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Abstract. Voice phishing (vishing) remains a persistent threat in cy-
bersecurity, exploiting human trust through persuasive speech. While
machine learning (ML)-based classifiers have shown promise in detect-
ing malicious call transcripts, they remain vulnerable to adversarial ma-
nipulations that preserve semantic content. In this study, we explore a
novel attack vector where large language models (LLMs) are leveraged
to generate adversarial vishing transcripts that evade detection while
maintaining deceptive intent. We construct a systematic attack pipeline
that employs prompt engineering and semantic obfuscation to transform
real-world vishing scripts using four commercial LLMs. The generated
transcripts are evaluated against multiple ML classifiers trained on a
real-world Korean vishing dataset (KorCCViD) with statistical testing.
Our experiments reveal that LLM-generated transcripts are both practi-
cally and statistically effective against ML-based classifiers. In particular,
transcripts crafted by GPT-4o significantly reduce classifier accuracy (by
up to 30.96%) while maintaining high semantic similarity, as measured
by BERTScore. Moreover, these attacks are both time-efficient and cost-
effective, with average generation times under 9 seconds and negligible
financial cost per query. The results underscore the pressing need for
more resilient vishing detection frameworks and highlight the impera-
tive for LLM providers to enforce stronger safeguards against prompt
misuse in adversarial social engineering contexts.

Keywords: Adversarial Attacks · Cybercrime · Large Language Models
(LLMs) · Voice Phishing · Phishing Detection.

1 Introduction

Phishing is a form of cybercrime in which adversaries deceive users into dis-
closing sensitive information by impersonating trustworthy entities [1]. Despite
numerous detection mechanisms being proposed, attackers continuously devise
novel methods to evade them [2,3]. As phishing continues to evolve, it poses sig-
nificant threats to individuals, organizations, and global cybersecurity, leading
to substantial financial and data losses [4].
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Voice phishing (vishing) is a type of phishing attack where scammers (vish-
ers) use phone calls to impersonate trusted organizations and trick victims into
revealing sensitive information or transferring money [5, 6]. These attacks typi-
cally involve scripted conversations that exploit urgency or fear, using pretexts
like tax refunds, legal threats, or delivery issues [7].

To combat these threats, researchers have developed machine learning (ML)
and natural language processing (NLP)-based detection systems that analyze
transcribed vishing calls for malicious patterns [8]. However, these models remain
vulnerable to subtle linguistic manipulations that preserve semantic intent while
evading classification [9]. Recent advances in large language models (LLMs) offer
new possibilities for crafting such adversarial inputs [10], yet their ability to
generate evasive vishing transcripts remains underexplored.

To address this gap, this study proposes a systematic approach to investigate
LLM-assisted adversarial vishing attacks. By prompting commercial LLMs with
original scam transcripts, we generate linguistically obfuscated versions and eval-
uate their ability to bypass trained ML-based vishing detectors while preserving
the semantic meaning. The major contributions of this study are as follows:

– We propose a threat model and an LLM-assisted vishing attack pipeline that
combines prompt engineering with semantic obfuscation techniques.

– We evaluate the effectiveness of adversarial transcripts against multiple ML-
based classifiers trained on a real-world Korean vishing dataset (KorCCViD)
with statistical testing.

– We assess semantic consistency using BERTScore to ensure the preservation
of malicious intent in generated transcripts.

– We provide a case study on LLM-generated adversarial transcripts, analyze
the practical and security implications of using commercial LLMs in adver-
sarial vishing settings.

The structure of the rest of the paper is as follows: Section 2 reviews related
works. Section 3 outlines the threat model. Section 4 presents our proposed
methodology. Section 5 details the experimental setup. Section 6 discusses eval-
uation results. Section 7 concludes the paper.

2 Related Work

This section reviews related works on ML-based voice phishing detection, adver-
sarial attacks in NLP, and the emerging role of LLMs in adversarial scenarios.

Numerous studies have demonstrated the effectiveness of ML techniques in
detecting phishing attacks across different modalities, including emails [11, 12],
websites [13,14], and messages [15,16]. These models, trained on handcrafted or
learned features, have shown strong performance in distinguishing phishing from
legitimate content. In the domain of voice phishing, similar efforts have emerged
where researchers utilize speech-to-text conversion followed by NLP and ML
classification to detect deceptive call transcripts [8, 17–20]. These approaches
typically involve supervised classifiers such as logistic regression, decision trees,
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or ensemble models trained on labeled vishing datasets, achieving high accuracy
in many scenarios.

However, ML models that rely on natural language inputs are known to
be vulnerable to adversarial attacks. Recent research in adversarial NLP has
shown that subtle manipulations—such as synonym replacement, paraphrasing,
or insertion of benign-looking content—can significantly degrade classifier per-
formance while preserving the original intent of the text [9, 21]. Techniques like
TextFooler, BERT-Attack, and others have revealed that NLP pipelines are sus-
ceptible to semantically similar perturbations [22], raising concerns about the
reliability of these systems in adversarial settings.

