arXiv:2507.16585v1 [cs.CR] 22 Jul 2025

LLMxCPG: Context-Aware Vulnerability Detection Through Code Property
Graph-Guided Large Language Models

Ahmed Lekssaysl*, Hamza Mouhcine!”, Khang Tran2, Ting Yu3, Issa Khalil!
! Qatar Computing Research Institute, >New Jersey Institute of Technology,
SMohamed bin Zayed University of Artificial Intelligence

{alekssays,

hmouhcine,

ikhalil}@hbku.edu.qga,

kt36@njit.edu, ting.yul@mbzuai.ac.ae
* Joint first authors with equal contribution

Abstract

Software vulnerabilities present a persistent security chal-
lenge, with over 25,000 new vulnerabilities reported in the
Common Vulnerabilities and Exposures (CVE) database in
2024 alone. While deep learning based approaches show
promise for vulnerability detection, recent studies reveal criti-
cal limitations in terms of accuracy and robustness: accuracy
drops by up to 45% on rigorously verified datasets, and per-
formance degrades significantly under simple code modifi-
cations. This paper presents LLMxCPG, a novel framework
integrating Code Property Graphs (CPG) with Large Lan-
guage Models (LLM) for robust vulnerability detection. Our
CPG-based slice construction technique reduces code size
by 67.84 to 90.93% while preserving vulnerability-relevant
context. Our approach’s ability to provide a more concise and
accurate representation of code snippets enables the analy-
sis of larger code segments, including entire projects. This
concise representation is a key factor behind the improved
detection capabilities of our method, as it can now identify
vulnerabilities that span multiple functions. Empirical evalua-
tion demonstrates LLMxCPG’s effectiveness across verified
datasets, achieving 15-40% improvements in F1-score over
state-of-the-art baselines. Moreover, LLMxCPG maintains
high performance across function-level and multi-function
codebases while exhibiting robust detection efficacy under
various syntactic code modifications.

1 Introduction

Software vulnerabilities continue to pose significant security
risks, with the Common Vulnerabilities and Exposures (CVE)
database reporting over 25,000 new vulnerabilities in 2024
alone [30]. Detecting these vulnerabilities early in the devel-
opment life cycle is crucial for preventing security breaches
and maintaining software integrity. However, despite exten-
sive research, identifying vulnerabilities in complex code-
bases remains a challenging problem.

Recent approaches leveraging deep learning models have
shown promise in vulnerability detection [2,4,24,29]. How-

ever, these approaches face several critical limitations that
hinder their practical application. First, they typically focus on
function-level analysis, overlooking crucial inter-procedural
dependencies and broader program context [5,18,19,21,27,28,
43]. Second, recent comprehensive evaluations have exposed
weaknesses in their reliability. In a thorough assessment, Ding
et al. [5] introduced PrimeVul, a rigorously verified dataset
where vulnerability labels were validated through multiple
rounds of expert review and dynamic analysis. When state-of-
the-art models were evaluated on this dataset, they exhibited
dramatic performance degradation, with accuracy dropping
by up to 45% compared to their reported results on tradi-
tional datasets. This significant performance gap suggests
that these models may be learning superficial patterns rather
than meaningful vulnerability indicators. This hypothesis is
further supported by Risse et al. [26], who demonstrated sig-
nificant performance drops when evaluating these models on
datasets with simple modifications such as changes to func-
tion or parameter names. Finally, many approaches [14,29]
are constrained by small embedding models with limited con-
text windows, restricting their ability to analyze large code
segments effectively.

To address these fundamental challenges, we present
LLMxCPG, a novel approach that combines Code Property
Graphs (CPG) with Large Language Models (LLM) for ro-
bust vulnerability detection. Our approach systematically ad-
dresses the limitations of existing methods through its tech-
nical architecture. First, to overcome the context limitation
and enable effective analysis of large codebases, LLMxCPG
introduces a sophisticated CPG-based analysis that converts
input code into precise vulnerability-focused code slices. This
slice construction process works in three phases: 1) extracting
potential vulnerable execution paths using the Static Applica-
tion Security Testing (SAST) tool Joern and its CPGQL query
language, ii) analyzing execution paths through CPG traver-
sal to identify code elements that interact with the execution
paths, and iii) constructing focused code snippets containing
only essential components related to potential vulnerabilities
by applying backward slicing. Second, to ensure robust fea-

https://arxiv.org/abs/2507.16585v1

ture learning beyond superficial patterns, we leverage these
focused code slices to fine-tune a large language model specif-
ically for vulnerability detection, enabling it to learn from and
identify vulnerability patterns in concise and relevant code
contexts.

Our empirical analysis demonstrates how LLMxCPG suc-
cessfully addresses the limitations of existing approaches. The
slice construction approach achieves significant code reduc-
tion ratios, ranging from 67.84% for function-level datasets
to 90.93% for multi-function codebases. By focusing the
model’s attention on these concise, vulnerability-relevant
code segments rather than entire codebases, LLMxCPG en-
ables more effective learning of vulnerability characteristics.
This targeted learning translates directly into robust perfor-
mance: unlike existing approaches that show significant degra-
dation on high-quality datasets, LLMxCPG maintains consis-
tent performance across both traditional datasets and rigor-
ously verified ones. The effectiveness of our focused learning
approach is reflected in substantial improvements over state-
of-the-art baselines, with increases of 15%-40% in F1-score
and 9-27% in Accuracy on function-level real-world vulner-
ability detection tasks. Moreover, while current approaches
struggle with complex codebases, LLMxCPG demonstrates
strong generalization capabilities on both function-level and
multi-function codebases, performing effectively in scenar-
ios where existing approaches fail to exceed random-guess
performance. The system’s robustness is further evidenced
by its consistent detection efficacy under various syntactic
modifications while preserving semantic equivalence, directly
addressing the brittleness observed in current approaches.

Contributions. The contributions of this paper are summa-
rized as follows:

e Integration of LLMs with Program Analysis. We present
a novel framework that effectively combines traditional
program analysis techniques (CPG) with modern large
language models, creating a hybrid approach that lever-
ages the strengths of both methodologies for improved
vulnerability detection.

* Vulnerability-Focused Slice Construction. We introduce
a sophisticated code slicing technique that leverages
Code Property Graphs (CPG) to extract vulnerability-
relevant code segments that capture the essential ele-
ments of potential vulnerabilities while eliminating irrel-
evant code.

e Generalizability to Complex Codebases. We demon-
strate the generalizability of LLMxCPG to both unseen
function-level datasets and real-world open-source soft-
ware.

* Robustness against Code Transformations. We evaluate
LLMxCPG under different code transformations and
show that it maintains its detection efficacy.

e Open-Source Code and Datasets. All source code and
datasets used in this study are open-source, supporting
reproducibility, transparency, and further research in the
domain of software security.

Outline. The remainder of this paper is organized as fol-
lows: Section 2 provides background on vulnerability detec-
tion and code property graphs. Section 3 details our LLMx-
CPG approach. Section 4 presents our experimental setup,
evaluation methodology, and results. Section 5 discusses our
results and their implications. Section 6 reviews related work,
and Section 7 concludes with future research directions.

