = 5 - exp(—|s—s°|),
V s € S. Note that the control reward does not depend on the
accuracy of Bob’s estimates but only on the distance between
the current state s and the target state s°.

In both scenarios, we generate multiple POMDP config-
urations, varying the density decay 6 € [1,27] and the
transmission cost S € [0.2,2]. For each configuration, we
compute the optimal GoC scheduling policy given by the MPI
algorithm [11], maximizing the long-term reward of the system
penalized by the communication cost, as defined in (2). Hence,
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Fig. 2. Characterization of the MPI policy as a function of 5 and the density
decay 6 in the estimation scenario.

we compare MPI with PP, which is the best policy among
those exploiting a fixed inter-transmission period, and the two
heuristics presented in Sec. V. The PDE heuristic is configured
by setting H* = $H (0(%) as a stopping criterion, where o(*
is the initial scheduling policy returned by the MPI algorithm.
Instead, the ADE heuristic uses Lioy = 0.4 and Lyjgn = 0.6
as leakage thresholds. In all cases, we set Tp,x = 10 as the
maximum interval between consecutive transmissions, i.e., the
maximum value that the scheduling function o(-) can take.

B. Remote Estimation Scenario

Focusing on the remote estimation scenario, we first analyze
the characteristics of the optimal GoC policy provided by the
MPI algorithm. Fig. 2a shows a heatmap of the transmission
probability associated with each system configuration. We can
see that transmissions become less likely as [ increases and
are also affected by the randomness of the system’s evolution,
which depends on the density decay 6. When the transmission
cost is low (8 — 0), larger values of 6 (which correspond
to less predictable transition matrices) result in more frequent
state update requests from Bob, who can exploit communica-
tion to keep track of the process evolution. However, if the
transmission cost increases (3 — 2), the trend reverts and the
transmission probability decreases as € increases, because the
higher estimation accuracy may not cover the update cost.

Fig. 2b represents the entropy H (o) of the transmission
scheduling policy returned by the MPI algorithm, which is
a proxy of information leakage caused by transmission deci-
sions. In general, H (o) decreases as /5 — 0, because when the
frequency of communication increases, the variability of the
inter-transmission time decreases, and Eve has more difficulty
in sorting out the states sequence from the timing signal. This
phenomenon is more evident for §# — 27, which represents
a condition in which state transitions are less predictable and
the optimal scheduling becomes similar to the PP strategy.

In general, a policy that selects a different value of o(s) for
each state would have an entropy equal to log,(|S|), while any
periodic policy would have zero entropy. Hence, we expect the
MPI algorithm to have the highest entropy H (o) among the
strategies analyzed in this paper. This is because PP uses a
fixed inter-transmission period, ADE alternates between MPI
and PP, while PDE is explicitly designed to reduce H (o) with
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Fig. 4. Information leakage during a single episode in the estimation scenario,
with 3 = 1, 0 = 32 and D = 5. The ADE thresholds Loy and Ly;gp are
marked as dashed lines.

respect to MPI. We can appreciate the advantages of PDE by
looking at Fig. 3, where we report the transmission probability
and entropy associated with the heuristic. Notably, PDE results
in a transmission probability similar to MPI but successfully
halves the entropy in all configurations of the system.

Although H (o) is a useful indicator of system opacity, the
information leakage L, as defined in (5), provides more in-
formation on the trade-off between secrecy and performance of
the remote estimation task. In Fig. 4 we then report L g during
a single episode of Ny, = 200 steps, considering 3 = 1,
0 = 32, and D = 5. In addition to MPI and PDE, we also
consider the optimal periodic strategy PP and the ADE heuris-
tic. We can observe that the leakage of the MPI algorithm
quickly approaches 1, showing that Eve correctly guesses the
remote state very often with these settings. Conversely, PP
does not provide any information to Eve, whose knowledge
is limited to the steady-state probability distribution of the
Markov process. By design, the ADE algorithm keeps the
leakage between Lo, and Lyign, thus offering a compromise
between the two previous approaches. Finally, PDE improves
secrecy compared to MPI, but the value of Ly exhibits strong
oscillations over time, exposing the system to a high risk of
leakage in some steps.

