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Breaking the Illusion of Security via Interpretation:
Interpretable Vision Transformer Systems under Attack
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Abstract—Vision transformer (ViT) models, when coupled with
interpretation models, are regarded as secure and challenging to
deceive, making them well-suited for security-critical domains
such as medical applications, autonomous vehicles, drones, and
robotics. However, successful attacks on these systems can lead
to severe consequences. Recent research on threats targeting ViT
models primarily focuses on generating the smallest adversarial
perturbations that can deceive the models with high confidence,
without considering their impact on model interpretations. Nev-
ertheless, the use of interpretation models can effectively assist
in detecting adversarial examples. This study investigates the
vulnerability of transformer models to adversarial attacks, even
when combined with interpretation models. We propose an attack
called “AdViT” that generates adversarial examples capable of
misleading both a given transformer model and its coupled
interpretation model. Through extensive experiments on various
transformer models and two transformer-based interpreters, we
demonstrate that AdViT achieves a 100% attack success rate in
both white-box and black-box scenarios. In white-box scenarios,
it reaches up to 98 % misclassification confidence, while in black-
box scenarios, it reaches up to 76 % misclassification confidence.
Remarkably, AdViT consistently generates accurate interpreta-
tions in both scenarios, making the adversarial examples more
difficult to detect.

Index Terms—uvision transformers, interpretation models, ad-
versarial attack, adversarial perturbation, images

I. INTRODUCTION

Deep learning approaches have attained cutting-edge per-
formance in various applications, and the field continues
to expand. Recently, Vision Transformers (ViTs) have been
introduced as a new technique that classifies data by dividing
it into spatially separated parts [14]. Generally, ViTs are
considered more robust against adversarial attacks compared
to Convolutional Neural Networks (CNNs) in image classifica-
tion [11], [27]. Furthermore, ViT-based systems become even
more robust when coupled with an interpretation model [20].

Adding interpretability as an integral component of machine
learning pipelines improves their design, implementation, and
adaptation by helping to detect and correct biases in the train-
ing dataset and identifying potential adversarial examples that
could affect the final predictions. Moreover, interpretability
ensures that only contextually relevant information is used for
prediction. For example, Figure 1 shows examples of a regular
adversarial attack and the corresponding interpretation.
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Fig. 1: Example images comparing (a) benign samples, (b)
samples subject to a regular adversarial attack, and (c) samples
subject to our proposed attack, along with their interpretations.

Until recently, it was believed that Al systems are more
trustworthy and safe when integrated with interpretability
methods and human involvement [7]. However, the image clas-
sification field has recently shown that explainable methods
are vulnerable and potential targets for malicious manipula-
tions [42], [1]. In [15], the study demonstrated that post-hoc
methods are ineffective, resulting in considerable interpretation
changes when a small amount of perturbation is applied
to input samples. The study showed that two perceptually
indistinguishable input images with the same predicted label
and a small amount of perturbation could have significantly
different interpretations. This is easily applicable to feature-
importance interpretation methods, such as saliency maps,
where the highlighted important pixels influence the model’s
decision. The study showed that slightly perturbed samples
could have considerably different interpretations.

As more systematic studies have been conducted on the
security of CNN models, little is known regarding interpretable
deep learning systems (IDLSes) that employ transformer-
based models. Recent studies have shown that transformer
models are much more robust than CNNs [11], [27]. In
this paper, we examine the security of various ViTs when
coupled with interpretation models for the image classification
task. We introduce a new Adversarial attack against ViTs,
AdVIiT, that can generate adversarial samples that mislead the
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target transformer classifiers, such as DeiT-B, DeiT-S, DeiT-
T, Swin-B, Swin-L, T2T-ViT-7, T2T-ViT-10, ViT-B, and ViT-
L, and deceive their coupled interpretation models, including
Transformer Interpreter and IA-RED?, in both white-box and
black-box settings. The key idea of AdViT is to exploit
vulnerabilities in the interaction between the transformers and
their interpretation models. Unlike traditional ViTs adversarial
attacks that only focus on fooling the classification model,
AdViT The attack strategically generates adversarial samples
that mislead the target ViT classifiers and manipulate the
output of their associated interpretation models. This dual
deception is achieved through a novel attack technique that
transforms the input image so that the changes are imper-
ceptible to humans, making it even more challenging for
detection methods that rely on interpretability as a security
defense mechanism [34], [25]. In this study, we show that
AdVIT is applicable and efficient against models, such as
ViT-B, Swin-T, MIT-B, and Vision-P, deployed in real-world
scenarios, and is robust enough to circumvent various pre-
processing defenses. We also discuss a possible interpretation-
based method for detecting interpretation-guided adversarial
samples using EfficientNet and a gradient-boosting classifier.

Contributions. Our contributions are as follows:

e« A Novel Joint Optimization Attack Framework: We
propose AdViT, the first interpretation-guided adversarial
attack framework specifically designed for transformer-
based IDLSes. AdViT introduces a new loss formulation
that simultaneously optimizes for misclassification and in-
terpretation similarity. The attack enables the generation of
adversarial examples that fool the classification model and
produce interpretations highly similar to their benign inputs.

o Mutation-Based Black-box Attack: We extend AdViT
to black-box settings using a specialized mutation-based
genetic algorithm (MGA). This approach significantly en-
hances transferability, allowing adversarial examples gener-
ated on a surrogate model to successfully deceive black-
box ViT-based models and their interpreters, even when the
attacker lacks complete model knowledge.

o Comprehensive Evaluation: We evaluate AdViT on mul-
tiple transformer-based architectures (DeiT, Swin, T2T-
ViT, ViT) and two transformer-based interpretation methods
(Transformer Interpreter, IA-RED?) in both white-box and
black-box settings. The experiments show consistently high
attack success rates, strong misclassification confidence, and
closely-similar interpretation maps.

o Robustness Against Real-World Models and Defenses:
We validate the practicality of AdViT by successfully at-
tacking four ViT-based models deployed as real-world APIs.
Moreover, we show that AdViT remains highly effective
against several common defenses, including pre-processing
transformations and adversarial training. We propose an
interpretation-based ensemble detection strategy, suggesting
potential technical countermeasures to mitigate the threat
posed by AdViT.

Organization. The remainder of the paper is organized as
follows: Section II introduces the notations, threat models, and
targeted interpretation models; Section III describes the pro-

posed AdVIT attack and its formulation; Section IV provides
the experiments and results; Section V covers the related work;
and Section VI concludes the paper.

II. BACKGROUND

This section introduces the notations, concepts, and targeted
interpretation models essential for analyzing and optimizing
attacks against vision transformer-based IDLSes.