2 Background

2.1 Vulnerability Detection

Software vulnerability detection remains a critical research
area in computer security, with approaches broadly catego-
rized into static and dynamic analysis techniques. On the
one hand, dynamic analysis techniques observe program be-
havior during execution through methods such as fuzzing,
and dynamic taint tracking [23]. While these approaches pro-
vide more precise vulnerability detection by analyzing actual
program execution paths, they face challenges in achieving
comprehensive code coverage and handling the exponential
growth of execution paths. Modern approaches increasingly
leverage large language models and hybrid techniques that
combine static and dynamic analysis, demonstrating improved
detection capabilities while managing computational over-
head [5].

Static analysis methods, on the other hand, examine pro-
gram code without execution, utilizing techniques such as
pattern matching, data flow analysis, and abstract interpreta-
tion to identify potential security flaws [32]. These approaches
offer comprehensive coverage but often generate false posi-
tives due to the inability to verify runtime behavior. Recent
advancements in machine learning-based vulnerability detec-
tion have shown promise in improving detection accuracy,
though challenges remain in handling complex codebases
and reducing false positives [4]. In this work, we focus on
developing novel static code analysis tools powered by LLMs
to enhance vulnerability detection performance on real-world
code snippets.

2.2 Code Property Graphs

Code Property Graphs (CPGs) represent a unified approach
to program analysis by merging multiple code representa-
tions into a single graph structure [39]. This representation
combines abstract syntax trees (ASTs), control flow graphs
(CFGs), and program dependence graphs (PDGs) into a joint
data structure, enabling comprehensive analysis of code prop-
erties. The CPG preserves the syntactic structure from ASTs,

control flow information from CFGs, and both control and
data dependencies from PDGs, allowing complex patterns to
be expressed through graph traversals. Analysts can express
patterns through graph traversals using custom graph query
languages. These traversals can be efficiently executed using
graph databases, making it practical to analyze large-scale
software projects.

Due to this advantage, CPGs have emerged as a particu-
larly effective tool for vulnerability detection. By combining
syntactic, control flow, and data dependency information in a
unified representation, CPGs enable the precise formulation
of vulnerability patterns through graph traversals. This com-
prehensive view allows security analysts to express complex
vulnerability patterns that would be difficult to capture using
traditional static analysis approaches. For instance, CPGs can
effectively model patterns for buffer overflows by simultane-
ously analyzing allocation operations in the abstract syntax
tree, validating control flow paths for proper bound checking,
and tracking data dependencies to identify attacker-controlled
input [23]. In this work, we employ Joern [39], an open-source
static analysis tool that generates CPGs and supports queries
over CPGs using the CPGQL language.

3 Methodology

3.1 System Overview

We propose LLMxCPG, a novel approach that capitalizes on
the structural representation provided by CPGs while leverag-
ing the sophisticated pattern recognition and generative abili-
ties of Large Language Models (LLMs) for code vulnerability
detection as depicted in Figure 1. Our approach comprises
two specialized models, each fine-tuned for distinct tasks in
our two-phase process. The first model, LLMxCPG-Q, fo-
cuses on the slice construction phase by generating CPGQL
queries that identify potentially vulnerable execution paths
within the code. These queries enable the extraction of fo-
cused, security-critical code segments. The second model,
LLMxCPG-D, handles the classification phase by analyzing
these extracted code slices to determine their vulnerability sta-
tus, categorizing them as either Vulnerable or Safe. This dual-
model architecture combines the precision of graph-based
program analysis with the advanced reasoning capabilities of
state-of-the-art language models, enabling more accurate and
interpretable vulnerability detection compared to traditional
approaches. We note that the two models LLMxCPG-Q and
LLMxCPG-D are finetuned from Qwen2.5-Coder-32B In-
struct and QwQ-32B-Preview, respectively (see Section 4.2
for more details). We note that, in what follows, when we
refer to LLMxCPG, we are referencing the entire process,
including both slice construction and vulnerability detection.

3.2 Slice Construction

Current vulnerability detection methods typically analyze
code in its raw, unprocessed form, rather than first distilling
it down to smaller, more focused code snippets [29]. This
approach is problematic because vulnerable code often con-
tains only a small fraction of lines that are actually related
to the vulnerability. As a result, detection models face two
key challenges: 1) including codes irrelevant to vulnerabilities
increases token usage, ii) struggling to discern truly relevant
vulnerability patterns, often leading to models relying on spu-
rious features [26].

An intuitive approach to deal with the spurious feature issue
is to use program slicing [36]. Program slicing is a method to
reduce a program into a smaller representation using data flow
and control flow analysis. The outcome of this operation is
called a slice, which is an independent program that faithfully
represents the original program within the domain of the spec-
ified subset of behavior. More specifically, in our case, slices
can be utilized to capture vulnerability behavior, minimize
noise, and focus on the relevant vulnerability features.

To generate a slice, a criterion point must be selected first.
In vulnerability detection, the criterion point is a line of code
that contains an insecure variable or an insecure function call.
A variable or function call is considered insecure when it
can potentially lead to security vulnerabilities if not properly
handled. This includes user-controlled input that flows into
security-sensitive operations without proper validation or san-
itization, functions known to be dangerous if misused (like
strcpy in C which can cause buffer overflows), or variables
that store sensitive data (like passwords or encryption keys)
without appropriate protection. These insecure elements are
typically identified through a combination of pattern matching
against known vulnerable function signatures, taint analysis
to track the flow of untrusted data, and control flow analysis
to understand how variables and function parameters are used
throughout the program. Once a criterion point is identified,
the program slice is constructed by analyzing both its depen-
dencies and its impacts: backward slicing captures all code
elements that may influence the criterion point’s behavior,
while forward slicing identifies all code elements that the
criterion point may affect. For both operations, the captured
code elements include:

* Data dependencies: All variables, expressions, and
statements that directly or indirectly affect the value of
variables used in the criterion point, captured by tracing
back the data flow.

¢ Control dependencies: Structures such as if, for, and
while statements that determine whether the criterion
point is executed, captured by tracing back the control
flow.

