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Abstract—Privacy-Preserving Federated Learning (PPFL) has
emerged as a secure distributed Machine Learning (ML)
paradigm that aggregates locally trained gradients without ex-
posing raw data. To defend against model poisoning threats,
several robustness-enhanced PPFL schemes have been proposed
by integrating anomaly detection. Nevertheless, they still face
two major challenges: (1) the reliance on heavyweight encryption
techniques results in substantial communication and computation
overhead; and (2) single-strategy defense mechanisms often fail
to provide sufficient robustness against adaptive adversaries. To
overcome these challenges, we propose DP2Guard, a lightweight
PPFL framework that enhances both privacy and robustness.
DP2Guard leverages a lightweight gradient masking mechanism
to replace costly cryptographic operations while ensuring the
privacy of local gradients. A hybrid defense strategy is proposed,
which extracts gradient features using singular value decomposi-
tion and cosine similarity, and applies a clustering algorithm to
effectively identify malicious gradients. Additionally, DP2Guard
adopts a trust score-based adaptive aggregation scheme that
adjusts client weights according to historical behavior, while
blockchain records aggregated results and trust scores to en-
sure tamper-proof and auditable training. Extensive experiments
conducted on two public datasets demonstrate that DP2Guard
effectively defends against four advanced poisoning attacks while
ensuring privacy with reduced communication and computation
costs.

Index Terms—Blockchain, federated learning, poisoning at-
tack, privacy preserving, hybrid-defense strategy.

I. INTRODUCTION

He Industrial Internet of Things (IloT) connects various
industrial devices through networks, enabling data collec-
tion, exchange, and analysis, and has played a significant role
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in advancing the digital transformation of industrial systems
[1], [2]. Meanwhile, the integration of machine learning (ML)
with IIoT enables industrial terminals to extract valuable
insights from massive sensory data and make intelligent deci-
sions in complex scenarios [3], [4]. However, the advancement
of industrial intelligence heavily depends on large-scale data
collection and sharing, which raises serious concerns regarding
data privacy and security [5], [6]. Thus, how to fully realise
the potential of ML in IloT systems while preserving data
privacy has become a critical challenge.

Federated Learning (FL) has emerged as a distributed ML
paradigm that enables multiple organizations to collaboratively
train a global model without sharing raw data, thereby pre-
serving user privacy [7], [8]. However, recent studies indi-
cate that FL still encounters challenges that adversaries can
infer sensitive information from shared model updates [9],
[10]. To address the threat, some privacy-preserving federated
learning (PPFL) based on Differential Privacy (DP) [11], [12],
Homomorphic Encryption (HE) [13], [14], and Secure Multi-
Party Computation (SMPC) [15], [16] have been proposed.
DP achieves privacy guarantees by injecting calibrated noise
into local model gradients, but this inevitably introduces
a trade-off between privacy and model utility [17]. SMPC
allows participants to jointly compute global models without
revealing their inputs, but the interaction processes of SMPC
incur heavy communication burdens on clients. In contrast,
HE enables secure computation on encrypted data and offers
a compelling balance between privacy and accuracy.

Another security threat in FL is model poisoning attacks
(MPAs), in which malicious clients submit manipulated gra-
dients to interfere with the training process and compromise
the integrity of the global model [18]. As illustrated in Fig.
1, such attacks become even more difficult to detect in PPFL
due to the invisibility of individual gradients resulting from
encryption or perturbation mechanisms. To address this issue,
several defense strategies have been proposed, including co-
sine similarity-based similarity-based [19] and distance-based
methods [20], which identify abnormal updates by measuring
their deviation from the majority. However, recent studies have
shown that, under complex attack scenarios, attackers can
craft malicious gradients that closely mimic benign behavior,
thereby evading detection. Thus, single-strategy defenses are
inadequate for addressing increasingly sophisticated poisoning
threats, highlighting the need to develop more robust and
hybrid defense mechanisms in PPFL.

To address the aforementioned challenges, we propose
DP2Guard, a lightweight PPFL framework that enhances both
privacy and robustness. DP2Guard adopts a gradient masking
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Fig. 1: The example of model poisoning attacks in PPFL.
Client 1 uploads a poisoned local mode gradient, guiding the
global model towards a predefined direction and impacting
overall model performance.

strategy to protect local model updates without relying on
computationally expensive cryptographic techniques such as
HE or MPC. It also incorporates a hybrid anomaly detection
strategy to identify malicious updates. Blockchain is further
integrated to secure the training process and provide auditabil-
ity. The main contributions of this work are summarized as
follows:

1) We propose a lightweight PPFL framework that employs
efficient gradient masking, where each gradient is di-
vided into two additive shares with opposite random
masks sent to two non-colluding servers. The servers
collaboratively aggregate the masked shares, ensuring
that no individual server can reconstruct the original
gradient.

2) We develop a hybrid defense strategy that applies singu-
lar value decomposition and cosine similarity to client
gradients to construct feature vectors, which are then
used by a clustering algorithm to accurately identify
malicious updates.

3) We introduce a trust score—based aggregation mecha-
nism that adaptively adjusts each client’s aggregation
weight according to its historical behavior, thereby im-
proving global model performance. Furthermore, both
the aggregated results and trust scores are securely
stored on a blockchain, ensuring training integrity and
auditability.

4) Extensive experiments on two public datasets demon-
strate that DP2Guard provides strong resistance against
four advanced poisoning attacks, while achieving pri-
vacy protection with reduced communication and com-
putation costs.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work in areas relevant to our study.
Section III introduces the preliminary knowledge. Section
IV illustrates the system model and the threat model. The
proposed scheme is elaborated in Section V. Section VI
provides the security and privacy analysis. Section VII presents
performance evaluation. Finally, Section VIII concludes this
work.