Fig. 5 shows the performance of PP while varying the
communication cost 8 and density decay 6, and considering
a total of N, = 10 episodes for each configuration, with
Niiep = 200. In addition to leakage (a), we consider the total
reward R (b), defined in (1), the reward for the estimation
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Fig. 5. PP performance as a function of 6 and § in the estimation scenario,
with D = 5.
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Fig. 6. MPI performance as a function of 6 and 3 in the estimation scenario,
with D = 5.

task rp (c), as well as the probability n that Eve correctly
estimates the state of the Markov process (d), the latter defined
as in (7). First, we observe that Ly ~ 0 for all system
configurations when the PP solution is used, as expected for
periodic communication. Moreover, from Fig. 5b and Fig. 5c
we observe that the expected total reward E[R], as well
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Fig. 7. ADE performance as a function of € and (3 in the estimation scenario,
with D = 5.

as Bob’s state estimation accuracy rp, decrease for larger
transmission costs (3, which yield longer inter-transmission
periods) and more erratic transition probabilities (6 > 1).

Fig. 6 offers a comparison of these performance indicators
for the MPI strategy that, being purely GoC, is complementary
to PP. Not surprisingly, this setting leads to a strong secrecy
degradation (Fig. 6a): the information leakage is close to 0.8
for all configurations except for those with very high values of
[ and 6. Eve is able to correctly decode the status of the mon-
itored process almost as often as Bob (Fig. 6d), highlighting
the strong vulnerability of MPI to timing attacks. On the other
hand, MPI significantly improves the total reward compared
to PP (Fig. 6b). Since MPI tends to transmit more often than
PP, the accuracy of Bob does not decrease significantly as 3
increases and the gain over PP reaches 50% when  — 2.

The proposed heuristic strategies are expected to perform
somewhere between PP and MPI. As shown in Fig. 7a, ADE
improves secrecy in all configurations, guaranteeing that the
leakage remains lower than Ly;g,. Comparing Fig. 7c¢ and
Fig. 7d, we note that Eve’s accuracy is much lower than Bob’s,
unlike in the MPI scenario, leading to a mean leakage of
0.45. At the same time, Fig. 7b shows that ADE degrades
the total reward compared to MPI, especially in the case of
Markov chains with low € and high transmission cost. On the
other hand, the reward of ADE presents a performance gain of
approximately 10% over PP, as apparent from the comparison
between Fig. 7b and Fig. 5b.

In Fig. 8, we report the results of PDE, which, similarly to
ADE, strikes a compromise between the higher efficiency of
MPI and the secrecy provided by periodic scheduling. The
main difference is that PDE does not monitor information
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Fig. 9. Expected leakage and reward as a function of D in the estimation
scenario, with 8 = 1 and 6 = 32.

leakage explicitly, but considers the entropy of the schedul-
ing policy as a secrecy indicator. Fig. 8a shows that the
expected leakage with PDE is higher than with ADE (Fig. 8d)
without significantly improving Bob’s performance. Hence,
ADE performs better than PDE in this remote estimation task;
however, the higher computational complexity may make ADE
unsuitable for implementation on nodes with limited hardware.

Fig. 9 analyzes the impact of the time gap D on overall
performance, focusing on a system with 3 = 1 and 6§ = 32,
and setting D € {1,5,10,15}. As expected, the performance
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Fig. 11. Characterization of the PDE policy as a function of 6 and § in the
control scenario.

of PP does not change in the different scenarios, while the
leakage of MPI increases as a function of D, given that a
longer time interval allows Eve to exploit more information.
As the PDE scheduling policy is directly derived from MPI,
PDE follows a similar trend in terms of leakage. Instead,
ADE tends to make more conservative choices and switches
to PP more often and for longer periods, as D increases. In
particular, for D = 15, the reward of ADE approximates that
of PDE that, for all the other configurations, shows a worse
performance.

C. Remote Control Scenario

The remote control scenario has a significant difference
with respect to the estimation scenario: Bob does not need
to know the status of the process to maximize the reward,
which depends on the closeness between the current state s(n)
and the target state s°. This strongly reduces the transmission
probability of the MPI strategy compared to the estimation
scenario. As shown in Fig. 10a, Bob updates his state estimate
with high frequency only when the evolution of the process
becomes highly stochastic (§ >> 1) or if the transmission cost
is negligible (5 — 0). A similar trend can be observed for the
PDE policy, whose transmission rate is reported in Fig. 11a
and results slightly higher than that of MPIL.

