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Abstract—Sharing methods of attack and their effectiveness
is a cornerstone of building robust defensive systems. Threat
analysis reports, produced by various individuals and organi-
zations, play a critical role in supporting security operations
and combating emerging threats. To enhance the timeliness
and automation of threat intelligence sharing, several standards
have been established, with the Structured Threat Information
Expression (STIX) framework emerging as one of the most
widely adopted. However, generating STIX-compatible data from
unstructured security text remains a largely manual, expert-
driven process. To address this challenge, we introduce AZERG,
a tool designed to assist security analysts in automatically
generating structured STIX representations. To achieve this, we
adapt general-purpose large language models for the specific
task of extracting STIX-formatted threat data. To manage the
complexity, the task is divided into four subtasks: entity detection
(T1), entity type identification (T2), related pair detection (T3),
and relationship type identification (T4). We apply task-specific
fine-tuning to accurately extract relevant entities and infer their
relationships in accordance with the STIX specification. To
address the lack of training data, we compiled a comprehensive
dataset with 4,011 entities and 2,075 relationships extracted from
141 full threat analysis reports, all annotated in alignment with
the STIX standard. Our models achieved F1-scores of 84.43%
for T1, 88.49% for T2, 95.47% for T3, and 84.60% for T4 in
real-world scenarios. We validated their performance against a
range of open- and closed-parameter models, as well as state-of-
the-art methods, demonstrating improvements of 2–25% across
tasks.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

A large amount of cyber threat intelligence (CTI) data
is available in unstructured and semi-structured text. This
information is typically compiled together by security an-
alysts to understand threats, exploits, attack vectors, and
adversaries. The knowledge derived from this largely open-
sourced information is indispensable for security teams, as it
enables them to continually assess and enhance their security
posture. Additionally, it plays a crucial role in supporting cyber
operations by ensuring the availability of current detection
and protection systems that align with the fast-evolving threat
landscape. However, it is very time- and labor-consuming to
manually extract relevant information from the large body of
threat intelligence data and evaluate it in a timely manner.

A survey of 468 full-time security analysts [17] revealed that
66% spend over half their time on tedious manual tasks, and

64% believe automation could significantly streamline their
work. Alarmingly, the same 64% expressed a likelihood of
seeking new jobs within a year if not provided with modern
automated tools. These findings highlight an urgent need
for automation to alleviate manual workloads, particularly in
extracting cyber threat intelligence (CTI) from textual sources,
to retain skilled analysts and enhance efficiency. This need is
even more urgent given the importance of rapidly distribut-
ing newly discovered threat intelligence across detection and
analysis systems. Achieving this requires converting threat
knowledge into machine-readable, standardized formats for
effective and timely dissemination.

Recognizing its importance, several automated methods
have been proposed to extract threat knowledge from security
texts. These methods address a range of objectives, including
the creation of cybersecurity knowledge graphs [14], [15],
[19], [22], [29], [38], [47], the identification of adversary
tactics, techniques, and procedures (TTPs) [7], [20], [24], [27],
[30], [37], [41], [44], [45], the generation of provenance graphs
[39], and the summarization of cybercrime forums [11]. In
this study, we focus on the rapid dissemination of threat in-
telligence by proposing a novel approach to automating threat
knowledge extraction. Given the continuously evolving threat
landscape, it is critical for detection and protection systems
to remain updated and adapt to these dynamic changes. The
security community has responded to this need by devising
protocols like TAXII [5] to facilitate the automated exchange
of cyber-security threat intelligence, and various threat data
representation formats, such as STIX [36] and MISP [35], have
been introduced to streamline this process. These standards
enable the exchange of structured, machine-readable threat
data that can be directly integrated into security systems. In
fact, many security vendors provide STIX reports along with
their threat analysis reports (e.g., AlienVault, Microsoft TI,
and IBM X-Force).

A recent study conducted a comprehensive analysis of
the STIX data sharing landscape [23]. By examining over 6
million STIX data objects collected from publicly available
open CTI sources over nine years, the researchers identified
three primary shortcomings in the implementation of the STIX
standard, particularly in terms of coverage, timeliness, and data
quality. Their analysis of how effectively the STIX standard
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Fig. 1: Overview of AZERG workflow. The example is taken from Buhti Report [1].

is utilized to represent threat information revealed that only
75% of the defined basic object types in the standard (i.e.,
domain objects) are utilized within their dataset. Moreover,
indicator objects—containing basic indicators of compromise,
such as malicious file hashes or URL strings—accounted
for over 90% of the data. Notably, the analysis revealed no
instances of relationship objects used to describe connections
among domain objects. This finding underscore the significant
underutilization of the STIX standard in capturing threat
behavior. They also assessed the timeliness of STIX data by
measuring the delay between the initial detection of security
incidents and the generation of corresponding STIX objects.
The analysis revealed that URL objects are typically shared
within 2–4 days of an incident, whereas other threat objects
experience substantial delays, ranging from 43 to 109 days
in the analyzed cases. This highlights that artifact analysis
and STIX data generation are often not performed in a timely
manner. Lastly, their evaluation of the collected STIX data
revealed frequent issues, including spelling errors, inaccurate
object designations, and duplicate entries. Additionally, many
producers deviated from the predefined vocabulary in the STIX
standard, opting to use their own terminology to describe threat
information. These findings emphasize the need for significant
manual effort to correct errors and resolve inconsistencies in
the generated STIX data.

Effective utilization of the STIX standard remains a chal-
lenge, largely due to the absence of automated tools for
converting analysis findings into structured STIX data. The
growing capabilities of large language models (LLMs) offer
new opportunities to convert CTI text into machine-readable
formats like STIX. However, there are significant challenges
associated with directly employing LLMs for this specific
purpose. First, CTI texts differ significantly from the natural
language data typically used to train LLMs. They are rich in
technical terminology, interleave narrative with code snippets,
command-line inputs, and tables, and contain diverse non-
standard entities such as IP/MAC addresses, hashes, tool
names, and APIs. As a result, such texts are often out-of-
distribution relative to standard training corpora. Second, tasks
vary in their inherent learnability [9]. Generating STIX repre-
sentations requires identifying entities and inferring complex
relationships from context intended for domain experts–a level
of reasoning that may exceed current LLM capabilities. In
fact, recent work [13], [31] shows LLMs struggle with real-
world Cyber Threat Intelligence (CTI) tasks. They perform
poorly on large, complex reports compared to shorter texts,

exhibit inconsistency by giving different results for the same
input, and suffer from poor calibration (overconfidence). Fig-
ure 2 presents sample excerpt from a real-world report [10],
illustrating the complexity and ambiguity that make this task
particularly challenging. Together, these challenges make full
automation risky and highlight the need for expert validation,
positioning LLMs as assistive tools rather than replacements
for human analysts.

DodgeBox employs AES Cipher Feedback (AES-CFB) mode for
encrypting its configuration. AES-CFB transforms AES from a
block cipher into a stream cipher, allowing for the encryption
of data with different lengths without requiring padding. The
encrypted configuration is embedded within the .data section of
the binary. To ensure the integrity of the configuration, DodgeBox
utilizes hard-coded MD5 hashes to validate both the embedded
AES keys and the encrypted configuration. We will reference this
sample configuration using the variable Config in the following
sections.