II. RELATED WORK

PPFL employs advanced techniques such as DP, HE, and
SMPC to protect the confidentiality of model updates. Jiang
et al. [29] proposed a DP-based PPFL framework with adap-
tive gradient compression to enhance privacy while reducing
communication overhead. Gu et al. [30] introduced FL2DP,
which leverages exponential-based noise and gradient shuf-
fling to protect both gradient and identity privacy. Li et al.
[31] designed an adaptive noise injection strategy to balance
privacy protection with model accuracy. However, DP-based
methods inevitably introduce utility loss, making it difficult to
optimize both privacy and performance. To improve efficiency,
SMPC-based PPFL approaches have been explored. Bonawitz
et al. [32] introduced a secure aggregation scheme using
double masking with Shamir’s Secret Sharing (SSS) to protect
client data privacy during aggregation. Fu et al. [33] further
optimized this design by replacing the double-masking scheme
with a single-masking technique, significantly reducing com-
putational overhead. Nevertheless, such methods still suffer
from increasing communication overhead as the number of
clients grows. HE-based approaches offer stronger privacy
guarantees by enabling computations on encrypted data. Bui
et al. [34] proposed a HE-based PPFL framework for intrusion
detection in IoV. Li et al. [35] utilized a CKKS cryptosystem
to protect model parameters during training. However, HE-
based approaches incur substantial ciphertext expansion and
computational overhead.

To address the poisoning attacks, numerous Byzantine-
robust algorithms have been proposed. For instance, Cao et al.
[21] introduced FLTrust, which calculates the cosine similarity
between local and root gradients. However, this approach
relies heavily on a root dataset. DnC [22] adopts random
projection for dimensionality reduction, followed by spectral
analysis using SVD to identify and filter out malicious clients.
However, DnC require a preset number of malicious clients,
leading to limitations in practical applications. To improve
privacy, Shayan et al. [24] proposed Biscotti, a robust PPFL
scheme that combines the Multi-Krum [20] strategy with
differential privacy, detecting anomalous updates based on
Euclidean distances. However, these strategies require access
to plaintext local models. Li et al. [23] proposed a robust PPFL
based on Krum to defend against model poisoning attacks
under encrypted gradient aggregation. Mai et al. [25] intro-
duced RFLPA, which integrates cosine similarity detection
with verifiable secret sharing to ensure secure aggregation.
Ma et al. [26] proposed ShieldFL, utilizing double-trapdoor
HE and secure cosine similarity to identify malicious clients.
Similarly, Miao et al. [36] used fully HE and cosine similarity
to detect malicious gradient. Dong et al. [27] developed
FLOD, which applies Hamming distance to identify abnormal
gradients and employs secret sharing for privacy-preserving
aggregation, though it still requires a trusted root dataset. Feng
et al. [28] introduced DPFLA, combining removable masks
with SVD-based techniques for malicious gradient filtering,
yet it assumes a non-colluding single server and remains
vulnerable to collusion attacks. Overall, most existing robust
and privacy-preserving FL schemes depend on a single defense
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TABLE I: Existing Approaches Based on Malicious Client Detection in PPFL

Solution Privac.y Detection Adapti\'fe Test d:':ltaset Blockchain Byzantine Distril?ution
protection approach aggregation (required) robustness setting

FLTrust [21] No Cosine similarity Yes No No Moderate IID and Non-IID
Multi-Krum [20] No Krum No No No Weak 11D
DnC [22] No SVD Partial No No Moderate 11D

RFLP [23] HE Krum Partial No No Weak IID and Non-IID
Biscotti [24] DP Multi-Krum Partial No Yes Weak 11D

RFLPA [25] HE Cosine similarity Partial No No Moderate IID and Non-IID

ShieldFL [26] Poubletrapdoor | cosine similarity Partial No Yes Moderate | TID and Non-TID
FLOD [27] SMPC Hamming distance No Yes No Weak 11D
DPFLA [28] Removable mask SVD No No No Moderate 11D

DP2Guard HE + Mask Hybrid strategy Yes No Yes Strong IID and Non-IID

* In the “Adaptive Aggregation” column, “Yes” denotes full support, “No” indicates no support, and “Partial” represents limited or partial
support. In the “Byzantine Robustness” column, “Weak” denotes low robustness, “Moderate” indicates moderate robustness, and “Strong”
represents strong robustness.

mechanism, and as adversarial tactics become more adaptive
and sophisticated, their robustness guarantees remain limited.
In Table I, we provide a comprehensive summary of the
state-of-the-art robust PPFL approaches and compare them
with our proposed scheme. The comparison highlights the
advantages of our design in terms of privacy preservation,
Byzantine robustness, and computational efficiency.

III. PRELIMINARIES

In this section, we provide background on federated learning
and briefly review state-of-the-art poisoning attacks.

A. Federated Learning

Assume there are IV clients, each of them owns a private
dataset D;, where i € [1, N]. The objective of FL is to learn a
global model w that minimizes the overall global loss across
all clients [37]:

N
> | Di
min
w

—

i=1 Zj:l |Dj‘
where £;(w) = DL*I > zep, l(w,z), and £(w,z) denotes the
loss function eva{uated on sample = using model w.