With the advent of LLMs such as GPT-4 and Gemini, the landscape of
adversarial content generation has further evolved [23]. LLMs can be prompted
to generate deceptive or manipulative text with high fluency and contextual
coherence, making them powerful tools for crafting adversarial samples [10, 24].
Recent work has explored LLMs’ potential in generating phishing emails, social
engineering content, and even toxic or biased outputs [10, 25]. These studies
reveal both the utility and the risks posed by LLMs when misused for malicious
purposes.

Despite these developments, to the best of our knowledge, no existing work
has explored the potential of commercial LLMs to conduct evasive voice phish-
ing attacks through natural language obfuscation. In particular, there is a lack
of systematic evaluation on whether LLM-generated vishing transcripts can suc-
cessfully deceive trained ML classifiers. Motivated by this gap, our work investi-
gates LLM-assisted adversarial vishing attacks by prompting commercial LLMs
to transform original scam transcripts into linguistically obfuscated versions. We
then assess their ability to evade detection while maintaining semantic consis-
tency, providing a novel perspective on the threat landscape posed by modern
LLMs against cybercrime.

3 Threat Model

In this section, we define the threat model underlying our study of LLM-assisted
vishing attacks, as illustrated in Fig. 1.

Threat Actors. We consider a typical vishing scenario involving a malicious
actor, referred to as the visher, who makes deceptive phone calls with the intent
to extract sensitive information such as banking credentials, identity details,
or authentication codes. The visher operates with a precompiled playbook—a
repository of vishing scripts on various fraudulent topics, customized to deceive
different categories of victims. These scripts are informed by previously acquired
personal information about the victims, such as their affiliations, transaction
history, or public records.

Data Collection by Defenders. To defend against such threats, secu-
rity experts continuously monitor and collect transcripts from real-world vishing
calls. These transcripts are derived from recorded victim interactions and pro-
cessed to form labeled datasets. These datasets are then used to train ML mod-
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Fig. 1: Threat Model Overview: LLM-Generated Adversarial Vishing Transcripts
Against ML-Based Classifiers.

els—referred to as vishing detectors—that can automatically classify ongoing
conversations as malicious or benign.

Actors’ Capabilities. In our threat model, the visher adapts to this evolv-
ing defense landscape. By leveraging powerful LLMs, the attacker refines and
augments original vishing playbook scripts into adversarial transcripts. These
LLM-generated scripts are crafted to retain the deceptive intent while evading
detection mechanisms by paraphrasing, reordering content, or adding benign
context.

Adversarial Dynamics. In a conventional setting, vishing detectors de-
ployed on the victim’s device or at the telecom backend would flag suspicious
calls based on features extracted from the conversation transcript. However,
when adversarial transcripts are used—crafted using LLMs to mimic legitimate
communication styles while embedding malicious intent—these detectors may
fail to identify the threat. As a result, the system may incorrectly classify the
conversation as benign, allowing the visher to bypass security filters.

Attacker Objectives. The ultimate goal of the attacker is to use LLM-
generated transcripts to construct highly convincing voice phishing scripts that
are both contextually relevant and capable of bypassing ML-based detectors.
This undermines the effectiveness of conventional detection pipelines and intro-
duces a new class of evasive social engineering threats.

4 Proposed Methodology

This section illustrates our approach towards exploring the capabilities of com-
mercial LLMs in deceiving the ML classifiers on voice phishing. Our approach
consists of five distinct phases that systematically transform original vishing
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transcripts into adversarial variants while evaluating their effectiveness against
trained ML classifiers and the semantic meaning preservation. The Algorithm 1
provides the formal specification of our approach, which operates through five
sequential phases.

Algorithm 1 LLM-Based Adversarial Attack on Voice Phishing Classifiers

Require: Original vishing transcript Torig

Require: LLMM
Require: Prompt engineering strategy P
Require: ML classifier set C = {c1, c2, ..., cn}
Ensure: Adversarial transcript Tadv with evaluation metrics
1: function AdversarialVishingAttack(Torig,M,P, C)
2: Tadv ← ∅ ▷ Adversarial transcript
3: A ← ∅ ▷ Accuracy drop results
4: Phase 1: Adversarial Prompt Construction
5: Prephrase ← RephraseStrategy(P) ▷ Linguistic obfuscation
6: Pnoise ← NoiseInjection(P) ▷ Benign context injection
7: Pcombined ← Prephrase ⊕ Pnoise ▷ Combined prompt strategy
8: Phase 2: LLM Generation
9: Tadv ←M(Pcombined, Torig) ▷ Generate adversarial transcript
10: Phase 3: Data Processing
11: T clean

adv ← DataCleaning(Tadv) ▷ Remove noise, special chars

12: tokens← Tokenize(T clean
adv ) ▷ MeCab tokenization

13: features← TF-IDF(tokens) ▷ Feature vectorization
14: Phase 4: Classifier Evaluation
15: for each classifier ci ∈ C do
16: acciorig ← Accuracy(ci, Doriginal) ▷ Original accuracy

