2507.14842v1 [cs.NI] 20 Jul 2025

arxXiv

Data-Plane Telemetry to Mitigate Long-Distance BGP Hijacks

Satadal Sengupta
Princeton University
satadals@princeton.edu

Maria Apostolaki
Princeton University
apostolaki@princeton.edu

Abstract

Poor security of Internet routing enables adversaries to divert user
data through unintended infrastructures (hijack). Of particular
concern—and the focus of this paper—are cases where attackers
reroute domestic traffic through foreign countries, exposing it to
surveillance, bypassing legal privacy protections, and posing na-
tional security threats. Efforts to detect and mitigate such attacks
have focused primarily on the control plane while data-plane sig-
nals remain largely overlooked. In particular, change in propagation
delay caused by rerouting offers a promising signal: the change
is unavoidable and the increased propagation delay is directly ob-
servable from the affected networks. In this paper, we explore the
practicality of using delay variations for hijack detection, address-
ing two key questions: (1) What coverage can this provide, given its
heavy dependence on the geolocations of the sender, receiver, and
adversary? and (2) Can an always-on latency-based detection sys-
tem be deployed without disrupting normal network operations?
We observe that for 86% of victim-attacker country pairs in the
world, mid-attack delays exceed pre-attack delays by at least 25%
in real deployments, making delay-based hijack detection promis-
ing. To demonstrate practicality, we design HiDe, which reliably
detects delay surges from long-distance hijacks at line rate. We
measure HiDe’s accuracy and false-positive rate on real-world data
and validate it with ethically conducted hijacks.

1 Introduction

BGP hijacks are a well-known threat, where attackers exploit the
poor security of BGP—the Internet’s default routing protocol—to
redirect traffic through their own infrastructure. These attacks are
dangerous, allowing attackers to eavesdrop and steal sensitive in-
formation from unsuspecting users [1, 3, 5, 7, 9, 16, 30, 33]. Despite
years of research aimed at addressing this issue, BGP hijacking con-
tinues to pose a significant threat [34]. Solutions like BGPsec [8]
require ubiquitous adoption to be truly effective, which is a signifi-
cant challenge given the decentralized nature of the Internet. On
the other hand, mechanisms like RPKI [15], while beneficial, are
not bulletproof against all types of attacks.

Of particular concern, and the focus of this paper, are hijacks
where domestic traffic is rerouted through a foreign location be-
fore reaching its intended destination, i.e., long-distance intercep-
tion attacks. Such attacks are especially troubling because they—
unbeknownst to the user—expose the user’s traffic to different ju-
risdictions and, consequently, to different privacy and surveillance
laws. These rerouting incidents have significant implications [19,

“Work done as a Master’s student at Princeton University.

Hyojoon Kim
University of Virginia
ter5zr@virginia.edu

Daniel Jubas®
Five Rings LLC
danieljubas@gmail.com

Jennifer Rexford
Princeton University
jrex@princeton.edu

20, 40]. Yet, existing monitoring solutions [4, 25, 37, 38] rely almost
exclusively on control-plane signals. Concretely, they aim at finding
anomalies in BGP route updates and are thus limited to what is
visible from their vantage points or monitors [10, 12, 28, 29, 40].
Such an approach is also constrained by the slow convergence of
BGP that can take minutes [22].

In this paper, we investigate the usefulness of propagation delay,
a data-plane signal, in detecting BGP hijacks and in particular long-
distance hijacks. Propagation delay is a promising yet underexplored
signal for detecting such long-distance attacks, especially compared
to well-studied control-plane signals. Unlike control-plane signals,
propagation delay cannot be hidden from the victim, and in the
case of long-distance hijacks, the increase in delay is significant. For
instance, for a UK-based source-destination pair, the traffic must
cover an additional 15,025 kilometers at least to travel via North
Korea, causing a minimum additional round-trip time (RTT) of
75 ms!—a latency the victim will directly experience. A change
in propagation delay is also immediately observable, enabling a
faster detection and mitigation opportunity compared to existing
control-plane approaches.

However, building an effective delay-based BGP hijack detector
is challenging. First, the expected increase in propagation delay—
which is at the heart of a delay-based approach—is highly location-
dependent. For example, a delay-based detector might successfully
flag traffic between hosts in the U.S. being diverted through the UK
but may fail to do the same if traffic is diverted through Canada.
Additionally, delays can be caused by many other factors such as
network congestion, host processing times, and noise in access
networks. Second, even if we accurately detect long-distance BGP
hijacks, doing so in a scalable, real-time manner remains challeng-
ing. Per-packet round-trip time calculation is expensive at line rate.
Furthermore, maintaining state and monitoring every flow is in-
tractable. Thus, we pose the following research questions: (1) What
fraction of possible BGP hijacks can a delay-based approach detect?
(2) Can we design a practical, always-on monitoring system to detect
and mitigate hijacks in a scalable manner without excessive cost?

To these ends, we design HiDe, a practical system for detecting
hijacks using propagation delay, which relies on three key insights.
First, BGP hijacks occur at the IP-prefix level and affect all traffic
routed to the targeted prefix, meaning that during a real hijack,
no packet to the targeted prefix can have a delay less than the
minimum required for the attacker’s route. By passively measuring

!'This example assumes the speed of data transmission to be the speed of light in optical
fiber, given by ¢y = 2c¢/3 (approx.), where c is the speed of light in vacuum [24].
Hereafter, in this paper, speed of light refers to ¢y, which is approx. 200 km per
millisecond (more precisely, 199.86 km/ms).

https://arxiv.org/abs/2507.14842v1

the delays experienced by as many packets as possible and relying
on the minimum per prefix, HiDe can reliably and scalably detect
spurious delay surges. Second, we observe that a BGP hijack in-
duces a distinct pattern in the denoised delay over time, clearly
differentiating it from other events, such as congestion. Concretely,
a hijack causes a sharp surge with location-dependent but calcu-
lable minimum height, which one can detect using a changepoint
detection algorithm. Third, implementing HiDe can be made prac-
tical by deploying it on high-speed programmable switches. This
is possible, despite the rigid computation and memory constraints
of such devices, thanks to our switch-native implementation of
changepoint detection and scalable latency measurements.

Our comprehensive evaluation demonstrates that HiDe is highly
reliable (zero false negatives by design), minimally disruptive to
real traffic, and implementable on commodity hardware. To assess
HiDe’s effectiveness, we tested it against ethically-conducted real-
world hijacks? and found that it detects them within 0.5 second.
Additionally, to evaluate its impact on regular operations, we run
HiDe on campus network traces (19 billion packets, 5.3 TB bytes).
The results show that its combination of algorithms effectively
minimizes false alarms (<0.012%), even in the presence of highly
noisy real-world RTT signals. Furthermore, HiDe reduces the impact
of such false alarms by identifying and correcting them within a
median of 0.75 seconds without human intervention. We implement
HiDe entirely on a programmable switch, showcasing its potential
for seamless deployability on a network’s border gateway with
minimal hardware cost and no delay overhead to normal traffic3.

2 Background

In this section, we describe BGP hijacks, present our threat model,
and explain the limitations of existing strategies.

2.1 BGP-based attacks

BGP is the primary protocol that connects Autonomous Systems
(ASes) by enabling them to exchange and forward route announce-
ments for IP prefixes. Each AS advertises routes for the prefixes
it owns, including an AS path indicating the sequence of ASes to
traverse to reach it. Routers independently select the best route for
each prefix based on attributes like path length and routing policies.
BGP hijacks. A BGP hijack occurs when a malicious or compro-
mised AS falsely advertises routes to IP prefixes it does not own or
cannot reach, misleading other ASes into rerouting traffic through
its infrastructure. Suppose AS100 legitimately owns the IP prefix
1.1.1.0/24. A malicious AS, AS200, falsely announces ownership of
1.1.1.0/24 to its BGP peers. These peers may accept the announce-
ment as valid and propagate it to their own peers, spreading the false
route across the network. As a result, traffic destined for 1.1.1.0/24—
for instance, originating from another prefix like 2.2.2.0/24 owned
by AS300—may get misrouted to AS200 instead of reaching AS100.
This enables the attacker to eavesdrop on, fingerprint, manipulate,
or drop this illegitimately-obtained traffic. In some cases, the at-
tacker may even serve malicious content by impersonating the

ZEthical issues are discussed in detail in our Ethics section (Appendix A).
3We will make our artifacts (analysis code, prototype, anonymized data, ethical hijack
steps) publicly available upon acceptance (see Appendix B).

Malicious Route
Attacker

Original route

Victim

Figure 1: An attacker in the UK exploits the lack of routing se-
curity to redirect traffic from a peer host in the US—originally
destined for a victim host in the US—through the attacker’s
own infrastructure. The mid-attack path (in red) from the
peer to the victim is longer than the original pre-attack path
(in green), adding an extra 50 ms of propagation delay.

legitimate destination (e.g., by rapidly acquiring a “valid” certifi-
cate first by exploiting the weakness in the certificate issuance
verification process [11]).

BGP interception attack. A BGP interception attack (Figure 1) is
a specific type of BGP hijack where the attacker intercepts traffic
but forwards it to the original destination, enabling analysis or
manipulation while remaining undetected by the end hosts. Of
particular concern is a stealthy subset of these attacks where a
sophisticated attacker employs techniques like AS-path poisoning
and the manipulation of BGP communities to limit the propagation
of malicious announcements in a bid to evade detection by BGP
monitors near the victim. For instance, in the example above, AS200
could manipulate its announcements to propagate only to routers
near AS300 while suppressing those to routers near AS100. This
could cause traffic from 2.2.2.0/24 to 1.1.1.0/24 to get misrouted via
AS200, while AS100 remains unaware as BGP monitors near it never
observe the malicious route. Such an attack has been demonstrated
by Birge-Lee et al. [12], which we ethically reproduce in §7.2.