At the t-th iteration, the server distributes the current global
model w; to all clients. Each client ¢ performs local training
by minimizing its local loss £; (w;) using a local optimizer
(e.g., stochastic gradient descent), and computes the gradient:

g = VL (wr). )

The client then updates its local model as w! = w; — nggt),

where 7 is the learning rate. The resulting model update
Agt) = w!—wy is sent back to the server. The server aggregates
the received updates using FedAvg algorithm [37]:

1
W1 = we + 55 Z Agt) 3)
|St| 1€ESy

Li(w), (D

This process is repeated until the global model converges
or satisfies a predefined stopping criterion.

B. Poisoning Attacks on FL

Due to the decentralized nature of FL and the inability of
the server to access raw client data or verify local updates,
adversaries may interfere with the model aggregation process
by injecting mislabeled data or constructing malicious model
updates. These attacks are typically classified as non-adaptive
or adaptive, depending on whether the perturbation is adjusted
during training.

1) Non-Adaptive Attack: Non-adaptive attacks generate
malicious updates using fixed strategies, regardless of their
actual effect on the model. A common method is the label-
flipping attack [38], where the attacker replaces a sample’s
truth label y with an adversarial label ¢, computed as:

97 =1y + lgp mod L, )

where L is the total number of classes and g, is a fixed offset.
The poisoned gradients are then uploaded for aggregation.

2) Adaptive Attack: Adaptive attacks dynamically adjust
the perturbation direction or magnitude to improve both the
effectiveness and stealth of the attack. Three representative
adaptive attack strategies [39], [22] are outlined below.

o Fang attack [39]: In this attack, the attacker simulates
the aggregation rule using known benign gradients and
inserts perturbations in the opposite direction:

Zf:l 9i
= | 5

k
gm = lel gi — A Slgn

where A is the perturbation factor, and g; represents
benign gradients. The attacker iteratively tunes A to
ensure that the crafted gradients are accepted by the target
aggregation rule.

e Min-Max [22]: The Min-Max attack aims to maximize
the separation between the malicious gradient and benign
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gradients, while keeping the distance within the natural
variation among benign clients. The formulation is:

b — a:ll. < g
argmgxigii]llgm gzllz_i’;g[aﬁl]llgz 9illy

A Zf=1 i ©

gm ="
where n is the total number of clients, V,, is a predefined
perturbation direction, and -y is a scaling factor optimized
by the adversary.

e Min-Sum [22]: In the Min-Sum attack, the goal is to
minimize the cumulative distance between the malicious
update and all benign gradients, thereby increasing its
similarity to the majority and reducing its detectability.
The optimization objective is:

g = orgmin G- g, +7-V, (D)
=1

where v - V,, introduces controlled perturbation in the
direction determined by the attacker.

IV. SYSTEM AND THREAT MODEL

In this section, we will describe the system model, threat
model, and design goals, respectively.

A. System Model

Blockchain
= Depl
Smart Contract ﬂlGenesisH Block |<—| Block |
5@ Upload Global Model W g&
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Fig. 2: System architecture of the DP2Guard.

As illustrated in Fig. 2, DP2Guard is a privacy-preserving
and Byzantine-robust FL. framework designed for IIoT envi-
ronments. It adopts a dual-server structure integrated with a
blockchain to ensure secure, reliable, and auditable aggrega-
tion.

During the local training phase, each client 7 computes a
gradient vector g; based on its private data. The client then
splits g; into two additive shares, ggl) and ggz), such that
g = ggl) + gZ@). Each share is independently masked with
a random vector m;, forming gg” = gz(l) + r; and gz(?) =

gl@ — r;, which are transmitted to S1 and S2, respectively.

Upon receiving the masked shares from all clients, Sl
performs mean-centering on the collected g§” vectors and
forwards the processed results to S2. Leveraging both the
centered gradients and the locally held gf?), S2 executes a
hybrid anomaly detection mechanism to identify malicious
behaviors, calculates trust scores for each client, and con-
ducts trust-weighted aggregation. The resulting global update
and trust weights are recorded on the blockchain to ensure
transparency and tamper resistance. Finally, S1 downloads the
aggregated gradients and trust weights from the blockchain
and completes the final aggregation using its own masked
shares. The updated model is subsequently distributed to all
devices via the blockchain, enabling efficient and trustworthy
collaboration in IIoT network.

B. Threat Model

We consider two types of clients: (1) malicious clients; and
(2) curious-but-honest clients. Malicious clients deliberately
compromise the training process by submitting poisoned gra-
dients aimed at degrading the global model’s accuracy. We
assume that the maximum proportion of malicious clients does
not exceed half of the total participating devices. In contrast,
curious-but-honest clients follow the protocol but may attempt
to infer private information from shared local updates, and po-
tentially collaborate with others to improve inference success.
The aggregation process is jointly managed by two servers, S1
and S2, which are assumed to be non-colluding and curious-
but-honest—that is, they faithfully execute the protocol but
may analyze collected data to recover individual client updates.
For the blockchain, we follow a standard Byzantine fault
tolerance (BFT) model commonly employed in permissioned
blockchain systems [40], [41], where at least { > 2/3 of
trustee nodes are trustworthy and consistently return correct
computation results. For simplicity, we assume all trustees
have uniform computational power.

C. Design Goal

Given the aforementioned security and privacy threats in
FL, DP2Guard is designed to meet four key goals:

1) Accuracy: The scheme should preserve the accuracy of
the global model when no attacks are present. Specifi-
cally, the integration of privacy-preserving and anomaly
detection mechanisms should not negatively impact the
model’s ability to learn from legitimate client updates.