17: acciadv ← Accuracy(ci, Dadversarial) ▷ Adversarial accuracy

18: accidrop ← acciorig − acciadv ▷ Accuracy drop

19: A ← A∪ {(ci, accidrop)}
20: end for
21: pwilcoxon ←WilcoxonSignedRankTest({acciorig}, {acc

i
adv}) ▷ Significance of attack

22: R← RankMatrix({acciadv}
n
i=1) ▷ Compute classifier-wise accuracy ranks

23: pfriedman ← FriedmanTest(R) ▷ Global statistical test across LLMs
24: if pfriedman < 0.05 then
25: Pposthoc ← NemenyiPosthocTest(R) ▷ Pairwise significance matrix
26: end if
27: Phase 5: Semantic Preservation Measurement
28: bertprecision ← BERTScore Precision(Torig, Tadv)
29: bertrecall ← BERTScore Recall(Torig, Tadv)
30: bertf1 ← BERTScore F1(Torig, Tadv)
31: B ← {bertprecision, bertrecall, bertf1} ▷ BERT score metrics
32: return (Tadv,B,A, pwilcoxon, R, pfriedman, Pposthoc)
33: end function

– Phase 1: Adversarial Prompt Construction: To simulate realistic LLM-
assisted vishing conversations, we craft a prompt that transforms scam-
mer speech into linguistically obfuscated and conversationally natural di-
alogue. We engineer sophisticated prompts that guide the LLM to per-
form two primary transformations: linguistic obfuscation through rephrasing
(Prephrase) and benign context injection through noise insertion (Pnoise).
The core transformation involves two main strategies as described in Fig-
ure 2: rephrasing and injecting adversarial noise. Our goal in rephrasing the
original scammer speech is to obscure explicit scam-related intent and make



6 W. Li et al.

the conversation appear more legitimate. In parallel, we inject the adver-
sarial noise, which is a contextually appropriate dialogue that expands the
original speech without altering the core intent of the message. This tech-
nique serves to dilute the presence of scam-related cues by embedding them
within a friendly conversation. These strategies are combined into a unified
prompt (Pcombined = Prephrase⊕Pnoise) that instructs the LLM to maintain
malicious intent while appearing benign to automated classifiers.

Process

Process

Korean Vishing Generation Prompt

Prompt:  f"""
You are given a sequence of utterances spoken by a scammer during a voice phishing (vishing) call. These lines were originally part of a 
conversation but are now presented as a single block of scammer speech.
---
### **Primary and Most Important Task**:
- **Rephrase every single word in the speech** to reduce linguistic similarity to typical scam patterns and make it sound more like a casual 
conversation. When rephrasing:
---
###  **Second Main Task**:
- **Insert as many sentences as possible** constructed from the following Korean words to make the text more natural and conversational: 
   - ? ? , ? ? , ? ? ? , ? ? , ? ? ? ? , ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? , ? ? ? , ? ? , ? ? ? , 
? ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? ? , ? ? , ? ? ? , ? ? ? , ? ? , ? ? ? ? , ? ? ? ? , ? ? , ? ? , ? ? ? , ? ? ? , ? ? ? , 
? ? , ? ? ? ? , ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ?  ? ? ? , ? ? , ? ? ? , ? ? ? , ? ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? , 
? ? , ? ? ? ? ? , ? ? , ? ? , ? ? ? , ? ? , ? ? ? , ? ? , ? ? , ? ? ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? ? , ? ? , ? ? , 
? ? ? ? ? , ? ? ? , ? ? ? ? , ? ? ? ? , ? ? , ? ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? ? , ? ? ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? ? , ? ? , 
? ? , ? ? ? , ? ? , ? ? ? , ? ? ? , ? ? , ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , 
? ? ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? , ? ? ? ? , ? ? ? ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? ? ? ? ? , ? ? , 
? ? , ? ? , ? ? , ? ? ? , ? ? ? , ? ? ? , ? ? ? , ? ? , ? ? ? , ? ? , ? ? , ? ? ? , ? ? ? , ? ? , ? ? , ? ? , ? ? ? , ? ? , ? ?
   - Ensure the sentences are natural, coherent, and seamlessly blend with the original speech.
###  **addtional  Tasks**:
    - **Avoid obvious signs of scam or fraud**? make the speech appear normal, friendly, and harmless to both humans and machine 
classifiers.
   - **Avoid suspicious or sensitive keywords**, such as ?? ? ?, ?? ? ?, ?? ? ?, ?? ? ?, ?? ? ?, ?? ? ? ? ?, and ?? ? ? ? ? ? ?.
   - **Use indirect, vague, or euphemistic phrasing** for any information requests (e.g., ?? ? ?  ? ?  ? ? ?, ?? ?  ? ?  ? ? ?).
   - **Avoid repeating the same words within a single sentence or nearby sentences**. Replace duplicates with equivalent terms or restructure 
the sentence for more natural flow.
   - **Add conversational filler phrases** (e.g., ?? ?  ?  ? ? ?  ?  ? ? ? ? ?, ?? ?  ? ? ? ? ?  ? ? ? ?) to make it sound more like polite 
customer service than a probing inquiry.
   - **Ensure the entire speech flows as a casual and friendly dialogue**, not as an interrogation or legal process.
---
- Output must be **in Korean**\n
### Original Scammer Speech:\n
"""
Response: 

Fig. 2: Vishing Generation Prompt.