A. Notations

This work focuses on targeting image transformer-based
classification models via white-box and black-box attacks. A
transformer model with n number of transformer blocks is
defined as F = (f1 0 fao fyo..fn) o fus, where f; is the
i-th transformer block consisting of multi-head self-attention
and feed-forward layers, while f.;s is the classification head,
including the final norm layer with MLP-head. The model
receives a sample image divided into m patches and produces
the processed patches within self-attention layers. In terms of
classification, the processed patches are submitted to the final
classification head to generate the output. Each transformer
block (f;) within the model helps extract the important features
of the patches, and the classification head projects and relates
the processed patches to the classes. In the paper, F and F’
represent a white-box and black-box transformer classifier,
respectively, such that F(x) = ¢ € C where x is the input
and c is its category from a set of categories C.

For interpretability, we consider post-hoc interpretations as
this type of interpreter does not require any modification of the
model architecture or parameters. An interpreter G(x; F) = m
produces an attribution map (m) that shows the importance of
features in the input (x) based on the output of F (i.e., the
value the i-th element in m (m][i]) reflects the importance of
the i-th element in x (z[i])).

Threat Model: Adversarial Objectives.

The main goal of the attack is to make the classifier

misclassify an adversarial sample & and to make the interpreter
generate a similar interpretation /m with its benign interpreta-
tion m. Specifically, the attack aims to generate & such that
O F(2)#c; @ G(i; F) =1 s.t. m = m; and @ 7 and the
benign version x should be visually imperceptible.
Threat Model: Adversarial Capabilities. This work assumes
both white-box and black-box settings. In the white-box sce-
nario, the adversary has complete access to the transformer
model F and the interpreter G. In the black-box scenario, the
adversary has limited knowledge and access, i.e., query access,
to the model F’ (e.g., output of the model).

B. Targeted ViT Interpretation Models

This work considers two state-of-the-art interpreters: Trans-
former Interpreter [12] and IA-RED? [26]. These interpreters
were chosen based on their unique approaches to model
interpretation, which offer distinct advantages in terms of effi-
ciency, interpretive depth, and the ability to identify potential
vulnerabilities or biases in transformer models.

The Transformer Interpreter was selected for its comprehen-
sive analysis of the model’s decision-making process, which



is achieved through the combination of Layer-wise Relevance
Propagation (LRP) and Deep Taylor Decomposition (DTD)
techniques. By providing both high-level and fine-grained
interpretations, this method offers a detailed understanding of
the model’s behavior, making it an ideal choice for studying
the impact of adversarial attacks on transformer models.

On the other hand, IA-RED? was chosen for its ability to
enhance the interpretive depth while minimizing redundancy
in the interpretation. By identifying and removing redundant
features, this method provides a more concise and informative
interpretation, which can be particularly useful in identifying
potential vulnerabilities or biases in the model. This focus on
the most relevant features makes IA-RED? a valuable tool
for analyzing the robustness of transformer models against
adversarial attacks.

By comparing the results obtained using both interpretation
methods, we can gain in-depth understanding of the strengths
and weaknesses of transformer models in the face of adversar-
ial attacks and identify potential strategies for improving their
robustness.

Transformer Interpreter [12]. The Transformer Interpreter
is based on the Deep Taylor Decomposition [23], which
propagates local relevance through layers, including skip con-
nections and attention layers. It adopts LRP-based Propagation
[8] relevance to measure the importance scores of a given
sample for every layer of the transformer model, combining all
those scores by relevancy scores and class-specific gradients.

The mathematical foundation of this interpreter is articu-
lated through the equation C' = AM . A®) . . AW where
A represents a modified attention map for a given block 4.
Each A(® is formulated as A = T+, (VAW @ RED)*, en-
capsulating the attention coefficients for each token within the
block. Here, IE;, denotes the mean across the attention heads,
R the relevance score linked to the softmax operation’s
layer s;, ® symbolizes the Hadamard operation for element-
wise multiplication, and T signifies the rectification operation
max (0, a), effectively isolating positive contributions. An im-
portant feature of this interpreter is how it deals with skip
connections in transformer blocks. It uses an identity matrix
I for each token, which helps to prevent important details
from getting lost as they move through different layers. This
means that it can keep track of changes in the input as it
goes through the transformer model, ensuring that nothing
important is missed.

IA-RED? [26]. The main idea of the Interpretability-Aware
Redundancy Reduction (IA-RED?) interpreter is derived from
the architecture of the multi-head self-attention layer (MSA),
called the multi-head interpreter, to evaluate whether a given
patch token is important. The model is divided into sev-
eral groups, each containing MSA and feed-forward network
(FFN) blocks and one multi-head interpreter. The multi-head
interpreter evaluates the input before passing it to the blocks
inside each group to calculate the informative score I;;, where
¢ and j are the positions of the input token and the group,
respectively. If the score (I;;) is below the threshold (e.g., 0.5),
the patch x; is considered uninformative and will be ignored

in the following groups. The score (I;;) is calculated as:
1
lij =+ > G(E! (@) « B (Py)),
h

where P; is the policy token in the j-th multi-head interpreter
to estimate the importance of the input token x;, H is the
number of heads, F," and F} are the linear layers of the h-th
head for the patch and policy token, * is the dot product, ¢
is the sigmoid activation function. The subscript q stands for
‘query, a term borrowed from the transformer architecture,
where each input element is transformed into a query vector.
The subscript k, i.e., ‘key,” is another concept from transformer
models, where elements are also transformed into key vectors
for comparison against queries.

The reinforcement method is used to optimize the interpreter
to make it more efficient and accurate. The framework opti-
mizes each multi-head interpreter using the expected gradient
as follows:

N
VWJ.J = Eu,\,ﬂ- AVWJ Zlog [Iijui + (1 — IU)(l — ul)] s
i=0
where F, .. is the expected reward for the gradient com-
putation, A is the reward score, W, is the representation of
the parameters in the j-th multi-head interpreter, I;; is the
informative score of the i-th input token in the j-th multi-head
interpreter, and w; is the configuration parameter accepting
only binary values, in which 0 means ignoring the token.

III. OVERVIEW OF ADVIT

This section describes the AdViT attack strategy to create
dual-objective adversarial examples capable of deceiving both
a targeted transformer model and its interpretation model for
white- and black-box scenarios.

A. AdViT: Attack Formulation

Leveraging Block-specific Features. Creating effective per-
turbations across all input patches requires identifying the
features within each transformer block {f;}7; that are most
relevant to the target class. Our approach is inspired by the
transferability logic of the ATViT attack [24], but unlike
ATViT, which requires training or adapting the classification
layer, we do not modify or retrain the underlying transformer
weights. Instead, we introduce a mechanism that shares a
single classification head g with each transformer block f;.
Formally, define:

F=A{fitic1 o g where, F1=f1 oy,
Fj = (flo~~ofj) og forj={2,...,n},

where: f; is the i-th transformer block (including multi-
head self-attention and feed-forward layers), g is the shared
classification head (e.g., a normalization layer plus an MLP),
o denotes function composition of transformer blocks and the
classification head.