2) Robustness: The scheme should exhibit strong resilience
against various types of poisoning attacks, including
more complex and adaptive ones. It must be capable
of detecting or mitigating malicious updates effectively,
while preserving the privacy of benign clients.

3) Privacy: The scheme must guarantee the privacy of
each client’s local updates, ensuring that no adversary
(e.g., the servers or other clients) can infer sensitive
information from the shared local updates. Only the
originating client should have access to the underlying
private data.

4) Efficiency: Given the limited computational and commu-
nication resources of edge devices, the scheme should
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be designed with minimal overhead under privacy-
preserving requirements, making it suitable for deploy-
ment on resource-limited clients.

V. DP2GUARD SCHEME

To address both privacy leakage and gradient poison-
ing threats in FL within IIoT environments, we propose
DP2Guard, a lightweight PPFL framework that enhances both
privacy and robustness. As illustrated in Fig. 3, DP2Guard
consists of five main phases: Task Initialization, Local Model
Training, Privacy-Preserving Hybrid Defense Strategy, Trust
Score-based Weight Calculation and Adaptive Global Aggre-
gation. The main notations used are shown in TABLE II.

During the task initialization phase, the task publisher
initializes the FL process by defining an initial global model,
denoted as w(®), which is then published to the blockchain
to guarantee verifiability, integrity, and consistency across all
participating devices. A subset of eligible mobile edge devices
is then selected to participate in the training. Each selected
device downloads the initial global model parameters w(®)
from the blockchain, which serve as the starting point for local
training.

TABLE II: Notations and Descriptions

Notations Descriptions Notations Descriptions

E; 4 clients D; Local dataset of E;
i Local gradient ED /g(Q) Masked gradient
wt t-th round global model wl t-th round local model
r; Random mask value & (1)/A ) Mean-centering gradient
n Learning rate G Matrix of centered gradi-
ents
S; Spectral deviation score f; Feature vector of client
E;
c; Median cosine similarity Tyustgt) Trust score
score
7 Aggregation weight gl /5(2) A ted sked gra-
A Eage/Bagy Aggregated masked gra

dients on S1 and S»

A. Local Model Training

In each communication round ¢, each edge device FE; up-
dates its local model by training on its private dataset using the
global model parameters w(*~) retrieved from the blockchain.
After completing local training, the device computes its local
gradient update ggt). To protect the privacy of this gradient,
DP2Guard designs a gradient splitting and masking strategy.
Specifically, edge device E; first splits its gradient g; into
two additive shares g(l) and g(2 such that g; = (1) + g(2)
To obfuscate the true gradient values, the device generates a
random mask vector r; € R™*™ and creates two masked
gradient shares:

gfl) = gil) + 1y, gfg) = gEZ) -1 ®

These masked gradients are transmitted separately to
Servers S1 and S2. This mechanism effectively safeguards
against direct gradient leakage, no single server can infer
the original gradient or any intermediate component without
collaboration. The detailed procedure for this gradient splitting
and masking process is presented in Algorithm 1.

Algorithm 1: Local Model Training

: Global model w(t_l), Dataset D;, Local
gradient matrix g(t € Rmxn
Output: Masked gradlents g( ), gz(z)
1 Initialization: w] = w"
/+ Training Model and Updating
Gradient %/
2 for each edge device i do
3 | Compute local gradient: g!") + V¢ (wV; D;);
(1) =1 _ (1),

Input

4 Update local model: w;, n-g s
/+ Gradient Spllttlng and Masking
*/
5 Generate a random matrix r; € R™*" ;
6 Generate two gradient shares ggl) € R™*™ and
(2) € Rmx":

7 Compute masked share gﬁl) — ggl) +r;;

8 Compute masked share g@) — gl@

: —r;;
/* Sending the Masked Gradient to

S1 and S2 */

9 | Send g\

10 Send Q(Q

7
11 end

) to server S1 ;

) to server S2 ;

B. Privacy-Preserving Hybrid Defense Strategy

During each training round, an honest edge device FE;
randomly samples a mini-batch d; from its local dataset D;,
and computes a benign gradient g; accordingly. In contrast,
malicious clients may submit adversarial gradients deliberately
crafted to impair the performance of the global model. This
behavior can be formally described as:

. {v,c (wi™,d;),

g =
Aattack (ta ghonesl 76) )

if device 7 is honest

if device ¢ is malicious
€))
where Aattack(-) denotes an attack-generation function that
may utilize the current training round ¢, the set of gradients
from honest clients Ghonest, and auxiliary parameters O.
While traditional defense schemes (e.g., Euclidean dis-
tance [21], cosine similarity [20]) are effective in simple
scenarios, they may struggle under adaptive poisoning attacks.
Furthermore, such methods usually require access to raw
gradient data, introducing significant privacy risks. To mitigate
this, DP2Guard troduces a privacy-preserving hybrid defense
mechanism that enables malicious gradient detection without
compromising data privacy. The entire process is presented in
Algorithm 3, which consists of the following key steps:
1) Mean-Centering Gradient: Both servers independently
perform mean-centering on the masked gradient shares they
receive. Specifically, Server S; computes the centered vectors

g§1> by subtracting the mean of all received masked shares

gﬁ”. Likewise, So processes gz@):

g =g E(l), where (10

1 N
=5 3 gl
j=1
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A(Z) _ gZ(Q) g@), where g(2) _ 2 :g§2) (11)

Algorithm 2: Gradient Mean-Central

Server S; then forwards the centered results g§1> to So, T

5(2)
which conducts hybrid detection without gaining access to any Input : Masked shares:g;"" and g;
individual client’s raw updates. Output: g; |
2) Gradient Reconstruction: Upon receiving gZ( ) from S, /* Mean-Centering of Shares */

server Sy reconstructs the centered gradients as follows: 1 Server 51: Mean-Centering of First Shares;

g=g"+g” (12)
where random masks can cancel each other out:
N - =(1 . =(2
& = (gED ~g") + (8" -8)