2.2 Threat model

We consider an adversary performing a stealthy BGP interception
attack—such as the one described above—to reroute traffic destined
for a victim through distant infrastructure before forwarding it back
to the victim. This infrastructure is located in a faraway country,
potentially under different privacy and security laws. The adversary
is sophisticated, aware of detection systems, and employs evasion
techniques to suppress forged advertisements [12]. By rerouting
traffic back to the victim, the attacker keeps connections alive, en-
abling traffic analysis while evading detection at the application
layer. Such attacks can serve as tools in cyber warfare or surveil-
lance. Real-world examples of long-distance interceptions include
(among numerous others) the rerouting of US-based traffic via the
UK to enable surveillance (Figure 1) [19], rerouting of US-based
traffic managed by China Telecom via China undetected over 2.5
years [20], and rerouting of traffic between two hosts in Denver,
USA via Iceland [40].

2.3 Limitations of existing approaches

Protocol enhancement-based approaches are expensive or
inadequately deployed. Multiple protocols have been proposed

to secure routing on the Internet using cryptography to validate
routing paths, including BGPSec [8], RPKI [15], and even future
Internet architectures such as SCION [32]. The key drawback of
such solutions is that they require widespread deployment to be
effective, which is hindered by the lack of incentives among in-
dependent parties. BGPSec requires online cryptographic signing
and validation, which incurs high overhead, hindering adoption.
RPKI [15] is less expensive and has seen more deployment, but
only supports origin validation and not path validation. This makes
RPKI unable to detect BGP interception attacks, which maintain the
origin of the prefix (to allow traffic to reach its destination). Simi-
larly, SCION requires worldwide deployment, extra infrastructure,
and processing overhead on end-host software.

Control plane-based monitoring approaches are slow and
susceptible to evasion. There is an abundance of research and
industrial tools for detecting BGP hijacks [4, 25, 37, 38]. These
approaches analyze the BGP route advertisements that are cap-
tured by monitors in different locations on the Internet to find
anomalies. However, the detection may take too long. As BGP ad-
vertisements can take a long time to propagate to all locations, the
detection speed depends on the location of the monitor and its
distance from the victim. This can critically delay the reaction to
a hijack, allowing the attacker enough time to achieve their goal.
Furthermore, while effective against hijacks caused by human error,
such mitigation strategies can be evaded by sophisticated attackers.
For example, previous works show that it is possible to avoid the
monitors by carefully manipulating BGP communities to localize
advertisements [12, 28].

Data-plane approaches lack practicality in real-world deploy-
ments. While some RTT-based detection methods exist, they fall
short in production. Dart [36] introduces real-time RTT measure-
ment in the data plane to address scalability challenges. While it em-
ploys min-filtering over windows and thresholds in an interception
attack experiment, it cannot differentiate natural RTT variations
(e.g., due to congestion), from malicious diversions—essential for
effective hijack detection. Oscilloscope provides a more advanced
methodology for hijack detection [14], but is based on idealized
conditions, since it is evaluated only on emulated data. Even under
these controlled scenarios, it suffers from high false-negative and
false-positive rates. Moreover, it does not operate directly in the
data plane hardware, further limiting its applicability in production.

3 Feasibility of delay-based detection

HiDe relies primarily on propagation delay for real-time BGP hi-
jack mitigation. In this section, we examine the feasibility of using
propagation delay alone to defend against long-distance intercep-
tion attacks. In particular, we consider cross-country attacks—where
both the victim and its peer reside in a victim country Cy, while the
attacker operates from a different threat country Cr. Such attacks
are common in nation-state cyber warfare and surveillance.

3.1 Key Questions and Observations
We ask the following questions about cross-country attacks:

(1) Does traffic within a single country have significantly lower
propagation delay than traffic across countries? If so, can we
use this difference to detect cross-country interception attacks?

(2) Are all countries equally defendable using propagation delay-
based detection? If some countries are more defendable, what
geographic factors drive this difference?

(3) What fraction of cross-country attacks can, in principle, be de-
tected by comparing propagation delays—both under idealized
(speed-of-light) assumptions and real-world measurements?

Our analysis in this section reveals the following:

(1) Across 258 countries, the max. distance within a country (max.
intra-country) is typically far smaller than the min. distance
from that country to any other country (min. inter-country). The
25th /50t /75th percentiles of max. intra-country distances are
49 km, 413 km, and 1,129 km, respectively; the corresponding
percentiles for min. inter-country distances are 4,027 km, 7,689
km, and 11,420 km. Propagation delays follow a similar trend.

(2) Some countries are inherently more defendable using propa-
gation delay-based detection than others. For example, Russia
ranks among the least defendable, whereas New Zealand is
one of the most defendable. More generally, larger countries
with many nearby neighboring countries are less defendable,
while smaller or more geographically isolated countries are
more defendable.

(3) Considering the worst-case (least defendable) attack paths be-
tween every pair of countries, we find that 97% cross-country
attacks can be detected assuming speed-of-light RTTs, and 91%
and 86% respectively, using real-world measurements from two
production datasets.

3.2 Intra- vs. Inter-Country Distances

Goal. Our first goal is to assess whether the great-circle distance
(shortest distance along Earth’s curvature) between two hosts in the
same country is significantly smaller than between hosts in different
countries, so a cross-country detour would induce a detectable
increase in propagation delay.

Dataset. We use the Natural Earth Admin-0 Countries dataset—one
of the most popular boundary datasets in the Geographic Infor-
mation System community. It provides high-resolution boundary
coordinates (avg. 2.5 km) for 258 countries (Figure 2a) [18]. Since
some countries consist of multiple disconnected regions (e.g., con-
tiguous US plus Alaska and islands), we distinguish each country’s
mainland (largest contiguous landmass) from entire country (all
regions combined).

Method. For each country (entire country and mainland), we cal-
culate: (1) Max. intra-country distance: the largest pairwise great-
circle distance among all boundary points of the country, and (2)
Min. inter-country distance: the smallest great-circle distance from
any point in this country to any point in another. Figure 2b illus-
trates these distances within the US (top) and between the US and
China (bottom).

Observations. Figure 2c shows: (1) min. inter-country distances
far exceed max. intra-country distances, and (2) these distances
for entire countries vs. mainlands are similar: we proceed with
mainlands in the rest of this paper for better interpretability. At
the speed of light, the 25/%/50!%/75!" percentile max. intra-country
one-way delay (OWD) are 0.2 ms, 2.1 ms, and 5.6 ms, respectively;
the corresponding values for min. inter-country OWD are 20 ms,
38 ms, and 57 ms.

)

N
=3
S
S
<
iR
o
S

Country Area
Entire country
Mainland only

~
32

S
(=3
(=3
(=]
o
o
One-Way Delay
at Speed-of-Light (ms)

B

P
o ol
ol == Lo
Intra-Country Inter-Country
Maximum Minimum

N}
o

(a) Centroids (orange icons) of the mainlands (b) Top: Max. distance within country. Bottom:
of 258 countries in the Natural Earth Admin-0 Min. distance between countries. (Blue: Entire
dataset [18]. country, orange: mainland).

(c) Distribution of max. within and min. be-
tween countries: distance (left y-axis) and one-
way delay at cf (right y-axis).

Figure 2: For all 258 countries (Figure a)—using both entire country areas and mainlands only (Figure b)—we compute each
country’s maximum internal distance and its minimum distance to every other country, then plot both distributions (Figure c).
Typically, a country’s foreign neighbors are more distant than its own farthest points.

© ;5sp) o SD.A) ? 6(S,D)e

AN s :

5($9 ‘9 50
5(S,A)

(b) Distance in the middle of the stealthy interception
attack: 8,,,0 = 6(S,D) + (S, A) + 6(D, A).

(c) Locations of source, dest. in the US and attacker in
China such that §,,;q — Spre is minimized.

(a) Distance before at-
tack: 6pre = 26(S, D).

Figure 3: In this example, source S and destination D lie in mainland US and attacker A in mainland China. Figure (a) shows
the pre-attack round-trip distance 5y, and (b) the mid-attack round-trip distance ,,;4, leading to the deviation dy.yiation =
Omid — Opre = 6(S5,A) + 5(D,A) — &(S, D). Figure (c) shows the most optimal attack on the US from China, with curved lines
indicating shortest great-circle paths. (Green: Original path, red: diversion due to attack.)

200 o 216
Victim Country X 100 —_ 200 Optimal Attacks on E 150

BN Russia »n 80 3 —— Russia m 1259

) 150 HEEl New Zealand ’ff, g 150 —— New Zealand 8 12 100§
E 100 g 60 = —— All Countries X o
= © 100 8 L75 &
E Z a0 8 < |

&= I} =) -50

50 =] T 50 S|4 2
= 20 * £ + |~ £

a |_. 3 -25

0 v o o 0 al o -0
Pre-Attack ~ Mid-Attack 0 20 40 60 80 100 0 20 40 60 80 100 ° 0 2 5

1 3 4
Phase of Optimal Attack Countries (%) Optimal Attacks (%) 6(S, D) (x103 km)

(a) Pre- and mid-attack RTTs dur-
ing all possible optimal attacks
on 2 example countries.

(b) Percentage of countries vs.
percentage of defendable opti-
mal attacks.

(c) Attack coverage vs. mid-attack
RTT (as a multiple of pre-attack
RTT).