In this formulation, J; represents a partial model that
processes the input through the first j blocks fi, fa,..., f;,
and then applies g to produce logits. By connecting each

and
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Fig. 2: Modified transformer architecture to extract discrim-
inative information of a given input from all blocks to en-
able AdVIiT adversarial attack. Unlike traditional transformer
models where only the final block (Block,,) connects to the
classification layer, this design maps each intermediate block
Block; to a shared classification head (Norm + MLP). By
obtaining separate logits from each block’s output, we can
leverage richer block-level information for more powerful
adversarial optimization—without retraining or altering the
Transformer blocks themselves.

intermediate block f; to the classification head g (instead of
solely the last block f,), we can extract critical layer-specific
discriminative information for adversarial attack purposes, all
without retraining the transformer blocks themselves.

Figure 2 shows the architecture of the modified model for
the attack. This architecture is used to extract discriminative
information across patches based on the classification layer of
each transformer block. This is done by passing patches in
each transformer block and updating them to retain important
information and discarding irrelevant information. The final
prediction for the updated patches is then used to calculate the
adversarial loss function. As the network updates the patches
in each transformer block, it distills crucial information, which
allows the final prediction to retain the most discriminative
information. This is a crucial step in our proposed method, as
it allows us to compute the loss of input more effectively. The
attack generates adversarial samples that consider classifica-
tion and interpretation models using extracted information.

We note that while our current approach does not alter
the existing weights, we expect that fine-tuning or retraining
the model could further enhance attack transferability or
interpretation quality.

Attack Formulation. The traditional attack formulation to
generate perturbation is as follows:

FH) =11y () (i(i) —a Sign(vfﬂadv(i(i)))) E)

where 11, «, and B.(z) represent the projection operator,
learning rate, and the norm ball respectively. The symbol e
in the attack formulation represents the size of the allowable
perturbation and /4, is the overall adversarial loss. Using
Eq. 1 to generate adversarial samples based only on classi-
fication loss is not effective, as they can be easily detected
by interpretation models (see Figure 1). In such cases, it is
necessary to optimize the attack to generate perturbations that
can mislead the interpretation models. To produce stealthy
adversarial samples that fool the classification model and
interpreter, we minimize the overall adversarial loss in terms
of both classification loss ¢.;; and interpretation loss #;,;:

Lodw = m}ln écla(]:(i')) + A émf(g(iv ]:)7 m) 2
Here, {5 is the cross entropy classification loss, £,; is
the difference of adversarial interpretation maps and benign
interpretation maps, and the hyper-parameter A balances £,
and /;,,;.
We define /.5 as:

09:(F(2)
c s = — lo 3
(s ) ©

] 1

Here, Fj(&) denotes the output of the j-th transformer
block processed by the adversarial sample &, and g.(F;(Z))
represents the logit for the true class ¢, produced by the
classification head based on the j-th block’s output. The
function aims to maximize the misclassification at all levels
of the transformer model.

We define ¢;,,; as:

=1

Here, m; and G(&;F); represent the importance scores
of the ¢-th feature (or patch) in the benign and adversarial
interpretation maps, respectively. The weight w; could be
introduced to prioritize features based on their relevance to the
classification decision, although for simplicity, it could initially
be set to 1 for all features, which implies equal importance.
This formulation computes a weighted sum of squared differ-
ences across all features, encouraging the adversarial sample
to maintain a similar interpretation to the benign sample.

The primary objective of AdViT, as encapsulated in Eq. 2,
is to minimize the combined loss function that integrates
the classification and interpretation losses of the adversarial
input . This approach is optimized using the revised loss
functions of ¢, and ¢;,:, as shown in Eq. 3 and Eq. 4.
These formulations leverage the inherent structure of trans-
former blocks to enhance the attack’s effectiveness, making

& F)i —my)? “)



Algorithm 1: AdViT attack in black-box settings
Data: Source model F, interpreter G, input z, original
category ¢, perturbation threshold e, mutation
rate mr, crossover rate cr, target model F”,
population size n, generation G,
Result: Adversarial sample &
1 2’ = our_attack(F, G, z, n)
2 pop = init_population(z, x’, €)
3 for g« 1to G do

4 p1, p2 = random_select(pop)

5 vy, vo = get_fitness(F’, x, p1, p2)

6 loser, winner = sort_by_fitness(p1, p2, v1, v2)
7 child = crossover(cr, loser, winner)

8 child = mutation(mr, child)

9 if f(child) # c then

10 | return child

11 end

12 pop = update_population(pop, child)

13 end

it applicable to a wide range of transformer-based models.
By emphasizing the need for misclassification through £,
while simultaneously ensuring stealth through /;,,;, our method
achieves a sophisticated balance, with the aim of minimizing
the combined loss.

B. AdViT Optimization for Black-box Settings

Investigating the applicability of AdViTin a black-box sce-
nario, we employ a modified mutation-based MGA [16] to
generate adversarial examples against black-box models. Us-
ing adversarial samples generated against a white-box model
F as the initial population, the MGA evolves the population
to generate an adversarial sample that can fool the black-
box model F’ and its interpreter G'. AdViT in the black-box
scenario is described in Algorithm 1. The attack consists of
genetic algorithm operators: initialization (line 1-2), selection
(line 4-6), crossover (line 7), mutation (line 8), and population
update (line 12).

Initialization: We generate adversarial samples by AdViT
in white-box settings and provide them as the initial population
for MGA (i.e., ¥ : {¢1,%9,...,¢,}, where n is the size of
the population). We selected five as the population size, which
provides the best trade-off between attack effectiveness and
time complexity, based on our experiments.

Fitness function: The function evaluates the quality of the
samples in the population and helps to improve their evolution
toward the optimal population. In our attack, we evaluate
each individual in the population by applying a loss function
(i.e., relative cross entropy) as the fitness function, which is
based on the classification confidence and perturbation size
[13]. Loss values reflect the fitness scores of the samples
in the population where a higher fitness score is desired to
achieve the attack. If a sample from the initial population is
successful, the attack ends as the criterion is met (e.g., when
the transferability of white-box attacks is high).

TABLE I: Parameter configuration for the attack using pertur-
bation generation (PGD) and genetic algorithm.