Receive g§1> from all clients;

for each edge device i do

1 1 N (1
Compute: g( ) — gf ) ~ ijl g; ) :

end

Send gE” to So;
Server S,: Construction of Centered Gradient
(1) 5(2

N S N s W

) from all clients;

_ g(1) g(z) g g(g) Receive g,’ from S; and g;
g g 8 for each edge device z do
=8 8 9 ‘ Compute:gg ) = gl - ¥ E; 187
Here, § = + Zjvzl g; denotes the global mean of the true 10 end
(unmasked) gradients. 11 Obtain centered gradient: g; = ggl) + gf’ =g, — g

3) Malicious Gradient Detection: At this stage, server So 12 Use {g;}}V, for following anomaly detection;

conducts a hybrid anomaly detection procedure in collabo-
ration with S;. The process integrates spectral analysis and
cosine similarity to the reliability of client gradients.
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Spectral Projections: Server So aggregates all centered
gradients into a matrix:

G =[g1,8...,8n] € RV (14)

where each column corresponds to a centered gradient vector
from a client. Singular value decomposition (SVD) [42] is then
applied to extract the principal components:

G=UxV' (15)

Here, U € R%*4? contains the left singular vectors, 3 € RAxN
is a diagonal matrix of singular values sorted in descending
order, and V € R¥*N contains the right singular vectors.
The top right singular vector v; (corresponding to the largest
singular value) is selected as the dominant direction. Each
client’s gradient is projected onto v; to compute its spectral
score:

si= (gl v1)" (16)

Clients with high s; values are more likely to be malicious
as their gradients deviate significantly from the principal
component.

Cosine similarity: To further assess the directional con-
sistency, the cosine similarity between each client’s centered
gradient and others is calculated as:

g &

REIRE
The median cosine similarity for each client is used as a
reliability score:

Vi # an

cij

¢; = median ({¢;; | j # i})

Clustering-Based Detection: Next, a two-dimensional fea-
ture vector is constructed for each client:

(18)

f; = [si, 1] (19)

A K-means clustering algorithm [43] (with a predefined
number of clusters K = 2) is applied to these features.
Clients in the largest cluster are considered benign, while those
in smaller clusters are viewed as anomalous and excluded
from aggregation. This approach allows efficient detection of
malicious behaviors while preserving gradient privacy.

C. Tust Score—based Weight Calculation

The trust scoring mechanism is a critical factor in en-
suring that individual client nodes contribute appropriately
to the global model aggregation process [44]. Unlike prior
approaches that rely solely on per-round behavior, DP2Guard
introduces a time-evolving trust evaluation scheme that cap-
tures clients’ long-term reliability.

In each round ¢, server Sy calculates the Euclidean distance
between a client’s feature vector fi(t) and the cluster centroid
p® as:

Dis{") = (20)

fi(t) _ M(t) H

Based on this distance, the direct trust score for device F;
is computed as:

VO =1 (1 n Dis,gﬂ) @1)

Algorithm 3: Privacy-Preserving Hybrid Defense
Strategy

Input: Mean-centered masked gradients g§1> from Sy,
masked gradients ggz) from clients
Output: Trusted gradient set G
1 Stack all g; into matrix G € RV*¢
2 Perform SVD: G = ULV T; let v; be the top right
singular vector
3 foreach client ¢ do
4 Compute spectral score: s34 < [(g;,v1)]
5 Compute cosine similarity with others:
6 ¢; < median({cos(&;, ;) };-i)
7
8
9

Construct feature vector: ¢; < [s$¥¢

) Ci]

end

Apply Mean Shift clustering on {¢;}¥

Let G < the cluster with the largest number of clients

return G

—
-

To balance historical performance and recent behavior,
DP2Guard utilizes a time-based trust mechanism. For each
client ¢, the trust score is updated as:

Trust!” = 8- Trust!"™V +(1 - 8) -4, Be0,1) (22

The normalized trust value is used to compute the aggrega-
tion weight:
Trustz(»t)

Z;V: 1 Trustgt)

Server Sy then applies these weights to aggregate the
received masked gradients:

N
= Z Tz'(t) : @52)
i=1

N
Then, both géﬁg and trust weights {Ti(t) } are published
to the blockchain. =

e

&(2)

gagg (23)

D. Adaptive Global Aggregation

In the stage, server S; downloads the aggregated masked
gradient ga(ég) and corresponding trust scores from blockchain.
Using the same trust weights, S1 performs weighted aggrega-
tion over its local set of masked gradients:

N

. ~(1

=Y
i=1

The final gradient can be reconstructed by combining the two:

Buge = 850 +BG)

(24)

Ti(t) (gfl) +r; + g§2) - m)

|
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This aggregated result g,,, is then submitted to the blockchain
to support model updates in the next training round.

Algorithm 4: Trust-Weighted Adaptive Aggregation

Input: Trust weights {7} |,
Masked gradients {gﬁ”}iN:l at Sy, {gz@}f;l
at Sy
Output: Global aggregated gradient g,q,
1 At Server Ss:

Compute weighted aggregation of second shares:
R DAL
Send gg& and {Ti(t)} to blockchain

At Server S;:

= W N

5
6  Download the gg) and {Ti(t)} from blockchain
7 Compute weighted aggregation of first shares:
8
9

D DA R

Reconstruct the global aggregated gradient:

~ ~(1 ~(2
10 Sagg gggé + gégg}

11 return gz,

VI. SECURITY ANALYSIS

In this section, we prove the privacy and robustness of
DP2Gurd, and analyze the computational and communication
complexity in DP2Guard.