Challenges in Program Slicing. Program slicing is often
not straightforward, as it presents various challenges depend-

LLMXCPG'Q

Joern *ﬁ Execution Path ’—» Concise Slice }—) LLMxCPG-D —> Class (Vuln, Safe)

| Query Generation

Slice Concstruction Code Classification

Figure 1: System Overview

v drivers/net/wireless/b43/dma.c [0 % +1-1 88
1539 - if (unlikely(len > ring=>rx_buffersize)) {
1539 + if (unlikely(len + ring->frameoffset > ring->rx_buffersize)) {
1540 1540 /% The data did not fit into one descriptor buffer
1541 1541 * and is split over multiple buffers.
1542 1542 * This should never happen, as we try to allocate buffers
1543 1543 + big enough. So simply ignore this packet.
1544 1544 *
1545 1545 int cnt = 0;
1546 1546 s32 tmp = len;
1547 1547
1548 1548 while (1) {
1549 1549 desc = ops—>idx2desciring, *slot, &meta);
1550 1550 /% recycle the descriptor buffer. &/
1551 1551 b43_poison_rx_buffer(ring, meta->skb);
1552 1552 sync_descbuffer_for_device(ring, meta->dmaaddr,
1553 1553 ring->rx_buffersize);
1554 1554 #slot = next_slot(ring, *slot);
1555 1555 enti+
1556 1556 tmp -= ring->rx_buffersize;
1557 1557 if (tnp <= @)
1558 1558 break;
1559 1559 }
1560 1560 ba3err(ring->dev->wl, "DNA RX buffer too small "
1561 1561 “{len: %u, buffer: %u, nr-dropped: %d)\n",
1562 1562 len, ring->rx_buffersize, ent);
1563 1563 goto drop;
1564 1564 }
1565 1365
1566 1566 dmaaddr = meta->dmaaddr;
1567 1567 err = setup_rx_descbuffer(ring, desc, meta, GFP_ATOMIC);
1568 1568 if (unlikely(err)) {
1569 1569 ba3dbg(ring->dev->wl, "DMA RX: setup_rx_deschuffer() failed\n");
1570 1570 goto drop_recycle_buffer;
1571 1571 }
1572 1572
1573 1573 unmap_descbuffer(ring, dmaaddr, ring->rx_buffersize, 0);
1574 1574 skb_put (skb, len + ring->frameoffset);
1575 1575 skb_pull(skb, ring->frameoffset);

Figure 2: An example of a buffer overflow vulnerability from
CVE-2011-3359.

ing on the specific vulnerability being addressed. First, select-
ing appropriate criterion points is complex: while approaches
like UltraVCS [37] use predefined sets of sensitive function
calls in C, developers often create custom wrappers around
these functions, making them harder to detect. Other methods,
such as Snopy [1] and MVP [38], attempt to identify crite-
rion points by analyzing differences between vulnerable and
patched code versions, but this approach can be unreliable
as patches frequently include unrelated refactoring changes.
Second, even when criterion points are correctly identified,
the resulting slices often contain unnecessary code. For ex-
ample, in the buffer overflow vulnerability shown in Figure 2
(CVE-2011-3359), selecting the if condition at line 1539
as the criterion point would include the entire if block in
the slice, despite many of these lines being irrelevant to the
vulnerability.

To address these challenges, we propose a novel approach

v srefutils.e (@ % +5 -1 smEn
30 30
31 31 int pure_memcmp(const void % const bl_, const void * const b2_, size_t len)
2 32 {
33 33 const unsigned char *bl = (const unsigned char %) bl_;
34 34 const unsigned char *b2 = (const unsigned char ¥} b2_;
35 35 size_t i;
36 36 unsigned char d = (unsigned char) oU;
37 37
38 38 for (1= 8U; i < len; i++) {
39 39 d |= b1l[i] ~ b2[il;
40 40 ¥
a4 return (int) ((1 & ((d = 1) >> 8)) = 1);
42 42 }
43 43
44 44 #endif
45 45
46 46 int pure_strcmp(const char % const s1, const char # const s2)
47 47 {
48 - return pure_memcmp(si, s2, strlen(sl) + 1U);
48 + const size_t s1_len = strlen(sl);
49+ const size_t s2_len = strlen(s2);
50+ const size_t len = (s1_len < s2_len) ? sl_len : s2_len;
51
52 + return pure_memcmp(sl, s2, len + 1);

49 53 }

Figure 3: An example of a buffer overflow vulnerability from
CVE-2020-9365.

that shifts focus from individual criterion points to execution
paths. Instead of relying on predefined sensitive functions or
code differences, we leverage CPGs to identify potentially
vulnerable execution paths. This graph-based approach allows
us to capture the essential flow of data and control while
minimizing the inclusion of irrelevant code.

Slice Construction. Our slice construction approach works
in three main steps. First, we use the SAST tool Joern and
its CPGQL query language to identify potential vulnerability
root causes in the code, focusing on execution paths rather
than analyzing the entire codebases that span multiple func-
tions or files. Second, we analyze each execution path by
traversing the CPG to identify variables that interact with
that path. Third, we build our final slice by gathering all code
elements that influence both the execution path and its in-
teracting variables. The result is a focused code snippet that
contains only the essential components: the execution path
itself, the variables that interact with it, and any code that
affects either of these elements.

3.2.1 Taint Path Extraction

For taint path extraction, we employ CPGQL, a specialized
query language designed for analyzing code property graphs

‘ s1 parameter (L46) ‘ ’ s2_len definition (L49) ‘ @ Main Execution Path

. Interacting Elements

@ Influencers

’ s1_len constant (L48) ‘ ‘ s2_len constant (L50) ‘

len constant (L50)

pure_memcmp call (L52)

’ b1_ parameter (L31) ‘ ‘ b2 definition (L34) ‘

| |

’ b1 assignment (L33) ‘ ‘ b2 constant (L39) ‘ ‘ for loop (L38) ‘

d |= b[i] A b2[i] (L39)

Figure 4: Slice extraction on CVE-2011-3359.

val source = cpg.identifier.name("len"

val sink = cpg.call.name ("skb_put").where(_.
argument.order (2) .codeExact ("len + ring—>
frameoffset"))

val execution_paths = sink.reachableByFlows (
source)

N

[98)

Listing 1: Example CPGQL queries to identify sources, sinks,
and execution paths.

in Joern. CPGQL facilitates the navigation and analysis of
code property graphs via queries targeting specific code pat-
terns. For instance, the following query identifies all function
calls within a method named processData:

cpg.method.name ("processData") .call.name

A critical step in LLMxCPG is the design of CPGQL
queries to extract execution paths relevant to the target vulner-
abilities. For example, in Listing 1, the first query identifies
the source of the vulnerability (the identifier 1en), while the
second locates the sink (a call to skb_put), which might fail
without proper buffer size checks. The final query identifies
all execution paths between the source and sink.

Fine Tuning for Query Generation. The goal of this step
is to to have a model that can generate valid CPGQL queries
that target a specific vulnerability pattern depending only
on the provided code snippet with no additional information
such as CWE type, or vulnerability location. While power-
ful language models like DeepSeek, ChatGPT, and Qwen
excel at general code generation, they initially struggle with
generating effective CPGQL queries since CPGQL is a low-

resource language. However, since CPGQL is based on Scala,
we leverage this similarity to fine-tune the Qwen2.5-Coder-
32B-Instruct model (currently the best code model available)
to generate CPGQL queries. To create our training data, we
utilize DeepSeek-v3 to generate an initial set of queries. We
generate and test queries on a Joern server, Feedback is pro-
vided to the model whenever queries contain syntax errors
or fail to identify vulnerable paths, enabling iterative refine-
ment and improvement. Henceforth, we will refer to the query
generation fine-tuned model as LLMxCPG-Q.

