
FaultLine: Automated Proof-of-Vulnerability Generation using
LLM Agents

Vikram Nitin
∗∗

vikram.nitin@columbia.edu

Columbia University

New York, NY, USA

Baishakhi Ray

rayb@cs.columbia.edu

Columbia University

New York, NY, USA

Roshanak Zilouchian

Moghaddam

rozilouc@microsoft.com

Microsoft

Redmond, WA, USA

Abstract

Despite the critical threat posed by software security vulnerabilities,

reports are often incomplete—lacking the proof-of-vulnerability

(PoV) tests needed to validate fixes and prevent regressions. These

tests are crucial not only for ensuring patches work, but also for

helping developers understand exactly how vulnerabilities can be

exploited. Generating PoV tests is a challenging problem, requiring

reasoning about the flow of control and data through deeply nested

levels of a program.

We present FaultLine, an LLM agent workflow that uses a set of

carefully designed reasoning steps, inspired by aspects of traditional

static and dynamic program analysis, to automatically generate

PoV test cases. Given a software project with an accompanying

vulnerability report, FaultLine 1) traces the flow of an input from

an externally accessible API (“source”) to the “sink” corresponding

to the vulnerability, 2) reasons about the conditions that an input

must satisfy in order to traverse the branch conditions encountered

along the flow, and 3) uses this reasoning to generate a PoV test

case in a feedback-driven loop. FaultLine does not use language-

specific static or dynamic analysis components, which enables it to

be used across programming languages.

To evaluate FaultLine, we collate a challenging multi-lingual

dataset of 100 known vulnerabilities in Java, C and C++ projects.

On this dataset, FaultLine is able to generate PoV tests for 16

projects, compared to just 9 for CodeAct 2.1, a popular state-of-the-

art open-source agentic framework. Thus, FaultLine represents

a 77% relative improvement over the state of the art. Our findings

suggest that hierarchical reasoning can enhance the performance

of LLM agents on PoV test generation, but the problem in general

remains challenging even for state-of-the-art models. We make our

code and dataset publicly available in the hope that it will spur

further research in this area.
1

∗
Work done when the author was an intern at Microsoft

1
https://github.com/faultline-pov/icse-26

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts

• Software and its engineering → Software testing and de-

bugging; Automated static analysis; Compilers; Software verification
and validation; • Information systems→ Language models.

Keywords

Test generation, Vulnerability Detection, Agents, LLMs

ACM Reference Format:

Vikram Nitin, Baishakhi Ray, and Roshanak Zilouchian Moghaddam. 2018.

FaultLine: Automated Proof-of-Vulnerability Generation using LLMAgents.

In Proceedings of Make sure to enter the correct conference title from your
rights confirmation email (Conference acronym ’XX). ACM, New York, NY,

USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Security vulnerabilities pose a significant threat to the software

development process, driving the community to build various au-

tomated detection and fixing tools [14]. When a vulnerability is

detected in a project, it is reported to the developers of the project,

who then attempt to quickly fix it. Subsequently, a report is gener-

ated in the National Vulnerability Database (NVD) [24], containing

a textual description of the vulnerability and mitigation strategies

for users of the software. However, most of these reports lack Proof-

of-Vulnerability (PoV) tests that demonstrate the vulnerability. PoV

tests are designed to fail when the vulnerability exists, and succeed
when the vulnerability is fixed. Thus, they act as an oracle to verify

the effectiveness of the fix, and ensure that the vulnerability is

not inadvertently reintroduced during future development of the

project. In addition, they can enable developers to better understand

the vulnerability. Studies have shown [23] that human developers

struggle to reproduce vulnerabilities from reports, because these

reports frequently miss crucial information. PoV tests complement

the information in a report and provide a clear demonstration of

the exploit.

Existing work and limitations: Recently, Large LanguageModels

(LLMs) have been used as components in autonomous agents to
solve various software engineering tasks [31, 32, 34]. These systems

augment LLMs with the ability to invoke tools to read, write and

execute code, enabling the LLM to interact with the code base much

as a human developer would. However, constructing PoV tests is a

challenging problem for LLM agents [35]. Some of the reasons for

this are:

• Insufficient understanding of data flow. A vulnerability exploit

starts with an externally accessible API or user input (“source”),

and traverses through multiple function calls until it reaches the

ar
X

iv
:2

50
7.

15
24

1v
1 

 [
cs

.S
E

] 
 2

1 
Ju

l 2
02

5

https://github.com/faultline-pov/icse-26
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2507.15241v1


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Nitin et al.

public boolean isValid(
  String value, ConstraintValidatorContext context) {
  if (value == null) { return true; }
  /*...*/
  try {
    cronParser.parse(value).validate();
    return true;
  } catch (IllegalArgumentException e) {
    context.disableDefaultConstraintViolation();
    context
  .buildConstraintViolationWithTemplate(e.getMessage())
    .addConstraintViolation();
    return false;
  }
}

public Cron parse(final String expression) {
  /*...*/
  if (StringUtils.isEmpty(replaced)) {/*...*/}
  if(expression.contains("||")) {/*...*/}
  if(expression.contains("|")){/*...*/}
  else{
    /*...*/
    if(fieldWithTrailingCommas!=null) {/*...*/}
    final List<CronParserField> fields
              = expressions.get(expressionLength);
    if (fields == null) {/*...*/}
    try {
      /*...*/
      return new SingleCron(cronDefinition, results)
                  .validate();
    } catch (final IllegalArgumentException e) {
      throw new IllegalArgumentException(
        String.format("Failed to parse '%s'. %s",
          expression, e.getMessage()), e);
    }
  }
}

cronutils/validation/CronValidator.java

cronutils/parser/CronParser.java

Source

Sink

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Figure 1:Motivating example - ACode Injection vulnerability from the cron-utils Java library. The vulnerable flow is highlighted

in red, and the branch conditions are marked in green. The String value is taken as a user-provided argument on line 2 of

CronValidator.java, and it flows to the Sink on line 11 where any embedded code could potentially be executed.

location where the vulnerability occurs (“sink”). Writing a PoV

test involves reasoning about this flow, and invoking the precise

methods that trigger it. LLMs are usually not trained on data flow

traces, and therefore they do not effectively leverage this type of

reasoning to solve programming tasks. .

• Insufficient understanding of control flow. The program path from

source to sink frequently involves many branch conditions, that

divert the flow into paths that do not reach the vulnerability. The

input in a PoV test must be carefully crafted such that the program

flow proceeds along the correct path at each branch. LLM agents

often miss certain crucial conditions on test inputs, and the tests

do not reach the vulnerability. Additionally, they are unable to

systematically reason about the cause of this failure and refine the

test.

• Misalignment with initial goals. A PoV test must satisfy certain

requirements - it must fail when the vulnerability exists, and demon-

strate the exploit by actually running the vulnerable code. LLM

agents frequently stop after generating a test that satisfies some
(but not all) of these requirements. For instance, they may generate

a test that simply reads the source code to check for the presence of

a particular line of code corresponding to the vulnerability, and the

test does not actually build the project or run the vulnerable code.

Our approach: To address the above shortcomings, we propose

FaultLine, a workflow-based LLM agent that uses a composition

of carefully designed reasoning steps to design a PoV test for a

known vulnerability. Unlike existing agents that generate tests with

an incomplete or incorrect understanding of program semantics,

FaultLine prompts an LLM to extract certain semantic properties of

the program before generating a test. Specifically, given a program

along with an accompanying vulnerability report, FaultLine traces

the flow of data from source to sink, reasons about the requirements

that a test must satisfy in order to cover this path, uses these insights

to generate a PoV test, and refines it in a feedback-guided loop.

Results summary: To evaluate FaultLine, we collate a challeng-

ing multi-lingual dataset of 100 known vulnerabilities in Java, C

and C++ projects. Our key findings are listed below:

• On this dataset, FaultLine is able to generate correct PoV tests

for 16 projects. In comparison, CodeAct 2.1, a popular agentic frame-

work, is able to generate correct PoV tests for only 9.