Algorithm Parameter Values
# iterations 20
Perturbation generation taay coefficient (A) 10
max. search step size amaz 0.08
Perturbation threshold (¢) 0.031
Mutation rate (mr) le-4
Genetic Algorithm Crossover rate (cr) 0.7
Population size (n) 5

Selection: Samples with high fitness scores have a higher
chance of passing along their features to the next generation.
[9]. To maintain diversity and high interpretability (passed
from the initial generation), we randomly select two samples
from a population, one (winner) with a high fitness score and
another (loser) with a relatively lower score, to pass on to the
crossover phase.

Crossover: The new offspring (adversarial sample) is gen-
erated by transferring the genetic data of the winner ¥yinner
and the loser ;s with the predefined crossover rate cr:
’L/)child = ¢winner*scr +wloser*(1_scr)a where Scr is a mask
matrix with the values of 1 and 0. S, = 1 rand(0,1) <
cr otherwise 0, where rand(0,1) generates uniformly dis-
tributed numbers between O and 1. In the experiment, we use
a crossover rate of 0.7.

Mutation: The process further diversifies the population
through another binary mask: ¥cniiq = —Wehita*Smr+Vehitd*
(1—Spr), where Sy, is a mask matrix based on the mutation
rate mr.

We use a mutation rate of le-4.

Population update: For continuous evolution, the popula-
tion is updated by keeping the winners and replacing the losers
with the new generation (i.e., the mutated offspring).

The proposed modified genetic algorithm differs from the
traditional ones by factoring in both interpretability and output
classification when creating offspring. Specifically, we found
that traditional GA-generated adversarial examples often fail
to fool interpreter models, as they only consider children
with high fitness scores (i.e., based on classification output),
resulting in a lack of diversity among future generations. Our
proposed approach uses a strategy that considers children with
low fitness scores (i.e., losers) to generate adversarial examples
to promote a higher degree of diversity and better control over
the interpretation. This allows for a more effective attack on
interpretability in addition to classification.

IV. EXPERIMENTS

We evaluate AdViT attack on different vision transformer
models and interpreters. Our analysis aims to answer the
following questions: @ How effective is it to attack vision
transformer models and their coupled interpreters? @ Are
the adversarial examples transferable across various vision
transformer models? @ Is it practical to attack the vision
transformer models in black-box settings? @ Is it possible
to attack real-world vision transformer models? For the
reproducibility of our experiments, our code, data, and models
are available at (https.//github.com/InfoLab-SKKU/AdViT). For




comparison, existing attacks were implemented under our
experimental environment and evaluated on the same dataset.

A. Experimental Settings

Datasets. For our experiments, we use 1,000 images from the
validation set of ImageNet that are classified correctly with a
confidence higher than 70% by the target ViT model.
ViT Models. In white-box settings, we target DeiT-B, DeiT-
S, DeiT-T [32], Swin-B, Swin-L [21], T2T-ViT-7, T2T-ViT-10
[38], ViT-B and ViT-L [14] models. In black-box settings, we
use the same white-box models as surrogate models to attack
ViT family models (ViT-B and ViT-L) [14]. In the realistic
black-box scenario, we also demonstrate the effectiveness of
AdViT against real-world APIs of four ViT models: ViT-B by
Google [14], SWIN-T by Microsoft [21], MIT-B3 by Nvidia
[37], and Vision-perceiver-learned by DeepMind [19].
Interpreters. We employ two interpreters: Transformer Inter-
preter [12] and IA-RED? [26]. Those interpreters utilize dif-
ferent characteristics of the model to generate interpretations.
Metrics. The evaluation metrics are divided into classification
and interpretation metrics. Classification metrics include attack
success rate and misclassification confidence (i.e., adversarial
confidence).

Metrics used for interpreters are qualitative comparison and
IoU score.

In addition, we adopt another metric (noise rate) to measure
the perturbation size. The description of each metric is as
follows.

o Attack success rate: It calculates the ratio of successful
attack cases to the total attack cases.

« Misclassification confidence: We measure the probability
(confidence score) of an adversarial sample assigned by
the target model. We calculate the average probability of
adversarial samples being successfully misclassified.

o Qualitative comparison: This method is used to verify
whether the interpretation results are perceptually similar.
Every interpretation map is manually checked to see if
it is identical to its benign interpretation map or if the
interpretation is reliable.

e IoU score (Intersection-over-Union): This metric is used
to quantify the similarity between two arbitrary shapes.
It encodes the shape properties of interpretation maps,
e.g., height, width, and location into region properties and
calculates the intersection areas between the predictions and
the ground truths. It is widely employed to evaluate object
detection, segmentation, and tracking:

IoU(m) = |0(m) () O(ma)| / |0(m) | O(m.)|,

where, m is the attribution map of samples when the
universal perturbation is added and m, is the attribution
map of samples without any perturbation. In our case, we
compare an adversarial interpretation map with the benign
interpretation map based on (shapes, positions, and areas),
for which the metric can be applied.

o Noise rate: Perturbation amount is calculated using the
structural similarity index (SSIM) [35]. SSIM measures the

similarity score, and we find the non-similarity portion using

that score (i.e., noise_rate = 1 — SSIM).

The table containing the parameter values for the experi-
mental settings is presented in Table 1.

B. AdViT: White-box Settings

This section explores the effectiveness of AdViT against
DeiT-B, DeiT-S, DeiT-T, Swin-B, Swin-L, T2T-ViT-7, T2T-
ViT-10, ViT-B, and ViT-L, using two popular ViT interpreters:
the transformer interpreter and IA-RED?. In addition to
comparing AdViT with existing interpreter-based adversarial
methods (ADV? [42] and AdvEdge [1]), we also consider non-
interpreter-based baselines, PGD [22] and ATViT [24].

Table II shows that our proposed approach successfully
misleads all tested models with a 100% success rate and
achieved high misclassification confidence scores. For attacks
using the transformer interpreter, ADV? and AdvEdge obtain
average misclassification confidences of approximately 0.62
and 0.63 on the DeiT variants, 0.59 and 0.60 on Swin models,
0.57 and 0.60 on T2T-ViT variants, and 0.61 and 0.59 on ViT
models. In contrast, AdViT consistently outperforms them,
reaching 0.72, 0.97, 0.93, and 0.97 on DeiT, Swin, T2T-ViT,
and ViT models respectively. Under the IA-RED? interpreter,
ADV? and AdvEdge struggle to exceed a misclassification
confidence of about 0.43, while AdViT achieves a minimum
of 0.36 and generally around 0.60 — 0.90.

The results of PGD and ATVIiT attacks are provided outside
the interpreter-based comparison columns on Table II as they
do not use interpreters to craft their perturbations. Including
these non-interpreter-based methods as baselines clarifies that
using interpretative information during adversarial generation
leads to additional improvements. By extending and refining
the fundamental concepts behind PGD and ATViT, AdViT sur-
passes these non-interpreter-based methods and significantly
advances beyond other interpreter-guided attacks.