(d) Deviation (z) as a function of
dist. b/w hosts (x) and avg. dist.
b/w hosts & attacker (y).

Figure 4: Defendability against optimal attacks assuming speed-of-light RTT: With Russia and New Zealand (NZ) as example
victim countries, (a) shows mid-attack RTT is typically much higher than pre-attack RTT; size and proximity of victim country
to other countries determine the extent. Figure (b) shows that for 86% countries can be defended against 94% optimal attacks.
Figure (c) shows Russia’s post-attack RTT peaks at 4x its pre-attack RTT (corresponding to 110 ms absolute difference), NZ at
100x (190 ms), and all countries combined at 198x (200 ms). Figure (d) shows that, when the victim and peer are co-located, the
attacker must be 2,500 km away to induce a deviation of 25 ms; as the victim and peer separate, the attacker must be more
distant to induce the same deviation.

3.3 Identifying least defendable attacks

In this subsection, we describe how we identify the least defendable
attack given a Cy and a Cr; later, we analyze defendability under

ideal (§3.4) and realistic (§3.5) conditions. Figures 3a, 3b show the
paths before and during the attack: with source S and destination D
in Cy and attacker A in Cr, the round-trip distance changes from

Opre = 28(S, D) to Syiq = 8(S, D) + (S, A) +6(D, A), resulting in a
deviation of 8,.piation = 0(S, A) + 6(D, A) — (S, D). In the worst-
case (least defendable) attack scenario, 8g.piarion 1S minimized by
having S and D on Cy’s border and as far apart from each other as
possible, and A on Cr’s border and as close to S and D as possible—
we call this an optimal attack. Under such an attack, we denote
the pre-, mid-attack distances, and deviation as 5;re, 5:;”. & and

Zem.a tion® respectively, and the corresponding RTTs as T;re, r:‘m. &
and r;ew.a tion- Figure 3c shows the optimal attack from China on the
US, as an example. We compute the optimal attack for each ordered

pair of victim and threat countries (258 x 257 attack scenarios).

3.4 Defendability under ideal conditions

Goal. In this subsection, we analyze the feasibility of detecting
cross-country optimal attacks under ideal conditions.
Assumptions. “Ideal conditions® include: (1) Ideal network — data
travels at the speed of light, and (2) Ideal measurements — our
measurements capture the actual distance-based propagation delay.
Under these assumptions, propagation delay = minRTT = RTT.
Therefore, in this subsection, RTT refers to propagation delay. We
relax these assumptions in §3.5.

Most and least defendable countries. Optimal attacks determine
the lower bound of our defense capabilities. To assess defendability
under optimal attacks, we compute propagation delay as the round-
trip distance (6, or 8 .) divided by speed of light. To illustrate
the difference in defendability across countries, we select two exam-
ples: Russia, which has among the smallest median 7 and

New Zealand (NZ), which has one of the largest median T:;evia tion"
Figure 4a shows their pre-attack and mid-attack RTT distributions.
NZ’s RTTs increase significantly mid-attack, making it more defend-
able; Russia’s RTT changes are smaller making it less defendable. In
general, small countries with distant neighbors (low §(S, D), high
8(S,A) + 8(D, A)) are the most defendable, while large countries
with many close neighbors are the least defendable.

Attack coverage. To quantify defendability, we define attack cov-
erage as the percentage of optimal attacks that can be detected
under some given condition. To compute overall coverage, we set
the condition T:;evia tion = O ms because: (1) 5 ms far exceeds typi-
cal noise in measurements (e.g., due to coarse-grained timestamps,
rounding off errors, approximations in distance calculations, etc.),
and (2) At speed of light, 5 ms corresponds to approx. 1,000 km of
extra path length, so it captures meaningful geographic detours.
The attack coverage for Russia (over 257 optimal attacks) is 85%
(the minimum for any country), while the same for NZ is 100%.
When expanded to all countries (i.e., 258 x 257 optimal attacks), the
coverage is 96.6%. Figure 4b shows that 100% (i.e., all) countries can
be defended against 84% attacks, 75% against 95%, 23% against 99%,
and 11% against 100%. These results illustrate the promise and gen-
erality of propagation delay-based detection (in ideal conditions).

Attack coverage at given RTT deviations. To analyze the extent
to which optimal attacks increase RTT in ideal conditions, we plot
the attack coverage (x-axis) given the ratio between mid- and pre-
attack RTT (Figure 4c) (absolute difference shown in appendix-
Figure 13). For NZ (purple), this ratio ranges from 1-100x (5-190
ms absolute difference), while for Russia (green), due to its large
pre-attack RTTs, it is 1-4x (5-110 ms). For attacks on all countries

(red), it is 1-198x (5-200 ms). The ratio is 2x (8 ms) for 95% attack
coverage on all countries, and 4x (23 ms) for 85% coverage.
Deviation as a function of distances. The analysis of cross-
country attacks does not inform us directly about the relationship
between distance and RTT deviation. To bridge this gap, Figure 4d
shows RTT deviation (z-axis)—as a function of pre-attack distance
(6(S, D)) (x-axis), and average distance between S-A and D-A (y-
axis)—in a heatmap. The x- and y-axis are capped at the maximum
intra- and minimum inter-country distances. The 85!/ /95th per-
centile pre-attack distances are 1,090 km and 1,872 km; to induce
an RTT deviation of 25 ms, the attacker needs to be at an average
distance of 3,045 km and 3,436 km, respectively, from S and D.

3.5 Defendability in the wild

Goal. While our observations under ideal conditions are promising,
defendability may differ in the real world because: (1) the actual
propagation delay may be larger than the speed-of-light RTT due to
longer physical paths, and (2) RTT measurements may not capture
the actual propagation delay due to congestion or poor channel
conditions (in wireless networks). In this subsection, we evaluate
defendability in realistic conditions using two production datasets.

Datasets. Our datasets are outlined below:

e Campus dataset: We collect traffic from 7.5 M TCP flows on
our campus over 12h on a weekday in May ‘22, and compute
RTTs by matching data packets with ACKs [17].

e MLab dataset: We collect minRTTs of 4.3 M TCP flows from
NDT7-based measurements over 5 days in Dec. 24 [27].

For each flow in each dataset, we collect geolocations of the source

and destination. We discard flows whose minRTT indicates shorter

distances than those permitted by their reported geolocations,
which is physically impossible. Finally, we group remaining mea-

surements by source-destination /24 prefixes, because (1) a /24

prefix is the smallest unit on which a BGP hijack can be launched,

and (2) aggregating by prefix improves the chance of measuring
true minRTT (§5.2).

Estimating propagation delay from distance. To quantify de-

fendability in realistic settings, we estimate real-world propagation

delay between any two hosts from their great-circle distance d. This
real-world propagation delay may vary across host pairs separated
by the same distance d depending on: (1) Geolocation: Some re-
gions in the world have denser network connectivity than others,

(2) Routing policies: Some providers make shorter paths available

than others, (3) Stable queues: Some paths experience consistent

queuing delay due to deep buffers, etc. Furthermore, even if the
true propagation delay is same, we may measure different minRTTs
due to transient congestion. It is infeasible to collect reliable min-

RTTs from all possible attack locations in all 258 countries. Instead,

we apply the following method to both our campus dataset (215

countries) and Google MLab (234 countries) to capture variability:

(1) Bin distances: Divide all distances up to 20,075 km (Earth’s
diameter) into 200 km bins (~1 ms at c).

(2) Assign prefixes to bins: For each source—destination prefix
pair, compute its great-circle distance, assign it to the appropri-
ate bin, and record its minOWD (minRTT/2).

(3) Percentile computation: Within each bin, compute the pth
percentile of these minOWDs for p = 1,.. ., 100.

% 300 % 300 e
E Campus Measurement é’ MLab Measurement xX 100 —_ 12.5 = Campus data
~ Speed of Light ~ Speed of Light »n 80 g 10.0 = = MLab data
§ 200 — P25 Regression Line g 200 — P25 Regression Line % g ’
) p75 Regression Line 1) p75 Regression Line g 60 E 7.5
)
g g = 40 *& 5.0
=100 =100 © =
g g g 20 c a g 25
= = E=) = Campus data *F‘E .
g g I — = MLab data
= 0 = 0 o 0.0
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 20 40 60 80 100 0 25 50 75 100
Geodesic Distance (km) Geodesic Distance (km) Countries (%) Optimal Attacks (%)

(a) Campus measurements over
12 hours in May ‘22.

(b) Google MLab measurements
over 5 days in Dec. ‘24.

optimal attacks.

(c) % countries vs. % defendable

(d) % attacks vs. ratio of mid-
attack to pre-attack RTT.

Figure 5: Defendability against optimal attacks based on real measurements: We estimate (using linear regression) the p25 and
p75 OWD for each 200 km distance bucket of our campus dataset and the Google MLab dataset, in (a) and (b) respectively. Using
p75 OWD to estimate pre-attack and p25 to estimate mid-attack RTT, 85% countries can be defended against 85% attacks based
on the campus dataset, and 85% against 78% based on MLab (Figure (c)). Figure (d) shows that the mid-attack RTT peaks at 12x
pre-attack RTT in the campus dataset, and 7.5x in MLab.

140 RO

E120 . R 7
100 st Ridhy ot T
0 50 100 150 200 250 300
Time (s)

Figure 6: Abrupt and significant rise and
fall in RTT due to interception attack
launched (ethically) at 100° h second and
withdrawn at 200",

300 -
N .] Flow 1
g e N ,: ot - Flow 2
2200 Cuir, et LI
= i SO
> o i a:,n v §m oy a
100 A 'Mll“ fl-«) v tates
300 -
Flow 1
« Flow 2

Min. RTT (ms)
N
o
(=}

100 -
0 5 10 15 20 25
Time (s)

Figure 7: Top: Flow 1 (blue) with noisy
RTTs and flow 2 (green) with stable RTTs.
Bottom: Aggregating by prefix stabilizes
minRTTs (orange).