– Phase 2: LLM Generation: The constructed prompt and original tran-
script are processed by the target LLM (M) to generate the adversarial tran-
script (Tadv = M(Pcombined, Torig)). This phase leverages the LLM’s natural
language understanding and generation capabilities to create linguistically
sophisticated evasions. The generated output transforms vishing indicators
into benign conversational patterns while preserving the underlying decep-
tive structure. We evaluate multiple state-of-the-art LLMs including GPT-
4o, GPT-4o mini, Gemini 2.0, and Qwen2.5 to assess the generalizability of
our approach across different model architectures and capabilities.

– Phase 3: Data Processing: The data processing module is responsible for
preparing raw textual input for classification by systematically cleaning and
transforming it into a structured format. The generated adversarial tran-
scripts undergo systematic preprocessing identical to the original dataset
preparation used for training the ML classifiers. Given the visher’s speech,
this process begins with data cleaning, which involves the removal of irrele-
vant or redundant elements such as numbers, special characters, punctuation
marks, duplicate entries, and personally identifiable information like phone
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numbers. Then, the text is tokenized using the MeCab-ko [26] morphological
analyzer, a tool that provides efficient processing of Korean text. Moreover,
we remove common Korean stop-words with little semantic value in the con-
text of vishing detection are removed. Following preprocessing, we apply the
Term Frequency-Inverse Document Frequency (TF-IDF) technique to embed
the extracted tokens. Finally, the resulting feature vectors are then passed to
the classifier, which determines whether the input corresponds to a benign
or malicious (scam) conversation, thus, following the methodology presented
in [8].

– Phase 4: Classifier Evaluation: Each adversarial transcript is evaluated
against an ensemble of trained ML classifiers (C = {c1, c2, ..., cn}) that were
trained on the original dataset. For each classifier ci, we calculate the accu-
racy drop as accidrop = acciorig − acciadv, where acc

i
orig and acciadv denote the

classifier’s accuracy on the original and adversarial samples, respectively.
This ensemble includes linear, tree-based, and boosting models, offering a
broad view of evasion effectiveness.

To statistically verify the effectiveness of adversarial attacks, we apply the
Wilcoxon signed-rank test between the original and adversarial accuracy dis-
tributions. A significant p-value (p < 0.05) indicates that the adversarial
attack consistently degrades model performance across classifiers.

To further assess whether different LLMs cause distinguishable impacts on
classifier performance, we construct a rank matrix R of adversarial accuracies
and conduct a Friedman test. If significant differences are detected, a Ne-
menyi post-hoc test is conducted to reveal pairwise significance between LLM
variants. This multi-stage evaluation not only confirms the overall attack ef-
fectiveness but also compares the relative strength of different LLM-based
attack strategies.

– Phase 5: Semantic Preservation Measurement: We quantify the se-
mantic similarity between original and adversarial transcripts using com-
prehensive BERTScore metrics to ensure that adversarial transformations
maintain the core vishing intent and contextual meaning. Specifically, we
calculate three key metrics: BERTScore precision (bertprecision), BERTScore
recall (bertrecall), and BERTScore F1 (bertf1), which together form our se-
mantic preservation measurement set (B = {bertprecision, bertrecall, bertf1}).
These metrics provide a comprehensive assessment of semantic preservation
quality by comparing contextualized embeddings of the original and gener-
ated texts.

Finally, we provide a detailed case study on the Analysis of Original vs. Ad-
versarial Transcripts to demonstrate the methodology for examining semantic
preservation and evasion strategies employed by our LLM-based approach. This
analysis involves a comparison of original and adversarial transcripts, examin-
ing how strategic rephrasing and benign context injection are implemented and
analyzing the effectiveness of proposed method accordingly.
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5 Experimental Setup

This section outlines the experimental setup of our study, including the dataset
used, the LLMs employed, the evaluation metrics applied, and the ML classifiers
for vishing detection, along with their performance on the original transcripts.

5.1 Dataset

In this study, we utilize a balanced subset of the KorCCViD v1.3 dataset [27],
consisting of 609 transcripts from vishing scenarios and 609 from non-vishing
scenarios. The vishing samples are derived from real-world Korean scam call
transcripts, while the benign samples represent typical everyday conversational
speech. This dataset captures realistic vishing contexts and offers a robust foun-
dation for evaluating semantic-preserving adversarial attacks. The data is ran-
domly partitioned into training, validation, and testing sets, with 779 samples
allocated for training, 195 for validation, and 244 for testing.

5.2 Used LLMs

We evaluated our attack using 4 different LLMs that follows our defined prompt
as presented in Fig. 2: GPT4-o and GPT4-o mini [28], Gemini 2.0 [29], and
Qwen2.5 [30]. We selected our LLMs based on several key factors, including
model size, architecture, and language abilities. These models represent a range
of capabilities and have been widely used in previous research.