Moreover, our findings suggest that the IA-RED? interpreter
is more robust than the transformer interpreter, as evidenced
by the generally lower adversarial confidence scores.

To further analyze the impact of AdViT on model interpreta-
tion, we visualize the interpretation maps of benign and adver-
sarial samples in Figure 3. These maps appear nearly identical,
indicating that AdViT preserves critical interpretative features
while fooling the classifiers. The IoU test results presented in
Figure 4 confirm this observation: AdViT achieves IoU scores
exceeding 0.8 across all tested transformer-based models for
both interpreters.

In contrast, PGD, ATViT, ADV2, and AdvEdge produce
significantly lower IoU values, indicating less accurate inter-
pretation maps.

C. AdViT: Black-box Settings

Adopting a transferability-based approach (e.g., [29], [5]),
we improve transferability using the MGA algorithm. We
investigate the performance using two settings: @ typical
transferability and @ improved transferability via MGA.
Attack Transferability. We used DeiT, Swin, T2T-ViT, and
ViT-based models as a source to generate adversarial samples



TABLE II: White-box scenario: Comparison of misclassification confidence against various ViT-based models and two
interpreters (Transformer Interpreter and IA-RED?). The gray-shaded columns (PGD and ATViT) represent non-interpreter
baseline attacks, while other methods (ADV?Z, AdvEdge, and AdViT) use interpretative information in crafting perturbations.

Transformer Interpreter IA-RED?
PGD ATViT ADV? AdvEdge Ours (AdViT) ADV? AdvEdge  Ours (AdViT)
DeiT-B 0.59+0.20 0.49+0.21 | 0.62+0.22  0.641+0.22 0.78+0.18 0.19+0.24  0.214+0.24 0.45+0.20
DeiT-S 0.58+0.19 0.514+0.23 | 0.63+£0.22  0.644+0.22 0.65+0.19 0.17£0.22  0.1740.23 0.36+0.20
DeiT-T 0.56+0.19 0.50+0.22 | 0.61+£0.22  0.624+0.22 0.72+0.18 0.18+0.21  0.204+0.21 0.43+0.19
Swin-B 0.60+0.21 0.534+0.23 | 0.60+£0.20  0.60+0.20 0.95+0.10 0.254+0.20  0.254+0.20 0.59+0.12
Swin-L 0.59+0.22 0.49+0.24 | 0.58+0.21  0.60+0.21 0.98+0.08 0.29+0.21  0.3140.21 0.62+0.10
T2T-ViT-7 0.58+0.15 0.554+0.19 | 0.59+0.17 0.6140.18 0.92+0.11 0.26+0.18  0.264+0.18 0.60+0.14
T2T-ViT-10 0.56+0.18 0.54+0.20 | 0.55+0.19  0.59+0.19 0.94+0.16 0.20+0.19  0.234+0.19 0.59+0.17
ViT-B 0.5540.19 0.56+0.15 | 0.60+0.13  0.60+0.13 0.97+0.04 0.38+0.14  0.42+0.14 0.95+0.13
ViT-L 0.55+0.20 0.54+0.16 | 0.61+0.12  0.58+0.12 0.96+0.05 0.40+0.13  0.4340.13 0.93+0.05

Transformer Interpreter

Benign Adversarial

Adversarial

Benign

Fig. 3: Attribution maps of benign and adversarial samples generated by AdViT using two interpreters.

against each other. Table III shows the attack success rate and
misclassification confidence. When we used the transformer
interpreter in our study, we found different results for each
transformer family. For the DeiT family, the highest success
rate of the attack was 0.78 (average 0.65 with a variation
of +0.18) and the lowest was 0.16 (average 0.41 with a
variation of £0.18). For the Swin family, the highest was 0.70
(average 0.71 with a variation of +0.19) and the lowest was
0.20 (average 0.42 with a variation of +0.15). In the T2T-
ViT family, the highest rate was 0.84 (average 0.54 with a
variation of +0.15) and the lowest was 0.15 (average 0.54 with
a variation of £0.19). For the ViT family, the highest was 0.86
(average 0.84 with a variation of 40.10) and the lowest was
0.24 (average 0.45 with a variation of £0.13). When we used
the IA-RED interpreter, the results were different. For the DeiT
family, the highest success rate was 0.78 (average 0.49 with a
variation of +0.19) and the lowest was 0.16 (average 0.33 with

a variation of 40.17). For the Swin family, the highest was
0.76 (average 0.47 with a variation of £0.19) and the lowest
was 0.22 (average 0.31 with a variation of +0.17). In the
T2T-ViT family, the highest rate was 0.81 (average 0.33 with
a variation of £0.14) and the lowest was 0.16 (average 0.47
with a variation of +0.19). For the ViT family, the highest was
0.80 (average 0.75 with a variation of £0.11) and the lowest
was 0.26 (average 0.43 with a variation of £0.16).

Furthermore, we investigate the attack transferability against
model interpretation using the IoU test between benign and
adversarial attribution maps. Figure 5 shows the IoU score
of the attack on transformer models with two interpreters.
As displayed, the performance is significantly high in both
interpreters over 0.80.

Improving Transferability via MGA. Table IV shows that
AdVIT significantly outperforms the existing Square attack [6]
in the black-box scenario. AdViT achieves a 100% success rate
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Fig. 4: White-box scenario: IoU scores of adversarial interpretation maps generated by AdViT and existing attacks.
TABLE III: Attack transferability of transformer models to generate adversarial samples against each other. The results are
reported as attack success rate (misclassification confidence + standard deviation).