3.2.2 Interacters: Finding Variables that Interact with
the Execution Path

As shown in Figure 4, each extracted path represents a spe-
cific flow of data and control through the code. For example,
in the CVE-2020-9365 vulnerability (Figure 3), LLMxCPG
identifies a key execution path (shown in Blue Boxes). How-
ever, this execution path alone does not provide a complete
vulnerability assessment, as it lacks the definition of the s2
constant. Without this contextual information, determining
the security implications of this execution path is not feasible.
To build a comprehensive understanding, we must identify all
code elements that interact with this path. We achieve this by
navigating the CPG using the query language to find all inter-
acting code elements. Listing 2 shows two queries. The first
query, generated by LLMxCPG-Q, captures potential vulnera-
ble execution paths. The second query identifies all identifiers
that interact with the captured execution path. An identifier
is considered an interacter if its line number matches the line
number of at least one code element in the execution path.

I|val execution_path_nodes = <query to extract the
execution path generated by LLMxCPG-Q>

cpg.identifier.filter (id => execution_path_nodes.
lineNumber.toSet.intersect (id.lineNumber.1.
toSet) .size.equals (1)

\]

Listing 2: CPGQL query to identify nodes that interact with
the extracted execution path.

3.2.3 Backward Slicing for Focused Code Snippet Con-
struction

In the final step, we use backward slicing to build a com-
plete code snippet that includes both the execution path and
its interacting elements. As illustrated in Figure 4, this pro-
cess captures all essential dependencies, such as the s2_len
definition, the b2 string initialization, and the relationship
between the for loop and the len variable. This comprehen-
sive slice provides all the context needed to understand the
potential vulnerability. We note that we automate the process
of applying a backward slice using a CPGQL query. Listing
3 shows the query used to perform backward slicing. The

reachableByFlows API identifies all code elements that in-
fluence either the execution path or its interacters. Internally,
Joern utilizes the Program Dependency Graph (PDG) to con-
struct the backward slice.

I|... queries to extract execution path and the
interacters.

2| execution_path_and_interacters.reachableByFlows (
cpg.all)

Listing 3: CPGQL query to apply backward slicing.

3.3 Vulnerability Detection

The slice construction process reduces code samples that span
multiple functions and multiple files to concise snippets of
code that better represent the characteristics of the vulnerabili-
ties. For example, the 85 lines of code function in Figure 2, can
be compressed to an 18-line code function by using CPGQL
queries as shown in Listing 4. This path extraction approach
significantly enhances vulnerability detection by isolating the
security-relevant code patterns specific to each CWE type
while eliminating non-essential code. By focusing on the crit-
ical data and control flow paths that characterize potential
vulnerabilities (such as source-to-sink paths for taint-style
vulnerabilities or validation-check patterns for input handling
flaws), this method minimizes noise that would otherwise ob-
scure vulnerability signatures. We show the overall workflow
to classify code as Vulnerable or Safe in Figure 6.

Fine Tuning for Classification. As previously noted, we
fine-tuned the QwQ-32B-Preview model for the classification
task. To construct the fine-tuning dataset for classifying code
slices as either vulnerable or safe, we extracted code snippets
from both vulnerable and safe samples in the training dataset
using LLMxCPG-Q given the groundtruth labels in our train-
ing datasets. To this end, the fine-tuned classifier model will
be referred to as LLMxCPG-D.

Note that this approach is equally effective for compressing
safe code samples. For instance, in the previously mentioned
example in Figure 2, the patched version of the code involves
only a single change at line 1539, where the if condition
was modified to ensure sufficient buffer size. Applying the
same CPGQL query-based approach to this patched version
reduces noise and highlights the specific security-relevant
modification. The ability to precisely identify and isolate
security-critical changes between vulnerable and patched ver-
sions makes LLMxCPG particularly valuable for understand-
ing vulnerability fixes and generating high-quality training
data for vulnerability detection models. In fact, since high-
quality datasets in the vulnerability detection domain are
scarce, we plan to use our approach in future work to compile
an open-source, large, and high-quality dataset for training
vulnerability detection models.

|| static void dma_rx(struct b43_dmaring *ring,
int *slot)

214

3 ul6 len;

4 len = lel6_to_cpu(rxhdr->frame_len);

5 if (unlikely(len > ring->rx_buffersize)) {
6 s32 tmp = len;

7 while (1) {

8 tmp -= ring->rx_buffersize;

9 if (tmp <= 0)
10 break;

11 }

12 goto drop;
13 }

14

15 skb_put (skb, len + ring->frameoffset);
16 drop:

17 return;

18]}

Listing 4: CPGQL captured path represented as a code
snippet.

4 Evaluation

This section presents the employed datasets and shows details
of our implementation. In addition, we provide a detailed
analysis of LLMxCPG performance on both function-level
and project-level datasets. Moreover, we analyze its ability to
generalize to unseen datasets and its robustness against code
transformations as defined in [26].

4.1 Datasets

Training Datasets. We used two datasets for training,
FormAI-v2 [33] and PrimeVul [5]. The FormAI-v2 dataset
includes 331,000 compilable C programs generated using
various LLMs including Google’s GEMINI-pro, OpenAI’s
GPT-4, TII’s 180 billion-parameter Falcon, CodeLLLama2, and
other compact models. These programs are generated using
a dynamic zero-shot prompting technique and comprise pro-
grams with varying levels of complexity. Each program is
labeled for code vulnerabilities using a formal verification
method based on the Efficient SMT-based Bounded Model
Checker (ESBMC) [10]. FormAI minimizes false negatives
by ensuring comprehensive formal verification of the code
within a defined timeframe. We note that FormAI C programs
are not directly mapped to CWEs, but rather correspond to
errors returned by ESMBC. To address this, we manually cre-
ated a mapping of error messages (provided by ESBMC) to
CWESs. On the other hand, the PrimeVul dataset was created
to address the shortcomings of existing vulnerability datasets,
such as poor data quality, low label accuracy, and high duplica-
tion rates. PrimeVul employs novel data labeling techniques,

DeepSeek-v3 H Joern Query H Joern Server

Vulnerability Details

(CWE, Vulnerability
Location...)

A
Iterative Correction
Failed Query

Successful
Joern Query

Fine-Tuning

» LLMxCPG-Q

Qwen2.5-Coder-32B-Instruct

| Query Generation

Fine-tuning

Figure 5: Query Generation Workflow

LLMxCPG-Q Hdoern Query H Joern Server H

Ground Truth Fine-Tuning
Exgt;ttjrt]lon (Vul, Safe) > LLMXCPG-D

QwQ-32B-Preview
Concise Slice

| Slice Construction

| Fine-tuning |

Figure 6: Code Classification Workflow

achieving a label accuracy comparable to human-verified
benchmarks, while significantly expanding the dataset. The
dataset implements rigorous data de-duplication and chrono-
logical data splitting to avoid data leakage issues. The dataset
contains 228,800 safe functions and 6,968 vulnerable func-
tions covering 140 CWEs, making it a diverse and accurate
resource for vulnerability detection research. The dataset is
split chronologically based on commit dates, with 80% for
training, 10% for validation, and 10% for testing.