5.3 Evaluation Metrics

To evaluate the effectiveness of LLM-generated adversarial transcripts and en-
sure semantic fidelity with the original vishing content, we adopt three sets of
metrics:

1. Classifier Performance Metrics. These metrics quantify how adver-
sarial transcripts impact vishing detection models:

– Standard Classification Metrics:We compute precision, recall, accuracy,
and F1-score on both original and adversarial datasets:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

F1 = 2 · Precision · Recall
Precision + Recall

(3)

– Accuracy Drop (∆Accuracy): Measures the performance degradation of
classifiers caused by adversarial transcripts. For each classifier ci:

∆Accuracyi = Accuracyioriginal −Accuracyiadversarial (4)
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2. Statistical Testing Metrics. To assess whether the classification per-
formance degradation across different LLM-generated adversarial transcripts
is statistically significant, we employ non-parametric statistical testing. These
methods evaluate the consistency and strength of adversarial impact across all
classifiers:

– Wilcoxon Signed-Rank Test: To evaluate the effectiveness of each in-
dividual LLM attack, we perform a one-tailed Wilcoxon signed-rank test
comparing the original and adversarial accuracies across all classifiers. This
non-parametric test assesses whether adversarial examples consistently lead
to a reduction in classifier performance. The test statistic is defined as:

W = min (W+,W−) (5)

where W+ and W− are the sums of ranks for positive and negative accuracy
differences, respectively. Since our hypothesis is directional (i.e., adversarial
accuracy is expected to be lower than the original), a one-tailed p-value is
computed as:

p = P(W ≤ w) (6)

A small p-value (e.g., p < 0.05) indicates that the adversarial attack produces
a statistically significant and consistent drop in classifier accuracy.

– Friedman Test: This non-parametric test is used to determine whether
there are overall significant differences in classifier accuracy under different
LLM attacks. Given k attack models and n classifiers, we first compute ranks
Ri,j of the adversarial accuracies for each classifier i across k LLMs (lower
accuracy implies a stronger attack and thus a higher rank). The Friedman
test statistic is calculated as:

χ2
F =

12n

k(k + 1)

 k∑
j=1

R̄2
j

− 3n(k + 1) (7)

where R̄j denotes the average rank of LLM j.
– Average Ranks: The mean rank for each LLM model is computed to indi-

cate its relative adversarial strength. A lower average rank indicates stronger
attack efficacy:

R̄j =
1

n

n∑
i=1

Ri,j (8)

These ranks are used as the basis for pairwise comparison in the next step.
– Nemenyi Post-hoc Test: If the Friedman test reveals significant overall

differences, we perform the Nemenyi test to compare each pair of LLMs. The
test returns a matrix of adjusted p-values, where each entry indicates the
statistical significance of performance difference between two LLM attacks:

pj1,j2 = P-value comparing R̄j1 and R̄j2 (9)
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3. Semantic Similarity Metrics. To ensure that adversarial texts preserve
the core malicious intent and semantics of the originals, we apply BERTScore:

– Given an original transcript Torig = [r1, ..., rm] and adversarial transcript
Tadv = [c1, ..., cn], contextual embeddings r⃗i and c⃗j are obtained using a
pre-trained BERT model. Cosine similarity is calculated as:

sim(r⃗i, c⃗j) =
r⃗i · c⃗j

∥r⃗i∥∥c⃗j∥
(10)

– BERTScore Precision, Recall, and F1 are defined as:

BERTScorePrecision =
1

n

n∑
j=1

max
i

sim(r⃗i, c⃗j) (11)

BERTScoreRecall =
1

m

m∑
i=1

max
j

sim(r⃗i, c⃗j) (12)

BERTScoreF1 = 2 · BERTScorePrecision · BERTScoreRecall

BERTScorePrecision +BERTScoreRecall
(13)

5.4 ML Classifiers

We trained several ML classifiers on the proposed dataset using a consistent
data split configuration, incorporating both linear and ensemble-based models
to enable a comprehensive evaluation. Table 1 presents their performance on the
test set across four metrics: F1-score, precision, recall, and accuracy.

The results indicate consistently high performance across all models, with test
accuracies ranging from approximately 95% to 99.6%. This strong performance
can be attributed to two primary factors: (1) the KorCCViD v1.3 dataset is
perfectly balanced across classes, which helps mitigate classification bias; and
(2) the models showed no signs of overfitting, as demonstrated by their robust
generalization to the unseen test set.