Models DeiT-B DeiT-S DeiT-T Swin-B Swin-L T2T-Vil-7  T2T-ViT-10 ViT-B ViT-L
DeiT-B 0.71 0.78 0.31 0.20 0.40 041 0.40 0.30
(0.62£0.19)  (0.65£0.18)  (0.53£0.19) (0.51£0.18)  (0.55+0.13)  (0.58£0.16)  (0.94£0.18)  (0.9420.19)
DeiT-S 0.64 0.70 0.28 0.18 0.33 0.36 0.42 0.32
(0.5620.19) (0.5940.18)  (0.48£0.19)  (0.4620.18) (0.50£0.13)  (0.52£0.16)  (0.94£0,18) (0.95+0.17)
. DeiT.T 0.62 0.57 0.24 0.16 0.32 0.33 0.39 0.28
] (0.5240.18)  (0.49£0.19) (0.4240.19)  (0.41£0.18)  (0.44£0.13)  (0.46£0.16)  (0.93£0.18)  (0.9540.19)
2 SwinB 0.25 0.26 0.28 0.57 0.37 0.38 025 0.23
£ (0.45£0.14)  (0.39£0.10)  (0.5120.14) (0.61£0.18)  (0.35£0.12)  (0.38£0.14)  (0.5540.18)  (0.51=£0.18)
E SwinL 0.22 0.20 0.25 0.70 0.31 027 0.21 0.20
5 (0.46£0.15)  (0.4240.15)  (0.4440.16)  (0.7120.19) (0.3040.12)  (0.35+0.15)  (0.55+0.20)  (0.560.19)
g . 0.19 0.20 0.22 0.19 0.20 0.77 0.15 0.17
s (0.5140.18)  (0.44£0.16)  (0.46:£0.16)  (0.5540.19)  (0.50-:0.11) (0.4540.17)  (0.5420.19)  (0.50+0.18)
z T2TVIT10 0.20 0.23 0.23 0.26 0.25 0.84 0.21 0.20
£ (0.5240.16)  (0.48+0.18)  (0.54£0.18)  (0.574£0.20) (0.55+0.18)  (0.540.15) (0.574+0.18)  (0.51£0.17)
VITB 0.33 0.50 0.57 0.25 0.21 0.29 0.36 0.81
(0.5840.18)  (0.62+£0.20) (0.61£0.19) (0.4940.18) (0.45+0.13) (0.36+0.16)  (0.38+0.16) (0.8340.10)
VITL 0.36 0.55 0.58 0.30 0.29 0.35 031 0.86
(0.60£0.19)  (0.70£0.20)  (0.68:£0.19) (0.4740.20) (0.48+0.19) (0.4140.15) (0.4440.15) (0.840.10)
DeiT-B 0.73 0.78 0.32 0.20 0.36 0.36 0.44 0.42
(0.44+020)  (0.4940.19)  (0.53+£0.20) (0.4140.17)  (0.34+0.20)  (0.31£0.16)  (0.61:£0.20)  (0.6240.20)
DeiTS 0.65 0.70 0.29 0.18 0.32 0.32 0.39 0.34
(0.3940.20) (0.4440.19)  (0.48+0.2)  (0.3740.17)  (031£02)  (0.28+£0.16)  (0.61+£0.16)  (0.6240.19)
DeiT.T 0.62 0.58 0.26 0.16 0.28 0.29 0.33 0.30
0.39402)  (0.35+£0.2) (042402)  (0.33£0.17)  (027402)  (0.25+0.16)  (0.64:£0.16)  (0.6340,20)
Swin-B 0.27 0.27 0.29 0.71 0.30 0.31 0.26 0.24
. (0.41£0.18)  (0.39£0.16)  (0.40:£0.18) (0.45+0.18)  (0.33£0.15)  (0.30£0.16)  (0.4240.18)  (0.38£0.19)
2 Swin-L 0.23 0.22 0.23 0.76 0.30 0.26 0.23 0.22
= (0.36£0.18)  (0.34£0.19)  (0.38£0.18)  (0.4740.19) (0.33£0.17)  (0.30£0.16)  (0.37£0.19)  (0.31£0.17)
< e 0.25 0.35 0.38 0.33 0.26 0.78 0.28 0.25
(0.5420.19)  (0.47£0.15)  (0.45£0.15) (0.5120.19)  (0.50=£0.16) (0.41£0.17)  (0.51£0.19)  (0.530.19)
T2TVIT10 0.20 0.23 0.25 0.23 0.16 0.81 0.16 0.16
(0.4240.18)  (041£0.17)  (0.44£0.19) (0.53£0.20) (0.50£0.17)  (0.3320.14) (0.53£0.19)  (0.47£0.19)
VITB 0.29 0.51 0.54 0.26 0.19 0.33 0.28 0.78
(0.47£0.19)  (0.50£0.20)  (0.47£0.20) (0.47£0.19) (0.46£0.12) (0.39£0.18)  (0.47+0.19) (0.7620.12)
VITL 0.32 0.48 0.49 0.26 0.23 0.31 0.30 0.80
(0.46£0.17)  (0.46£0.19)  (0.49£0.19) (0.43£0.16) (0.37£0.19) (0.40£0.20) (0.38£0.17)  (0.75+0.11)

when transferring adversarial samples from DeiT-B to ViT-B
under both interpreters, compared to 87% and 89% for the
Square attack. AdVIiT is also more query-efficient, requiring
as few as 152 queries for a 100% success rate on ViT-B, while
the Square attack needs 405 queries. Misclassification confi-
dence for AdViT range from 0.64 to 0.76 with the Transformer
Interpreter and 0.50 to 0.74 with IA-RED?, comparable to
Square’s 0.78 but achieved with higher success and efficiency.

Notably, ViT-L is the most robust model against AdViT,
showing slightly lower success rates and requiring more
queries. These results demonstrate AdViT’s effectiveness and
efficiency over the Square attack.

We evaluate the similarity between adversarial and benign
interpretation maps by calculating the IoU score. Figure 6

shows the performance of the proposed AdViT attack using
the MGA algorithm for transferability. Despite the additional
noise introduced by the generative algorithm, adversarial in-
terpretation maps remain nearly indistinguishable from their
benign counterparts, achieving an IoU of approximately 0.80
in both interpreters. In comparison, the Square attack produces
significantly lower IoU scores, around 0.40.

D. AdViT: Real-world Black-box Scenario

In this experiment, we explore the performance of the
proposed attack in real-world scenarios against four different
models: ViT-B, SWIN-T, MIT-B, and VISION-P. We conduct
the experiment in two transferability settings (see Subsec-
tion IV-C). We implement AdViT using the DeiT-B model as
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Fig. 5: Black-box scenario: IoU scores of adversarial interpretation maps generated by AdViT using typical transferability and

the existing attack.

TABLE IV: Black-box scenario: Comparison of MGA-based AdViT and Square attack [6] in terms of success rate, queries,
and confidence. Results for the Square attack are duplicated across both interpreters, as it does not rely on interpreters.

Transformer Interpreter |

IA-RED?

Attack  Source Model Target Model ‘

. Misclassification . Misclassification

Success Rate  Avg. Queries Confidence Success Rate  Avg. Queries Confidence

DeiT-B 1.00 150 0.76+0.20 1.00 161 0.5440.20

DeiT-S 0.90 155 0.7240.20 0.90 158 0.51+0.20

DeiT-T 0.90 180 0.68+0.20 0.89 179 0.51+0.20

Swin-B ViT-B 1.00 120 0.70+0.14 0.98 129 0.6940.15

Swin-L 0.96 128 0.714+0.14 0.92 137 0.67+0.15

T2T-ViT-7 0.94 161 0.69+0.14 0.93 173 0.70+0.16

. T2T-ViT-10 0.94 172 0.66+0.19 0.95 184 0.68+0.19

AdViT

DeiT-B 0.95 162 0.76+0.20 0.97 165 0.57+0.20

DeiT-S 0.87 177 0.70-£0.20 0.92 185 0.55+0.20

DeiT-T 0.82 188 0.6940.20 0.86 189 0.50+0.20

Swin-B ViT-L 0.99 134 0.66+0.19 0.96 154 0.67+0.19

Swin-L 0.93 149 0.67£0.19 0.94 156 0.67+0.19

T2T-ViT-7 0.90 189 0.70+0.18 0.91 183 0.7440.19

T2T-ViT-10 0.91 195 0.6440.19 091 197 0.65+0.19

Squar ViT-B 0.87 405 0.81+£0.16 0.87 405 0.811+0.16

quare ViT-L 0.89 420 0.78+0.14 0.89 420 0.78+0.14
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Fig. 6: Black-box scenario: IoU scores of adversarial interpretation maps generated by AdViT using transferability via MGA

and Square attack.