• The tests generated by FaultLine reach the functions or methods

corresponding to the vulnerability for 31 projects, compared to 21

for the baseline.

• We show that both flow reasoning and branch reasoning are

essential to FaultLine’s performance.

Contributions: This paper makes the following contributions to

the state of the art:

(1) We design an agentic workflow based on a series of carefully

crafted reasoning steps to generate PoV tests.

(2) We empirically establish the effectiveness of this workflow in

generating PoV tests, and highlight the importance of each compo-

nent of the workflow.

(3) We contribute a benchmark for PoV test generation, compris-

ing 100 vulnerabilities spanning 4 CWE categories. This dataset

challenges LLMs to reason about extremely subtle properties of a

program, and represents a frontier for LLM-based code reasoning.

2 Background and Motivating Example

2.1 Background

A security vulnerability in a software project manifests as a flow
that leads from a “source” to a “sink”. A source is traditionally

defined as a program point where data enter the program from

external or untrusted sources. Some examples are external API

functions (for software libraries), user form inputs (for web appli-

cations), or HTTP endpoints (for web services). More generally,

any property of the program that can be controlled by an attacker

can be considered a source. A sink is any program construct that

can cause undesirable effects if attacker-controlled data is passed

directly to it. For instance, a function that executes SQL queries is

considered a sink because it can be invoked with SQL queries that

delete or alter data stored in the linked database.



FaultLine: Automated Proof-of-Vulnerability Generation using LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

The fundamental principle of secure software design is to ensure

that each flow between a source and a sink is properly filtered, or

sanitized. Consider a web form that accepts text input from a user,

and uses this text to retrieve matching records from a database. A

quintessential vulnerability pattern in such a setting is SQL injection,
whereby an attacker embeds carefully crafted SQL queries in their

input text. If this input text reaches a function that interacts with

the database, the embedded SQL queries might be executed on

the underlying database, leading to data loss or privacy concerns.

To safeguard against this, developers must sanitize text inputs by

checking for patterns that are indicative of SQL injection exploits.

Software vulnerabilities can be organized into groups depending

on the nature of the sources and sinks. Common Weakness Enu-

meration (CWE) [22] is a widely adopted categorization system for

vulnerabilities. Each category is assigned a number, e.g., CWE-94

corresponds to Code Injection vulnerabilities, such as SQL injection.

When a vulnerability is reported, it is usually assigned one or more

CWE categories.

2.2 Motivation

In this section, we use a real-world example to highlight the

challenges involved in generating PoV test cases. Figure 1 shows

a Code Injection vulnerability in the Java library cron-utils. An

attacker can exploit this to execute arbitrary code on the host

system. When one tries to generate a PoV for this vulnerability,

certain challenges arise:

Challenge 1: Tracing the flow of data from source to sink. A pre-

requisite for generating a PoV test is identifying a source and sink

with an un-sanitized flow between them. In Figure 1, the function

isValid can be called with a user-provided String value, so this is

a source. The function buildConstraintViolationWithTemplate on

line 11 of CronValidator.java accepts arguments written in Java’s

Expression Language (EL), and can execute arbitrary code. So this

is a sink. When we look at CronValidator.java, it may seem like

there is no flow between value on line 2 and e on line 11. However,

when we look closer, we find that cronParser.parse() on line 6 of

CronValidator.java throws an exception which is caught on Line

8. The error message includes the value string verbatim, and this

reaches the sink on line 11 with no sanitization. Tracing such a

flow across multiple files is a challenge for both humans and LLM

agents.

Challenge 2: Crafting an input that circumvents the branch con-
ditions. Even though there may be a data flow path from source

to sink, this is only one of several execution paths that the pro-

gram can take, depending on the control flow. In order to exercise

this particular path, we have to call the isValid method with ap-

propriate arguments such that the control flow reaches line 11 of

CronValidator.java. The branch conditions are marked in green in

Figure 1.We can see that there are 6 if conditions and 2 try..except

blocks. Each of these corresponds to a constraint on the input

that has to be satisfied in order for the control flow to reach the

vulnerability sink. For example, the condition on lines 9-11 of

CronParser.java expects the expression to have a certain number

of fields (number of space-separated components). If there is a

mismatch between expressionLength and the expected number of

fields, fields will be null, and the control flow will be diverted

down a non-vulnerable path. Note that this figure only captures a

portion of the full complexity of the program’s control flow; for ex-

ample, the validate() function on line 15 of CronParser.java also

needs to fail and throw an IllegalArgumentException. This means

that an input that triggers this vulnerability needs to be extremely

carefully crafted to circumvent all of these branch conditions
2
. This

is representative of vulnerability-triggering inputs in general, as

these tend to arise only in very specific edge cases.

Limitations of existing LLM agents: LLM agents tend to struggle

with this kind of complex reasoning, and perform poorly out of

the box. For instance, when we use CodeAct 2.1, a popular LLM

agent, to generate a PoV test for the above vulnerability, it generates

a test that calls isValid() with the following string as the value

argument:

"${new java.io.FileWriter(’/tmp/...’).write(’exploit’)}"

The intention is to inject Java code that writes to a file in the tmp

directory. However, the agent fails to understand that the expres-

sion has to have a specific number of fields in order to get past the

branch condition on lines 9-11 of CronParser.java. A valid Cron

expression needs to have 6 or 7 space-separated components, which

is what that branch condition checks internally. The generated ex-

pression has only 2 space-separated components, namely "$(new"

and "java.io...}".

Our tool, FaultLine, uses a series of carefully crafted reasoning

steps to guide LLM agents to address the above challenges and

generate better PoV tests.

3 Methodology

In this section, we describe FaultLine, an LLM agent that auto-

matically generates PoV test cases for a project with a reported

vulnerability. In this paper, we focus on the following vulnerability

types:

• CWE-22 (Path Traversal): This occurs when insufficient validation

of user-supplied input in file path construction allows attackers to

access files outside the intended directory using sequences such as

"../".

• CWE-78 (OS Command Injection): This enables attackers to exe-

cute arbitrary operating system commands by injecting malicious

input into application-constructed system commands .

• CWE-79 (Cross-Site Scripting): This happens when unvalidated

user input in web output allows attackers to execute malicious

scripts in victims’ browsers.

• CWE-94 (Code Injection): This allows attackers to inject and ex-

ecute arbitrary code by exploiting insufficient input validation in

code interpretation functions.

However, we emphasize FaultLine is not limited to these specific

CWE categories, and our framework is general enough to permit

extension to any other software vulnerability type.

Figure 2 describes the workflow of our agent. In the first stage

(Section 3.1), we prompt the LLM to identify a source and a sinkwith

a flow between them. In the second stage (Section 3.2), we leverage

the agent to reason about the branch conditions encountered along

the flow, and use these conditions to derive a set of conditions that

an input has to satisfy in order to pass through this flow. In the final

stage (Section 3.3), we use the information aggregated from previous

stages to generate a PoV test case, and repair it based on build and

2
https://securitylab.github.com/advisories/GHSL-2020-212-cron-utils-ssti/

https://securitylab.github.com/advisories/GHSL-2020-212-cron-utils-ssti/


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Nitin et al.

Step 1: Trace Dataflow from Source to Sink

public boolean isValid(String value, ...)

cronParser.parse(value)

buildConstraintViolationWithTemplate(e...)

Source

Sink

CVE-2021-41269
A template Injection

was identified in cron-
utils enabling

attackers to inject...

Tools Read
Listdir
...

{ /*...*/ }

CronParser.java

{ /*...*/ }
CronValidator.java

{ /*...*/ }

LLM

Step 2: Reason about Branch Conditions

"Extract all branch
conditions (if, switch, try-
except) encountered in

this flow..."

"Based on these
branches, infer a set of
conditions that the input

must satisfy..."

   if (value == null)

   try{...} catch{...}

1. Must not be null
2. Must not be an
   empty string
3. ...

Step 3: Test Generation and Repair

"Create a test case that
starts at the flow source
and reaches the sink.