Generalizability. To evaluate generalizability, we utilize
two distinct vulnerability datasets: SVEN [15] and ReposVul
[35]. SVEN is a manually curated dataset of approximately
1,600 C/C++ and Python programs derived from real-world
GitHub security fixes, with a rigorous verification process
to ensure high data quality and relevance to security harden-
ing. ReposVul complements this with a broader repository-
level perspective, encompassing 6,134 CVE entries across
236 CWE types from 1,491 projects in four programming
languages. Together, these datasets provide a comprehensive
foundation for assessing vulnerability detection capabilities
across different real-world scenarios.

Studied CWEs. Our analysis focuses on a specific subset
of memory-related CWEs that are amenable to static analysis
via Code Property Graphs (CPGs): CWE-119 (Buffer Over-
flow), CWE-190 (Integer Overflow), CWE-415 (Double Free),
and CWE-416 (Use After Free). Additionally, we include
CWE-120 (Buffer Copy without Checking the Size of Input),
CWE-121 (Stack-based Buffer Overflow), CWE-122 (Heap-
based Buffer Overflow), CWE-125 (Out-of-bounds Read),
and CWE-787 (Out-of-bounds Write), which are specialized
variants of CWE-119. This selection criterion balances the
prevalence of real-world vulnerabilities with the technical
constraints of CPG-based detection. We specifically excluded
vulnerabilities that rely on dynamic program behavior, such as
race conditions, as these cannot be reliably modeled through

static CPG analysis due to their runtime-dependent nature.

CWE Distribution. The CWE distribution varies across
our datasets, as illustrated in Table 1. FormAI-v2’s training
set contains 5,893 vulnerable samples across four CWE types
(CWE-119, CWE-190, CWE-415, and CWE-416), with rel-
atively balanced distribution ranging from 1,395 to 1,500
samples per CWE, alongside 4,431 safe samples. It is worth
noting that the FormAI-v2 dataset was validated using ES-
BMC with default memory violation assertions and does not
provide paired vulnerable—patched code samples, resulting in
non-indication of safe samples per CWE. In other words, the
safe samples were formally verified to be free from memory
violations under the default ESBMC configuration. To this
end, we exclude samples with unknown or timed-out verifica-
tion results, as these do not conclusively demonstrate the pres-
ence or absence of a vulnerability. Regarding CWE mapping
for the safe samples, this does not apply to FormAI-v2 be-
cause, unlike real-world cases where vulnerable and patched
versions of the same code are available, the code snippets
in FormAI-v2 are generated independently. PrimeVul’s train-
ing data spans eight CWE types, with CWE-119 being the
most prevalent (518 samples) and some CWEs having limited
representation (e.g., CWE-121 and CWE-122 with only 1-2
samples). For our test datasets, we ensure balanced represen-
tation where possible. SVEN’s test set contains four CWE
types (CWE-125, CWE-190, CWE-416, and CWE-787) with
paired vulnerable and safe samples ranging from 37 to 122
pairs per CWE. Similarly, we select a balanced subset from
ReposVul, including matched safe and vulnerable samples
across seven CWE types.

4.2 Implementation

Our implementation has three main components: slice con-
struction, fine-tuning, and inference.

Table 1: CWE Distribution Across Datasets

Training Datasets Test Datasets

CWE

FormAl ~ PrimeVul Total SVEN ReposVul FormAl PrimeVul — Total
CWE-119 1,395/NA 518/518 1,913/518 B 19/19 51NA B 70/19
CWE-120 - 35035 35035 - 43 -) 4/5
CWE-121 - 1 1 - 11 - - 11
CWE-122 - 22 22 - 2/- - - 2/-
CWE-125 - 391391 391/391 1227122 13/19 - 9/6 144/147
CWE-190 1LS0/NA 138/138 1,638/138 37/37 43 4NA 1112 9352
CWE-415 L499/NA 49/49 1,548/49 - 43 SO/NA 8/15 62/18
CWE-416 1499/NA 176/176 1,675/176 56/56 1312 43/NA 12/5 124/73
CWE-787 - - - 44744 - - - 44744

Total Vulnerable 5.893 1,310 7,203 259 60 185 40 544
Total Safe 4,431 1,310 5,741 259 60 198 40 557

Note: For the PrimeVul, SVEN, and ReposVul datasets, numbers are shown as vulnerable/safe pairs. "~ indicates absence of the
CWE type. For FormAl dataset, the samples are not paired, thus only the total safe samples are stated.

Slice Construction. In this step, we train the CPGQL
query generation model using a training dataset of valid Jo-
ern queries. To construct these training queries, we leverage
DeepSeek v3 to generate potential candidates, which are then
validated using Joern, as illustrated in Figure 5. Failed queries
are returned to DeepSeek along with the error message gener-
ated by Joern for up to two additional attempts. If the query
remains invalid after three attempts, it is discarded. We deploy
a cluster of Joern servers using Docker containers to enable
parallel processing of multiple repositories.

Finetuning. After extensive evaluation of state-of-the-
art language models including Phi-4, Qwen2.5-Coder-32B-
Instruct, and Codestral 22B, we selected QwQ-32B-Preview
as our base model for fine-tuning LLMxCPG-D and Qwen2.5-
Coder-32B-Instruct for finetuning LLMxCPG-Q (see Ap-
pendix B for more details). For both models, the fine-tuning
process employs Low-Rank Adaptation (LoRA) [16] using
the LLaMA-Factory' framework. We configure the LoRA
parameters with rank 8 and alpha 4, while setting the learning
rate to 10~*. The fine-tuning is performed on an NVIDIA
A100-80GB GPU running Ubuntu 22.04, allowing us to ef-
fectively adapt the pre-trained model to the specific task of
vulnerability detection.

Inference Pipeline. For query inference, we employ the
inference library vLLM” with a CPGQL generation prompt
shown in Appendix E (Figure 8). For classification infer-
ence, we employ Unsloth?, a library for efficient finetuning
and inference. We implement an optimized pipeline that re-
duces the LLMxCPG-D’s language modeling head to focus
exclusively on binary classification between vulnerable and
safe code samples. Specifically, we extract the weight vec-
tors corresponding to the "Yes” (i.e., Vulnerable) and "No"
(i.e., Safe) tokens from the original 1m_head, constructing a
reduced classification head. During inference, LLMxCPG-D
generates logits for these two tokens, which are then passed
through a softmax function to obtain prediction probabili-
ties. This approach significantly reduces the computational
overhead compared to full token generation while maintain-
ing classification accuracy. A threshold 7y is applied to these

"https://github.com/hiyouga/LLaMA-Factory
2https://github.com/vllm-project/vllm
3https://docs.unsloth.ai

probabilities to determine the final classification.