300

g‘w e

'.,z

ms)
w
(=3
o o

)
=3
S

Min. RTT (
o
o

o

0 5 10 15 20 25
Time (s)

Figure 8: Prefix with noisy RTTs (top)
that produce noisy minRTTs (bottom) de-

spite windowing. Such prefixes are less
defendable.

(4) Regression fitting: Fit one linear regression per percentile
across all bins (e.g., a p=1 line through every bin’s 1-percentile).

Figures 5a and 5b plot the p=25 and p=75 regression lines for the
campus and MLab datasets, respectively. The campus data shows a
narrower inter-quartile range—likely because the location of one
end is fixed (on campus) and the entire variability is due to the
remote host—whereas for MLab, the servers and clients are in dif-
ferent locations. With these delay estimates, we proceed to evaluate
defendability against optimal attacks under realistic conditions.
Estimating pre- and mid-attack minRTTs. The variability of
minOWDs for the same distance poses a challenge: if our detection
is unlucky, it could measure a higher percentile minRTT before the
attack and a lower percentile during the attack, causing the devia-
tion in minRTT to be much lower than speed-of-light deviation. To
model such a scenario, we use the upper quartile (75!” percentile)
minOWDs to estimate pre-attack minRTTs, and the lower quartile
(25”’ percentile) minOWDs to estimate mid-attack minRTTs. Then,
we evaluate defendability using the same metrics as before.
Observations. Using the condition r:;em.a tion = 5 ms, the overall
attack coverage is 91% on the campus dataset and 86% on MLab.

Figure 5c¢ shows that in the campus data, 100% countries can be
defended against 63% attacks, 75% against 89%, and 2% against
100%. In MLab, 100% countries can be defended against 53% attacks,
75% against 80%, and <1% against 100%. Real-world defendability is
therefore less than in the ideal case—especially in MLab, where min-
RTT variability is higher. Figure 5d plots coverage versus the mid-
/pre-attack minRTT ratio (absolute diff. in appendix—Figure 14). The
ratio ranges from 1-12x (5-290 ms) for campus; 1-7.5x (5-250 ms)
for MLab. Appendix-figures 15, 16 present corresponding distance-
deviation heatmaps, which follow similar trends.

3.6 Takeaways

Our analysis shows that propagation-delay measurements offer a
highly effective signal to defend against cross-country interception,
primarily because diverted paths almost always incur substantially
greater delays than pre-attack paths. Although real-world vari-
ability degrades detection coverage compared to ideal conditions,
our focus on worst-case (optimal) attacks means these results are
conservative—actual detection performance will often exceed our
current estimates. We believe our findings are sufficiently strong

to justify designing an interception-detection based solely on prop-
agation delay. At the same time, a range of factors influences how
accurately any given attack can be detected: the victim country’s
size and distance from potential adversaries; the exact geolocations
and separation of victim and peer hosts; the true lengths of the
pre-attack and mid-attack network paths; transient or persistent
congestion along those paths; and the precision of our measurement
and aggregation techniques. With these insights in mind, in the
next section, we present HiDe—a scalable, always-on, data-plane
system for detecting and mitigating interception attacks.

4 HiDe: Overview

HiDe is a BGP-interception mitigation system that runs entirely on
a programmable switch and uses real-time minRTT measurements
for detection and mitigation. In this section, we present the key
insights that drive HiDe.

Converting noisy RTT into a reliable detection signal. During
a hijack, all traffic to a victim prefix must traverse the longer path
via the attacker, so no RTT sample can be shorter than the minimum
propagation delay via the attacker. HiDe exploits this by passively
collecting RTT samples for every TCP data-ACK pair at the net-
work border (thereby avoiding noise from the internal network),
aggregating samples per prefix, and tracking the minRTT per time
window. By monitoring these minRTTs, HiDe detects hijacks as
sudden, sustained spikes in delay. For example (Figure 6), hijacking
Bitcoin traffic ethically from a Stockholm client via Amsterdam
causes the minRTT to jump by about 20 ms at attack start and to
fall back when the hijack ends. A changepoint detection algorithm
can reliably identify such shifts.

Prioritize guaranteed protection over broad coverage. We
posit that operators prefer a system that reliably defends a well-
defined subset of prefixes rather than a best-effort approach that
“covers” everything but floods them with false alarms. Section 5.3
shows how HiDe restricts its scope to prefixes it can protect with
high confidence. When false positives do occur, HiDe continues
measuring RTT and automatically rolls back its mitigation if the
spike proves transient.

Optimize for commodity hardware. HiDe stores only per-prefix
state—the running minRTT and sample count per time window—
instead of expensive per-flow or per-packet state. It employs a
lightweight, two-window, threshold-based changepoint detector
that is hardware-amenable. On Tofino2, HiDe uses native primitives
(mirror and packetgen) to generate occasional packet replicas for
RTT measurement, false-positive correction, and (optinal) user
alerting—while forwarding all other traffic at line rate with zero
additional latency.

5 HiDe: Methodology

5.1 Compute location-based lower bound

Translating user input into geographic locations. The user
provides HiDe with the IP prefix of the home network and the threat
regions they want to protect their data from, based on policy deci-
sions or anticipation of threats. The threat regions are either names
of countries or enclosed polygons of geographic coordinates. HiDe
also obtains from its data plane the destination prefixes observed

by it. The user can, optionally, set threat regions per destination pre-
fix. Eventually, the control plane converts all the information into
triplets of geolocation information: {source_coordinates, destina-
tion_coordinates, threat_coordinates_list} using public geolocation
services (IPinfo, MaxMind) and public geographic datasets (Natural
Earth Admin-0) [18, 26, 39].

Computing lower bound of mid-attack RTT. For each location
triplet, we first identify the optimal attack, i.e., the attacker’s lo-
cation in the threat region that minimizes mid-attack round-trip
distance. Note that this distance can be much higher than in the
optimal attacks in §3 because there, source and destination were al-
ways on the victim country’s border whereas here, they are almost
always inland. Next, we compute the minimum possible mid-attack
RTT for this optimal attack (z .), based on the speed of light.
We designate this lower bound RTT as the absolute threshold of
our changepoint detector: HiDe flags an attack whenever the ob-
served minRTT reaches T:‘m. > Suaranteeing zero false negatives (see
§5.5 for false positives). While we could choose a less conservative
bound—e.g., the 25!"-percentile estimated latency in 200 km buck-
ets (§3.5)—we opt for the most conservative threshold to guarantee
protection, at the expense of coverage, as is our design goal (§4).

5.2 Reduce noise in the RTT signal

Aggregating by prefix to reduce impact of noisy flows. BGP
attacks target prefixes, with a /24 prefix being the smallest possible
target. All flows to an attacked prefix experience the same under-
lying change in propagation delay, but noisy RTTs in individual
flows can obscure this change. We aggregate RTT samples by prefix
before computing the minimum RTT per window (discussed next),
as at least one flow per window is likely to produce a sample repre-
sentative of the true propagation delay. Figure 7 demonstrates this
for a US-based destination prefix with one noisy and one stable flow.
Also, prefix-level aggregation reduces switch memory requirements
from per-flow to per-prefix, which is significant.

Windowing to discard short-term fluctuations. We divide
streams of per-prefix RTT samples into non-overlapping time win-
dows of a fixed size (i.e., tumbling windows) and compute the
minRTT in each window. This helps filter out short-term spikes in
RTT due to benign confounding factors like queuing delay from
short-lived congestion, end-host processing delays, and TCP oddi-
ties like delayed ACKs [36]. We select a sub-second (e.g., 0.25- or
0.5-second) time window—while minRTT can be measured more
reliable by with longer time windows, it would delay mitigation
allowing an attacker more time to complete their attack. Finally,
tracking minRTTs in non-overlapping tumbling windows requires
only per-flow state, as opposed to overlapping sliding windows,
making it more suitable for a switch implementation.

5.3 Cover vulnerable & defendable prefixes

Identifying vulnerable prefixes. BGP interception attacks pri-
marily target prefixes that host sensitive services—government sites,
banking portals, cryptocurrency nodes, and the like—because such
websites handle sensitive data from users around the world. The
attacker places itself between the user and the server—intercepting
“valuable” data. HiDe prioritizes these vulnerable server prefixes
for protection. By default, it excludes prefixes used exclusively by

WiFi or cellular access networks—since they rarely host critical
services—unless the operator explicitly includes them.
Identifying defendable prefixes. Some destination prefixes have
RTTs that are consistently noisy or high even under benign con-
ditions, making it nearly impossible to detect interception attacks
on them from certain threat regions without excessive false pos-
itives. For example, Figure 8 shows a prefix where the minRTT
often exceeds 100 ms, making it impractical to defend against a
threat region that causes a small deviation in comparison. Further
analysis of such prefixes reveals that often, they tend to be asso-
ciated with client-side access networks, such as cellular or WiFi,
which HiDe does not defend by default anyway. Concretely, during
a profiling phase independent of the detection phase, we monitor
the max. of min. RTTs in tumbling time windows for each destina-
tion prefix. Later, we defend a prefix against a threat region only if
T;knid — max(RTTynin) > A, where A is called the surge threshold. A
defines the min. increase in RTT,,;, required between two consecu-
tive windows to flag an attack, and can be set to a constant (e.g., 10
ms) or a fraction of max(RTTjnin) (e.g., 10%). A lower A provides
broader coverage but increases susceptibility to false positives, and
vice-versa. Users can adjust A based on their desired trade-offs. We
evaluate the false positive rate for different values of A in §8.