Fig. 10b reports the entropy of the MPI scheduling, which
strongly decreases in configurations with 6 > 16 and 5 > 1.4.
We can hypothesize that, in such cases, requesting state
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Fig. 12. Information leakage during a single episode in the control scenario,
with 3 = 1, 0 = 32 and D = 5. The ADE thresholds Loy and Lp;g are
marked as dashed lines.
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Fig. 13. PP performance as a function of 6 and (3 in the control scenario,
with D = 5.

updates from Alice is inconvenient and MPI associates most
states with the maximum inter-transmission interval 7},,<x. On
the other hand, the entropy increases again for 8 > 64,
denoting that the relation between the stochasticity of the
system and the optimal scheduling decisions is more complex.
Looking at Fig. 11b, we can appreciate how PDE follows the
same pattern and, as we set H* = $H (0(0)), reduces the
entropy of the MPI scheduling policy by 50%.

As in the estimation case, we first focus on a single episode
(with § = 32, 8 = 1, and D = 5) and compare the leakage
obtained by MPI, PP, and the two heuristic strategies. First,
we observe that the leakage of PP is constant but has higher
values than in the estimation task. This is because the steady-
state distribution p(7) of the system presents higher entropy,
as it is directly influenced by Bob’s actions. Indeed, Bob aims
to keep the current state as close as possible to s°, reducing
the system’s randomness, and consequently, increasing the
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Fig. 14. MPI performance as a function of 6 and S in the control scenario,
with D = 5.

leakage. We also note that the leakage of MPI does not
increase beyond 0.7 and, consequently, ADE rarely switches
to periodic communication, while PDE substantially improves
secrecy with respect to both MPI and ADE.

The fact that PP may have a non-zero leakage in control
tasks is confirmed by Fig. 13a, which reports the expected
leakage E [Lg| for all combinations of density decay 6 and
communication cost 3. Interestingly, the system is more vul-
nerable to timing attacks for 8 — 0 and 6 — 0, representing
the case in which Markov transitions are more deterministic.
The same configuration leads to an increase in the average
reward E [rg] of the control task and a slight increase of Eve’s
accuracy E [n] (Fig. 13c-d).

Fig. 14 reports the same analysis for the MPI approach.
Comparing Fig. 14a and Fig. 10b, we observe that the in-
formation leakage strongly decreases in the region associated
with a low entropy for MPIL. Looking at Fig. 14d, we see
that this phenomenon also affects Eve’s accuracy and makes
communication almost fully secret for 3 — 2 and § — 27.
Interestingly, improvement in secrecy leads to a reduction in
task reward, shown in Fig. 14d, but in a less significant manner
than in the estimation scenario.

As we can observe from Fig. 15, ADE significantly reduces
the accuracy of Eve’s estimates, especially in the case of a high
transmission rate. A similar effect is achieved using the PDE
strategy, whose performance is instead shown in Fig. 16. Since
its goal is to avoid Lg exceeding Lpien, ADE continues to use
MPI in many scenarios, especially when 3 — 2 and 6 — 27.
Instead, PDE decreases the entropy of the scheduling policy
in all configurations, modifying the leakage more widely. As
shown in Fig. 16a, PDE obtains a lower leakage than ADE,
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Fig. 15. ADE performance as a function of 6 and 3 in the control scenario,
with D = 5.
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Fig. 16. PDE performance as a function of ¢ and 3 in the control scenario,
with D = 5.

except in scenarios with a low value of both € and 3, in which
the initial MPI scheduling is more vulnerable.

In Fig. 17, we focus on the scenario with 5 =1 and 6 = 32
and analyze the impact of the time gap D on all the proposed
strategies. Fig. 17a shows that the optimal GoC scheduling
presents an average leakage below 0.6 for D = 5, only slightly
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Fig. 17. Expected leakage and reward as a function of the opacity time gap
D in the control scenario, with 3 = 1 and 6 = 32.

higher than the one obtained with ADE. In addition, MPI
becomes more vulnerable as D increases, while the average
leakage of ADE never exceeds Lyign = 0.6. The PDE heuristic
proves to be more robust than ADE for D < 5, while leaking
more information as the time gap grows. If we consider the
total reward, reported in Fig. 17b, the relationship between the
two heuristics is inverted: PDE has a degraded performance for
D < 5, while it constitutes an intermediate solution between
MPI and ADE for longer time gaps.