Here are a set of
conditions that an input

must satisfy...

public class
CronInjectionTest
{ ...
  String expr = "...";
  parser.parse(expr);
}

CronInjectionTest.java

Builds successfully
Fails in Vulnerable State

?
?

"Fix the test case based
on this feedback..."

"Generate a sequence of
program points starting

from a user input or
external source..."

Figure 2: Our system FaultLine, for generating Proof of Vulnerability test cases.

execution feedback. Although the final reasoning generated in one

stage is passed on to subsequent stages, the various stages do not

share a common conversation memory. This keeps the length of

each conversation in check. Full LLM prompts for all these stages

are available in the appendix.

3.1 Data Flow Reasoning

We start with a project containing a known vulnerability, and

the corresponding vulnerability report extracted from NVD data-

base [24]. The first step towards generating a PoV test case is to

process the report, scan the files in the repository, and understand

the nature of the vulnerability. Often, the report provides scant

information. This is sometimes done intentionally, so as to not in-

advertently provide attackers with a blueprint on how to craft an

exploit. However, every report includes at least a) the CWE catego-

rization of the vulnerability, b) affected versions of the project, c)

mitigation strategies for developers. Figure 3 shows an example of

a vulnerability report corresponding to the motivating example in

Section 2.2.

Although this report is vague, it provides hints that can be used

to deconstruct the vulnerable flow. The report states that the vul-

nerability allows attackers to “inject arbitrary Java EL expressions”.

This narrows the search for sinks to program constructs that can

process Java EL expressions. Further, the report indicates that the

vulnerability arises from “using the @Cron annotation to validate

untrusted Cron expressions”. This means that the source is likely
to be an API that accepts a Cron expression from a user.

Given these semantic hints from the vulnerability report, the

next step is to automatically identify the data flow from source

CWE-94: Improper Control of Generation of Code ('Code

Injection')

Details: cron-utils is a Java library to define, parse,

validate, migrate crons as well as get human readable

descriptions for them. In affected versions A template

Injection was identified in cron-utils enabling attackers to

inject arbitrary Java EL expressions, leading to

unauthenticated Remote Code Execution (RCE) vulnerability.

Versions up to 9.1.2 are susceptible to this vulnerability.

Please note, that only projects using the @Cron annotation

to validate untrusted Cron expressions are affected. The

issue was patched and a new version was released. Please

upgrade to version 9.1.6. There are no known workarounds.

Figure 3: An example of a vulnerability report, for CVE-2021-

41269. Although it is vague, the highlighted sections provide

some hints about the sources and sinks of this vulnerability.

to sink within the codebase. One natural approach would be to

leverage existing static analysis tools designed for this purpose.

CodeQL [1], for instance, is an industry standard tool used for

detecting dangerous flows between sinks and sources. However,

several limitations make it unsuitable for our use case: a) it cannot

directly utilize semantic information from the report to guide its

detection algorithm, b) it requires a non-trivial amount of effort to

set up and run for each project and programming language, c) it is

tuned for high precision, causing it to miss several flows. In fact,

CodeQL fails to detect the flow corresponding to our motivating

example [20]!



FaultLine: Automated Proof-of-Vulnerability Generation using LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

For all of the above reasons, we opt to use an LLM acting as an

autonomous agent to reconstruct the vulnerable flow. We include

the entire vulnerability report in the initial prompt, and instruct the

LLM agent to use the information in the report to generate a flow

starting from a source and reaching a sink. To enable the agent to

explore the project’s source code, we provide it with tools to list a

directory (ListDir) and read a file (Read). In order to use semantic

hints from the vulnerability report, such as the @Cron annotation, we

additionally equip the agent with tools to search for files by name

(Find), and to search for files containing specific strings (Grep).
The output of this stage is a sequence of program points com-

prising a flow, where each point is identified by a short snippet of

code (1-2 lines). Each point is additionally labeled with:

(1) the name of the file it is contained in,

(2) the name of the variable that carries the vulnerable flow, and

(3) a role, i.e., Source, Sink, or Intermediate Node.

As an example, here is the portion of the data flow reasoning output

corresponding to the source of the flow in Figure 1.

{ "code": "public boolean isValid(String

value , ...",

"role": "Source",

"variable ": "value",

"file": ".../ CronValidator.java" }

The entire flow output consists of a sequence of points in the

above format, starting with a source and ending with a sink. We use

this flow as an input for our subsequent reasoning and generation

steps.

3.2 Control Flow Reasoning

Once a flow from source to sink has been identified, the next

step towards generating a PoV test case is reasoning about how to

generate an input that will actually traverse this flow. We decom-

pose this task into two steps - extracting branch conditions, and

reasoning about conditions on the input.

Extracting branch conditions. We collect the flow reasoning

generated by Step 1, and instruct an LLM agent to follow this flow

and extract all the branch conditions that an input might encounter

on the way. This includes not just if-else and switch constructs,

but also try-except blocks. Each branch represents a potential op-

portunity for the control flow to be diverted down a non-vulnerable

path that never reaches the sink, or pass through program points

that sanitize the flow and render it non-threatening. Reasoning

about every single branch, therefore, is crucial to constructing an

input that can reach the sink. We refer to the path represented by

the program points corresponding to these branch conditions as

the control flow path.
Note that the control flow path can be very different from the

data flow path (Section 3.1). For example, in Figure 1, the data

flow (shown in red) spans the two files CronValidator.java and

CronParser.java. However, the control flow path includes a com-

pletely different set of nodes (shown in green). Further, a portion

of the control flow path traverses a file not shown in this figure,

SingleCron.java. This is induced by the call to

SingleCron::validate() on line 14 of CronParser.java, which must

throw an IllegalArgumentException in order for the program to

proceed down the path towards the sink. So although one might

imagine the data flow and control flow paths to be similar, they

have many fundamental qualitative differences.

Similarly to Section 3.1, we equip the LLM agent with ListDir,
Read, Find and Grep tools. We prompt it to extract each branch

condition as a short snippet of code (1-2 lines). Each condition is

required to be additionally labeled with:

(1) its type (If-Else, Switch, etc.),

(2) the name of the file it is contained in, and

(3) the desired outcome of the branch, in order for the input to

proceed down a path that leads to the sink.

For example, the portion of the branch reasoning output corre-

sponding to the branch condition in line 3 of CronValidator.java

in Figure 1 is:

{ "code": "if (value == null)",

"type": "If-Else",

"file": ".../ CronValidator.java",

"outcome ": "False - the value should not

be null" }

Reasoning about conditions on the input. Analyzing these

branch conditions carefully can provide information on how to gen-

erate an appropriate test input that walks a metaphorical tightrope,

traversing the correct path through these branches. However, we

found that LLMs often struggled to parse these branch conditions

and produced tests with inadequate inputs. To make the connection

between branch conditions and input requirements more explicit,

we add a further reasoning step.

We ask the agent to reflect on its own output and infer a set

of conditions that an external input must satisfy, in order to pass

through all the branches. This is essentially a compositional rea-

soning task, in which the agent must aggregate information from

each branch, and compose them into a set of unifying input con-

ditions. For illustrative purposes, here are some of the conditions

generated by the agent for our motivating example from Figure 1

and Section 2.2:

1. The input must not be null ...

2. The input must not be an empty string

after trimming whitespace ...

3. The input must not contain || ...

Since these conditions succinctly summarize the detailed branch

information produced earlier, we collect these conditions for use in

the next step of the tool and discard the detailed branch information.

3.3 Test Generation and Repair

At this stage, we have a detailed description of a flow from

source to sink, along with a series of constraints that a test input

must satisfy in order to exercise this flow. The final stage of our

system involves using the flow information and input constraints



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Nitin et al.

to generate an initial proof-of-vulnerability test case, followed by

feedback-driven repair.