5.4 Switch-amenable changepoint detection

We implement changepoint detection directly in switch hardware
by combining the techniques described so far in an approach called
the two-window algorithm. This involves tracking the per-prefix min.
RTT (RTT.,,
completes (i > 0), we compare RTTr"n_irll and RTTT’;lm and mark the
prefix as attacked if both the following surge conditions are met:
(1) RTT;;;.}! < T;‘m.d and RTT:nin > T:nid: The minRTT crosses the
absolute threshold between two consecutive windows.

(2) RTTrin in~ RTTY’;i’ll > A: The minimum RTT surges by at least
the surge threshold in consecutive windows.

Valid windows. Only time windows that contain at least 5 samples
are considered valid and used for detection—windows with fewer
samples do not necessarily benefit from min-filtering and could

lead to false positives.

) for each tumbling window i. Once the i*" window

5.5 Minimize impact of false positives

Despite reducing false positives, our detection algorithm is not
foolproof and may occasionally generate them. To minimize their
impact and to eliminate the need for human intervention, HiDe
employs an automatic false positive correction mechanism. When
an attack is detected, HiDe blocks the affected prefix and simultane-
ously initiates active probing by sending ICMP echo packets to the
most recently active IP address in the prefix at each time window.
It monitors the corresponding RTT, and if the RTT falls below T:ni &
the prefix is unblocked, and detection resumes, minimizing disrup-
tion to regular operations. To limit probe traffic, HiDe reduces the
probe rate to one per minute after five minutes of attempts. These
parameters are user-adjustable for flexibility.

6 HiDe: System

Figure 9 presents an overview of HiDe’s end-to-end workflow. HiDe
comprises a control plane, implemented in software on a server, and

a data plane, operating in high-speed hardware on a programmable
switch. HiDe is deployed at the edge of a production network, and
can observe all or most of its traffic depending on the network
topology (appendix E).

6.1 Control Plane

User Input. The user configures the control plane by providing the
network prefix of their home network (source prefix) and specifying
the threat regions (optionally, per prefix).

Auto-Tuning. The auto-tuning component translates the user in-
puts and destination prefixes read from the data plane into corre-
sponding geographic coordinates and computes the 7* . . It also re-
trieves traffic statistics (specifically, min(RT Trnin) and max (RT Tryin))
from the data plane for each prefix. Combining this information, the
component identifies which prefixes can be effectively protected
and generates changepoint detection parameters for those prefixes,
which it then sends to the switch controller. For prefixes that can-
not be protected, it provides the user with a summary listing each
prefix and their corresponding RTT),;p, statistics.

Switch Controller. The switch controller translates the received
parameters into corresponding match-action rules and installs them
on the data plane. It also receives attack alarms from the data plane
and (optionally) notifies the user.

6.2 Data Plane

RTT Computation. We leverage Dart, an existing system, to gen-
erate accurate RTT measurements per flow from all the traffic
observed by the switch. Dart achieves this at scale, handling a large
number of flows without missing any RTT samples by efficiently
managing switch resources [36].

Min. RTT Aggregation. The next component aggregates RTT
samples per destination prefix, breaks them down into time win-
dows, and calculates the minimum RTT per window. Additionally,
it computes traffic statistics like min(RT Trpin and max(RT Tin)
per prefix to share with the control plane.

Changepoint. The data plane performs changepoint detection
using our two-window algorithm, minRT Ts per window per prefix,
and parameters installed by the control plane.

Attack Mitigation. When an attack is detected, the data plane
blocks the corresponding prefix and raises an alarm.

False Positive Correction. The data plane then crafts and sends
active probes periodically to determine whether the detection was
a false positive. If so, it unblocks the prefix.

6.3 Hardware Switch Prototype

We implement our prototype in P4;6, and deploy it on the Intel
Tofino2 high-speed programmable switch, which supports up to
12.8 Tbps of traffic at line rate [6, 13]. Our prototype does not
depend on any specific features available on the Tofino, and can be
ported readily to other programmable packet-processing hardware
including other switches (e.g., Juniper Trio) and SmartNICs (e.g.,
Nvidia BlueField3).

Switch control plane. The switch control plane installs per-prefix
match-action rules specifying the window size (W), absolute thresh-
old (T:;”. d)’ and surge threshold (4). If enabled, it listens on the CPU
port for packets from the data plane containing information about

CONTROL PLANE

Home network I
prefix Auto-Tuning | changepoint Switch Controller
- > thresholds
Threat regions (per prefix)
fi
USER (per prefix) A __ o
Traffic statistics Match-action rules Alarms
(per prefix) y
RTT —_— . I . Attack Mitigation
g Computation RTT Min.RTT Min. RTT | Changepoint
Packets P! samples | Aggregation | samples | Detection Attack False Positive [...
(Dart) (per flow) (per prefix) d Correction aseve
etected b detected
DATA PLANE l l Active probes

Figure 9: HiDe consists of a software control plane and a hardware data plane. The control plane auto-tunes per-prefix parameters
for changepoint detection based on user inputs and traffic statistics from the data plane, and installs those parameters as
match-action rules on the data plane. The data plane computes RTT samples, aggregates them by prefix, computes minRTT
per window, and performs changepoint detection. Upon detecting an attack, the data plane blocks the corresponding prefix

and triggers active probing to correct false positives.

either attack detections or non-coverage, and notifies the user. Ad-
ditionally, it configures the Tofino’s packet generator to send active
probes during the false positive correction phase.

RTT computation. We leverage Dart for continuous and accu-
rate per-flow RTT computation [36], and utilize packet mirroring,
a native feature that replicates packets, to enhance its functional-
ity. First, the original packet is forwarded without added latency,
with the mirrored copy used for RTT computation. Second, RTT
samples generated by Dart are passed to HiDe-specific data-plane
components.

Per-prefix state. We maintain a prefix table in register memory
to support changepoint detection. The table uses a prefix signature,
derived by hashing the first 24 bits of the external IP, as the key.
The stored values include the prefix’s start timestamp, timestamp
of most recent RTT, start timestamp of current window, number
of RTT samples in current window, minRTTs for the current and
previous windows, attack status, max(RT Tynin), and min(RT Tpip)-
The table accommodates up to 65,536 active prefixes, significantly
exceeding the peak observed in our 12h campus trace (approx.
5K assuming a 5-second timeout), minimizing hash collisions. For
collisions, we use cuckoo hashing [31]: the new prefix replaces the
old one, which is loaded into memory, checked for timeout, and
recirculated to a new index using a different hash seed if still valid.
Each insertion allows up to 3 recirculations.

Changepoint detection. When an RTT sample is generated for a
prefix, HiDe checks the status of the corresponding time window. If
the window is not full, it updates the most recent timestamp, incre-
ments the RTT count, and replaces the current minimum RTT if the
new sample is smaller. If the window is full, the current minimum
RTT replaces the previous window’s minimum, and max(RT Trnin)
and min(RTTy,in) are updated. If the window is valid (i.e., it has
enough samples), HiDe evaluates the surge conditions and, if those
are satisfied, starts the mitigation process by blocking all non-ICMP
packets from/to the prefix by adding it to a block table.

Active probing. Simultaneously, we start crafting and sending
ICMP echo packets to the latest IP seen from the prefix and listening

NG
=7
Route during
Attack
Long-distance
Adversary
———
(e
Original Route
Protected High-speed Transparent Remote
Host Switch Proxy Hosts

Figure 10: Experimental setup for our live experiments. The
orange and green arrows indicate the original “protected host”
to “remote hosts” route and back, respectively. The return
path (green) is intercepted by the long-distance adversary—
the diverted portion of the route is shown with red arrows.

to responses to monitor its RTT. If a false positive is detected, the
prefix is removed from the block table.

Resource usage. We analyze the resource usage of our prototype
by function and find that its low resource consumption leaves
ample resources for other concurrent switch functions (Table 1 in
Appendix E).

7 Experimental Setup

In this section, we outline our experimental setup: first, to demon-
strate live detection of ethically launched interception attacks on
controlled iperf traffic; second, to showcase HiDe’s effectiveness
in the wild by detecting attacks on real Bitcoin traffic; and third,
to collect a 12-hour campus trace highlighting HiDe’s low false
positive rate and minimal impact on regular operations.

7.1 Passive Capture of Production Traffic

Data collection. As outlined before, we captured 12h of produc-
tion traffic—covering 1 pm to 1 am local time to include global
working hours—at the edge of our US-based campus network using

a TAP device near the gateway router. Packets—only TCP headers,
anonymized at source in a prefix-preserved manner (Appendix A)—
from selected subnets were mirrored and recorded on a collection
server with tcpdump.

Dataset overview. The dataset comprises 1.1 TB of trace data rep-
resenting 5.32 TB of packet bytes, encompassing 19 billion packets,
7.5 million flows, and 238 million RTT samples. It includes 12K
unique internal IPs and 324K unique external IPs, distributed across
183K external prefixes, 23.2K of which are based in the US.

7.2 Live Experiments

Figure 10 shows the experimental setup for our live experiments
involving active traffic from the iperf3 and Bitcoin apps. Each com-
ponent is marked with a number in red.