Theorem 1 (Privacy protection against semi-honest servers).
Under the assumption that servers S1 and So do not collude,
the execution of DP2Guard does not leak any information
about the true local gradients g; to either server individually.

Proof. We use a standard hybrid argument [45] to prove the
Theorem 1. Let REALE{ denote the view of an adversary A
during the real execution of protocol II, and let IDEAL?,.
denote the ideal execution where a trusted functionality J per-
forms all privacy-sensitive operations. We construct a sequence
of hybrid experiments, Hy, Hy, ..., Hs, such that each pair of
consecutive hybrids is computationally indistinguishable.

Hyb,: This hybrid corresponds to the actual execution of the
DP2Guard protocol (as described in Section V). Each client
computes its true local gradient ggt), splits it into two parts
ggl) and g(2), and applies a random mask r; to obtain gﬁl) =
ggl) + r; and gl@ = g§2) — r;, which are sent to §; and So,
respectively.

Hyb,: In this hybrid, the simulator replaces the masked
gradient share gf’ sent to S; with a uniformly random vector
XZ(-D of the same dimension. The second share g§2> remains
unchanged. Since XZ(.l) is independent and indistinguishable
from a valid masked share, and S; does not access the
corresponding second share, this view is computationally
indistinguishable from Hyb,,.

Hyb,: Building on Hyb,, this hybrid replaces the share
sent to So as well. Each client sends a uniformly random

(2

vector ng) to Sz, where Xgl) +x;” = x:; and x; is sampled

uniformly at random. As both shares are now random and the

%

servers are non-colluding, this hybrid is indistinguishable from
Hyb,.

Hyb,: In this hybrid, we simulate the internal computations
of &7 that are transmitted to So, such as the mean-centered
gradients g§”. Specifically, for each client 4, the simulator
replaces g,f” with a randomly generated vector LZJ,ED sampled
from a distribution that is statistically consistent with that of
the true centered values. Since So does not observe the raw
gradients or the corresponding masked shares held by &, its
view remains computationally indistinguishable from Hyb,.

Hyb,: Similarly, this hybrid simulates the internal computa-
tions of S, that are sent to Sy (e.g., trust scores or aggregation
results). Each intermediate value is replaced by a random
vector 1/)1(2) drawn from a consistent distribution. As S; does
not observe the raw gradients or masked shares held by So,
its view remains indistinguishable from Hybs,.

Hyb;: Finally, we simulate the messages that S; sends back
to the clients (e.g., global model updates) using random values
that are statistically indistinguishable from actual aggregated
updates. This completes the transition from the real-world
protocol to an ideal-world simulation.

By the transitivity of computational indistinguishability, we
conclude that the output of the simulator SIM is indistinguish-
able from the real execution:

REALY ~ IDEALZ.

Hence, DP2Guard preserves the privacy of local gradients
under the semi-honest model, ensuring that neither S; nor So
can learn any sensitive information individually. O

VII. PERFORMANCE EVALUATION
A. Experimental Settings

All experiments were conducted on a high-performance
workstation running Ubuntu 20.04 LTS, equipped with an Intel
i9 CPU, 64 GB of RAM, and four NVIDIA RTX 4090 GPUs.
The FL framework was implemented using PyTorch version
1.6.0 and Python version 3.8.10.

Datasets and Model Architectures: We evaluate our
proposed scheme on two widely used benchmark datasets:
MNIST and Fashion-MNIST. The MNIST dataset contains
60,000 training and 10,000 testing grayscale images of hand-
written digits, each of size 28 x 28 pixels and classified into
10 categories. The Fashion-MNIST dataset consists of 60,000
training and 10,000 testing grayscale images representing
various types of clothing items, also distributed across 10
classes. For both datasets, we employ the LeNet-5 model [46]
to perform the training tasks. We adopt stochastic gradient
descent (SGD) as the optimizer, with a learning rate 7 = 0.01
and a batch size of 32.

Datasets Distribution: We conduct experiments under both
independent and identically distributed (IID) and non-IID data
settings. In the IID setting, data samples are randomly and
uniformly distributed among clients. For the non-IID setting,
we adopt the commonly used Dirichlet distribution strategy
[47] to partition the datasets among clients. According to
the configuration in prior work [48], the data heterogeneity
parameter is set to o = 0.5, where a smaller « indicates higher
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Fig. 5: Class-wise sample distribution heatmap for 10 ran-
domly selected clients in a FL setup with 50 clients. The
datasets used are FashionMNIST and MNIST. Data parti-
tioning is performed using a Dirichlet distribution with a
heterogeneity parameter of « = 0.5 to simulate non-I1ID
conditions.

data skewness and greater class imbalance across clients. Fig.
5 illustrates the class distribution of 10 selected clients out of
a total of 50 under this partitioning scheme.

FL System Settings: In our experiments, we set up 50
clients for FL training process. Each client computes local gra-
dients and sends them to the central server, which aggregates
these updates using different aggregation rules. The FedAvg
[37] is adopted as the default aggregation mechanism. The
training is conducted over 300 global communication rounds,
with each client performing one local epoch per round. To
assess the impact of adversarial behavior, we set the ratio of
adversary Advgg, = {0%,10%, 20%, 30%,40%}.