LLM Answers:

Our Model: DodgeBox, AES-CFB, AES, Config
GPT4o: DodgeBox, AES-CFB, MD5
Claude Sonnet 3.7: DodgeBox, AES Cipher Feedback (AES-
CFB) encryption, Hard-coded MD5 hashes for validation, .data
section of binary containing encrypted configuration, MD5 hashes
Gemini 2.5 Pro: DodgeBox, AES Cipher Feedback, MD5, Embed
configuration in .data section
Ground Truth: DodgeBox

Fig. 2: Example text from a real-world report [10] is shown
in the top box, with the corresponding model outputs for
the T1 task (detecting entities) displayed in the bottom box.
Despite being provided with STIX entity definitions as context,
the models misclassified descriptive phrases and cryptographic
algorithms as entities.

Our approach to threat knowledge extraction divides the
process into sequential subtasks, leveraging the strengths of
LLMs. This decomposition simplifies expert validation and
makes error identification more straightforward by allowing
a focused review of each task individually. To achieve this,
we introduce AZERG, a framework designed to help experts
efficiently streamline the creation of STIX reports from threat
analysis documents. AZERG identifies potential entities and
their relationships, enabling experts to quickly validate find-
ings and optimize their time with improved efficiency and
effectiveness. Figure 1 depicts the workflow of AZERG on



a partial text obtained from a public threat report [1]. The
ultimate output is a STIX-compliant JSON object, ready for
integration into TAXII servers or other threat intelligence
platforms, thus directly supporting automated sharing and
consumption by security tools.

In this work, we make the following contributions:
• We introduce a novel approach for extracting attack

entities and relationships from security text by fine-tuning
task-specific models.

• We curate a comprehensive dataset with meticulously
annotated ground truth data on attack entities and re-
lationships, comprising 4,011 STIX entities and 2,075
STIX relationships extracted from 141 real-world APT
reports, establishing it as the largest dataset of its kind to
date.

• We perform a detailed evaluation of open and closed
LLMs for threat knowledge extraction, specifically fo-
cusing on entity extraction and relationship identification
tasks.

• We conduct an in-depth error analysis, identifying not
only common error types but also exploring their root
causes that showcase the limitations of LLMs in this task.

• We introduce a semi-automated tool, AZERG, designed
to aid STIX report generation from threat analysis re-
ports1.

II. BACKGROUND

A. Threat Knowledge Extraction

CTI knowledge extraction has been extensively studied in
the literature [7], [20], [27], [30], [41], [45]. These works
rely on Regular Expression rules to extract Indicators of
Compromise (IoCs) and closed lists of keywords [30], [39])
to identify attack-related entities. Since many entities do not
follow a fixed naming pattern, these approaches are limited
in offering complete coverage of entities, particularly when
the naming of an entity does not adhere to a standardized
convention, a common occurrence in the naming of registries,
directories, and mutexes. Moreover, identifying certain enti-
ties, like threat actors, infrastructure elements, and mitigations,
is highly contextual. The specific context in which these terms
are mentioned defines them as entities.

Second, previous work (e.g., [30], [39]) on cybersecurity
entity and relation extraction relies on conventional NLP
pipelines that use pre-defined lists of cybersecurity keywords
(e.g., “attacker”, “exploit”, “vulnerability”, etc.) and verbs
(e.g., “steals”, “connects”, “exploits”, etc.). They check if
these keywords and verbs were used in sentences to extract
entities and relationship pairs. Hence, this approach does not
generalize because any entity and relation that is not in the
pre-defined lists will be missed.

Another primary area of focus has been identifying relation-
ships between entities. Initially, this involves defining a set of
valid relationships to be detected among entities [14], [15],

1Our source code, datasets, and fine-tuned models will be available to the
community to ensure the reproduction of the results of this work.

[22], [29], [38], [39], [42]. The subsequent step is a detailed
analysis of the text to find entity pairs demonstrating these pre-
defined relationships. These relationships are typically defined
for constructing knowledge graphs across various applications,
often employing conventional NLP pipelines. Research has
shown that LLMs are capable of not only deciphering syntactic
and semantic structures within sentences [40], akin to the
steps in traditional NLP pipelines, but also of performing a
broad range of language tasks effectively without the need for
fine-tuning [8]. In this work, we tackle both challenges by
employing LLMs to process threat intelligence text, focusing
on the extraction of STIX entities and the identification of
their relationships.

B. STIX Standard

STIX is one of the leading threat intelligence-sharing stan-
dards [3], supported by many major vendors, including IBM,
Microsoft, and Cloudflare. STIX defines three categories of
objects, STIX Domain Objects (SDOs), STIX Relationship
Objects (SROs), and STIX Cyber-observable Objects (SCOs),
to capture diverse entities and their relationships in threat
intelligence. Due to space limits, next, we only provide a brief
description of each category of objects. A concise STIX doc-
umentation can be found at https://tinyurl.com/azergstixdoc.

STIX Domain Objects. STIX refers to concepts commonly
represented in CTI as domain objects. The most relevant
SDOs to our problem are Attack Pattern, Course of Action,
Identity, Indicator, Infrastructure, Location, Malware, Threat
Actor, Tool, Campaign, and Vulnerability. Each object has
a set of attributes, such as malware family (for malware),
role (for identity), tool type (for tool), etc. We focus on
detecting domain objects’ names and the relationships among
them. Hence, we do not populate objects attributes because
of the large number of attributes attached to each object.
Populating such attributes may require fetching data from
external sources. In this work, we consider the reports as the
only source of information. Besides the above SDOs, STIX
also defines several other less-specific SDOs that are primarily
aimed at organizing information and serving as metadata.
Those objects are: Malware Analysis, Grouping, Intrusion
Set, Note, Opinion, Observed Data, and Report. Although
Intrusion Set is an important object from a cybersecurity
perspective, it requires gathering information from different
external sources to track the attack behavior and link it to a sin-
gle threat actor. In this study, we do not consider these objects
as our emphasis is on extracting intelligence from individual
reports. Conversely, the SDOs Malware Analysis, Grouping,
Report, and Observed Data enable a more comprehensive and
detailed representation, organization, and reporting of threats,
analyses, and observations, offering a broader context beyond
just specific malware characteristics.

STIX Relationship Objects. To link SDOs, STIX intro-
duces the Relationship SRO that has 3 main components:
the source object, the target object, and the relationship type.
These components are pre-defined by STIX in a relationship
matrix that can be extracted from STIX documentation. There



are 38 relationship types including (but not limited to): indi-
cates, targets, uses, exfiltrates to, authored by, communicates
with, etc. Every pair of SDOs has its own set of possible rela-
tionship types. For example, a relationship between a Malware
object and a Location object is either targets or originates
from. It is worth noting that some pairs of SDOs do not have
relationships. In addition, STIX defines some relationships
between some SCOs and SDOs such as Infrastructure and
IPv4 Address.

STIX Cyber-observable Objects. The Indicator SDO can
have different sub-types which are defined by the SCOs. These
include (but are not limited to) Directory, Domain Name,
Email address, File, IPv4/IPv6 address, MAC address, URL,
and Windows Registry Key. We note that an Indicator object
cannot be defined without defining its sub-type that must be
chosen from the SCOs listed in STIX documentation [3].