Deploying HiDe to protect experimental traffic. We set up our
experiment using three key components: (1) a host on our campus
running the application (iperf3 or Bitcoin), (2) a high-speed pro-
grammable switch on campus where HiDe is deployed to monitor
traffic, and (3) a transparent TCP proxy on an Amazon AWS in-
stance. The proxy, which doubles as a PEERING node, advertises
a /24 prefix allocated to our experiment. PEERING provides dis-
tributed ASes for controlled, real BGP announcements [35]. We
use one IP address from the /24 pool, applying iptables rules on
components 1 and 3 to masquerade it as the application’s IP. This
setup enables HiDe to monitor all experimental traffic while al-
lowing external adversaries to ethically launch BGP interception
attacks on the /24 prefix. The transparent proxy ensures the appli-
cation on component 1 sees the remote host’s true IP, essential for
applications like Bitcoin.

Setting up remote hosts. For our experiments with iperf3, we
deploy AWS instances in geographically diverse locations, including
the US east and west coasts, Europe, and Asia. The iperf3 server
runs on the protected host across multiple ports, while clients on
the distributed AWS instances connect to the PEERING IP of the
transparent proxy, which forwards traffic to the server. For Bitcoin
experiments, we run a node on the protected host, allowing random
nodes worldwide to connect. Across different runs, we observe
peers from the US, various European countries, and parts of Asia.
We collectively refer to these remote hosts—used in both iperf3 and
Bitcoin experiments—as component 4.

Launching ethical routing attacks. The final step in our setup
is launching ethical BGP interception attacks on the PEERING IP.
We designate the PEERING node in Amsterdam as the attacker
(component 5) and implement a stealthy interception attack using
the technique by Birge-Lee et al., which employs BGP communities
to control the blast radius of the attack [12]. The attacker advertises
the same /24 prefix as the transparent proxy (an equally specific
attack), redirecting traffic from nearby nodes to Amsterdam. The
attacker then forwards the intercepted traffic to the transparent
proxy, leaving both sender and receiver unaware of the attack.

8 Evaluation

In this section, we present our evaluation results. In the first part
(Section 8.1), we run faithful simulations of HiDe on our campus
dataset and report coverage, false positive rate, and downtime due
to false positives. In the second part (Section 8.2), we present results

from live experiments where the HiDe prototype defends the pro-
tected host (in Figure 10) when a subset of connections are impacted
by an ethically conducted long-distance BGP interception attack.

8.1 Trace-based Evaluation

We evaluate HiDe using three metrics: (1) False positive rate or FPR
(measures reliability/usability/practicality), (2) Coverage (measures
the trade-off with low FNR and FPR), and (3) Downtime (measures
impact of false positives on regular operation). We perform this
evaluation using a faithful simulation of HiDe written in Python on
real latency data obtained from production traffic on our campus
(Section 7.1). We operate with the goal of protecting US-based
prefixes from long-distance interception attacks from the mainlands
of other countries in our dataset. For each prefix, we divide into
two equal parts the total time during which the prefix was active:
the first half is used for profiling while the second half is used for
detection.

Vulnerable prefixes. In accordance with HiDe’s coverage strategy,
we only defend vulnerable prefixes, i.e., external prefixes associated
with a server. We identify such prefixes using a TCP port number-
based heuristic: external host’s port < 1024 and internal host’s port
>=1024. 16.8K US-based external prefixes match this condition.
Profiled prefixes. From external server prefixes, we further select
those that were active for at least 10 minutes out of 12 hours (so we
profile on at least 5 mins of data). We determine this by dividing
the 12h period into buckets of 1 min, and checking which prefixes
generated an RTT sample in at least 10 such buckets. 6K US-based
external server prefixes are retained after this step. In a real network,
the operator could profile prefixes for as long as needed to ensure it
covers typical variation of RTT during benign operation—without
any excess overhead since the profiling happens directly in the
switch. For the following analysis, we make the assumption that the
campus data captured during the 12-hour period did not experience
any long-distance interception attacks (i.e., no true positives were
present), so if HiDe detects a prefix it must be a false positive. We
report our results based on optimal attacks from all 257 non-US
threat countries.

Coverage impact of theoretical lower bound. Some US-based
prefixes are not defendable against certain threat regions because
during the profiling phase, they exhibit a min(RT Tp,ip) larger than
the corresponding T:;”. 4 (i-e, measured delay without diversion is
always higher than the lower bound with diversion). This could
be because the threat region is geographically too close or because
the network is always congested. Figure 11a shows that, based on
this condition, HiDe can cover 99% prefixes against 78% attacks and
75% prefixes against 99% attacks. The covered prefix-threat country
pairs are considered in the subsequent experiments.

Coverage impact of defensability analysis. For different values
of the surge threshold (1), Figure 11b shows HiDe’s coverage based
on defendability—i.e., whether the mid-attack lower bound RTT
clears the pre-attack max(RTT,,ipn) by at least A ms. At A = 5 ms,
25 ms, 50 ms, and 75 ms respectively, HiDe can cover 99% prefixes
against 91%, 64%, 31%, and 7% attacks, respectively. This illustrates
the trade-off between surge threshold and coverage.

False positive rate. By focusing on defendable prefixes, we achieve
a false positive rate of approximately 0.012% at worst, as shown in

glOO glOO l

@ 80 B B0 I .

) 3} ! .

é 60 g 60 *

= 40 < 40 — A=5ms ‘__L.\:

g E A=25ms .

g 20 g 20 ==+ A=50ms '-“, t

A=75ms .

o o o o l

0 20 40 60 80 100 0 20 40 60 80 100

Prefixes (%)

Prefixes (%)

(a) Coverage (lower bound) (b) Coverage (defendability)

125
~0.0100 = 8
§ \;10.0
0.0075
2 £ s
] pe=)
2 0.0050 § 5.0
o o
™ 0.0025 I . A 25 .

5 10 15 20 25 10 15 20 25
Surge Threshold (ms) Surge Threshold (ms)

(c) False positive rate (d) Downtime

Figure 11: Faithful simulation on campus data illustrates that HiDe can defend most prefixes from optimal attacks from most
countries, incurs low false positives (<=0.012%) and low downtime due to false positives (median<=0.75s).

210
RTT % Detected []

205 minR’_FT ;

g 3

bt [] ' .' .

£ 3 N

105 ﬁ b bt
15 20 25 30 35
Time (s)

(a) Detecting attack on iperf3 traffic.

RTT
160 minRTT * Detected
® 150 *
£ 2%
140 N
/130 ° B

,l\’o‘&“&.;’ 7’, .\.'h"" ’x'. 1!\-‘9 'h"",-. -
0 100 200 300

Time (s)

400 500 600

(b) Detecting attack on Bitcoin traffic.

Figure 12: HiDe (immediately) detects interception attacks
ethically launched by us on iperf3 and Bitcoin traffic.

Figure 11c. For higher surge thresholds (i.e., 30 ms), the rate drops
to zero.

Downtime due to false positives. We estimate the likely down-
time from a false positive by measuring how long (in multiples of
time window size) it takes for the minRTT to return to normal for a
falsely detected prefix. Since our active probing sends one probe per
window, we expect similar results in reality. The median downtime
is only 0.75 seconds.

8.2 Live Interception Attack Detection

Mitigating attacks on iperf3 traffic:

Setup. We run the iperf3 server on our campus and the transparent
proxy in Ireland, who forwards all traffic it receives to our cam-
pus via our prototype. The iperf3 clients are in Virginia (2 flows
from the same prefix), Ohio, and Mumbai. The prefix in Virginia is
hijacked from Amsterdam, causing Ireland to send traffic to Ams-
terdam instead of Virginia. Amsterdam then forwards the traffic
to Virginia. The traffic takes the following round-trip route before

the attack: Virginia (via PEERING infra.) to Ireland to our campus
to Ireland to Virginia (via PEERING infra.) and the following one
during the attack: Virginia (via PEERING infra.) to Ireland to our
campus to Ireland to Amsterdam (via. PEERING infra.) to Virginia
(via PEERING). Due to limitations of where we can deploy a Tofino
switch on live traffic and a lack of diversity in the PEERING topol-
ogy, we are restricted to this complex setup. The attack takes effect
at 25 seconds, as can be observed from the abrupt rise in RTT (blue
dots) in Figure 12a.

Interception detection. Using multiple runs of traceroute, we
estimate the lower bound of RTT as approx. 190.5 ms before attack
and 199 ms during attack (absolute threshold). We set the window
size to 0.25 sec and the surge threshold to 5 ms. Based on the
minimum RTTs (orange triangles), we detect the attack almost
immediately (red star).

Mitigating attacks on Bitcoin traffic:

Our setup is similar to the previous experiment with a Bitcoin
application running on our campus being proxied to the host in
Ireland. However, unlike the controlled iperf3 traffic in the previous
case, real Bitcoin nodes from around the world—not controlled by
us—connect to our application (ethical considerations are discussed
in §A). We identify the nodes connecting from Europe using ge-
olocation and install rules to monitor them. Then, we launch the
interception attack ethically from Amsterdam. We set the abso-
lute threshold to 135 ms based on our calculations and the surge
threshold to 6 ms. Figure 12b shows the effect of the attack on RTT
samples followed by the detection and mitigation.

9 Discussion

Faster data transmission. Certain networks, like free-space com-
munication (e.g., microwave links) and satellite systems, can trans-
mit data faster than speed of light in optical fiber. While not covered
here, free-space networks are typically short-range and therefore
irrelevant to long-distance rerouting, and satellite ASes can be eas-
ily identified by looking up their prefixes and excluding from our
coverage.