Baselines: We compare DP2Guard with four state-of-the-
art defense methods: Multi-Krum [20], DnC [22], and FLTrust
[21], which do not incorporate privacy protection mechanisms,
as well as ShieldFL [26], which support cosine similarity
detection for ciphertext gradients. These baselines have been
discussed in detail in Section II.

Attack Type: To comprehensively evaluate the robustness
of DP2Guard, we consider four advanced poisoning attack
scenarios:

1) Label-Flipping attack: Label-flipping attacks [49] ma-
nipulate the labels of selected training samples on the
malicious client, causing the local model to learn in-
correct class boundaries. For example, samples with
the true label 2 may be maliciously relabeled as 7
to cause targeted misclassification. In our experiments,
each malicious client flips 30% of its local labels.

2) Fang Attack: In this adaptive attack, the adversary is
assumed to have full knowledge of all benign gradients
and the aggregation rule. Following the setting in [39],
we set the perturbation threshold vy, = le — 5, and
the optimization step size to o = 0.5. The unit pertur-
bation direction is determined by the sign of the pre-
aggregation gradient computed locally by the adversary.

3) Min-Max [22]: In this adaptive attack, the adversary
has access to all benign client gradients but does not
know the aggregation rule. An efficient binary search
algorithm is used to determine the optimal perturbation
coefficient A. The initial perturbation factor is set to v =
10, with an initial step size of v/2 = 5, and the search
stops when the perturbation threshold Yy, = 1 x 107°
is reached. The direction of the perturbation is defined
as the unit vector of the mean of the known benign
gradients.

4) Min-Sum Attack [22]: Min-Sum follows the same
procedure as Min-Max but changes the objective: instead
of maximizing the largest deviation, it minimizes the
sum of squared distances to all benign gradients. A
binary search is used with v = 10, step size = 5, and
stopping threshold Yin = 1 x 1072, The perturbation
direction is the unit vector of the mean benign gradient.

B. Comparison Analysis

1) Impact of Different Number of Iterations: To eval-
uate the convergence efficiency of different aggregation
algorithms, we conducted experiments over 300 global
communication rounds on the MNIST and Fashion-
MNIST datasets under a no-attack scenario, using both
IID and non-1ID data settings. As shown in Fig. 4,
all methods achieve high final accuracy under the IID
setting. However, DP2Guard stabilizes within the first
50 rounds, whereas FedAvg and MultiKrum typically
require over 100 rounds to converge. Under the non-
IID setting, the performance gap widens. In particular,
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2)

on the Fashion-MNIST dataset, FedAvg and MultiKrum
show noticeable fluctuations during training, indicating
sensitivity to data heterogeneity. In contrast, ShieldFL
and DP2Guard exhibit smoother convergence curves.
Overall, DP2Guard achieves faster convergence and
better training stability under both IID and non-IID
conditions.

Impact of Different Poisoning Attack in IID: To
evaluate the robustness of various defense mechanisms
under IID data settings, we examine the performance
of all methods against four representative poisoning
attacks: Label Flipping, Fang, Min-Max, and Min-Sum,
each conducted with a 40% adversary ratio. Results

are illustrated in Fig. 6 for both MNIST and Fashion-
MNIST datasets.

Under the Label Flipping attack, most defense meth-
ods on the MNIST dataset remain effective and achieve
high accuracy. As illustrated in Fig. 6a, MultiKrum
exhibits noticeable fluctuations during training, indicat-
ing limited stability. In contrast, DP2Guard maintains
a smooth and stable learning trajectory, demonstrating
strong robustness to poisoned label information. On the
more challenging Fashion-MNIST dataset, as shown in
Fig. 6e, both FedAvg and MultiKrum exhibit slow con-
vergence, while DP2Guard achieves stable convergence
and reaches a final accuracy of 78.4%, outperforming
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Fig. 8: Impact of varying malicious clients ratios (0%—40%) on the performance of different defense strategies against four
poisoning attacks on the MNIST (a-d) and Fashion-MNIST (e-f) datasets in the IID setting.

existing baselines in both robustness and learning effi-
ciency.

Under the Fang Attack, which involves highly adaptive
gradient manipulation, the results shown in Fig. 6b
and Of illustrate that DP2Guard consistently outper-
forms all baselines. On MNIST, it converges early and
achieves 94.26% accuracy, whereas FedAvg completely
fails, dropping to 10.24%. Similar trends are observed
on Fashion-MNIST, where DP2Guard achieves 79.4%,
while ShieldFL, FLTrust, and DnC converge more
slowly and to lower accuracies. Although MultiKrum
offers some robustness, its accuracy fluctuates heavily
and remains notably lower than other defenses.

Under the Min-Max attack, which disrupts the ag-
gregation process by maximizing the global loss while
minimizing local objectives, DP2Guard continues to
exhibit strong robustness, as illustrated in Fig. 6¢ and
6g. On the MNIST dataset, it achieves rapid convergence
in the early stages and reaches a final accuracy of
95.5%, outperforming FedAvg (79.85%) and MultiKrum
(85%), the latter of which suffers from instability dur-
ing training. ShieldFL also performs well, achieving
95.32% accuracy, though slightly lower than DP2Guard.
On Fashion-MNIST dataset, DP2Guard maintains its
advantage, reaching a final accuracy of 79.97%, while
FLTrust, ShieldFL, and DnC lag behind both in conver-
gence speed and final performance under this type of
optimization-based poisoning attack.