III. CHARACTERISTICS OF SECURITY TEXT

Domain-Specific Terminology. Threat intelligence reports
are primarily intended for security experts who develop and
maintain a wide range of security services and functions.
As such, the text inherently assumes that the reader pos-
sesses a sufficient level of domain expertise to comprehend
the intricacies of newly discovered threat behavior without
providing redundant details that may be accessible elsewhere
in the public domain. For instance, an author of a threat
intelligence report may use terms like “payload,” “malware,”
and the actual “malware name” interchangeably in the same
section, assuming that the reader understands their interrela-
tion. Similarly, a threat actor may be referred to by various
names assigned by different security vendors. Furthermore,
the author may establish implicit links between entities. For
example, when discussing a malware that targets IIS or is
written in C#, the assumption is that the reader is familiar
with .NET and ASP, as well as the deployment of .ASPX
files on an IIS server. These nuances present challenges to
the effectiveness of conventional NLP pipelines and language
models, which are mainly built on natural language texts
intended for a broad audience. This mismatch becomes evident
in the form of a distribution shift, as the characteristics of the
data used to build such models significantly differ from those
of the data used for testing. Consequently, this disparity leads
to inferior performance. Addressing these issues becomes
vital to enhance the adaptability and overall performance of
the models when dealing with specialized threat intelligence
reports.

Language Complexity. The primary competency of the
author of a threat intelligence report lies in their ability to
collect and analyze evidence crucial for understanding threat
behaviors. Communicating these findings to other experts does
not necessarily demand a concise and crisp writing style. In
fact, as demonstrated by Satvat et al. [39], threat intelligence
reports tend to be quite verbose and lack a specific grammati-
cal structure. Furthermore, they often lack proper punctuation
and may contain sentences with missing subjects, objects, or
pronouns. The cumulative effect of these complexities makes

understanding the context of events challenging for LLMs and
renders any inferences derived from such text error-prone.

Use of Mixed Data Formats. Security texts are diverse,
containing various types of data such as tables, lists, code
snippets, command line arguments, figures, and charts, in
addition to the main textual content. Authors often incorporate
these different types of data directly into sections without
clear delimiters. For example, code snippets or commands
may be embedded within sections as regular text, lacking code
boxes or syntax highlighting. Tables and charts are employed
when information can be conveyed more effectively than using
text alone. As a result, to extract comprehensive knowledge
from a threat intelligence text, it becomes crucial not only to
understand the textual content but also to transform these alter-
native data formats into text as part of a pre-processing step.
For instance, some charts show the attack timeline and the
employed techniques or the evolution of malware variations.
In addition, some figures contain snippets from the reversed
binaries which may contain crucial information like malware
kill switches. Moreover, command lines and code snippets may
contain valuable information that are usually hardcoded in
the malware’s source code such as private keys, encryption
algorithms, domain names, etc. Hence, it is important to
consider these artifacts as they convey information that might
be helpful in containing malware.

Entity Naming Inconsistency. Entities can exhibit incon-
sistent naming conventions. For example, an author may use a
malware name, its antivirus (AV) detection name, and different
variations of the malware name (e.g., uppercase and lowercase)
interchangeably. In addition, threat actors might be known with
different names that could be all used interchangeably in a
single article. Consequently, a single entity may be extracted
as multiple separate entities. To address these ambiguities and
ensure accuracy, it is crucial to perform an entity resolution
step before undertaking more complex knowledge extraction
tasks.

IV. SYSTEM OVERVIEW

A threat analysis report can be effectively represented as a
knowledge graph, where nodes signify threat-related entities
and edges represent the relationships between those entities.
The goal of our system is to analyze a threat report to extract
all mentioned entities, identify their types, determine pairs
of related entities, and accurately establish the relationship
that connects each pair. The entity extraction task is typically
framed as a named entity recognition task [32], [43]. While
identifying entity types, and related entities, and extracting re-
lationships may seem like straightforward classification tasks,
the complexity lies in accurately interpreting the nuances of
security text. To achieve this objective, we leverage post-
trained, general-purpose LLMs and apply continual fine-tuning
to adapt them for threat knowledge extraction tasks.

A. System Components

Figure 3 presents the system architecture alongside a de-
piction of the data workflow. The system preprocesses CTI



text and generates input segments, which are then sequentially
processed by the fine-tuned models. The output from T1, the
entity detection stage, is first verified and then passed to T2
for entity type classification. Once T2 produces typed entities,
they are verified and forwarded to T3, along with the original
text segment and STIX relationship matrix constraints. T3
identifies potential related entity pairs, which, after verifica-
tion, are passed to T4 for relationship type classification using
contextual information. Finally, the verified entities and their
relationships are compiled by the STIX Report Generator to
produce the structured output.

Report Preprocessing. This component accepts input in
the form of a URL, PDF document, or text document, and
converts it into plain text. In case of HTML, it strips away
all formatting except for HTML heading tags, which are
commonly used for titles. Given the variety of data found
in CTI reports, which includes both textual and non-textual
content, preprocessing of these reports is essential before
undertaking extraction tasks. During preprocessing, we retain
all code snippets and command lines due to their potential
relevance in providing insights into attack entities and threat
behaviors, especially given that many modern LLMs can
interpret code. Additionally, images, figures, charts, and graphs
are crucial non-textual elements frequently found in CTI texts.
Extracting information from these visual elements exceeds the
capabilities of LLMs, requiring the use of specialized vision
models. We leave the extraction of cyber security entities and
relationships from visual elements as future work.

Section Splitter. This component processes plain text re-
ports by dividing them into segments. Threat intelligence
reports are typically structured into sections, each dedicated
to a specific aspect of the content. We utilize the section titles
to segment these reports. This partitioning strategy ensures that
entities associated with particular threat activities are grouped
closely, providing the model with the necessary context to
execute each task effectively.

Fine-Tuned Models. Our initial exploration of several well-
established instruction-following models, that are fine-tuned
across a broad spectrum of tasks spanning numerous capability
areas, revealed that their performance varies across the four
tasks. This indicated that some of our tasks are more complex
and require specialized knowledge. Consequently, we opted
for continual fine-tuning of these models. During fine-tuning,
we incorporate the task-specific prompt with a context that
includes information about STIX entities and relationships
pertinent to the task, along with examples In our strategy,
we considered both developing task-specific models and a
model specializing in the combined tasks. We trained these
models using a specially curated dataset necessary for the four
tasks (Sec. V). We assessed the impact of the varying learning
rate, temperature, and top-p values to determine the optimal
hyperparameter setting (Sec. VI).

Entity Detection (T1). This module performs the task
of detecting all STIX entities (i.e., SDOs and SCOs) men-
tioned in the text passage. Identifying all SDOs and SCOs
in a report is essential for generating a comprehensive STIX

output. When dealing with SDOs, our primary focus lies in
identifying the names of the following SDOs: Attack Pattern,
Identity, Location, Malware, Threat Actor, Campaign, Tool,
Infrastructure, and Vulnerability, the descriptions of Course
of Action objects, and the value and sub-type of Indicator
objects. Regular expressions have proven highly effective for
accurately detecting structured attack indicators, such as IP
addresses, hashes, YARA rules, and registry keys. For T1, we
begin by identifying indicators using Indicators of Compro-
mise extractors, explained in Sec. VII-A, before applying our
models.

Entity Types Identification (T2). The purpose of this
module is to identify the type of each entity detected by T1,
based on the context in which the entity is mentioned. The
identification of entity types is crucial for constructing the
final STIX graph, as this information determines the potential
relationships between entities. This module takes as input the
identified entities in T1 and the text passages where they were
mentioned. Then, it goes through them individually and asks
the model to identify their STIX types.