Criteria for Success To construct a framework that can generate

a PoV test, we first have to understand what it means for a PoV

test to be successful. This is surprisingly non-trivial. Consider our

motivating example again (Figure 1). The root cause of the vulnera-

bility is that the error message can, in certain cases, reproduce the

user-provided value string verbatim. A hypothetical PoV test could

call isValid with a value string embedded with a specific sequence

of characters, say "abcd", in the appropriate format to reach the

sink. It could then assert that the error message does not contain

"abcd". Prima-facie, this would satisfy the requirements of a PoV

test:

(1) It would fail if and only if the vulnerability exists,
(2) It would execute the vulnerable method and use the observed

result directly in an assertion to check the presence of a bug.

However, this is a Code Injection vulnerability, and the would-be

PoV test does not actually inject any code! This shows us that the
definition of a successful PoV test must necessarily be tailored to

the type of vulnerability, e.g., a Code Injection vulnerability must

inject code and execute it in addition to satisfying the above three

conditions.

Previous works on exploit generation [2, 28] have attempted to

group exploits based on their CWE category and develop criteria

for each category that can be automatically checked. For example,

an exploit for OS Command Injection (CWE-78) could be verified

by checking whether the test can execute a specified binary like

/usr/bin/mybin. These are akin to Capture-The-Flag (CTF) chal-

lenges. However, these definitions can be too restrictive in our

setting. For example, CVE-2014-3576 is an OS Command Injection

vulnerability that allows an attacker to specifically execute the

shutdown command. A definition based on /usr/bin/mybin would

be a mismatch for this exploit.

We instead opt to use semantic criteria that can be manually

checked. For each of the CWE categories we consider in this pa-

per, we define what it means for an exploit of that category to be

successful:

• CWE-22 (Path Traversal): The test case must use a public API

of the project to read from or write to at least one file outside the

project directory.

• CWE-78 (OS Command Injection): The test case must use a public

API of the project to execute any shell command that is not intended

by the application.

• CWE-79 (Cross-Site Scripting): The test case must call a public

API of the project with an input that contains embedded scripting

code, and show that this input is not sanitized properly.

• CWE-94 (Code Injection): The test case must call a public API of

the project with an input that contains embedded code, and this

code must be executed.

Generating an initial test:When humans write code to solve a

task, we rarely write correct functional code in a single attempt.

Instead, we usually follow an iterative process, where wewrite some

code, observe its behavior, add debugging statements if necessary,

re-run the code, and so on. We used this process flow as a guide

while developing our test generation component. In addition to the

tools mentioned in previous stages, i.e., ListDir, Read, Find and

Create a test case that FAILS (exits with non-zero code) if

the vulnerability EXISTS, and PASSES (exits with code 0) if

the vulnerability DOES NOT EXIST.

This is a Code Injection vulnerability (CWE-94). The test

case must call a public API of the project with an input

that contains embedded code, and this code must be executed.

This test should actually run the vulnerable code in the

project.

- It should NOT read the source code to check for the

presence of a vulnerability.

- It should NOT "simulate" the vulnerability by running some

separate code that does not use the project.

Here is a flow consisting of a sequence of program points to

reach the vulnerability:

{flow}

The test should start from the flow 'source' and reach the '

sink'. It should be designed such that it passes through all

the branch conditions on the way. This means that the input

and method calls should be carefully crafted, satisfying

the following conditions:

{input_conditions}

Figure 4: A portion of our test generation prompt for a CWE-

94 (Code Injection) vulnerability. The highlighted portion

is modified depending on the CWE category. For the full

prompt, refer to the appendix.

Grep, we also give the agent the ability to write to files (Write) and
run the current test code to observe its output (Run).

To ensure consistent environment-independent execution, we

ask the agent to wrap each project and its dependencies as a Docker

container. The container, when built and run, must execute the test

case. The Run tool does not permit the execution of arbitrary termi-

nal commands; rather, it just builds and runs the Docker container,

and furnishes the agent with the output of these commands.

Figure 4 shows a portion of our test generation prompt for a

CWE-94 (Code Injection) vulnerability. We include the flow infor-

mation and input constraints obtained in Section 3.1 and Section 3.2

respectively. The prompt is specific to the CWE category of the

vulnerability and includes the criteria for an exploit to be consid-

ered successful. We also add instructions in the prompt to avert

certain common failure modes — 1) tests which don’t actually run

the program, and instead match shallow patterns in the source code

to check for the presence of certain text, 2) tests that simulate the

vulnerability by re-implementing a simplified version of it, without

running the existing project code. We explicitly instruct the agent

to avoid these patterns of behavior.

Once the agent has generated a test and is satisfied that it runs

correctly, we instruct it to respond <DONE> to trigger the next phase.

Feedback-driven repair:We validate the generated test case with

two automated checks. We first build the project as a Docker image,

and check if it completes successfully. If it does, we run a container

with the built image, and check that the run fails (exits with non-

zero code). If either of these stages does not complete as expected,

i.e., if the build fails or the run succeeds, we collect the output from

that stage and use it as feedback for the agent.



FaultLine: Automated Proof-of-Vulnerability Generation using LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

CWE-Bench-Java PrimeVul Total

Path Traversal 35 13 48

Command Injection 6 4 16

Cross-Site Scripting 15 3 18

Code Injection 14 10 24

Total 70 30 100

Table 1: The statistics of our benchmark datasets, showing

the number of instances of each vulnerability type.

We prompt the agent with this feedback, instructing it to fix

the test by carefully analyzing errors or messages in the output,

and reasoning step by step about what might have gone wrong.

We perform this feedback-driven repair in a loop until a preset

maximum number of iterations is reached.

4 Experimental Setup

4.1 Benchmarks

CWE-Bench-Java [20] is a dataset of 120 Java programs with

known vulnerabilities. The vulnerabilities span 4 CWE categories —

Path Traversal, OS Command Injection, Cross-Site Scripting (XSS)

and Code Injection. Each vulnerability includes metadata like its

vulnerability report from the National Vulnerability Database[24],

the URL of the GitHub repo of the project, buggy and fixed commit

hashes, build instructions, and the classes and methods changed to

fix the vulnerability. We attempted to clone each project and build

it in both the vulnerable and fixed states, using the build scripts

provided with the CWE-Bench-Java dataset. We were unable to

fetch the fix commit or build at the fixed commit for some of these

projects, leaving us with a filtered dataset of 70 Java programs.

PrimeVul [11] is a dataset of over 7000 vulnerabilities in C and

C++ programs. We filter these to include only vulnerabilities be-

longing to our selected CVE types, and select 30 vulnerabilities at

random from the filtered set. However, PrimeVul does not anno-

tate each project with build information. So this is possibly a more

challenging setting for PoV test generation, where the model has to

build the project successfully as a prerequisite for generating a test.

Our entire evaluation dataset therefore consists of 100 prob-

lem instances (70 from CWE-Bench-Java and 30 from PrimeVul)

covering 3 programming languages (Java, C and C++).

4.2 Implementation

Setting up benchmarks: We reset each project to the vulnerable

commit and build it as a Docker container. We make sure that the

Dockerfile contains all the dependencies needed for the project,

and does not require any external volumes. This ensures that a)

the tests are run in a sandboxed environment, and b) the runs are

reliably reproducible.

Implementing the system: FaultLine is implemented in Python

and run with Docker. We developed custom interfaces for all the

tools we discussed in Section 3. The underlying LLM for all our

agent calls is Claude-3.7-Sonnet, which we access through litellm.

We set a maximum budget of 5 USD and a time budget of 40 mins

for each project.

4.3 Baselines

Our main baseline is the CodeAct 2.1 agent [29] running in the

OpenHands framework [31]. This is a general-purpose, open-source,

software agent. Although there are many other LLM agents that

are specialized for the task of fixing software bugs, fixing bugs is

a very different problem from generating tests. CodeAct 2.1 with

OpenHands performs competitively with other specialized test

generation models [25] on the SWE-Bench benchmark [18], and

its capabilities extend to any general software engineering task. It

outperforms popular agents like SWE-Agent by a large margin [30].

So it is a natural choice to use as a benchmark. Just as in FaultLine,

we use Claude 3.7 Sonnet as the underlying LLM and impose the

same budget and time constraints. The full prompt that we used

for OpenHands is available in the appendix.