TABLE V: Real-world scenario: attack success rate and mis-
classification confidence of AdViT using typical transferability
using DeiT-B as source model.

Transformer Interpreter

ViT-B  SWIN-T MIT-B  VISION-P
Success Rate 0.37 0.47 0.42 0.22
Misclassification Confidence 0.51 0.37 0.30 0.27

TABLE VI: Real-world scenario: attack success rate, mis-
classification confidence, and average queries of AdViT using
transferability via MGA and DeiT-B as source model.

Transformer Interpreter

ViT-B  SWIN-T MIT-B  VISION-P
Success Rate 0.85 1.00 091 0.73
Misclassification Confidence 0.30 0.26 0.22 0.24
Avg. Queries 205 192 199 218

the source model and transformer interpreter. Table V shows
the attack success rate and misclassification confidence using
a typical transferability setting.

The result shows that the SWIN-T model is the most
susceptible, with an attack success rate of 0.47, while VISION-
P is more robust, with the least attack success rate of 0.22 and
a misclassification score of 0.27. The ViT-B model shows a
high misclassification score of 0.51.

The results show a significant increase in attack success
rate when using MGA to enhance transferability, as shown in
Table VI

For example, the attack success rate increases from 0.22
to 0.73 for the VISION-P model. The results show that the
average queries are higher for the VISION-P model than for
other models.

E. AdViT: Attacking Defensive ViT Models

This section evaluates how MGA-based AdViT performs
when defense techniques are applied in black-box settings.
This experiment explores the effectiveness of attack against
three well-known pre-processing strategies(i.e., R&P, bit-depth



TABLE VII: Success rate and average queries of the proposed attack against four defense techniques using different classifiers
and interpreters testing on 500 images of ImageNet dataset. The attack is based on black-box settings with MGA transferability.

Interpreter Source Target R&P Bit-Depth Reduction | Median Smoothing | Adversarial Training
P Model Model | Success Avg. Success Avg. Success Avg, Success Avg.
Rate Queries Rate Queries Rate Queries Rate Queries
DeiTB ViT-B 0.95 139 0.91 128 0.93 121 0.97 146
ViT-L 0.90 160 0.92 153 0.91 138 0.94 158
DeiT-S ViT-B 0.85 147 0.88 144 0.87 141 0.87 195
et ViT-L 0.84 188 0.86 200 0.84 174 0.85 207
Transformer Swin-B ViT-B 0.86 169 0.90 153 0.90 134 0.86 156
Interpreter VIiT-L 0.82 187 0.85 158 0.87 158 0.84 164
Swin-L ViT-B 0.89 172 0.89 148 0.89 166 0.89 210
Wi ViT-L 0.87 207 0.87 204 0.90 195 0.88 211
. ViT-B 0.85 165 0.87 158 0.88 137 0.87 158
TEVIET it | o082 185 0.88 154 0.91 157 0.87 167
. ViT-B 0.91 180 0.94 147 0.90 176 0.88 201
TIVITI0  Ginp | 092 205 0.92 190 0.85 192 0.85 206
DeiT-B ViT-B 0.95 110 0.97 115 0.94 120 0.88 150
ViT-L 0.91 144 0.94 151 0.92 145 0.87 184
DeiT-S ViT-B 0.83 153 0.86 163 0.83 162 0.88 195
} ViT-L 0.81 176 0.84 182 0.80 177 0.85 210
. ViT-B 0.91 120 0.98 124 0.98 122 0.89 149
TA-RED? B
Swin-B ViT-L 0.86 150 0.94 152 0.90 156 0.85 171
Swin-L ViT-B 0.86 166 0.89 163 0.84 169 0.83 202
ViT-L 0.80 188 0.84 186 0.82 189 0.84 210
. ViT-B 0.89 159 0.89 151 0.83 144 0.89 198
TEVITT e | o001 139 0.94 158 0.95 154 0.88 206
. ViT-B 0.88 163 0.96 156 0.95 164 0.90 201
TV vinp | 082 179 091 162 0.85 175 0.86 203

reduction, median smoothing) and adversarial training de-
fense using 500 images from the ImageNet dataset. For this
experiment, we use DeiT, Swin, and T2T-ViT models as
source models to generate adversarial samples targeting ViT-
B and ViT-L models. We investigate the performance of two
interpreters: transformer interpreter and IA-RED?.

Although defense techniques are applied, the attack success
rate is still high, as shown in Table VII. For example, the
success rate is between 0.82 and 0.95 for the transformer in-
terpreter and between 0.80 and 0.95 in the IA-RED? interpreter
when using R&P defense. Against adversarial training, the
results show that in both interpreters, AdViT achieves a high
success rate ranging between 0.83 and 0.97. Another critical
evaluation metric is the number of average queries required to
attack the target model in the black-box setting. Against all
defenses, the average number of queries is between 110 and
210, which is an outstanding result for black-box settings.

In terms of IoU scores, Figure 7 shows that even when
a defense technique is applied, our proposed attack still
maintains high IoU scores (i.e., 0.80 against all scenarios).

FE. Interpretation-based Adversarial Detection

The recent work [42] suggests using an ensemble of inter-
pretation models to defend against interpretation-based attacks.

We test the detectability of the attack based on different
interpretations. Using multiple interpretations of a single input,
we build a multiple-interpreter-based detector that checks
whether the input is adversarial or benign.

TABLE VIII: Performance of two types of ensemble detectors
composed of two interpreters (i.e., transformer interpreter and
IA-RED?). The first ensemble detector is based on a 2-
channels (i.e., 2 interpretation maps) and the second ensemble
detector is based on a 3-channels (i.e., 3 interpretation maps).