Related Pairs Identification (T3). Given a list of entities
and their types along with the text passage where they are
mentioned, this module identifies pairs of related entities.
It utilizes the STIX relationship matrix, which defines valid
pairwise relationships (SROs) among all entity types (i.e.,
SDOs and SCOs). By iterating over all pairs of entity types
between which an SRO can be defined, the module extracts
all possible entity pairs that can be connected through a valid
SRO. For each pair of entities, multiple relationship options
are provided to the model to determine valid relationship types
that describe their interaction. To assess whether two entities
are related, these choices are supplemented with two additional
options: “is not related to” and “not sure”. This process is
repeated until all SROs associated with valid entity pairs are
identified.

Relationship Types Identification (T4). This module takes
as input all pairs of entities with identified types, a list of
possible relations between each pair, and a text passage where
both entities are mentioned, then it determines the most likely
relationship between a pair of related entities.

Human Verification and Feedback. Given that the tasks
follow a sequential order, a human verification and feedback
phase is incorporated following each task. This allows users
to add, delete, or alter the output from each task before it is
used in the subsequent one.

STIX Output Generator. Upon identifying the entities
and extracting relationships following the STIX standard, we
merge them to generate a JSON file that encompasses entities
and their relations in STIX format. This file serves as a
means for threat intelligence sharing and can be utilized with
TAXII2 or any other threat intelligence exchange protocol.
Figure 4 illustrates an example of the extracted knowledge
graph generated from user-provided text.

2https://oasis-open.github.io/cti-documentation/taxii/intro



Fig. 3: The architecture of AZERG.

The cyber espionage group known as “Shadow Dragon”, no-
torious for targeting financial institutions, recently conducted a
campaign against ”Global Finance Corp.” This institution, pri-
marily located in United States, was targeted using a custom
malware variant called “SerpentStealth”. The initial infection vec-
tor leveraged the “Spearphishing Attachment” technique (MITRE
ATT&CK T1566.001), tricking employees into executing the
payload. Once active, SerpentStealth established communication
with a command-and-control (C2) server located at the IP ad-
dress 198.51.100.5 for data exfiltration and receiving further
commands.

Fig. 4: Sample excerpt and its corresponding STIX graph
representation.

V. DATASETS

Fine-tuning and testing models for threat knowledge ex-
traction require ground truth annotations that align with STIX
standard definitions. Many threat intelligence vendors supply
STIX reports to their subscribers alongside threat analysis
reports. However, our search for publicly available STIX
report data revealed significant limitations. These STIX reports
primarily consist of indicator-type SDOs, which are largely
detectable through regular expression-based methods, but lack
essential SROs that define the relationships between entities.
To address this need, we manually curated a new dataset of
STIX entity and relationship objects. This dataset comprises
two sources, which we refer to as AZERG Data and AnnoC-
TRPlus—a revised and augmented version of the AnnoCTR

dataset introduced in [26].
AZERG Data. It comprises SDOs and SROs extracted from

21 full reports on malware campaigns recently published by
11 threat intelligence vendors. Our curation of these reports
was guided by strict selection criteria, aiming for a thorough
evaluation of LLM capabilities across diverse report types.
We specifically focused on selecting reports that included a
diverse range of textual elements—such as command lines and
code snippets—that extend beyond what regular expressions
can detect. The average report length is 1650 words, with
individual reports varying between 757 to 3.4K words.

AnnoCTRPlus. A portion of the AnnoCTR dataset anno-
tates named entities—such as organizations, locations, industry
sectors, code snippets, hacker groups, malware, tools—as well
as time expressions and adversarial tactics and techniques,
across 120 real-world CTI reports from five vendors. Because
some of these annotations overlapped with defined entity types
in the STIX standard, we manually reviewed and expanded
them to ensure alignment with the STIX standard trough a
two step process.

• Entities not belonging to any defined SDO category
(referred to as Concepts in AnnotCTR), such as the
words malware, attack, and payload, were removed,
while missing STIX entities like indicators, vulnerabili-
ties, and courses of action were added. The indicator type
enttities were added automatically using regular expres-
sions, while others, such as course of action, campaign,
and infrastructure, required manual annotation. In the
AnnoCTR dataset, each entity in multi-entity sentences
was initially referenced separately. We consolidated these
entries using fuzzy string matching, reducing unique
text passages to 744. Additionally, the dataset includes
inferred MITRE ATT&CK tactic and technique IDs, even
when not explicitly specified in the text. Due to the
challenges of extracting MITRE ATT&CK techniques
from security texts [25], [33], we retained only explicitly
mentioned attack patterns.

• The AnnoCTR dataset lacks entity relationships, so the
SROs within its text collection were manually annotated.

The manual annotation of both datasets was performed
by an expert in offensive security with over ten years of
experience in malware analysis. This expert conducted an in-



depth analysis of the STIX standard and thoroughly annotated
all SDO and SCO entities, along with their SRO relation-
ships, within the threat intelligence reports using the Doccano
framework3. To ensure accuracy, two additional experts—one
co-author and an external expert with comprehensive knowl-
edge of the STIX standard—reviewed these annotations and
performed cross-verification to resolve any inconsistencies.
Disputes that arose were mainly in three areas: (1) determining
the appropriate STIX relationship type for certain malware
actions. For instance, deciding if a malware checking for a
tool’s existence in a system aligns with the uses relationship
due to lack of more fitting relationships; (2) differentiating
between similar relationship types, such as owns versus hosts,
downloads versus drops, and uses versus exploits; and (3) clar-
ifying entity types in cases of ambiguous naming, particularly
concerning malware and threat actor entities. We provide the
details of our two sources in Table I.

TABLE I: Details of our data sources.

Dataset Text Passages Avg. Word per Passage Entities Relations
AZERG Data 170 102.76 2041 1073
AnnoCTRPlus 744 23.56 1970 1002

Train and Test Splits. The dataset is divided into two
non-overlapping parts for training and testing at report and
campaign levels. Although AnnoCTRPlus includes 120 CTI
reports compared to AZERG’s 21, the resulting number of
entities and relationships was comparable, suggesting An-
noCTR used shorter reports and partially annotated the reports,
potentially capturing fewer complex objects and relationship
types. Additionally, the text passages containing these STIX
objects were noticeably shorter (see third column of Table II),
limiting contextual detail. To accurately assess the real-world
performance of our tool in terms of precision and recall for
entities and relationships within full reports, we designated
11 AZERG Data reports for testing and 10 for training. This
split also allowed for vendor-level separation: the training set
included reports only from three vendors, while the test set
comprised reports from eight non-overlapping vendors. To
prevent any potential contamination, we further ensured that
malware campaigns described in the training set were absent
from the testing set.

Overall, the training split contains 2,664 entities and 1,510
entity relationships across 806 text passages (i.e., sections) that
provide context for detecting these objects within 130 CTI
reports. The test split includes 108 text passages, containing
1347 entities and 565 relationships, representing 33.58% of
all the entities and 27.22% of all relationship objects. To the
best of our knowledge, this is the largest publicly available
dataset annotating entities and relationships according to the
STIX standard4.

Table II provides the total number of STIX annotations
generated, along with the text contexts containing these STIX

3https://doccano.github.io/doccano/
4The dataset and models can be found at: https://huggingface.co/collections/

QCRI/azerg-687264a76236a362e833d8eb

objects. Figures 5 and 6 display the distribution of entity types
and relationships in our Train and Test splits, respectively.

TABLE II: Details of our train and test splits.

Dataset Text Passages Avg. Word per Passage Entities Relations
Train 806 35.5 2664 1510
Test 108 244.0 1347 565
Total 914 59.69 4011 2075

Fig. 5: Entity type distribution in our dataset.