4.4 Metrics

We follow a set of steps to evaluate the correctness of a PoV test.

If any of these steps fails, we abort the evaluation and return failure.

In order:

(1) Build: Build the project along with its created tests at the vul-

nerable commit, as a Docker image.

(2) Run: Run the Docker image as a container, and check that it

exits with non-zero code.

(3) Check coverage: Check that the program flow in the previ-

ous step reached a method corresponding to the vulnerability. To

evaluate this, we instrument each function to print its name when

it is called. If the output contains the name of any method that

was changed as part of the vulnerability fix, then we consider this

satisfactory. This helps weed out tests that use shallow pattern

matching against the text of the source program.

If a test passes all these 3 criteria, then the final step is tomanually

inspect it to evaluate whether it satisfies the category-specific

criteria listed in Section 3.3. For example, if the vulnerability is

Code Injection, then we verify that the test calls a public API of the

project with an input that contains embedded code, and that the

code is actually executed. If the test passes this check, we consider

it correct.

5 Experimental Results

We evaluate our approach through the following research questions:

• RQ1: Performance of our tool. How many PoV tests is Fault-

Line successfully able to generate? How does this compare with

our baselines?

• RQ2: Different vulnerability types. How does the perfor-

mance of FaultLine vary across vulnerability types as represented

by CWE categories?

• RQ3: Evaluating our design choices. What is the impact of

the flow reasoning and branch reasoning components on the per-

formance of FaultLine?

5.1 RQ1: Performance Evaluation

In this section, we measure the effectiveness of FaultLine in

generating PoV tests, and measure its performance relative to our

baselines.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Nitin et al.

Succeeded

70

9

63

19 16

Failed
Inspection

Didn't reach
vulnerable
functions

Test passed
in vulnerable

state

Build
failed

7

44

3

7

(a) CodeAct 2.1, CWE-Bench-Java

Succeeded

70

15

55
28 22

Failed
Inspection

Didn't reach
vulnerable
functions

Test passed
in vulnerable

state

Build
failed

15

27

6

7

(b) FaultLine, CWE-Bench-Java

30 28

2 2

Failed
Inspection

Didn't reach
vulnerable
functions

Build
failed

2

26

2

(c) CodeAct 2.1, PrimeVul

30
26

3 3

Failed
Inspection

Build
failed

4

23

2

Succeeded1

Didn't reach
vulnerable
functions

(d) FaultLine, PrimeVul

Figure 5: A detailed analysis of the test generation performance of CodeAct 2.1 (on the left) vs FaultLine (on the right), for our

two benchmarks CWE-Bench-Java and PrimeVul. FaultLine is able to generate more successful tests (15 vs 9 and 1 vs 0), as

well as more tests that reach the vulnerable functions (28 vs 19 and 3 vs 2).

Evaluation: We run FaultLine on our benchmark dataset of 100

programs. We also run CodeAct 2.1 in the same setting, with iden-

tical time and budget constraints. For each generated test case, we

evaluate it according to the process defined in Section 4.4. If a test

fails at a particular stage of this checking process, we collect that

information.

Discussion: The overall results are in Figure 5. We make the fol-

lowing observations:

• CWE-Bench-Java results: FaultLine is able to generate successful
PoV tests for 15 out of 70 CWE-Bench-Java projects (21%) compared

to CodeAct which succeeds for only 9 (13%). This is a significant gap,

and clearly shows the benefits of our multi-stage agentic workflow.

• PrimeVul results: On the PrimeVul dataset, CodeAct is unable to

solve any of the 30 problems, whereas FaultLine is able to solve 1.

As mentioned in Section 4, PrimeVul does not have build scripts for

individual projects; however this (perhaps surprisingly) does not

seem to pose a challenge to either CodeAct or FaultLine. Out of 30

projects, the resulting Dockerfiles build successfully for 27 and 26

of the projects, for CodeAct and FaultLine respectively. However,

the test flow reaches the vulnerability for only 3 and 2 projects

respectively. This suggests that test generation is particularly chal-

lenging on PrimeVul not because of a lack of build information, but

because of a lack of understanding of the flow of each vulnerability.

Further research is needed to develop better PoV test generation

tools for these projects.

• Vulnerable function coverage: FaultLine is able to generate tests

that reach vulnerable functions for 28 CWE-Bench-Java projects

versus only 17 for CodeAct, and likewise for PrimeVul (3 vs 2). This

is evidence that our flow and branch reasoning steps are having

the desired effect, enhancing the ability of the agent to produce test

inputs that reach vulnerability sinks.

Summary: FaultLine is able to generate PoV tests for 16 vul-

nerabilities, as compared to just 9 for the CodeAct 2.1 baseline.

Further, FaultLine-generated tests reach the vulnerable func-

tions in 31 projects, as compared to 19 for the baseline.

5.2 RQ2: Vulnerability Types

In this section, we evaluate how the performance of our agent

varies across vulnerability types.

Evaluation: We collect the results of PoV test generation as de-

scribed in Section 5.1, and categorize each test according to the

CWE-ID of the project it corresponds to. We plot the percentage of

successful tests in each category, for both tools.

Discussion: The results are shown in Figure 6. We make the fol-

lowing observations:

• As measured by average percentage of successful PoV tests gen-

erated, CWE-94 (Code Injection) is the hardest category, with both

tools reporting a success rate of just 8%. CWE-22 (Path Traversal)

and CWE-79 (Cross-Site Scripting) seem to be relatively easier by



FaultLine: Automated Proof-of-Vulnerability Generation using LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

CWE-22 CWE-78 CWE-79 CWE-940

10

20

30

Co
rre

ct
 Te

st
s (

%
)

12

6

0

8

17
12

22

8

Solved by CodeAct
Solved by FaultLine

Figure 6: Percentage of correct PoV tests per CWE category.

Successful PoV Tests

w/o Flow, w/o Branch 11

w/o Flow 9

w/o Branch 11

FaultLine 16

Table 2: Assessing the impact of the flow and branch reason-

ing steps.

comparison, but overall it is clear that this is a challenging task

irrespective of category.

• Another observation is that for each category, FaultLine is con-

sistently on par with or better than CodeAct 2.1. This shows that its

performance gains are not specific to any one type of vulnerability.

Although in this paper we have only evaluated our technique on 4

CWE categories, based on these results we expect it to generalize

well to other categories too.

Summary: FaultLine performs on par or improves over the

baseline for all 4 CWE categories, showing its generalizability.

5.3 RQ3: Evaluating Design Choices

In this section, we evaluate the impact of the flow reasoning and

branch reasoning components on the performance of FaultLine.

Evaluation: We design three configurations of the tool by re-

moving flow analysis, branch analysis, and both flow and branch

analysis. Running the each of these configurations on all 100 ex-

amples was prohibitively expensive, so instead, we selected the 16

projects corresponding to tests generated by FaultLine that passed

evaluation, and ran each tool configuration on this subset of 16

projects.

Discussion: The results are shown in Table 2. We can see that

FaultLine is the best performing configuration, and that the con-

figurations without flow and branch analysis do not generate as

many successful tests. This shows that each component of our

system is crucial to its overall performance. One interesting ob-

servation is that branch reasoning alone, without flow reasoning,

performs worse than a configuration with neither branch nor flow

<FLOW>

{"role": "Source",

"code": "public boolean isValid(String value,

ConstraintValidatorContext context) {",

"variable": "value",

"file": "...CronValidator.java",

"remarks": "The entry point where untrusted cron

expressions are received for validation"

}

...

{"role": "Sink",

"code": "context.buildConstraintViolationWithTemplate(

e.getMessage()).addConstraintViolation();",

"variable": "e.getMessage()",

"file": "...CronValidator.java",

"remarks": "The unvalidated input is used in a template

context, allowing for Java EL expression injection"

}

</FLOW>

<CONDITIONS>

...

6. The input must have a valid number of parts that matches

one of the expected cron expression formats

7. The input must contain at least one special character (/,

-, or ,) to trigger the complex parsing path

...