Table 1: Performance of various ML classifiers

F1 Score Precision Recall Accuracy

LogisticRegression 0.991935 0.991803 0.991803 0.991803
DecisionTree 0.951305 0.950820 0.950806 0.950820
RandomForest 0.988000 0.987705 0.987703 0.987705
AdaBoost 0.983607 0.983607 0.983607 0.983607
GradientBoosting 0.955683 0.954918 0.954899 0.954918
HistGradientBoosting 0.979540 0.979508 0.979508 0.979508
XGB 0.979540 0.979508 0.979508 0.979508
LGBM 0.983737 0.983607 0.983605 0.983607
CatBoost 0.959510 0.959016 0.959005 0.959016
LinearSVC 0.995935 0.995902 0.995902 0.995902
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We primarily use classical ML classifiers due to their widespread practical
adoption, interpretability, and low computational cost. Our goal is to show that
even these lightweight models despite high baseline accuracy remain vulnerable
to LLM-generated adversarial attacks. This highlights that such threats persist
even in real-world, resource-efficient deployments, with broader implications for
both traditional and modern NLP-based defenses.

6 Results

In this section, we present a detailed analysis of the proposed approach, including
a comparison of performances of ML classifiers trained on the original and LLM-
generated vishing transcripts with statistical testing as well as the semantic
similarity of adversarial transcripts. In addition, we provide a case study with
original and adversarial transcripts and the costs for conducting such attacks.

6.1 Adversarial Effectiveness and Semantic Similarity

Table 2 shows the classification accuracy of various models on 100 adversarial
vishing transcripts generated by four different LLMs. To evaluate the impact
of each model, we calculate the average accuracy drop across ten classifiers. As
shown in the last rows of Table 2, Qwen2.5 results in the highest average accuracy
drop at 33.83%, indicating its strong evasion capability. GPT-4o follows with a
16.16% drop, while Gemini 2.0 and MiniGPT-4o yield more moderate drops of
7.18% and 3.42%, respectively.

To evaluate whether each LLM-generated adversarial attack leads to a sta-
tistically significant reduction in classifier performance, we conduct one-tailed
Wilcoxon signed-rank tests comparing the original and adversarial accuracies
across all classifiers. As shown in Table 2, all four LLMs demonstrate statis-
tically significant performance degradation, with one-tailed p-values below the
0.05 threshold. In particular, GPT-4o, Gemini 2.0, and Qwen2.5 yield highly sig-
nificant reductions with p = 0.0010, while MiniGPT-4o also achieves significance
with p = 0.0098. These results confirm that the observed accuracy drops are not
only substantial in magnitude but also statistically consistent across classifiers,
validating the effectiveness of the adversarial attacks.

To assess whether these performance differences are statistically significant,
we conduct a non-parametric Friedman test on classifier-wise adversarial accura-
cies across the four LLMs. The result yields a Friedman statistic of 28.0408 with
a p-value of 0.000004, indicating significant differences in classifier performance
under different LLM attacks. Based on per-row (classifier-wise) rankings of ad-
versarial effectiveness, Qwen2.5 achieves the lowest average rank (1.0), followed
by GPT-4o (2.0), Gemini 2.0 (3.3), and MiniGPT-4o (3.7).

To further identify pairwise differences, we perform a Nemenyi post-hoc test.
As illustrated in Figure 3, Qwen2.5’s attack performance is significantly stronger
than that of MiniGPT-4o (p < 0.001) and Gemini 2.0 (p < 0.001). GPT-4o is
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also significantly more effective than MiniGPT-4o (p = 0.017), while its differ-
ence from Qwen2.5 and Gemini 2.0 is not statistically significant. These findings
confirm that Qwen2.5 is the most disruptive adversarial generator, with GPT-4o
as the second most effective.

While Qwen2.5 demonstrates the strongest evasion performance, its semantic
fidelity is relatively poor. As illustrated in Figure 4, Qwen2.5-generated texts
exhibit a wide range of BERTScore values (from 0.45 to 0.85, peaking around
0.65), indicating frequent deviations from the original transcript’s meaning. In
many instances, it introduces off-topic or incoherent content that disrupts the
intended prompt structure and alters the vishing context.

In contrast, GPT-4o achieves a strong balance between adversarial effective-
ness and semantic preservation. Although it causes the second-highest accuracy
drop, it maintains high BERTScore precision, recall, and F1 values (ranging
from 0.72 to 0.75). This suggests that GPT-4o-generated transcripts success-
fully preserve the core malicious intent while introducing meaningful adversarial
variations.

Given this trade-off, we select GPT-4o as the representative LLM for sub-
sequent evaluations. It demonstrates statistically validated evasion capability
without compromising semantic integrity—an essential criterion for generating
high-quality adversarial examples in vishing scenarios.

Table 2: Performance comparison of various classifiers on 100 vishing samples

Classifier
Original Acc.

Adversarial Acc.