Fig. 6: Relationship type distribution in our dataset.

VI. MODEL FINE-TUNING

LLMs typically undergo post-training with custom datasets
to enhance their ability to respond to a diverse array of
instructions. These post-trained models, often referred to as
chat or instruct models, become highly skilled at understanding
human intentions and executing required tasks. However, these
models may underperform in more specialized tasks where the
pre-training corpus lacks sufficient task-related data or when
the tasks deviate significantly from those encountered during
the post-training phase. In such cases, rapid adaptation to a
specific task can be achieved by incorporating a small number
of examples directly into the task instruction, a method known
as few-shot prompting. In our evaluation of various open- and
closed-parameter models, including GPT4o and Mistral-7B-
Instruct-v0.3, we observed that they can execute tasks T1-T4
with F1-scores ranging from 0.15 to 0.77 (Further details on
these results are provided in Sec. VII).



In our approach to fine-tuning, we performed continual fine-
tuning on already post-trained, open models to leverage their
existing capabilities. To achieve this, we used our curated
dataset of STIX annotations described in Sec. V. Utilizing
this data, we developed both task-specific models for T1-T4
individually, and a more comprehensive model that specializes
in all four tasks.

To select the final base model for task adaptation,
we fine-tuned six instruction-tuned models using AZ-
ERG Data: Google’s Gemma-2-9b-it, Alibaba’s Qwen2-7B-
Instruct, Meta’s Llama-3.1-8B-Instruct, Shanghai AI Lab’s
InternLM2 5-7b-chat, Mistral AI’s Mistral-7B-Instruct-v0.3,
and Microsoft’s Phi-3-mini-instruct. These models exhibited
varying performance on our tasks, with Gemma-2-9b-it ini-
tially performing the best. However, after further fine-tuning
using our task data, the Mistral-based model outperformed the
others, leading us to select it as our final base model.

The fine-tuning strategy for each task-specific model varied
in terms of how the models were prompted and the context
provided. For tasks T1 and T2, we supplied the model with
definitions of all STIX entity types and examples of entities
where applicable. The prompts for these tasks were designed
to detect the names of entities (T1) and to identify the types
of entities extracted during T1 (T2). Similarly, for tasks T3
and T4, we included possible entity relationship types between
each pair while adding the “is not related to” and “note
sure” options. In each instance, the model was tasked with
determining whether a pair of entities are related (T3) and
identifying the type of relationship between them (T4). The
prompt templates for each task are presented in Appendix B.

For fine-tuning, we used the training split of our curated
dataset (Table II), following approximately a 70/30 split ratio.
Notably, the training and testing reports were completely non-
overlapping. Additionally, the vendors of the reports and the
campaigns featured in the testing set were excluded from
the training data to prevent data contamination and to more
accurately evaluate the real-world performance of our system.

VII. EVALUATION

A. Implementation

For report preprocessing, we developed a custom parser that
segments reports into sections using heading tags, leveraging
BeautifulSoup5. In instances where heading tags are absent or
sections are excessively long, we segment the text based on a
predetermined length, allowing for overlapping segments. This
approach was generally unnecessary with high-quality vendor
reports but was implemented to accommodate PDF reports,
which we parse using PyPDF6. For matching Indicator objects
in text, we utilized IoCFinder7 and IoCParser8 libraries.

For fine-tuning, we employed LLaMa-Factory9 with Low-
Rank Adaptation (LoRA) [18], and a learning rate set at 10−4.

5https://www.crummy.com/software/BeautifulSoup/
6https://github.com/py-pdf/pypdf
7https://pypi.org/project/ioc-finder/
8https://pypi.org/project/iocparser/
9https://github.com/hiyouga/LLaMA-Factory

Regarding sampling parameters, we use a temperature of 0.7,
top-p of 0.1, and a maximum number of tokens is 1024 for T1,
10 for T2, T3, and T4. These parameters were used for all the
experiments and all the models unless otherwise specified. In
Appendix A, we detail our selection of parameters following
an extensive search. The fine-tuning process was conducted
on a machine equipped with an NVIDIA A100-80GB GPU,
running Ubuntu 22.04. For inference, we deployed the open
models on vLLM10, on one NVIDIA V100 32GB GPU. To in-
terface with the models and guide their outputs, we employed
DSPy11, where prompts are encoded as Signatures—DSPy’s
term for declarative specifications that outline the expected
input and output, thereby helping the models comprehend the
tasks they need to perform.

B. Performance of Fine-Tuned Models

We assess the performance of our fine-tuned models in
tasks T1-T4 (Sec. IV). During testing, each text passage from
the test split is used individually for extraction. The models
are prompted to perform each task using the same template
that was employed during fine-tuning. The responses from the
models are compared to the ground truth data to calculate
precision, recall, and F1-score values. We report results for
models specifically fine-tuned for each task (referred to as
AZERG-S-T*, where the star represents the task number), as
well as for our AZERG-MixTask model, which was fine-tuned
using a combination of the same data used for the specialized
models. Additionally, we present comparative results from
post-trained LLMs such as GPT4o and Mistral, alongside
state-of-the-art methods for each task.

Table III provides the performance for entity detection (T1),
a common task in threat knowledge extraction. For this task,
we evaluated two state-of-the-art methods, [30], [39], and also
included a generic transformer-based model for named entity
recognition [46] to benchmark our performance. We note that
the Regular Expressions were integrated with our models and
all the approaches that we compare with to ensure a fair
comparison.

Similarly, Table IV presents the results for the entity-
type detection task (T2). Since T2 is not addressed by other
methods, we only include results achieved by LLMs. In both
cases, we observe that our fine-tuned models significantly
outperform the other approaches, by a margin of 20% or
more. Notably, for T1, the mixed-task model yielded consid-
erably better results (84.43%) compared to the task-specific
model (80.23%). For T2, the task-specific model performed
marginally better (89.23% vs 88.49%).

The performance metrics for entity relationships are pre-
sented in Tables V and VI for tasks T3 and T4, respec-
tively. For T3, our fine-tuned models outperformed generic
instruction models, with the mixed-task model achieving a
2.3% improvement over the best-performing GPT4o model.
Additionally, the mixed-task model surpassed the task-specific

10https://github.com/vllm-project/vllm
11https://dspy-docs.vercel.app



model by 1.5% (95.47% vs. 93.97%). For T4, our fine-tuned
models demonstrated significantly better performance than the
best-performing GPT4o model, with a margin of 13-14%.
The mixed-task model also outperformed the task-specific
model by 1.3%. Deploying the AZERG-MixTask model in
combination with AZERG-S-T3 is expected to deliver optimal
system performance. However, given the marginal difference
in T3 performance, the mixed-task model offers a satisfactory
alternative with significantly lower computational cost.

Overall, the results demonstrate that our fine-tuned models
achieve an F1 score of approximately 84% or higher across all
threat knowledge extraction tasks, with T1 and T4 presenting
greater challenges. The difficulty of T1 likely stems from its
open-ended nature, requiring the model to identify all entities
within a passage—a task that becomes increasingly complex
as the number of entities grows. For T4, the challenge appears
to arise from the need to classify among similar relationships
(see Sec. VII-C). Additionally, the results indicate that only on
T3 does the GPT4o model perform comparably to our fine-
tuned models, while a significant performance gap is observed
for other tasks.