<CONDITIONS>

Figure 7: A portion of the output of flow and branch rea-

soning of FaultLine for the motivating example from Sec-

tion 2.2. Deriving the right conditions on the input string

allows the test-generation agent to generate a PoV test that

reaches the vulnerability sink.

reasoning. In this configuration, we are essentially prompting the

model to extract branch conditions along a unspecified data flow,

and further, reason about conditions that an unspecified source in-

put has to satisfy. This requires two reasoning steps, and intuitively,

scaffolding the reasoning process should yield better results.

To further investigate the effectiveness of our multi-step reason-

ing pipeline, we inspect the system’s outputs for our motivating

example from Section 2.2. The system generates the correct flow

from source to sink, shown in the top half of Figure 7. Then, using

this flow, FaultLine extracts branch conditions and generates input

constraints, a portion of which are shown in the bottom half of

Figure 7.

Notice that this contains the constraint “the input must have a

valid number of parts”. As we discussed in Section 2.2, CodeAct

fails to understand this requirement and generates an input con-

taining just the wrong number of space-separated components.

On the other hand, FaultLine is able to use these constraints

to generate a test that calls isValid with the following string:

"* * * * * ${T(java.lang.Runtime).getRuntime().exec(’touch

/tmp/abc"’)}". This has 7 space-separated components, which is a

valid format and allows the dangerous input to reach the vulnera-

bility sink without sanitization.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Nitin et al.

Summary:Without its flow or branch reasoning components,

FaultLine solves between 9 and 11 problems, as compared to

16 in its full configuration. This shows the utility of each compo-

nent.

6 Related Work

Vulnerability Datasets: There are many curated vulnerability

datasets in different languages, some with proof-of-vulnerability

tests. BigVul [12] is a dataset of 3,754 C/C++ vulnerabilities, and

PrimeVul [11] builds on BigVul to create a higher quality dataset of

6,968 C/C++ vulnerabilities. CrossVul [26] has ∼13,000 vulnerabil-
ities in 40 programming languages. SVEN [15] consists of ∼1600
C/C++/Python vulnerabilities. These datasets include, for each vul-

nerability, the URL of the GitHub repository from which the vulner-

ability was sourced, the commit message corresponding to the fix,

and the patch. However, these datasets lack information on how to

build each project and reproduce the vulnerability. They also lack

proof-of-vulnerability test cases.

CWE-Bench-Java [20] is a dataset of 120 Java vulnerabilities with

build information for each project, but no proof-of-vulnerability

test cases. Vul4J [9] is a small dataset of 79 Java vulnerabilities, each

of which is reproducible and has proof-of-vulnerability test cases.

ARVO [21] is a continually expanding database of C/C++ vulnera-

bilities collected from Google’s OSS-Fuzz tool. SecBench.js [7] is

a dataset of JavaScript vulnerabilities, some of which have exploit

code.

LLM Agents for Bug Reproduction: There is a line of research

on generating bug reproduction tests from reports. LIBRO [19]

frames this as a few-shot code generation problem, where an LLM

is shown examples of bug reports and corresponding tests, before

being asked to generate a test for a given report. Cheng et al. [10]

build on the LIBRO framework by designing an agentic system with

a fine-tuned code editing tool. Otter [3, 4] is an LLM agent workflow

that uses systematic reasoning to generate bug reproduction tests.

However, this is qualitatively very different from vulnerability ex-

ploit generation, which involves generating carefully crafted inputs

that can traverse long sequences of method calls within a program.

Proof-of-Vulnerability Test Generation: There is a long line of

work that predates LLMs [5, 6, 8, 16, 17], based on deriving con-

straints on a program’s input and using symbolic execution to solve

these constraints. However, these are specialized to certain kinds

of vulnerabilities, and cannot reach vulnerabilities that are deeply

embedded in a program. SemFuzz [33] is a fuzzing tool that uses

semantic information from vulnerability reports to perform guided

fuzzing. However, this can only generate relatively simple kinds of

inputs, and can only detect vulnerabilities that result in runtime

errors like crashes, resource leaks or infinite loops. ARVO [21] col-

lects bug reports from Google’s OSS-Fuzz [27], derives build and

dependency information for each project, and creates a dataset of re-

producible vulnerabilities. However, ARVO relies on the bug report

already containing the exact input that triggers the vulnerability.

There has been research on using LLM agents to generate ex-

ploits for web applications in a one-day [13] and zero-day [36]

setting. Zhu et al. [35] design a comprehensive benchmark for eval-

uating exploit generation in web applications. However, the setting

of these works is significantly different from ours, because exploit-

ing web vulnerabilities requires interacting with a webpage, e.g.,
entering text in a box or clicking a button; as opposed to our setting

which requires writing code that calls an API. EniGMA [2] aug-

ments an SWE-Agent [32] with additional tools like an interactive

debugger, to enable it to solve Capture-The-Flag (CTF) problems.

The solution to a CTF problem is a string, or “flag”, that has to

be retrieved. This is qualitatively very different from our setting,

which involves writing test cases.

PoCGen [28] is a concurrent work to ours that involves generat-

ing proof-of-concept exploits for vulnerabilities in NPM packages.

However, it relies on static and dynamic analysis tools for NPM,

which limits its generalizability across programming languages.

7 Limitations and Threats

As with any experimental study, the conclusions of our work must

be considered in the context of the following potential threats to

validity.

Data leakage: The knowledge cutoff date of Claude-3.7-Sonnet, our

base LLM, is November 2024. Our data sources for vulnerabilities,

CWE-Bench-Java and PrimeVul, were curated before this date. It is

very likely that the LLM has seen several of these vulnerabilities

as part of its training data. Therefore, it is possible that our careful

prompting is not actually eliciting reasoning, but simply enabling

the model to recall instances from its training data. This threat is

somewhat mitigated by two factors:

(1) PoV tests are seldom made public for security-related reasons.

Although the model may have seen several of the vulnerabilities in

its training data, it is unlikely to have seen the corresponding PoV

tests.

(2) Our primary comparison is with the CodeAct agent, which uses

the same underlying LLM. Therefore, there is no unfair advantage

gained by our agentic framework compared to the baseline.

Test success in fixed state: An ideal proof of vulnerability test

must not only fail when the vulnerability exists, but also pass when
it is fixed. However, our evaluation criteria do not include a check

that the test passes in the fixed state. When we tried running our

tests on the fixed versions of each project, we observed certain

issues:

(1) Sometimes, a test fails to build when the project is in the fixed

state, because of mismatched dependencies or versions. This is not

the agent’s fault, because it does not have access to the fixed state

of the project.

(2) There are also certain cases where the test exits with a non-zero

code in the fixed version because the project detects the attempted

exploit and raises an exception. The test should ideally catch this

exception and return success, but once again, the agent does not

have access to the source code of the fixed version of the project.

So it cannot know, a priori, the exact exception that will be thrown,

or even the fact that an exception will be thrown at all.

For all of these reasons, we choose not to include passing in the

fixed state as a criterion for a successful PoV test, and we defer the

question of how to accomplish this to future work.

Manual Inspection: The final step of our evaluation procedure

(Section 4.4) is a manual inspection. Although this is based on ob-

jectively verifiable criteria, there is a possibility of errors in human



FaultLine: Automated Proof-of-Vulnerability Generation using LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

judgment during the labeling process. This is somewhat mitigated

by the fact that the number of examples necessitating such manual

labeling is low, and we made every effort to be thorough with our

analysis, but nevertheless it remains a limitation of our experimen-

tal design.

Generalizability: Finally, we acknowledge that FaultLine is eval-

uated on only 4 CWE categories, which means that our conclusions

have to be contextualized accordingly. However, our system de-

sign does not make any assumptions on the type of vulnerability,

and we see consistent gains over the baseline across all our 4 cate-

gories. Thus, we expect that the conclusions would hold for other

categories too, but we defer this investigation to future work.