MiniGPT-4o GPT-4o Gemini 2.0 Qwen2.5

LogisticRegression 0.991803 0.958904 0.760274 0.773973 0.623288
DecisionTree 0.950820 0.890411 0.726027 0.856164 0.458904
RandomForest 0.987705 0.986301 0.979452 0.986301 0.732877
AdaBoost 0.983607 0.945205 0.883562 0.938356 0.630137
GradientBoosting 0.954918 0.815068 0.623288 0.842466 0.445205
HistGradientBoosting 0.979508 0.986301 0.849315 0.958904 0.801370
XGB 0.979508 0.952055 0.876712 0.952055 0.746575
LGBM 0.983607 0.986301 0.808219 0.965753 0.726027
CatBoost 0.959016 0.945205 0.856164 0.958904 0.561644
LinearSVC 0.995902 0.958904 0.787671 0.815068 0.657534

Average Acc. Drop – 3.42% ↓ 16.16% ↓ 7.18% ↓ 33.83% ↓

Wilcoxon p-value – 0.0098 0.0010 0.0010 0.0010

Average Ranks – 3.7 2.0 3.3 1.0
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Fig. 3: Nemenyi post-hoc test results comparing adversarial effectiveness of four
LLMs based on classifier accuracy rankings. Each cell displays the p-value of
the pairwise comparison between two LLMs. Statistically significant differences
(p < 0.05) are observed between Qwen2.5 and all other models, as well as be-
tween GPT-4o and MiniGPT-4o. Darker blue regions indicate stronger statistical
significance.
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Fig. 4: Bert Score Between Original Transcripts and LLM perturbed ones.

6.2 Full Vishing Dataset Evaluation Using GPT-4o

We evaluated our adversarial attack on the full set of vishing transcripts to assess
the effectiveness of GPT-4o in deceiving ML classifiers. As shown in Table 3, the
average classification accuracy across all models dropped from 97.66% to 81.35%,
reflecting a substantial degradation.

Individual model performance on adversarial vishing samples ranged from
64.53% (GradientBoostingClassifier) to 95.89% (RandomForestClassifier), cor-
responding to accuracy drops between 2.88% and 30.96%. This indicates that
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GPT-4o was successful in crafting semantically consistent adversarial transcripts
that caused a measurable decline in classifier reliability. To statistically validate
the effectiveness of GPT-4o-generated adversarial examples on full dataset, we
also performed a one-tailed Wilcoxon signed-rank test comparing original and
adversarial accuracies. The test confirmed a consistent performance drop, yield-
ing a significant p-value of 0.00098 (p < 0.05).

To further investigate the impact of adversarial perturbations, we examined
ROC curves before and after applying GPT-4o-based obfuscation, as illustrated
in Fig. 5. Notably, the AUC values of DecisionTreeClassifier and AdaBoostClassi-
fier declined to 0.87 and 0.96, respectively. This suggests that several adversarial
vishing scenarios were misclassified as benign, increasing the false negative rate
and reducing overall detection performance.

Table 3: Performance comparison of classifiers on original vs. GPT-4o adversarial
vishing samples

Classifier Original Acc. Adversarial Acc. Acc. Drop

LogisticRegression 0.991803 0.763547 0.228256
DecisionTreeClassifier 0.950820 0.745484 0.205336
RandomForestClassifier 0.987705 0.958949 0.028756
AdaBoostClassifier 0.983607 0.834154 0.149453
GradientBoostingClassifier 0.954918 0.645320 0.309598
HistGradientBoostingClassifier 0.979508 0.857143 0.122365
XGBClassifier 0.979508 0.844007 0.135501
LGBMClassifier 0.983607 0.862069 0.121538
CatBoostClassifier 0.959016 0.844007 0.115009
LinearSVC 0.995902 0.779967 0.215935

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves for Classifiers

LogisticRegression (AUC = 1.00)
DecisionTreeClassifier (AUC = 0.99)
RandomForestClassifier (AUC = 1.00)
AdaBoostClassifier (AUC = 1.00)
GradientBoostingClassifier (AUC = 1.00)
HistGradientBoostingClassifier (AUC = 1.00)
XGBClassifier (AUC = 1.00)
LGBMClassifier (AUC = 1.00)
CatBoostClassifier (AUC = 1.00)
LinearSVC (AUC = 1.00)

Original Vishing Transcripts

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves for Classifiers

LogisticRegression (AUC = 0.99)
DecisionTreeClassifier (AUC = 0.87)
RandomForestClassifier (AUC = 1.00)
AdaBoostClassifier (AUC = 0.96)
GradientBoostingClassifier (AUC = 0.99)
HistGradientBoostingClassifier (AUC = 0.99)
XGBClassifier (AUC = 0.99)
LGBMClassifier (AUC = 1.00)
CatBoostClassifier (AUC = 1.00)
LinearSVC (AUC = 0.99)

Adversarial Vishing Transcripts

Fig. 5: ROC curves for original and adversarial vishing transcripts.
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6.3 Analysis of Original vs. Adversarial Transcripts

We validate our given prompt to the LLM to show that the adversarial text
generated by GPT-4o preserves the meaning while effectively fools the ML clas-
sifiers. We present in Table 4 one of the generated adversarial vishing transcripts.
For easier understanding, we have included the English translation of both Ko-
rean texts. Using different color labels, we further clarify every aspect of the text
modification done by the LLMs, such as paraphrasing highly vishing terms in-
dicators using the red color, as well as presenting the benign added sentences in
green. One of the key pieces of evidence of the context preservation in this shown
example is that terms like banks, account, and business license are preserved or
paraphrased. Another example is the following transformation: “Kookmin Bank
involving card and securities concerns” −→ “Kookmin Bank had similar cases,
and multiple people shared concerns”. Although the words change, the core mes-
sage stays intact. On the other side, we show in Table 4 the benign marked tokens
in green, such as “feel free to ask”, “I’ve been looking into it”, are been added to
make the transcript more friendly and neutral. In addition, compared to prior
works that could not explain the reason behind why LLM success in their given
task, we demonstrated through Table 4 that our generated transcript preserves
meaning while deceiving the classifier.