Non-TCP traffic: We do not need to explicitly monitor non-TCP
flows (e.g., RTP or QUIC-over-UDP) to protect them from BGP
interception attacks, provided there is at least one TCP flow within
the same prefix generating RTT samples. These TCP flows, which
share the same network path as the non-TCP flows, provide RTT
measurements that can be used to detect potential attacks affecting
the entire prefix.

10 Related Work

Control-plane based detection: Control-plane approaches de-
tect BGP hijacks by monitoring route advertisements [25, 37, 38],
but they are slow, with BGP convergence taking up to 30 sec-
onds [22, 23]. These methods can also be evaded by limiting route
advertisements or targeting victims using BGP community manip-
ulation [12].

Detection via active probing: Active probing methods use tools
like ping, traceroute, and nmap to detect BGP hijacks. For example,
iSPY detects hijacks in near real time by analyzing traceroutes from
multiple vantage points [41]. However, these approaches are vulner-
able to surgical attacks [12] and incur higher overhead compared
to passive methods.

Detection via passive measurements: Passive measurements,
such as RTT, have been used for BGP anomaly detection. Hiran et al.
utilized crowd-sourced RTT data to detect attacks [21], though their
method only addresses detection, not mitigation. Oscilloscope [14]
offers advanced hijack detection but relies on emulated data, suffers
from high false-positive and false-negative rates, and lacks data
plane implementation, limiting its scalability.

11 Conclusion

We present HiDe, a system that detects and mitigates long-distance
BGP interception attacks—where an adversary in another coun-
try hijacks traffic through its own infrastructure to eavesdrop be-
fore forwarding it to the victim. By leveraging propagation-delay
measurements that attackers cannot conceal, HiDe delivers high-
accuracy defense at line rate on a programmable switch (Tbps). Our
analysis of worst-case attacks across 258 countries confirms its effec-
tiveness, and we validate HiDe through simulations on anonymized
campus traces and ethically conducted real-world hijacks, achieving
robust mitigation with low false-positive rates.

References

[1] [n.d]. KlaySwap crypto users lose funds after BGP hijack.
therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/.
[n.d.]. PEERING: The BGP Testbed. https://peering.ee.columbia.edu/about/.
[n.d.]. Russian-controlled telecom hijacks financial services’ Internet traf-
fic. https://arstechnica.com/information-technology/2017/04/russian-controlled-
telecom-hijacks-financial-services-internet-traffic/.

[4] [n.d.]. Thousandeyes. https://www.thousandeyes.com/resources/detecting-
hijacks-and-leaks-webinar.

[5] Aftab Siddiqui. [n. d.]. Public DNS in Taiwan the latest victim to BGP hijack. https:
//manrs.org/2019/05/public- dns- in- taiwan- the-latest-victim-to-bgp- hijack/.

[6] Anurag Agrawal and Changhoon Kim. 2020. Intel tofino2-a 12.9 tbps p4-
programmable ethernet switch. In 2020 IEEE Hot Chips 32 Symposium (HCS).
IEEE Computer Society, 1-32.

[7] Andree Toonk. [n.d.]. How Hacking Team Helped Italian Special Operations
Group with Routing Hijack. https://bgpmon.net/how-hacking-team-helped-
italian- special- operations- group-with-bgp-routing- hijack/.

[8] Rob Austein, Steven Bellovin, Russ Housley, Stephen Kent, Warren Kumari,
Doug Montgomery, Chris Morrow, Sandy Murphy, Keyur Patel, John Scudder,
Samuel Weiler, Matthew Lepinski, and Kotikalapudi Sriram. 2017. BGPsec Protocol
Specification. RFC 8205.

[9] bgphijack [n.d.]. $83k in bitcoins ’stolen’ through BGP hijack.

https://www.virusbulletin.com/blog/2014/08/83k-bitcoins-stolen-through-

bgp-hijack/.

Henry Birge-Lee, Maria Apostolaki, and Jennifer Rexford. 2024. Global BGP

Attacks that Evade Route Monitoring. arXiv preprint arXiv:2408.09622 (2024).

Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek

Mittal. 2018. Bamboozling certificate authorities with {BGP}. In 27th USENIX

Security Symposium (USENIX Security 18). 833-849.

Henry Birge-Lee, Liang Wang, Jennifer Rexford, and Prateek Mittal. 2019. Sico:

Surgical interception attacks by manipulating BGP communities. In ACM SIGSAC

https://

[2

e

[10]

[11]

[12]

[13]

[14

[15]

(16

(18

[19

[20]

[21]

[22]

~
=

(30]

(31

(32]

[33

[34

[35

[36

(37]

Conference on Computer and Communications Security. 431-448.

Mihai Budiu and Chris Dodd. 2017. The p416 programming language. ACM
SIGOPS Operating Systems Review 51, 1 (2017), 5-14.

Tobias Bithler, Alexandros Milolidakis, Romain Jacob, Marco Chiesa, Stefano
Vissicchio, and Laurent Vanbever. 2023. Oscilloscope: Detecting BGP Hijacks in
the Data Plane. arXiv:2301.12843 (2023).

R. Bush and R. Austein. 2013. The Resource Public Key Infrastructure (RPKI) to
Router Protocol. RFC 6810.

celer [n.d.]. Celer Bridge incident analysis. https://www.coinbase.com/blog/
celer-bridge-incident-analysis.

Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jen-
nifer Rexford. 2020. Measuring TCP round-trip time in the data plane. In ACM
SIGCOMM Workshop on Secure Programmable Network Infrastructure. 35-41.
Natural Earth Data. 2011. Natural Earth Data-Free vector and raster map data.
http://www. naturalearthdata. com (accessed 10.12.2024) (2011).

Sharon Goldberg. 2014. Why is it taking so long to secure internet routing?
Commun. ACM 57, 10 (2014), 56—63.

Dan Goodin. 2018. Strange snafu misroutes domestic US Internet traffic through
China Telecom. Ars Technica 6 (2018).

Rahul Hiran, Niklas Carlsson, and Nahid Shahmehri. 2015. Crowd-based detec-
tion of routing anomalies on the Internet. In 2015 IEEE Conference on Communi-
cations and Network Security (CNS). IEEE, 388-396.

Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast connectivity recovery
entirely in the data plane. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). 161-176.

Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.
2017. Swift: Predictive fast reroute. In ACM SIGCOMM. 460-473.

Dave Levin, Youndo Lee, Luke Valenta, Zhihao Li, Victoria Lai, Cristian
Lumezanu, Neil Spring, and Bobby Bhattacharjee. 2015. Alibi routing. In ACM
SIGCOMM. 611-624.

Jun Li, Toby Ehrenkranz, and Paul Elliott. 2012. Buddyguard: A buddy system for
fast and reliable detection of IP prefix anomalies. In 2012 20th IEEE International
Conference on Network Protocols (ICNP). IEEE, 1-10.
LLC MaxMind. 2006. GeolP.

Measurement Lab. (2024-12-01 - 2024-12-05).
Data Set. https://measurementlab.net/tests/ndt.
measurement-1lab.ndt.download.

Alexandros Milolidakis, Tobias Bithler, Kunyu Wang, Marco Chiesa, Laurent
Vanbever, and Stefano Vissicchio. 2023. On the Effectiveness of BGP Hijackers
That Evade Public Route Collectors. IEEE Access 11 (2023), 31092-31124.
Alexandros Milolidakis, Tobias Bithler, Kunyu Wang, Marco Chiesa, Laurent
Vanbever, and Stefano Vissicchio. 2023. On the Effectiveness of BGP Hijackers
That Evade Public Route Collectors. IEEE Access 11 (2023), 31092-31124. https:
//doi.org/10.1109/ACCESS.2023.3261128

Shaun Nichols. [n.d.]. ~AWS DNS network hijack turns MyEtherWal-
let into ThievesEtherWallet. https://www.theregister.com/2018/04/24/
myetherwallet_dns_hijack/

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122-144.

Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Laurent Chuat.
2017. SCION: A Secure Internet Architecture. Springer Verlag.

RIPE NCC. [n.d.]. YouTube Hijacking: A RIPE NCC RIS case study.
https://www.ripe.net/publications/news/youtube- hijacking-a-ripe-ncc-ris-
case-study/.

Andrei Robachevsky. 2019. “Routing security getting better, but no reason to
rest!

Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. 2019.
PEERING: Virtualizing BGP at the Edge for Research. In ACM CoNEXT. Orlando,
FL.

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Continuous in-
network round-trip time monitoring. In Proceedings of the ACM SIGCOMM 2022
Conference. 473-485.

Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas Dimitropoulos,
Danilo Cicalese, Alistair King, and Alberto Dainotti. 2018. ARTEMIS: Neutralizing
BGP hijacking within a minute. IEEE/ACM Transactions on Networking 26, 6
(2018), 2471-2486.

Xingang Shi, Yang Xiang, Zhiliang Wang, Xia Yin, and Jianping Wu. 2012. De-
tecting prefix hijackings in the internet with argus. In Proceedings of the 2012
Internet Measurement Conference. 15-28.

IP Info Team. 2017. IP Info.

Dan York. 2014. BGP Hijacking In Iceland And Belarus Shows Increased Need
for BGP Security. https://www.internetsociety.org/blog/2014/02/bgp-hijacking-
in-iceland-and-belarus-shows-increased-need-for-bgp-security/.

Zheng Zhang, Ying Zhang, Y Charlie Hu, Z Morley Mao, and Randy Bush. 2008.
iSPY: Detecting IP prefix hijacking on my own. In ACM SIGCOMM. 327-338.