8 Conclusion

Proof-of-vulnerability tests are of vital importance to enable devel-

opers to understand a vulnerability and avoid regressions. Generat-

ing these tests involves subtle reasoning about program properties,

and proves extremely challenging for state-of-the-art LLM agents.

In this paper, we have developed FaultLine, a system that utilizes

carefully designed LLM reasoning steps to automatically gener-

ate PoV tests. Our results highlight the effectiveness of multi-step

reasoning workflows in LLM agents, and our benchmark of 100

projects represents a challenging direction for further research in

LLM agents and test generation.

References

[1] [n. d.]. https://codeql.github.com/

[2] Talor Abramovich, Meet Udeshi, Minghao Shao, Kilian Lieret, Haoran Xi, Kim-

berly Milner, Sofija Jancheska, John Yang, Carlos E Jimenez, Farshad Khorrami,

et al. [n. d.]. EnIGMA: Interactive Tools Substantially Assist LM Agents in Find-

ing Security Vulnerabilities. In Forty-second International Conference on Machine
Learning.

[3] Toufique Ahmed, Jatin Ganhotra, Rangeet Pan, Avraham Shinnar, Saurabh Sinha,

and Martin Hirzel. 2025. Otter: Generating Tests from Issues to Validate SWE

Patches. arXiv preprint arXiv:2502.05368 (2025).
[4] Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh

Sinha. 2024. TDD-Bench Verified: Can LLMs Generate Tests for Issues Before

They Get Resolved? arXiv preprint arXiv:2412.02883 (2024).
[5] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. 2016.

Chainsaw: Chained automated workflow-based exploit generation. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
641–652.

[6] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-

erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57, 2 (2014), 74–84.

[7] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis,

Michael Pradel, and Cristian-Alexandru Staicu. 2023. SecBench. js: An executable

security benchmark suite for server-side JavaScript. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 1059–1070.

[8] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Auto-

matic patch-based exploit generation is possible: Techniques and implications.

In 2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE, 143–157.
[9] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E Díaz Ferreyra. 2022.

Vul4J: a dataset of reproducible Java vulnerabilities geared towards the study of

program repair techniques. In Proceedings of the 19th International Conference on
Mining Software Repositories. 464–468.

[10] Runxiang Cheng, Michele Tufano, Jürgen Cito, José Cambronero, Pat Rondon,

RenyaoWei, Aaron Sun, and Satish Chandra. 2025. Agentic Bug Reproduction for

Effective Automated Program Repair at Google. arXiv preprint arXiv:2502.01821
(2025).

[11] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun

Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen. 2024.

Vulnerability detection with code language models: How far are we? arXiv
preprint arXiv:2403.18624 (2024).

[12] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++ code

vulnerability dataset with code changes and CVE summaries. In Proceedings of
the 17th international conference on mining software repositories. 508–512.

[13] Richard Fang, Rohan Bindu, Akul Gupta, and Daniel Kang. 2024. Llm agents can

autonomously exploit one-day vulnerabilities. arXiv preprint arXiv:2404.08144 13
(2024), 14.

[14] Nima Shiri Harzevili, Alvine Boaye Belle, Junjie Wang, Song Wang, Zhen Ming,

Nachiappan Nagappan, et al. 2023. A survey on automated software vulner-

ability detection using machine learning and deep learning. arXiv preprint
arXiv:2306.11673 (2023).

[15] Jingxuan He and Martin Vechev. 2023. Large language models for code: Secu-

rity hardening and adversarial testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 1865–1879.

[16] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai

Liang. 2015. Automatic Generation of {Data-Oriented} Exploits. In 24th USENIX
Security Symposium (USENIX Security 15). 177–192.

[17] Shih-Kun Huang, Han-Lin Lu, Wai-Meng Leong, and Huan Liu. 2013. Craxweb:

Automatic web application testing and attack generation. In 2013 IEEE 7th Inter-
national Conference on Software Security and Reliability. IEEE, 208–217.

[18] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir

Press, and Karthik Narasimhan. 2023. Swe-bench: Can language models resolve

real-world github issues? arXiv preprint arXiv:2310.06770 (2023).
[19] Sungmin Kang, Juyeon Yoon, Nargiz Askarbekkyzy, and Shin Yoo. 2024. Evaluat-

ing diverse large language models for automatic and general bug reproduction.

IEEE Transactions on Software Engineering (2024).

[20] Ziyang Li, Saikat Dutta, and Mayur Naik. 2025. IRIS: LLM-assisted static analysis

for detecting security vulnerabilities. In The Thirteenth International Conference
on Learning Representations.

[21] Xiang Mei, Pulkit Singh Singaria, Jordi Del Castillo, Haoran Xi, Tiffany Bao,

Ruoyu Wang, Yan Shoshitaishvili, Adam Doupé, Hammond Pearce, Brendan

Dolan-Gavitt, et al. 2024. ARVO: Atlas of Reproducible Vulnerabilities for Open

Source Software. arXiv preprint arXiv:2408.02153 (2024).
[22] MITRE Corporation. 2025. Common Weakness Enumeration. https://cwe.mitre.

org Accessed: July 18, 2025.

[23] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,

and Gang Wang. 2018. Understanding the reproducibility of crowd-reported

security vulnerabilities. In 27th USENIX Security Symposium (USENIX Security
18). 919–936.

[24] National Institute of Standards and Technology. 2025. National Vulnerability

Database. https://nvd.nist.gov/vuln Accessed: July 15, 2025.

[25] Graham Neubig and Xingyao Wang. 2024. OpenHands CodeAct 2.1: An Open,

State-of-the-Art Software Development Agent. All Hands AI Blog (1 November

2024). https://www.all-hands.dev/blog/openhands-codeact-21-an-open-state-

of-the-art-software-development-agent

[26] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris

Mitropoulos. 2021. CrossVul: a cross-language vulnerability dataset with commit

data. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
1565–1569.

[27] Kostya Serebryany. 2017. {OSS-Fuzz}-Google’s continuous fuzzing service for
open source software. (2017).

[28] Deniz Simsek, Aryaz Eghbali, and Michael Pradel. 2025. PoCGen: Generating

Proof-of-Concept Exploits for Vulnerabilities in Npm Packages. arXiv preprint
arXiv:2506.04962 (2025).

[29] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng,

and Heng Ji. 2024. Executable code actions elicit better llm agents. In Forty-first
International Conference on Machine Learning.

[30] Xingyao Wang, Bowen Li, and Graham Neubig. 2024. Introducing OpenDevin

CodeAct 1.0, a new State-of-the-art in Coding Agents. Blog (7 May 2024). https:

//xwang.dev/blog/2024/opendevin-codeact-1.0-swebench/

[31] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen

Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang

Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff,

Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji,

and Graham Neubig. 2025. OpenHands: An Open Platform for AI Software

Developers as Generalist Agents. In The Thirteenth International Conference on
Learning Representations. https://openreview.net/forum?id=OJd3ayDDoF

[32] John Yang, Carlos E Jimenez, AlexanderWettig, Kilian Lieret, Shunyu Yao, Karthik

Narasimhan, and Ofir Press. 2024. Swe-agent: Agent-computer interfaces enable

automated software engineering. Advances in Neural Information Processing
Systems 37 (2024), 50528–50652.

[33] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and

Bin Liang. 2017. Semfuzz: Semantics-based automatic generation of proof-of-

concept exploits. In Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security. 2139–2154.

[34] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. Au-

tocoderover: Autonomous program improvement. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 1592–1604.

[35] Yuxuan Zhu, Antony Kellermann, Dylan Bowman, Philip Li, Akul Gupta, Adarsh

Danda, Richard Fang, Conner Jensen, Eric Ihli, Jason Benn, et al. 2025. CVE-Bench:

A Benchmark for AI Agents’ Ability to Exploit Real-World Web Application

https://codeql.github.com/
https://cwe.mitre.org
https://cwe.mitre.org
https://nvd.nist.gov/vuln
https://www.all-hands.dev/blog/openhands-codeact-21-an-open-state-of-the-art-software-development-agent
https://www.all-hands.dev/blog/openhands-codeact-21-an-open-state-of-the-art-software-development-agent
https://xwang.dev/blog/2024/opendevin-codeact-1.0-swebench/
https://xwang.dev/blog/2024/opendevin-codeact-1.0-swebench/
https://openreview.net/forum?id=OJd3ayDDoF


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Nitin et al.