TABLE III: Evaluation of Model Accuracy and Comparison
for T1

Approach Precision Recall F1-Score

GPT4o 0.8635 0.4930 0.6277
Mistral-7B-Instruct-v0.3 0.7104 0.5003 0.5871
AttaKG [30] 0.3797 0.4098 0.3941
EXTRACTOR [39] 0.2640 0.3537 0.3023
GliNER [46] 0.2315 0.1997 0.2159

AZERG-S-T1 0.8482 0.7611 0.8023
AZERG-MixTask 0.9092 0.7880 0.8443

TABLE IV: Evaluation of Model Accuracy and Comparison
for T2

Approach Precision Recall F1-Score

GPT4o 0.6481 0.6481 0.6481
Mistral-7B-Instruct-v0.3 0.3363 0.3363 0.3363

AZERG-S-T2 0.8923 0.8923 0.8923
AZERG-MixTask 0.8849 0.8849 0.8849

Inference Time. For tasks that require more complex
generation, such as extracting all entities from a given text
(T1), the inference time is naturally higher at 2.57 seconds
per query. This reflects the increased computational demands
of this more involved task. In contrast, for tasks with more
streamlined output requirements, such as the other three tasks
(T2, T3, and T4), the inference times are significantly faster,
ranging from 1.54 seconds per query for T2 down to 0.58
and 0.36 seconds per query, for T3 and T4, respectively. This
demonstrates our system’s ability to scale its performance to
match the needs of these specific tasks.

C. Error Analysis
To identify the shortcomings of the AZERG-MixTask

model, we conducted an error analysis.

TABLE V: Evaluation of Model Accuracy and Comparison
for T3

Approach Precision Recall F1-Score

GPT4o 0.9234 0.9398 0.9315
Mistral-7B-Instruct-v0.3 0.8873 0.9203 0.9035
EXTRACTOR [39] 0.0889 0.0917 0.0902
GliREL [46] 0.7168 0.1849 0.2939

AZERG-S-T3 0.9335 0.9451 0.9393
AZERG-MixTask 0.9224 0.9893 0.9547

TABLE VI: Evaluation of Model Accuracy and Comparison
for T4

Approach Precision Recall F1-Score

GPT4o 0.7946 0.7946 0.7946
Mistral-7B-Instruct-v0.3 0.7097 0.7097 0.7097

AZERG-S-T4 0.8335 0.8335 0.8335
AZERG-MixTask 0.8460 0.8460 0.8460

1) Entity Detection (T1): Despite the strong overall per-
formance in T1, the analysis reveals specific areas where nu-
anced challenges remain, primarily impacting recall (0.7880,
corresponding to 291 missed entities). One such area involves
fine-grained semantic ambiguity and contextual interpretation.
While the model correctly identified most entities, it occasion-
ally struggled to distinguish STIX entities from closely related
technical terms (e.g., algorithm names like AES) or descriptive
concepts (e.g., Malware-as-a-Service), resulting in 108 false
positives, which accounted for less than 10% of the total ex-
tractions. The model’s contextual understanding was generally
effective but occasionally led to misinterpretations, such as
extracting nationalities like Iranian or Chinese as standalone
entities, or misclassifying code elements like function names
such as MalwareMain.

A more significant limitation lies in the model’s F1 score
(0.8443), which is primarily constrained by its lower recall
(0.7880) compared to its high precision (0.9092). This dis-
crepancy results from 291 entities that the model failed to
capture from the ground-truth human annotations. Areas of
reduced recall were most evident in non-IoC categories such
as Tool names, Malware variants, Threat Actor aliases, and
Identity references (e.g., vendors like ESET, organizations
such as the FBI, or platforms like GitHub). Notably, over
25% of Identity mentions were missed, often due to contextual
ambiguity regarding their involvement in the attack. Several
factors contributed to these omissions: (i) Some entities were
embedded within complex narrative structures or referenced
indirectly—such as through procedural descriptions or com-
parisons—making them more difficult to isolate than clearly
stated facts; (ii) The presence of dense, non-linguistic ele-
ments like IoCs (e.g., file hashes, IP addresses) interspersed
throughout the text may have disrupted the model’s language
understanding or diverted attention from key entities; and (iii)
The frequent use of aliases and synonyms in cybersecurity
reporting, such as multiple names for threat groups like APT34



or OilRig, posed additional challenges for comprehensive
extraction when compared to the reference annotations.

2) Entity Types Identification (T2): The model frequently
mislabeled certain entity types, as shown in Fig. 7, often con-
fusing Tools with Infrastructure, Tools with Identities, Tools
with Malware, and Threat Actors with Identities. For example,
distinguishing between Malware and a Threat Actor often
requires additional contextual information that may not always
be present in the report. In some cases, the Malware and Threat
Actor share the same name, with their classification depending
on the context, creating ambiguity for both the models and
human analysts. A similar issue happens when text passages
describe VPN servers or virtual machines infrastructure. The
models tend to classify such named entities as Tools (e.g.,
VMWare vSphere), even when the context indicates they
refer to infrastructure targeted by malware. Difficulties with
multi-word names can arise because the tokenizer might split
common technical terms, or the model’s attention mechanism
may fail to span the full entity phrase within complex sen-
tences. Crucially, context is essential not only to correctly
detect the entity itself (piecing together split terms or under-
standing the full span) but also to determine how that entity
should be subsequently handled. For example, consider the
Tool/Infrastructure confusion: product names like ’VMWare
vSphere’ can represent both the installable software (Tool)
and the resulting managed environment (Infrastructure). Dis-
ambiguating this requires nuanced contextual understanding,
which the model sometimes misses, especially in shorter text
segments. The surrounding text provides the necessary context
to decide if the entity should be treated purely as an identity
(the name/brand), purely as a tool (the function/software), or
as a combination of both identity and tool.

Fig. 7: Confusion matrix showing misclassified relationship
types in T2.

3) Related Pairs Detection (T3): The model performed
well, with only minor errors. The results indicate that 6 re-

lationships were missed, while 47 were incorrectly identified.
These incorrect relationships often occur in text passages
where verbs link two entities, even though such verbs are not
considered valid relationships in STIX. For example, verbs like
“checks”, “spawns”, and “steals” were sometimes misinter-
preted by the model as relationships. Furthermore, when para-
graphs contained multiple entities—such as malware, threat
actors, and tools—the model occasionally failed to capture all
relationships between them, leading to incomplete relationship
coverage.

4) Relationship Types Identification (T4): The model fre-
quently confuses semantically related relationships, as shown
in Fig. 8. Our analysis reveals that the relationship “uses” is
often misclassified as “communicates-with”, “exfiltrates-to”,
or “targets”. While “uses” is a generic verb that could encom-
pass other actions, the STIX standard provides clear definitions
that distinguish it from relationships like “communicates-
with”. This discrepancy highlights the challenge of adhering
to STIX-specific distinctions. The confusion between seman-
tically similar relationships like “uses” and “communicates-
with” highlights a challenge in aligning natural language
ambiguity with the strict definitions of the STIX standard.
Fine-tuning helps, but inherent overlaps in how actions are
described textually remain difficult.

Fig. 8: Confusion matrix for Relationship Type Identifica-
tion (T4) using the AZERG-MixTask model. Rows represent
the true relationship types, columns represent the predicted
types. Darker cells indicate higher counts. Note the confu-
sion between “uses” (predicted) and other relationships like
“communicates-with”, “targets”, and “exploits” (true), high-
lighting challenges in distinguishing related actions based on
text.