The classification pipeline can be formally described as
follows: Let w,, and w), represent the weight vectors corre-
sponding to Vulnerable and Safe tokens respectively, extracted
from the original language model head Wiy, The classification
logits 1 for an input code sample x are computed as:

1= [lwlb] = fﬁ(x)) [WV’Wb]T
where [, is the logit corresponding to Vulnerable, I, is the
logit corresponding to Safe, and fo(x) represents the model’s
output. These logits are transformed into probabilities through
the softmax function:

elv+elv 7 elv 4 elv

The final classification is determined by comparing the
vulnerability probability against a dataset-specific threshold
Y:

ply) =sofiman(t) = | ¢]

R 1 if p(y = vulnerable | x) >y
y= .
0 otherwise

The threshold y can be predefined for the system as a hyper-
parameter. Furthermore, it can be selected by security analysts
based on their small validation set of known vulnerabilities,
which is practical and facilitates system adaptation without
extensive manual labeling. Our empirical analysis, shown in
Figure 7 revealed that threshold calibration is essential for
optimal performance across different datasets. We determine
distinct threshold values for each dataset in our study through
validation splits. Notably, we observe higher threshold val-
ues for datasets used in training unlike unseen datasets. This
pattern suggests the model expresses higher confidence when
evaluating code patterns similar to its training distribution. For
users applying our model to new datasets, we recommend cal-
ibrating the threshold using a small random sample (as few as
20 data points) of labeled examples from their target domain.
We use the following thresholds after sampling 20 data points
from validation splits of the employed datasets: PrimeVul
Y = 0.594, FormAlI: y= 0.547, SVEN: y = 0.334, and Re-
posVul: y = 0.193. We show the effect of vaying thresholds
on LLMxCPG-D’s accuracy in Appendix D.

4.3 Performance Analysis
4.3.1 Query Generation

As shown in Table 2, LLMxCPG-Q effectively learns the
syntax of CPGQL, whereas the base models, Qwen2.5-Coder-
32B-Instruct and DeepSeek-v3, encounter difficulties in gener-
ating valid CPGQL queries. To further investigate the quality
differences among the studied models, we randomly selected
50 samples where DeepSeek generated invalid queries to ana-
lyze what LLMxCPG-Q had successfully learned. We classify
the invalid queries into the following categories:

https://github.com/hiyouga/LLaMA-Factory
https://github.com/vllm-project/vllm
https://docs.unsloth.ai

Table 2: Number of valid queries per model out of 1278 test
samples.

Model Number of valid queries
DeepSeek-v3 132
Qwen2.5-Coder-32B-Instruct 19
LLMxCPG-Q 1278

* Incorrect usage of CPGQL APIs: DeepSeek of-
ten misuses the .code API to filter nodes by their
name. For instance, to retrieve all Call nodes with
the name "print", DeepSeek generates the query
cpg.call.code ("print"). However, this query re-
turns empty results because the code property matches
the entire statement, including the arguments of the
function. The correct query for this scenario is
cpg.call.name ("print"), which matches only the
function’s name.

* Missing or incorrect API usage: DeepSeek mixes
node types with operations allowed on each type. For
example, it generated the query val inputSources
= cpg.call.code ("scanf") .argument.filter (_
.typeFullName.matches ("float")) .toList,
where typeFullName is incorrectly applied to
argument nodes.

¢ Incorrect handling of regex-supporting APIs: Some
CPGQL filtering APIs support regular expressions,
but DeepSeek fails to distinguish between these APIs.
For example, it may use cpg.call.code(’a + b') to
search for an addition operation, which fails due to
regex interpretation. The correct query for this case is
cpg.call.codeExact ("a + b’), which performs an
exact string match.

While our evaluation demonstrates that LLMxCPG-Q suc-
cessfully learns the intricacies of CPGQL syntax—including
proper API usage and regex handling—syntactic correctness
alone is insufficient for real-world applications. A truly effec-
tive system must also maintain semantic precision, ensuring
the generated queries accurately isolate vulnerability patterns
within the code.

To assess this semantic dimension, we conducted a rigorous
human-auditing process involving three security experts who
manually evaluated 50 queries generated by LLMxCPG-Q.
These queries were sampled from the PrimeVul and SVEN
test datasets and included 25 true positive/negative and 25
false positive/negative cases, where the ground truth labels
(true/false positive/negative) were determined by the final clas-
sification decisions of LLMxCPG-D on the constructed slices
(e.g., our evaluation considers a case as positive if LLMxCPG-
D correctly labels the constructed slice, even when the gen-
erated query targets a different CWE than the actual vulnera-

bility’s CWE type). Each expert assessed whether the queries
are semantically aligned with the intended vulnerability pat-
terns and successfully captured execution paths that isolate
the vulnerabilities with minimal noise. In 76% of the true
positive/negative samples, the queries matched the vulnera-
bility pattern semantically and yielded meaningful paths. The
experts achieved a Fleiss’ Kappa [8] score of 0.6429 across
the 25 true positive/negative samples, indicating substantial
inter-rater agreement according to the guidelines provided by
Landis and Koch [17]. Discrepancies were resolved through
discussion. To better understand the limitations, we analyzed
the 25 false positive/negative samples and categorized them
as follows:

* 28% of the queries were semantically correct and accu-
rately identified the vulnerability pattern, despite being
labeled incorrectly.

* 40% of the queries targeted a different CWE, failing to
capture the correct vulnerability.

* 32% correctly identified the CWE but missed critical
contextual elements necessary for a complete vulnerabil-
ity match.

Although LLMxCPG-D misclassifies certain cases even
when a vulnerability is present in the constructed code slice
(28% of false positives/negatives and 24% of true posi-
tives/negatives), most of these errors occur when the query
model fails to detect the target vulnerability pattern.

In Appendix C, we evaluate the performance of LLMxCPG-
D on full code snippets (omitting the slicing step). We then
run Joern-scan”, a tool that executes predefined queries tar-
geting various vulnerability patterns, on a subset of the test
set to gauge the impact of the slice construction and query
generation steps.

Code Reduction. Our empirical analysis reveals significant
code reduction ratios achieved through our slice construction
approach across multiple datasets. In the synthetic FormAl
dataset, we observe an average reduction of 78.70% in code
size on the test set. Similar efficiency is demonstrated in
real-world scenarios, with code reductions of 67.84% and
70.22% in the function-level datasets PrimeVul and SVEN
respectively, and a substantial 90.93% reduction in the project-
level dataset ReposVul. In the subsequent section, we conduct
a comprehensive analysis of LLMxCPG’s performance on
these reduced code slices to examine whether the system
effectively capitalizes on these significant reductions while
maintaining vulnerability detection capabilities.

4.3.2 Function-level Vulnerability Detection

Using the FormAI and PrimeVul datasets, we evaluate LLMx-
CPG’s performance in detecting vulnerabilities across diverse

4https://docs.joern.io/scan/

https://docs.joern.io/scan/

function-level code snippets. These datasets provide a com-
prehensive testbed, capturing various vulnerability types and
coding practices.

Table 3: Average Performance of LLMxCPG on PrimeVul &
FormAl datasets

Dataset Accuracy Precision Recall Fl-score
FormAl 0.8146 0.8097 0.8054 0.8075
PrimeVul 0.7250 1.0 0.45 0.6206

Table 3 illustrates the results of LLMxCPG. In general,
LLMxCPG achieves high performance on vulnerability detec-
tion in function-level code snippets. Specifically, LLMxCPG
reaches up to 0.8146 Accuracy and 0.8075 F1-score on the
FormAI dataset. Similar results are observed on the PrimeVul
dataset, which indicates the effectiveness of LLMxCPG in
vulnerability detection at the function level.