Detection Success Rate

0.75
0.80

Detector Type

2-channel detector
3-channel detector

We generated interpretation maps of adversarial samples via
two interpreters for our experiment. For example, adversarial
samples and adversarial interpretation maps are generated
based on the Transformer interpreter, and extra interpreta-
tion maps of those adversarial samples are produced using
an IA-RED? interpreter. We repeated the same process by
generating samples based on an IA-RED? interpreter and
applying a Transformer interpreter as a secondary one. Since
the generated attribution maps are based on single-channel, we
stacked single-channel attribution maps from two interpreters
to convert them into benign and adversarial two-channel data,
respectively. 2,000 benign and 2,000 adversarial samples are
produced for the experiment.

As the dataset size is small, we adopted the pre-trained CNN
model EfficientNet-B7 [31] to extract feature vectors of a given
input and a model called gradient boosting classifier as a final
layer instead of the fully-connected layer. This approach is
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Fig. 7: IoU scores of adversarial interpretation maps generated by the proposed attack when defense techniques are applied.
MGA algorithm is used to optimize the attack. A.T., M.S. and B.R. stand for Adversarial Training, Median Smoothing, and

Bit-Depth Reduction respectively.

due to the high similarity of benign and adversarial attribution
maps and the complexity of the process required to classify
the samples. Generally, the EfficientNet models have better
accuracy and efficiency than the existing CNNs, with a sig-
nificant reduction in parameter size and FLOPS. The gradient
boosting classifier consists of several weak learning models
that form a stronger predictive model. Each attribution map
is a one-channel image. To adjust the weights of the model
and generate two-channel samples, we replaced the input and
output layers of EfficientNet-B7. We used the multiplication
of attribution maps extracted from two interpreters as the third
channel for the second detector. Table VIII shows the results
of the interpretation-based adversarial detector. Even though
the dataset is small, the results are promising, which can be
seen in the results of the 3-channel detector.

V. RELATED WORK

Interpretation-guided White-box Attacks. Zhang et al.
[42] conducted the first systematic security analysis for in-
terpretable deep learning systems (IDLSes), demonstrating
their vulnerability to adversarial manipulation. They presented
ADV?, a new class of attacks that generate adversarial inputs
capable of deceiving DNN models and misleading their inter-
preters. Following this work, AdvEdge and AdvEdge+ [1], [3]
were proposed to optimize the adversarial attack by adding
perturbation to the edges in the regions highlighted by the
interpretation map, allowing for more stealthy attacks. Their
work has been extended by proposing a query-efficient black-
box attack [4] that stealthily manipulates both predictions
and interpretations of deep models without access to model
internals. In another study, Zhang et al. [40] introduced the
Interpretation Manipulation Framework (IMF), a data poison-
ing attack framework that can manipulate the interpretation
results of the target inputs as intended by the adversary
while preserving the prediction performance. Dombrowski
et al. [17] demonstrated that saliency map interpreters (i.e.,

LRP, Grad-CAM) could easily be fooled by incorporating
the interpretation results directly into the penalty term of the
objective function.

Interpretation-guided Black-box Attacks. Most existing at-
tacks against IDLSes rely on white-box settings, which limit
their practicality in real-world applications.

Zhan et al. [39] introduced a new methodology called Dual
Black-box Adversarial Attack (DBAA) that produces adversar-
ial samples to fool the classifier and have comparable inter-
pretations to the benign. They focused on only a single class
of interpreters (CAM, Grad-CAM) and CNN-based models.
Baniecki and Biecek [10] proposed an algorithm that manipu-
lates SHapley Additive Explanations (SHAP) interpreter based
on the perturbation of tabular data. It employs genetic-based
data perturbations to control SHAP for a model by minimizing
the loss between the manipulated explanation and an arbitrarily
selected target. Naseer et al. [24] studied improving adversarial
transferability in a black-box setting, focusing on ViTs and
showing that carefully crafted perturbations can fool models
across architectural differences without direct access to their
parameters. Our attack strategy builds upon this idea of trans-
ferability, leveraging the capacity of robust perturbations to
remain effective across various models. proposed SingleADYV,
a target-specific adversarial attack designed to mislead both
predictions and interpretation maps in a class-specific manner.
Their method effectively crafts perturbations that suppress
visual saliency for the target class while enhancing it for
a chosen distractor, exposing vulnerabilities in interpretable
deep learning systems. Abdukhamidov et al. [2] proposed
SingleADV, a target-specific adversarial attack designed to
mislead both predictions and interpretation maps by crafting
a universal perturbation for a class-specific category to be
misclassified. Their method effectively crafts perturbations that
suppress visual saliency for the target class, i.e., maintaining
precise and highly relevant interpretations.

Transfer-based Attacks. Aivodji er al. [5] examined the



capability of fairwashing attacks by analyzing the fidelity-
unfairness trade-off. They demonstrated that fairwashed ex-
planation models generalize beyond the legal group being
sued (i.e., beyond the data points being explained), sug-
gesting they can rationalize future unfair decisions made on
the basis of black-box models using fairwashed explanation
models. Fu et al. [36] proposed strategies to improve the
transferability of adversarial examples across different vision
transformers (ViTs) by considering their patch-based inputs
and self-attention mechanisms. Zhang ef al. [41] proposed the
Token Gradient Regularization (TGR) method, which reduces
the variance of the back-propagated gradient in each internal
block of ViTs in a token-wise manner. TGR utilizes the
regularized gradient to generate adversarial samples, offering
improved performance compared to state-of-the-art transfer-
based attacks when attacking both ViTs and CNNs. The
transferability of adversarial examples has also been studied
in various transfer-based attack methods [30], [33], [18], [28].

VI. CONCLUSION

This work examines the security of IDLSes based on vision
transformer models. We present AdViT, an interpretation-
guided attack that generates adversarial inputs to mislead target
transformer models and deceive their coupled interpreters.

Through comprehensive experiments, we demonstrate the
effectiveness of AdViT against a range of transformer classi-
fiers and interpretation models in both white-box and black-
box settings. We show that AdViT maintains high transfer-
ability to target black-box models, especially when employing
MGA to optimize the adversarial samples. We also explore the
attack’s effectiveness against the real-world APIs of four ViT
models, ViT-B, SWIN-T, MIT-B, and VISION-P, highlighting
the practical implications of our findings. Furthermore, we
present the robustness of AdViT against various defense mech-
anisms, including random resizing and padding (R&P), bit-
depth reduction, median smoothing, and adversarial training.
Although AdViT demonstrates remarkable success against
these defenses, we show that implementing an interpretation-
based ensemble detector indicates a promising direction to
harden the security of ViT-based IDLSes.

As AdVIT is the first attack targeting ViT models coupled
with interpretation models, it paves the way for the devel-
opment of potentially more powerful adversarial attacks. Our
work also serves as a catalyst for researchers to create more
effective defenses against attacks similar to AdViT, fostering
a more secure and robust environment for the deployment of
ViT-based IDLSes in real-world applications.
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