For Min-Sum Attack, which manipulates model up-
dates by minimizing the sum of gradients to mislead
the global model direction, most robust aggregation
mechanisms demonstrate stable performance under this
subtle adversarial manipulation. As shown in Fig. 6d and
6h, DP2Guard, by effectively detecting and suppressing
abnormal gradient patterns, achieves smooth conver-

3)

gence on both MNIST and Fashion-MNIST, reaching
final accuracies of 96.24% and 78.3%, respectively.
These results surpass those of ShieldFL (95.7%, 77.4%),
FLTrust (94.4%, 76.25%), and DnC (93.2%, 74.39%). In
contrast, MultiKrum performs considerably worse, with
accuracies of 86.5% and 68.73%.

Impact of Different Poisoning Attack in Non-IID:
To further evaluate the robustness of defense methods
under Non-IID settings, we compare all approaches
against four poisoning attacks, with results shown in
Fig.7a-7h. In the Label Flipping attack, most meth-
ods show comparable performance across both datasets.
However, FLTrust suffers a notable accuracy drop on
Fashion-MNIST, falling behind ShieldFL, DnC, and
DP2Guard, indicating limited robustness under data
heterogeneity. The Fang attack severely disrupts most
defenses—FedAvg, MultiKrum, and DnC nearly col-
lapse, with accuracies dropping below 20%. In con-
trast, DP2Guard and ShieldFL retain consistent per-
formance, with DP2Guard outperforming ShieldFL on
both datasets. Under the Min-Max attack, most meth-
ods experience unstable convergence, especially DnC.
DP2Guard achieves robust and efficient training, reach-
ing 90.24% on MNIST and 68.91% on Fashion-MNIST.
In the Min-Sum scenario, FedAvg and MultiKrum fail
to make progress, while only DP2Guard maintains high
and stable accuracy—91.04% on MNIST and 72.6% on
Fashion-MNIST.

Overall, across all four attack types, DP2Guard con-
sistently demonstrates superior robustness, faster con-
vergence, and higher final accuracy across both IID
and non-IID data settings. These results validate the
method’s adaptability and effectiveness in resisting a
wide range of poisoning threats in FL.

4) Impact of Different Poisoning Ratio: To further assess
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the robustness of defense mechanisms against varying
intensities of poisoning, we conduct experiments under
an independent and identically distributed (IID) data
setting, gradually increasing the poisoning ratio from
0% to 40%. The evaluation covers four representative
attack types: Label Flipping, Fang, Min-Max, and Min-
Sum, with results illustrated in Fig. 8a-8h. Across all
attack scenarios, we observe a clear decline in model
accuracy for most baseline methods (e.g., FedAvg, Mul-
tiKrum) as the poisoning ratio increases. In contrast, the
proposed DP2Guard consistently exhibits minimal per-
formance degradation, maintaining stable accuracy even
under higher poisoning rates. These results highlight
DP2Guard’s strong resilience and adaptability against
escalating adversarial threats.

5) Complexity Analysis: We evaluate the overall compu-
tational and communication complexity of DP2Guard
from both the client and server perspectives, as shown
in table III. Notably, the cost of local model training
is excluded from this analysis, as it is standard across
all federated learning (FL) protocols. On the client
side, each device E; performs gradient splitting and
masking with a computational overhead of O(d), where
d is the gradient dimension. The masked shares are
transmitted to two servers, incurring a communication
cost of O(d). On the server side, both S; and S execute
mean-centering and gradient reconstruction operations
across N clients, each with complexity O(Nd). During
hybrid anomaly detection, S applies SVD to the d x N
gradient matrix, which requires O(min Nd?, dN?) time.
Pairwise cosine similarity calculations among N clients
incur an additional cost of O(N?2d). Trust score up-
dating and normalization impose only O(N) cost per
round. Finally, both servers perform weighted aggrega-
tion of masked gradients using trust scores, with a cost
of O(Nd). Unlike HE-based or MPC-based solutions,
which often incur substantial computational and commu-
nication overhead, DP2Guard achieves efficient privacy-
preserving gradient processing with minimal client-side
burden, making it well-suited for resource-constrained
IIoT environments.

TABLE III: Computation and Communication Complexity

Operation Computation Cost Communication Cost
Client: Oper. 1 O(d) O(d) to each server
Server: Oper. 2 O(Nd) O(Nd)
Server: Oper. 3 O(Nd?) + O(N2d) -

Server: Oper. 4 O(N) -
Aggregation O(Nd) -

Notes: Oper. 1 = Gradient masking; Oper. 2 = Mean-centering and
reconstruction; Oper. 3 = Detection (SVD + similarity); Oper. 4 =
Trust score update.

VIII. CONCLUSION

In this paper, we presented DP2Guard, a lightweight PPFL
framework designed to address the dual challenges of pri-

vacy leakage and vulnerability to model poisoning. To re-
duce computational overhead, DP2Guard replaces traditional
cryptographic techniques with an efficient gradient masking
strategy that protects the privacy of local model updates. To
improve robustness, we designed a hybrid anomaly detection
mechanism that combines cosine similarity and spectral anal-
ysis to effectively identify malicious updates. Furthermore,
the blockchain is integrated to provide a secure and auditable
training process. Extensive experimental results demonstrate
that DP2Guard achieves superior performance compared to
state-of-the-art defenses, offering enhanced robustness and
lower communication and computation costs. In this work, the
current design relies on the assumption of two non-colluding
servers, without considering potential collusion risks. Future
work will focus on relaxing this assumption by designing more
flexible multi-party collaboration protocols, thereby enhancing
DP2Guard’s applicability and security in practical scenarios.
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