Error Amplification. As shown in Fig. 9, the presence
of Python code within the report caused the model to in-
correctly classify the strings “Wrde”, “Exco”, “Cllo”, and
“AppleWEBKit” as tools. While this error originates from a



single misclassification, it gets amplified to multiple strings,
significantly degrading the model’s performance in both T1
and T2.

Fig. 9: Example of an error from the Cranefly report [2]
encountered during tasks T1 and T2.

In Fig. 10, the threat actor “Shuckworm” has aliases
“Gamaredon” and “Armageddon”. While “Shuckworm” is cor-
rectly identified as having relationships with Russia, Ukraine,
and the Russian Federal Security Services, the model fails to
detect the same relationships for its aliases, “Gamaredon” and
“Armageddon”. As a result, the paragraph in the figure alone
accounts for 6 missing relationships.

Fig. 10: Example of an error from the Shuckworm report [4]
encountered during tasks T3 and T4.

In Fig. 11, the section discusses V3G4, a variant of Mirai,
and states that V3G4 exploits 13 vulnerabilities. While the
model correctly extracted the relationship between V3G4 and
these vulnerabilities, it incorrectly established a relationships
between Mirai and the same vulnerabilities, which is not
accurate according to the section. The section specifies that
V3G4 exploits these vulnerabilities, not Mirai. Additionally,
the model erroneously created relationships between tools and
vulnerabilities by assigning a single vulnerability to multiple
tools. These examples highlight where our model fails, with
the main issue being error amplification as the number of
entities in a section increases, which significantly impacts our
model’s performance, particularly in T3 and T4. However, this
kind of mistake correlation also makes it easier for domain
experts to identify and correct errors.

VIII. RELATED WORK

Entity Detection: This is the most well-studied threat
knowledge extraction task. Given that most entities involved
in a security context possess well-defined formats, like IoCs,
several tools that utilize regular expression rules have been

Fig. 11: Example of an error from the V3G4 report [28]
encountered during tasks T3 and T4.

designed for their automated identification. For entities without
standardized formats, like malware family names, adversary
groups, and identities, neural-named entity recognition models
have been introduced [7], [12], [15]. These approaches rely on
encoder models and finetune them with security text for the
Named Entity Recognition (NER) task. More critically, they
define their own knowledge graphs rather than the standardized
ones like STIX.

Entity Relationship Extraction: Several methods have
been proposed with a focus on devising NLP pipelines to
identify these relationships accurately. Most notably, in [16], a
specialized NLP pipeline is used to construct a threat behavior
graph. To accurately extract IoC relationships, a dependency
parsing-based method is proposed. Later, [15] expanded on
this method to identify a wider range of relationships. For
this, they modeled the relation extraction task as a multi-
class classification problem based on the premise that two
entities have a relation when they co-occur within a certain
distance within the text. To learn these relationships from the
text, they employed a piecewise convolutional neural network
model with an attention mechanism as the classifier.

In [39], authors introduced EXTRACTOR, a method for
extracting a provenance graph from APT attack reports. A
provenance graph represents system entities, such as processes,
files, network sockets, etc, as nodes and the operating system
calls showing how these entities interact as typed edges. To
perform this task, it incorporates a conventional NLP pipeline,
involving normalization, resolution, and summarization steps,
with a semantic role labeling step to determine the semantic
role of sentence components to extract the attack behavior and
subject, object, and actions of sentences.

In [29], authors propose AttacKG to aggregate threat intel-
ligence across numerous CTI reports with a focus on attack
techniques. This approach involves constructing a knowledge
graph that encapsulates the attack workflow at the technique
level, as detailed within the CTI reports. Based on this knowl-
edge graph, the authors introduce the “Technique Knowledge
Graph” (TKG), which outlines causal techniques derived from
attack graphs, providing a comprehensive depiction of the
entire attack chain in CTI reports. The process begins by
employing a parsing pipeline to analyze CTI reports, extracting
entities relevant to attacks and the dependencies between



them to formulate an attack graph. Following this, technique
templates are initialized using attack graphs that are built upon
examples of technique procedures gathered from the ATT&CK
knowledge base. After that, an improved graph alignment
algorithm is employed to correlate technique templates within
the attack graphs. This facilitates the alignment and refinement
of entities present in both CTI reports and technique templates.

The authors of [14] propose ThreatKG, which automatically
gathers CTI reports from different sources, extracting threat
insights, building a comprehensive threat knowledge graph,
and enhancing this graph by ingesting new information. To
tackle various challenges, ThreatKG proposes a structured
hierarchical framework to model a range of entities and
relationships in threat knowledge. In addition, it suggests a
deep learning-based method for extracting threat intelligence.
Moreover, it offers a flexible and expandable system architec-
ture for constructing, maintaining, updating, and exploring the
threat knowledge graph.

In [42], authors propose KnowCTI which is a tool for ex-
tracting cyber threat intelligence. It incorporates cybersecurity
knowledge to enhance semantic understanding in the security
domain. The process involves building a knowledge base,
training knowledge embeddings, refining relevant knowledge
triples, constructing a sentence tree, and employing graph
attention networks. Entity extraction is treated as a sequence
labeling problem, while relation extraction is approached as
a classification task. Similarly, [19] focuses on extracting
knowledge triplets from CTI texts using off-the-shelf LLMs,
but also incorporate an agent-based workflow. Alternatively,
the authors of [6] propose CyberEntRel, a model designed for
the joint extraction of entities and relations from CTI data.
The authors applied a “BIEOS” tagging scheme combined
with an attention-based RoBERTa-BiGRU-CRF model for
sequential tagging. The approach effectively extracts relation
triples—two entities and their associated relationship—using
a relation-matching technique.

Our approach stands out from the studies referenced in
three significant ways. Firstly, these studies do not prioritize
facilitating threat knowledge sharing, where entity and rela-
tionship types are defined freely by the specific needs of an
application rather than by a standard. AZERG is designed
to generate threat knowledge that can be shared with any
SOC tool or detection system that supports STIX, ensuring
broader applicability and impact on practice. Secondly, we
break down the overall task into smaller, more manageable
components, which allows models to perform with greater
accuracy. This segmentation also permits human experts to
participate actively in the process, providing guidance where
necessary. Lastly, we not only utilize off-the-shelf LLMs,
which possess cybersecurity domain knowledge and the ability
to follow instructions, but we also fine-tune them on real-world
data to specifically tailor their performance to our tasks.

STIX Report Generation: Few work proposed to generate
structured cyber threat information, complaint with the STIX
standard, from unstructured text [21], [34]. In this regard,
[21] proposes a solution that asks the users to manually enter

only STIX entities (without relationships) in a form. Then, the
solution stores the entities in a database to allow analysts to
make queries on the stored entities. [34] alternatively intro-
duced a tool designed to convert Android malware analysis
files (like logs) from the Malware Attribute Enumeration
and Characterization (MAEC) format to the STIX format.
This tool employs a dual-strategy for conversion: elements
in the MAEC file that are amenable to standard automated
analysis are identified for automatic conversion, while those
needing manual analyst intervention are marked for separate
processing. Our evaluation of the tool in [21] revealed that
it fails to include key entities such as malware and tools,
and crucially, it does not automatically handle relationships,
requiring manual input. Conversely, the study in [34] focuses
on converting Android malware analysis logs first to MAEC
and then to STIX. Consequently, analysts are still required to
manually review malware analysis logs to fill in any missing
information.