By exploiting the characteristics of the encoding technique, the generated
transcripts successfully evaded detection by the classifier. Since our classifica-
tion model relies on token occurrence patterns, uniqueness, and the overall length
of the transcript as emphasized through TF-IDF, rephrasing and injecting ad-
ditional bengin statements altered these statistical features, thus evading the
detection.

In addition, from practical perspective, we evaluated the resource require-
ments for executing GPT-4o-based adversarial attacks. The average cost to gen-
erate a single adversarial transcript using GPT-4o was approximately $0.00685,
with an average generation time of 8.595 seconds. These figures highlight the
economic feasibility and scalability of such attacks. An adversary with limited
financial and computational resources could feasibly launch large-scale evasive
vishing campaigns by leveraging commercial LLMs as attack enablers, making
this threat vector particularly concerning in practice.

Furthermore, our empirical observations revealed that all tested commercial
LLMs—including GPT-4o, GPT-4o-mini, Gemini 2.0, and Qwen2.5—responded
to our adversarial prompts without issuing rejections or security-related warn-
ings. Despite the adversarial intent embedded in the prompts, none of the models
triggered content filters or exhibited refusal behaviors. This raises critical con-
cerns regarding the effectiveness of existing safety guardrails in current LLM
deployments
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Table 4: Analysis of Original and Adversarial Text Samples, Red means the
rephrases parts, Blue means the neutral tone, and Green means the added benign
words.

Original Text Adversarial Text

Korean English Translation Korean English Translation

농협 하나 통장 여기

피해 자분 확인 통장

대해서 굉장히 거래

처 방문 고서 통장 여

보 많이 으시 에서 결

정 공부 다고 습니다

일단 국민은행 에서

으로 얘기 카드 증권

아무래도 사건 단체

에서 직원 많이 열받

으시 사업자 등록증

면서 다른 친구 인터

넷 뱅킹 으로 지속 으

로 사건 라고

NongHyup and Hana Bank
accounts were involved. The victim
was identified, and the bank
account information was verified.
There were heavy interactions with
clients. The conversation
reportedly came from Kookmin
Bank involving card and securities
concerns. Due to the nature of the
incident, many staff were furious.
A business license was shown, and
another friend had been involved
through online banking, suggesting
the fraud continued through
multiple fronts.

농협 관련 통장 어서요 요즘

통장 어떻게 사용 조금 궁금

상태 여기저기 제일 많이 쓰

이 통장 하나 아서요 거래처

통장 자주 사용 어떤 경우 약

간 문제 생긴 거든요 그때 친

구 피해 아서 어떻게 해결 생

각 많이 더랬어요 그리고 국

민은행 요즘 비슷 이야기 여

러 사람 경우 불안해하 친구

얘기 나누 면서 문제 라고 마

다 조금 다르 지만 관련 어서

조심 분위기 네요 사업자 등

록증 얘기 나왔 혹시 으신 인

터넷 뱅킹 관련 돼서 궁금 여

쭤 려고 그런 자주 문제 그래

도 사람 마다 생각 다를 어서

요 아무래도 부분 대해서 서

로 빠르 의견 주고받 으면서

해결 방법 으면 혹시 필요 정

보 다면 편하 세요 요즘 시간

어서 알아보 려고

This is about a NongHyup-related
account. Lately, I’m curious about
how the account is being used. It’s
one of the most frequently used
bank accounts, especially for
business transactions. Some issues
occurred when a friend was
affected, and we thought about
how to resolve it. Also, Kookmin
Bank has had similar cases, and
multiple people shared concerns.
When we talked about it with a
friend, it was clear that each case
is different, but there’s a general
sense of caution. Someone even
mentioned a business registration
certificate, and I wanted to ask
about online banking issues. These
problems happen often. Still,
everyone has different views, so I
hope we can exchange ideas and
find a solution. If you need
information, feel free to ask—I’ve
been looking into it recently.

7 Conclusion

This study highlights the emerging threat posed by LLMs in generating eva-
sive vishing transcripts. By prompting commercial LLMs with real-world scam
scripts, we show that these models can produce linguistically obfuscated yet se-
mantically consistent transcripts capable of bypassing state-of-the-art ML-based
vishing detectors. Our evaluation reveals that such attacks are not only effective
but also economically and computationally inexpensive, making them accessi-
ble to a wide range of adversaries. These findings call for the development of
more robust vishing detection systems and emphasize the need for commercial
LLM providers to implement safeguards that prevent prompt misuse for such
malicious purposes.
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