The M-Lab NDT
Bigquery table

https://therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/
https://therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/
https://peering.ee.columbia.edu/about/
https://arstechnica.com/information-technology/2017/04/russian-controlled-telecom-hijacks-financial-services-internet-traffic/
https://arstechnica.com/information-technology/2017/04/russian-controlled-telecom-hijacks-financial-services-internet-traffic/
https://www.thousandeyes.com/resources/detecting-hijacks-and-leaks-webinar
https://www.thousandeyes.com/resources/detecting-hijacks-and-leaks-webinar
https://manrs.org/2019/05/public-dns-in-taiwan-the-latest-victim-to-bgp-hijack/
https://manrs.org/2019/05/public-dns-in-taiwan-the-latest-victim-to-bgp-hijack/
https://bgpmon.net/how-hacking-team-helped-italian-special-operations-group-with-bgp-routing-hijack/
https://bgpmon.net/how-hacking-team-helped-italian-special-operations-group-with-bgp-routing-hijack/
https://www.virusbulletin.com/blog/2014/08/83k-bitcoins-stolen-through-bgp-hijack/
https://www.virusbulletin.com/blog/2014/08/83k-bitcoins-stolen-through-bgp-hijack/
https://www.coinbase.com/blog/celer-bridge-incident-analysis
https://www.coinbase.com/blog/celer-bridge-incident-analysis
https://measurementlab.net/tests/ndt
https://doi.org/10.1109/ACCESS.2023.3261128
https://doi.org/10.1109/ACCESS.2023.3261128
https://www.theregister.com/2018/04/24/myetherwallet_dns_hijack/
https://www.theregister.com/2018/04/24/myetherwallet_dns_hijack/
https://www.ripe.net/publications/news/youtube-hijacking-a-ripe-ncc-ris-case-study/
https://www.ripe.net/publications/news/youtube-hijacking-a-ripe-ncc-ris-case-study/
https://www.internetsociety.org/blog/2014/02/bgp-hijacking-in-iceland-and-belarus-shows-increased-need-for-bgp-security/
https://www.internetsociety.org/blog/2014/02/bgp-hijacking-in-iceland-and-belarus-shows-increased-need-for-bgp-security/

A Ethics

This research study was reviewed and approved by our Institutional
Review Board (IRB). All packet-trace data come from our university
network and were anonymized at the point of collection by network
engineers who are expressly authorized to handle private data.
Anonymization followed the exact procedures laid down by the
IRB—anonymizing all IP and MAC addresses, and stripping all
payloads. Researchers never had access to any raw or deanonymized
data.

To validate HiDe ’s detection and mitigation capabilities in a
live Internet environment, we performed two controlled BGP hi-
jacks using prefixes assigned to us by the PEERING testbed [2]. We
temporarily announced these prefixes from our own hosts under
testbed guidelines, ensuring no impact on any external networks
or clients. All BGP announcements and withdrawals adhered to
PEERING’s guidelines, and only our own test prefixes were affected.

For our Bitcoin experiments, we operated a dedicated experi-
mental node connected to public Bitcoin clients using Bitcoin’s
peer-to-peer protocol. We diverted only the traffic destined for our
test node, maintaining the protocol’s standard multi-peer connec-
tivity to ensure that no client experienced service interruption or
security degradation. The increase in induced latency was tempo-
rary (under two minutes per peer) and well below the threshold
required to compromise transaction privacy or network health.

B Open Science

We will release to the public—in a public GitHub repository—the
source code of the HiDe Tofino2 application written in P4, the
complementary control plane written in Python, and the Jupyter
notebooks used to conduct the analysis and evaluation presented
in this paper. Additionally, we will also provide the exact steps to
setup the Bitcoin and iperf3 experiments used in this paper. For each
component, we will also provide detailed documentation on how to
install, deploy, and execute it. This work also utilizes anonymized
campus packet traces for part of the evaluation and analysis. These
traces are protected by an Institutional Review Board (IRB) protocol
and hence cannot be shared as-is. Instead, we will extract in a CSV
file only the per-flow latency time-series from these traces with the
flow ID, ACK timestamp, and RTT columns. The flow ID will be a
unique identifier (e.g., f123) provided to each unique flow having no
relation to the actual 5-tuple to preserve strict anonymity. We will
release this CSV in the same repository to aid in the reproduction
of the results and analysis presented in this paper.

We will publish all our code and materials in a public GitHub
repository, including:
o The HiDe Tofino2 P4 program;
e The complementary Python control-plane code; and
o The Jupyter notebooks and C++ code used for our analysis and

evaluation.
We will also include step-by-step instructions for setting up and
running the Bitcoin and iperf3 experiments from the paper, along
with full installation, deployment, and execution guides for every
component.

Because our evaluation uses IRB-protected, anonymized campus
packet traces, we cannot share the raw data. Instead, we will pro-
vide a CSV containing only per-flow RTT time series, with three

300
Optimal Attacks on
%) - Russia
g 200 — New Zealand
L 2 —— All Countries
Q.
~
|
o 100
* &
~
0
0 20 40 60 80 100

Optimal Attacks (%)

Figure 13: Attack coverage vs. minimum deviation (raw) for
Russia, NZ, and all countries: With Russia and New Zealand
(NZ) as example victim countries, the figure shows that the
highest T;evmtion for Russia is 110 ms while it is 190 ms for
NZ. For all countries combined, it is 200 ms.

300
= (Campus data
2] i == MlLab data
g
Vm 200
*5‘
|
o 100
* E
~
0
0 20 40 60 80 100

Optimal Attacks (%)

Figure 14: Attack coverage vs. minimum deviation (raw) for
campus and MLab datasets.

columns: (1) Flow ID: a unique label (e.g., f123) unlinked to any
actual 5-tuple, (2) ACK Timestamp, and (3) RTT in ms. This CSV
will appear alongside the code so that readers can reproduce our
results without compromising privacy.

C Defendability based on speed-of-light RTTs

Figure 13 shows the absolute difference between mid-attack and
pre-attack RTTs vs. attack coverage in ideal conditions.

D Defendability based on measured RTTs

Figure 14 shows the absolute difference between mid-attack and pre-
attack RTTs vs. attack coverage in real-world conditions. Figures 15
and 16 show the relationship between distance and minimum devi-
ation under optimal attacks in the campus dataset and the MLab
dataset, respectively.

‘g 16 150
~

% 1o 125%
';<' 100~
RoJ g
2 8 ‘ 75 &
; |
% 4 -50 Re}
+ [N £
3 -25 =
w

2 o0 -0

0 1 2 3 4 5
6(S,D) (x103 km)

Figure 15: Campus dataset: Relationship between distances
and minimum deviation.

‘g 16 150
~

™ 125 %
2 1005
X o
< 8 75 &
o 50 L
il N g
Q ‘25 ~
gl o -0

0 1 2 3 4 5
6(S,D) (x103 km)

Figure 16: MLab dataset: Relationship between distances and
minimum deviation.

Access
Puint_ - :
- - e

| A r=L| L L4 !
/7 Client N i

‘ RTT leg measured by HiDe

~
Client

Campus/Enterprise
d|

Server Server

Figure 17: HiDe—deployed at the edge of a production
network—defends servers and clients inside it by measur-
ing the external leg of RTT from itself to external hosts.

E Deployment

HiDe is deployed at the edge of a production network (Figure 17),
protecting clients within the network by monitoring the external leg
of RTTs (HiDe to external hosts) rather than the internal leg (HiDe to
internal hosts) [36]. We denote connections with clients inside the
defended network as Client-In-Server-Out (CISO) and connections
with servers inside the network as Server-In-Client-Out (SICO). We

Resource Type Compute Track Min. Detect Mitigate
RTT [36] RTT Change Attack

Stages 7 2 4 3

TCAM 2.9% 0.0% 1.1% 0.0%
SRAM 4.5% 4.0% 2.4% 3.6%
Instructions 3.6% 2.4% 1.0% 1.1%
Hash Units 35.8% 12.5% 2.8% 5.6%
Input Crossbars 10.1% 3.0% 1.6% 1.9%

Table 1: Hardware resource usage of the Tofino2-based pro-
totype, divided by functional component.

observe that the primary source of noise in RTTs is typically the
access link near the client. For CISO connections, the access link
is part of the internal leg and does not affect the monitored RTTs,
resulting in less noise. In contrast, SICO connections experience
higher noise levels, as the access link is external. In our campus
data, we apply a TCP port number-based heuristic to distinguish
CISO connections from SICO connections: if the port number used
by the campus-internal host is < 1024 and the one used by the
external host is > 1024, we consider it a SICO connection, and
vice-versa.

	Abstract
	1 Introduction
	2 Background
	2.1 BGP-based attacks
	2.2 Threat model
	2.3 Limitations of existing approaches

	3 Feasibility of delay-based detection
	3.1 Key Questions and Observations
	3.2 Intra- vs. Inter-Country Distances
	3.3 Identifying least defendable attacks
	3.4 Defendability under ideal conditions
	3.5 Defendability in the wild
	3.6 Takeaways

	4 HiDe: Overview
	5 HiDe: Methodology
	5.1 Compute location-based lower bound
	5.2 Reduce noise in the RTT signal
	5.3 Cover vulnerable & defendable prefixes
	5.4 Switch-amenable changepoint detection
	5.5 Minimize impact of false positives

	6 HiDe: System
	6.1 Control Plane
	6.2 Data Plane
	6.3 Hardware Switch Prototype

	7 Experimental Setup
	7.1 Passive Capture of Production Traffic
	7.2 Live Experiments

	8 Evaluation
	8.1 Trace-based Evaluation
	8.2 Live Interception Attack Detection

	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Ethics
	B Open Science
	C Defendability based on speed-of-light RTTs
	D Defendability based on measured RTTs
	E Deployment