Vulnerabilities. arXiv preprint arXiv:2503.17332 (2025).
[36] Yuxuan Zhu, Antony Kellermann, Akul Gupta, Philip Li, Richard Fang, Rohan

Bindu, and Daniel Kang. 2024. Teams of llm agents can exploit zero-day vulnera-

bilities. arXiv preprint arXiv:2406.01637 (2024).



FaultLine: Automated Proof-of-Vulnerability Generation using LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

A Prompts

Listing 1: System Prompt

You are a helpful AI assistant that can interact with a

computer to solve tasks.

<ROLE>

Your primary role is to assist users by executing commands,

modifying code, and solving technical problems effectively.

You should be thorough, methodical, and prioritize quality

over speed.

Your code will never be read by humans, so focus on

correctness, not style.

</ROLE>

<EFFICIENCY>

* Each action you take is somewhat expensive. Minimize

unnecessary actions.

* When exploring the codebase, use the find and grep tools

with appropriate filters to minimize unnecessary operations.

* You do not have access to the internet, so do not attempt

to search online for information.

</EFFICIENCY>

<CODE_QUALITY>

* Write clean, efficient code with minimal comments. Avoid

redundancy in comments: Do not repeat information that can

be easily inferred from the code itself.

* When implementing solutions, focus on making the minimal

changes needed to solve the problem.

* Before implementing any changes, first thoroughly

understand the codebase through exploration.

* If you are adding a lot of code to a function or file,

consider splitting the function or file into smaller pieces

when appropriate.

</CODE_QUALITY>

<PROBLEM_SOLVING_WORKFLOW>

1. EXPLORATION: Thoroughly explore relevant files and

understand the context before proposing solutions

2. ANALYSIS: Consider multiple approaches and select the

most promising one

3. IMPLEMENTATION: Make focused, minimal changes to address

the problem

</PROBLEM_SOLVING_WORKFLOW>

<TROUBLESHOOTING>

* If you've made repeated attempts to solve a problem but

tests still fail or the user reports it's still broken:

1. Step back and reflect on 5-7 different possible sources

of the problem

2. Assess the likelihood of each possible cause

3. Methodically address the most likely causes, starting

with the highest probability

4. Document your reasoning process

</TROUBLESHOOTING>

Listing 2: Flow Reasoning

The project I am working with has a vulnerability, reported

as a CWE. The issue description says:

{description}

You do not have access to the internet or GitHub to look up

more details.

There are no vulnerability reports in the project directory

either.

{tool_description}

Could you generate a sequence of program points to reach the

vulnerable point (sink), starting from an external input (

source)? This corresponds to a vulnerable "flow" through the

program.

The flow should take the form of a sequence of program

points, each in the following format:

{"role": "Source|Intermediate|Sink",

"code": "Source code of program point (1-2 lines),

"variable": "Variable name",

"file": "File path (absolute)",

"remarks": "Comments about this point, if any"}

You can use multiple intermediate steps and tool

invocations, but when you are finished,

your final response should contain the flow in the above

format, within the tags <FLOW> and </FLOW>.

Listing 3: Branch Reasoning Part 1

The project I am working with has a vulnerability, reported

as a CWE. The issue description says:

{description}

You do not have access to the internet or GitHub to look up

more details.

There are no vulnerability reports in the project directory

either.

{tool_description}

Here is a flow consisting of a sequence of program points to

reach the vulnerability:

{flow}

Could you generate the sequence of branch conditions

encountered on the way to the sink, starting from the source

?

Include *every single* if-else, try-except, or switch

statement that the program flow will encounter in the path

from the source to the sink.

This should take the form of a sequence of program points,

each in the following format:

{"type": "If-Else | Try-Except | Switch",

"code": "Source code of program point (1-2 lines),

"file": "File path (absolute)",

"outcome": "What should be the outcome of the branch

statement in order to reach the vulnerability?"}



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Nitin et al.

You can use multiple intermediate steps and tool invocations

, but when you are finished,

your final response should contain the sequence in the above

format, within the tags <SEQUENCE> and </SEQUENCE>.

Listing 4: Branch Reasoning Part 2

<Conversation continued from Part 1>

Based on the above branch conditions that you generated,

infer a set of conditions that the external input must

satisfy in order to reach the vulnerability. Your final

answer should be in the following format:

<CONDITIONS>

1. Condition 1

2. Condition 2

...

</CONDITIONS>

Listing 5: Test Generation

The project I am working with has a vulnerability, reported

as a CWE. The issue description says:

{description}

You do not have access to the internet or GitHub to look up

more details. There are no vulnerability reports in the

project directory either.

Now create a test case that FAILS (exits with non-zero code)

if the vulnerability EXISTS,

and PASSES (exits with code 0) if the vulnerability DOES NOT

EXIST.

{cwe_desc}

This test should actually run the vulnerable code in the

project.

- It should NOT read the source code to check for the

presence of a vulnerability.

- It should NOT \"simulate\" the vulnerability by running

some separate code that does not use the project.

Here is a flow consisting of a sequence of program points to

reach the vulnerability:

{flow}

The test should start from the vulnerability 'source' and

reach the 'sink'. It should be designed such that it passes

through all the branch conditions on the way. This means

that the input and method calls should be carefully crafted,

satisfying the following conditions:

{conditions}

The project is built and run as a Docker container, and the

Dockerfile is at `{workdir}/Dockerfile.vuln`. All the build

dependencies for the project are already installed in `
Dockerfile.vuln`. However, if you need any new dependencies,

you can add them to `Dockerfile.vuln`.

Make sure to not modify any of the lines in the Dockerfile

above \"# Do not modify anything above this line\". The

entire project directory is copied into the Docker container

, so you don't need to write any new COPY commands in the

Dockerfile. The command to run the test should be the `CMD`
command in `Dockerfile.vuln`, so that the test can be run

with

`docker run -t imagename`.

Feel free to create any new files to create the test case.

You are highly encouraged to insert print statements in the

existing source files to debug your test.

Remember the branch conditions and flow that you derived

earlier, and use them to guide your test generation and

debugging process.

Once you verify that the flow has reached the 'sink', you

should analyze the observed behavior of the program to

ensure that the test FAILS if the vulnerability exists, and

PASSES if it does not exist. To re-emphasize, this test

should NOT be based on reading the source code, but rather

on the actual behavior of the program when it is run.

If I fix the vulnerability in the project, the test should

PASS.

{tool_description}

If you successfully generate the test case and confirm that

it satisfies all the above conditions, respond <DONE>.

Listing 6: Repair

The test you generated had the following error:

{feedback}

Please fix the test case. Carefully analyze this output for

errors or messages that can help you debug your test. Reason

step-by-step about what might have gone wrong, and how you

can fix it.

You can use the <TOOL>...</TOOL> format to invoke tools, and

you can also add new files.

When you have generated, run and checked your test again,

respond with a message containing the string "<DONE>".

Remember that the test should actually run the vulnerable

code in the project,

- It should NOT read the source code to check for the

presence of a vulnerability.

- It should NOT \"simulate\" the vulnerability by running

some separate code that does not use the project.


	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 Background
	2.2 Motivation

	3 Methodology
	3.1 Data Flow Reasoning
	3.2 Control Flow Reasoning
	3.3 Test Generation and Repair

	4 Experimental Setup
	4.1 Benchmarks
	4.2 Implementation
	4.3 Baselines
	4.4 Metrics

	5 Experimental Results
	5.1 RQ1: Performance Evaluation
	5.2 RQ2: Vulnerability Types
	5.3 RQ3: Evaluating Design Choices

	6 Related Work
	7 Limitations and Threats
	8 Conclusion
	References
	A Prompts