Table 4: A Breakdown of the Performance of LLMxCPG by
CWESs on PrimeVul & FormAlI datasets

CWE Accuracy Precision Recall F1-Score
CWE-119 0.941 1.000 0.941 0.970
CWE-415 0.757 0.891 0.817 0.852
CWE-416 0.778 1.000 0.736 0.848
CWE-190 0.672 0.844 0.745 0.792

Table 4 illustrates the performance of LLMxCPG with
respect to different CWEs. LLMxCPG exhibited strong per-
formance on several memory-related CWEs. Specifically, for
CWE-119, the model achieved significantly high accuracy
and Fl-scores (0.941 and 0.97, respectively). Similar results
are also observed in other CWEs.

4.4 Generalizability
4.4.1 Function-level Vulnerability Detection

This section assesses the generalizability of LLMxCPG for
detecting vulnerabilities in function-level code snippets. To
provide a comprehensive evaluation, we benchmark its perfor-
mance on real-world code snippets against a range of state-of-
the-art baselines, including VulSim [29], ReGVD [25], and
both VulBERTA-CNN and VulBERTA-MLP [14]. VulSim
combines the structural and semantic information similarity of
a function-level code snippet with the snippets in the training
datasets to classify whether it is vulnerable or safe. Similarly,
VulBERTA models incorporate the CodeBERT transformers
model to extract the semantics of the snippets to make classi-
fications. In addition, ReGVD leverages the graph structural
information of the code snippets to classify whether it is vul-
nerable or not. To ensure a fair comparison, we employ SVEN

dataset as it was not part of the training data of LLMxCPG
and the considered baselines.

Table 5: Function-level vulnerability detection average per-
formance on SVEN dataset, which includes CWE-125, CWE-
190, CWE-416, CWE-476.

Accuracy Precision Recall Fl-score
VulSim [29] 0.33 0.31 0.31 0.31
VulBERTA-CNN [14] 0.5 0.51 0.38 0.44
VulBERTA-MLP [14] 0.5 0.5 0.37 0.43
ReGVD [25] 0.51 0.53 0.46 0.55
LLMxCPG 0.6020 0.5590 0.9534 0.7048

Table 5 presents the vulnerability detection performance
of LLMxCPG on the SVEN dataset, offering insights into its
effectiveness on previously unseen code snippets. The results
indicate that LLMxCPG significantly outperforms state-of-
the-art baselines in detecting vulnerabilities. In particular,
LLMxCPG achieves a remarkable 20% improvement in accu-
racy over the competing approaches. This substantial margin
highlights its ability to generalize across different code snip-
pets and quickly uncover vulnerabilities. Such performance
underscores the robustness of LLMxCPG in scenarios where
training data does not directly overlap with the test set, further
solidifying its value in practical, real-world applications. The
superior performance of LLMxCPG can be attributed to its
key design features. One of the critical factors is its integra-
tion of CPGs, which allows it to understand the semantics and
structure of the code. Additionally, LLMxCPG leverages spe-
cialized LLMs, enabling it to effectively capture vulnerability
signatures and adapt to unseen scenarios.

4.4.2 Project-level Vulnerability Detection

Project-level vulnerability detection presents fundamentally
different challenges compared to function-level analysis in
terms of code complexity. To comprehensively evaluate the
model’s performance, we consider five complexity metrics:
Lines of Code (LOC), Cyclomatic Complexity (CC), Num-
ber of Functions, Number of Branches, and Nesting Depth.
These metrics collectively capture different dimensions of
code complexity, from pure size (LOC) to structural intri-
cacy (CC, Nesting) and modularity (Functions, Branches).
We formally define these metrics in Appendix A.

We evaluate LLMxCPG on a sampled dataset from Re-
posVul [35], despite it not being trained on project-level real-
world data. The sampled dataset from ReposVul [35] com-
prises 120 balanced samples from 53 real-world projects with
complex code snippets spanning multiple files and multiple
functions as evidenced by its code metrics statistics shown
in Table 6. On average, each file contains 659 lines of code
(LOC), 102.91 branches, 9.28 functions, and a nesting depth
of 4.62 levels. These metrics highlight the increased com-
plexity of project-wide vulnerability detection compared to

function-level analysis. For instance, while the average num-
ber of functions per file is 9.28, a single file may contain
up to 59 functions interacting across 335 branch points, sub-
stantially exceeding the complexity seen in isolated function
analysis. Additionally, the high average nesting depth (4.62
levels, with a maximum of 11) underscores the challenge
of identifying vulnerabilities that may emerge from deeply
nested and interdependent code structures. Such complexity
demonstrates the inadequacy of state-of-the-art models lim-
ited to function-level detection. These models fail to capture
the dependencies and interactions that span multiple functions
and deeply nested branches within a project. The ReposVul
dataset thus provides a challenging benchmark for advanc-
ing project-wide vulnerability detection models capable of
addressing these challenges.

Table 6: Code Metrics Statistics of the Sampled ReposVul
Dataset

Metric Mean Min Max
LOC 659.06 54.00 1951.00
CC 101.71 3.00 436.00
Functions 9.28 0.00 59.00
Branches 102.91 0.00 335.00
Nesting 4.62 2.00 11.00

Performance Analysis on ReposVul dataset. Despite
these challenges, LLMxCPG achieves promising results with
an average Accuracy of 0.634 and an F1-score of 0.610 on
ReposVul. Detailed analysis across complexity metrics re-
veals interesting patterns. Performance is not affected by the
LOC as LLMxCPG achieves 0.83 accuracy on samples with
extremely high LOC (1623 mean), demonstrating robustness
to code size variations. It shows strong performance on sam-
ples with high cyclomatic complexity (0.75 Accuracy for CC
115-150), indicating effective handling of complex control
flows. In addition, detection capability is maintained even as
the number of functions increases (0.71 Accuracy for 13-14
functions), suggesting successful modeling of inter-function
dependencies. Notably, the model maintains consistent per-
formance even in the highest complexity bins across multiple
metrics, with no significant degradation on complex sam-
ples. For instance, it achieves (.75 accuracy on samples with
high CC (196 mean). This stability across complexity metrics
demonstrates the model’s ability to handle realistic project-
level codebases without being overwhelmed by increased
complexity.