D. Pareto Analysis

In the previous analysis, we considered specific hyperpa-
rameters for both ADE and PDE, which correspond to a single
operation point. In the following, we study the trade-off be-
tween secrecy and reward for the two heuristics by computing
the Pareto frontier given by all the possible algorithm settings.
From a practical perspective, we vary the leakage thresholds
Liow € [0.1,0.7] while setting Lyjgh = Liow + 0.2 in the case
of ADE, and the target entropy H* € [0, H(ompr)] in the case
of PDE. Importantly, to obtain reliable results, we run a total
of N, = 50 independent episodes per configuration.

Fig. 18 focuses on the remote estimation case: the results
show that ADE always outperforms PDE when the leakage
is lower than ~ 0.7. This is due to the iterative nature of
PDE: suboptimal choices in the early stages of the algorithm
significantly degrade performance for all the following steps.
This phenomenon is reflected by the steep performance drop
experienced by PDE, which never recovers and is always
outperformed by ADE. On the whole, ADE is able to better
control the trade-off between secrecy and efficiency in this
task, providing an almost linear degradation of the reward as
we increase the probability of using PP.

Fig. 19 repeats the analysis for the control scenario. In
this case, PDE finds a working trajectory that allows Bob to
maintain a reward very close to the optimum while strongly
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Fig. 18. Pareto frontier of the trade-off between information leakage and
reward in the estimation scenario, with 5 =1, § = 32, and D = 5.
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Fig. 19. Pareto frontier of the trade-off between information leakage and
reward in the control scenario, with 8 =1, § = 32, and D = 5.

reducing the leakage from 0.5 to values lower than 0.2.
On the other hand, ADE seems inefficient in managing the
control system and immediately degrades the expected reward.
The benefits of PDE are even more relevant as, while being
more sophisticated than ADE in its basic mechanism, it does
not require Bob to compute the leakage online, thus greatly
reducing the computational burden for real-time operation.

The remote estimation task analyzed in Fig. 18 is character-
ized by monotonic relations between transition stochasticity,
communication cost, and total reward. These trivial perfor-
mance trends are unlikely in real-world applications, which
are expected to be more similar to the remote control task
shown in Fig. 19. In scenarios with an irregular relationship
between secrecy and efficiency, PDE is much more likely to
find solutions that reduce information leakage while preserving
the same performance of GoC. In particular, PDE makes
suboptimal but more opaque scheduling decisions when this
is less critical for the control reward, e.g., when Bob is farther
from the target state. Hence, the fact that the control policy
is mutually adapted to communication ensure that the system
experiences only a negligible performance loss.

VII. CONCLUSION AND FUTURE WORK

In this work, we analyzed the security of GoC systems
for the remote control of Markov processes, focusing on the
system’s vulnerability to timing side-channel attacks. This type
of attack is viable even under information-theoretic secrecy,
as they only rely on the presence of a message rather than
its content. We considered two different tasks, i.e., a remote
estimation and a remote control problem, and analyzed four



different transmission scheduling protocols: the optimal GoC
scheduling, a periodic transmission policy, and two heuristic
solutions that trade off between the previous approaches.

Our results proved that goal-oriented scheduling has sig-
nificant performance benefits, but is also highly vulnerable
to eavesdropping. In addition, although heuristic mitigation
strategies are possible, finding an optimal policy under game-
theoretic rationality is a computationally hard problem. We
showed that any strategy must be tuned according to the
target environment, as the structure of the communication
policy may vary significantly depending on factors such as
the stochasticity of the system and the transmission cost.

As our study is the first to analyze timing attacks against
GoC, there are many possible avenues for future work. First,
expanding the game-theoretic model may lead to more efficient
heuristics. It will be interesting to consider reinforcement
learning solutions, which have properties similar to the pro-
posed algorithms and can be deployed in more complex real-
world applications. Finally, our framework could be applied
to push-based scenarios in which Alice independently decides
when to send an update, which represents another attractive
possibility for future research.
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