IX. CONCLUSION

In this paper, we introduced AZERG, a semi-automated
tool to help practitioners create STIX reports by processing
threat analysis reports. Our approach involves fine-tuning
LLMs to extract entities and relationships as defined by the
STIX standard. We detailed the challenges when using LLMs
to process threat analysis reports, identified a series of tasks,
and designed appropriate prompting strategies to effectively
utilize the power of LLMs to generate STIX reports. We
compiled an extensive dataset meticulously annotated with
ground truth information following a rigorous process. Our
evaluation of the dataset shows that AZERG achieves high
accuracy in terms of all tasks, and could help security analysts
quickly summarize critical information of cyber threats into
STIX reports. As there is limited availability of such datasets
in the threat intelligence domain, we made our collected
datasets available to the research community, which is another
contribution of this work. For future work, AZERG produces
knowledge graphs that can be stored in a graph database. This
will allow users to run queries on their graphs and discover
hidden patterns especially that cross-reports relations can be
modeled.
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APPENDIX A
IMPACT OF HYPERPARAMETERS ON PERFORMANCE

We investigated the effects of varying learning rates, tem-
perature settings, and top-p values on the accuracy of the fine-
tuned models.

Fig. 12: Impact of learning rates (log scale) on F1-Score for
tasks T1-T4 using the AZERG-MixTask model. A learning
rate of 10−4 yielded the best overall performance.

Changing learning rate. The learning rate is a crucial
parameter that controls the integration of newly acquired
information with previously learned knowledge in machine
learning models. Higher learning rate values may cause the
model to overwrite previously encoded knowledge due to
excessively large updates, potentially leading to poor general-
ization. Conversely, excessively low learning rates can impede
the assimilation of new information, resulting in slow learning
progress and the risk of underfitting. An optimal learning rate
balances the absorption of new data with the retention of
existing knowledge to ensure effective model training. In our
experiments, we fine-tuned the AZERG-MixTask model using
a range of learning rates in {10−6, 10−5, 10−4, 10−3}. The
F1-scores for each task are shown in Fig. 12. Based on these
results, a learning rate of 10−4 has been determined to be
optimal for the continual fine-tuning of the mistralai/Mistral-
7B-Instruct-v0.3 model across all tasks.

Changing sampling parameters. The temperature and
top-p parameters shape the distribution of token probabili-
ties during decoding. Higher temperature values flatten this
distribution, increasing the selection of less likely tokens
and adding randomness to the generated text. In contrast,
lower temperatures favor more probable tokens, resulting in
predictable outcomes. The top-p parameter controls the range
of token selection. Higher top-p values include a wider array
of tokens up to a certain cumulative probability, enhancing
variability. Lower top-p values restrict this to the most likely
tokens, thus producing more predictable text. To select the
optimal temperature and top-p values, we performed a grid
search over a range of temperatures (0.0, 0.4, 0.7, 1.0, and
1.5) and top-p values (0.1, 0.4, 0.7, 0.95, and 1.0). Our search
reveals that the optimal values for temperature and top-p are
0.7 and 0.1, respectively.

Fig. 13: F1-score heatmap for T1.

Fig. 14: F1-score heatmap for T2.

We present the results of our grid search for the optimal
setting for the temperature and top-p values. Fig. 13, Fig. 14,
Fig. 15, and Fig. 16 represent the F1-score heatmaps of T1,
T2, T3, and T4, respectively.

We observe that lower temperatures (0.0 and 0.7) generally
yield better F1-scores across most tasks, particularly for T2,
where the F1-score is consistently high. As the temperature
increases to 1.0, the performance very slightly decreases for
all tasks, and beyond that there is a marked drop in F1-
scores, indicating that higher temperatures negatively impact
the model’s predictive accuracy. In terms of top-p values,
a top-p of 0.1 produces the best overall performance, with
consistently high F1-scores across all tasks. As top-p increases,
the F1-scores gradually decrease, with the lowest performance
observed at a top-p of 1.0. This suggests that a more conserva-
tive sampling strategy (lower top-p) is more effective for this
model in maintaining high accuracy across different tasks.

We note that T1 has a higher sensitivity to sampling
parameters. This is due to the nature of the task that asks the
model to extract all entities from a text. It does not limit the
choices for the model as per the other tasks that give precise
choices for the model to select from. To this end, the optimal



Fig. 15: F1-score heatmap for T3.

Fig. 16: F1-score heatmap for T4.

parameter pair is temperature 0.7 and top-p 0.1.

APPENDIX B
PROMPT TEMPLATES

In this section, we present the prompts we used for our fine-
tuning and inferences stages. We note that the same prompts
were used to evaluate the state-of-the-art language models.

# Instruction:

You are a helpful threat intelligence analyst.

Your task is to extract all STIX entities

mentioned in the input. To help you, here is

a list of the possible STIX entity types.

STIX entity types:

- ATTACK_PATTERN: A type of TTP that describes

ways that adversaries attempt to compromise

targets. (e.g., T1051, T1548.001, etc.)

- CAMPAIGN: A grouping of adversarial behaviors

that describes a set of malicious activities

or attacks (sometimes called waves) that occur

over a period of time against a specific set of

targets.

- [...]

Answer in the following format: <entities>LIST

OF IDENTIFIED ENTITIES SEPARATED BY PIPE |

(e.g., Ent1|Ent2|...|Entn)</entities>

# Input:

- Text Passage: [INPUT TEXT]

# Response:

Fig. 17: The employed prompt for T1.

# Instruction:

You are a helpful threat intelligence analyst.

Your task is to assign a STIX entity type

to the given Entity in the input. To help

you, here is a list of the possible STIX

entity types. [STIX ENTITY TYPES] Choose

STIX ENTITY TYPE from list of possible

answers: ["ATTACK_PATTERN", "CAMPAIGN",

"COURSE_OF_ACTION", "IDENTITY", "INDICATOR",

"INFRASTRUCTURE", "LOCATION", "MALWARE",

"THREAT_ACTOR", "TOOL", "VULNERABILITY"].Answer

in the following format: <entity_type> ONE OF

STIX ENTITY TYPES </entity_type>

# Input:

- Entity: [TARGET ENTITY]

- Text Passage: [INPUT TEXT]

# Response:

Fig. 18: The employed prompt for T2.



# Instruction:

You are a helpful threat intelligence analyst.

Your task is to identify if the source entity

and the target entity in the provided text

passage are semantically related. To help you,

we provide all the possible relationship labels

between the source and target entities. If any

label applies to the relationship, answer YES.

Otherwise, answer NO.Answer in the following

format: <related>YES or NO</related>

# Input:

- Source Entity: [SOURCE ENTITY (ENTITY TYPE)]

- Target Entity: [TARGET ENTITY (ENTITY TYPE)]

- Possible Relationship Labels: [STIX

RELATIONSHIP LABELS BETWEEN SOURCE AND TARGET

ENTITIES] - Text Passage: [INPUT TEXT]

# Response:

Fig. 19: The employed prompt for T3.

# Instruction:

You are a helpful threat intelligence analyst.

Your task is to identify the label of the

relationship between the source entity and the

target entity in the provided text passage.

To help you, we provide all the possible

relationship labels between the source and

target entities.Answer in the following format:

<label>Your chosen label</label>

# Input:

- Source Entity: [SOURCE ENTITY]

- Target Entity: [TARGET ENTITY]

- Possible Relationship Labels: [STIX

RELATIONSHIP LABELS BETWEEN SOURCE AND TARGET

ENTITIES]

- Text Passage: [INPUT TEXT]

# Response:

Fig. 20: The employed prompt for T4.