Performance Analysis on Post-Knowledge-Cutoff CVEs.
To evaluate our model’s generalization capabilities on emerg-
ing vulnerabilities, we compiled a balanced dataset compris-
ing 60 samples from CVEs published in 2025. To con-
struct this dataset, we crawled the NVD for CVEs published
between January 1, 2025, and May 12, 2025, filtering for
those associated with the following CWEs: CWE-119, CWE-
120, CWE-121, CWE-122, CWE-125, CWE-190, CWE-415,

CWE-416, and CWE-787. We focused exclusively on CVEs
with public references linking to GitHub or GitLab com-
mits. Where applicable, we also resolved repositories through
known official mirrors. For instance, while the Linux kernel’s
primary codebase is hosted at git.kernel.org, it has an offi-
cial mirror at github.com/torvalds/linux. In total, we crawled
1,583 CVEs. Of these, 1,194 did not include a Git commit
in their public references. Among the remaining 389 CVEs,
only 121 had valid CWE tags (i.e., not labeled as NVD-CWE-
noinfo). Out of those, only 81 belonged to one of the CWEs
listed in Table 1, namely CWE-190, CWE-416, and CWE-125.
We included CWE-125 despite our suboptimal performance
on it due to limited training samples. Among the 81 rele-
vant CVEs, only 57 had commit files that fit within the input
context of our model (32k tokens, with potential extension to
128k tokens given additional resources, see Sec. 5 for more
details). Each of these 57 CVE:s is paired with its correspond-
ing patch, resulting in a total of 114 samples, balanced across
the Vulnerable and Safe labels in our final dataset.

On this dataset, LLMxCPG-D achieved an F1-score of
0.617 and Accuracy of 0.600, comparable to its performance
on the ReposVul dataset. This demonstrates the model’s
robust generalization to novel vulnerability patterns that
emerged after its knowledge cutoff, suggesting effective learn-
ing of fundamental vulnerability characteristics rather than
mere memorization of known CVE instances. Table 7 shows
our performance on ReposVul and Post-Knowledge-Cutoff
datasets.

Table 7: Average Performance of LLMxCPG on ReposVul &
2025 Post-Knowledge-Cutoff (PKCO-25) datasets

Dataset Accuracy Precision Recall Fl1-score
ReposVul 0.634 0.542 0.700 0.610
PKCO-25 0.600 0.592 0.644 0.617

Limitations. During our analysis, we notice a performance
degradation on few samples with very high nesting depth (>7
levels), dropping to 0.33 accuracy. While the model maintains
reasonable performance across function count increases, the
accuracy variance (0.33-0.84) suggests room for improve-
ment in modeling some extremely complex inter-function
relationships. These results represent a significant step toward
practical vulnerability detection at the project level, though
they also highlight specific areas where current approaches
can be enhanced. LLMxCPG’s ability to maintain consistent
performance across most complexity metrics, despite not be-
ing trained on project-level samples, demonstrates its potential
for real-world deployments.

4.5 Misclassification Analysis

This section presents a comprehensive error analysis of the
LLMxCPG’s performance across multiple datasets, including

FormAlI, PrimeVul, ReposVul, and SVEN. In other words,
we analyze errors made by LLMxCPG under the optimal
threshold of each dataset to identify error sources, explain
performance variations, and provide insights for future im-
provements. Table 8 shows the performance of LLMxCPG by
CWE.

Table 8: Performance Metrics of LLMxCPG by CWE Cate-
gory

Accuracy Precision Recall F1 Score
CWE-119 0.684 1.000 0.608 0.756
CWE-120 0.333 1.000 0.111 0.200

CWE-125 0.500 0.579 0.375 0.455
CWE-190 0.582 0.681 0.688 0.684
CWE-415 0.691 0.891 0.721 0.797
CWE-416 0.618 0.762 0.557 0.643

Performance on Trained Datasets. LLMxCPG exhibit
strong performance on several memory-related Common
Weakness Enumeration (CWE) categories within the For-
mAI and PrimeVul datasets used for training. Specifically, the
model achieves high accuracy and F1-scores for CWE-119
(Buffer Overflow), CWE-190 (Integer Overflow), CWE-415
(Double Free), and CWE-416 (Use After Free). This success
can be attributed to the balanced representation of these CWEs
in the training data and the model’s ability to capture distinct
code patterns associated with these vulnerability types.

Challenges with Underrepresented CWEs. Despite the
model’s strong performance on some memory-related CWEs,
it faces challenges in detecting CWE-120 (Classic Buffer
Overflow) and CWE-125 (Out-of-bounds Read). The low
performance on these CWEs can be attributed to the limited
number of examples, as shown in Table 1. Their underrep-
resentation in the training dataset likely contributed to the
model’s reduced effectiveness. Additionally, these vulnerabil-
ities often involve subtle code variations and complex mem-
ory access patterns, which are inherently more difficult for
the model to capture—especially under conditions of limited
training data.

Generalization Performance on Unseen Datasets. A crit-
ical aspect of evaluating the LLMxCPG’s effectiveness is its
ability to generalize to unseen datasets. Despite the challenges
posed by the ReposVul and SVEN datasets, which were not
used during training, our model demonstrates promising gen-
eralization capabilities. The model achieved accuracy scores
exceeding 0.6 on both datasets, indicating its ability to de-
tect vulnerabilities in diverse, real-world codebases. While the
model demonstrates promising generalization performance on
unseen datasets, there is still room for improvement. We aim
to bridge this gap by compiling a new high-quality dataset by
synthetically augmenting real-world datasets spanning multi-
ple files and functions and verifying the output with bounded

model checking.

4.6 Robustness to Code Augmentation

Robustness in vulnerability detection refers to a model’s
ability to maintain consistent performance when the input
code undergoes semantically-preserving transformations. Ro-
bustness against code transformations indicates the model’s
ability to capture fundamental vulnerability patterns rather
than superficial code characteristics. Robustness is also es-
sential for security applications, as adversaries might attempt
to evade detection by applying simple code transformations
while maintaining the vulnerable behavior.

In this section, we study the ability of LLMxCPG to handle
different types of noise and variations. Risse et al. [26] define
different data transformations to evaluate the performance
of state-of-the-art vulnerability detection models and inspect
their reliance on unrelated features. Risse’s results indicate
that state-of-the-art models overfit unrelated features.

We select four code transformation algorithms, one from
each category defined in Risse’s work [26]. The used trans-
formations are described in Table 9.

Table 9: The semantic preserving transformations that we use
in our experiments.

Identifier Type Description

T1 Identifier Renaming Rename all function parameters to a random token.

T2 Statement Insertion Insert unexecuted code.

T3 Statement Reordering Move the code of the function into a separate function.
T4 Statement Removal Remove all comments.

Experimental Setup. To evaluate the robustness of LLMx-
CPG, we conduct experiments using three diverse datasets:
FormAlI, PrimeVul, and SVEN. For each code slice in these
datasets, we apply four previously mentioned code transforma-
tions. These transformations are designed to reflect common
code modifications that preserve program semantics but may
challenge model performance. Finally, we evaluate LLMx-
CPG’s performance on both the original and transformed code
slices.

Table 10: Comprehensive Performance Results Across
Datasets and Transformations

Dataset Transformation Accuracy Precision Recall F1-Score
Normal and T4 0.8146 0.8097 0.8054 0.8075
FormAI T1 0.8146 0.8098 0.8054 0.8076
T2 0.8068 0.8000 0.8000 0.8000
T3 0.8355 0.8506 0.8000 0.8245
Normal and T4 0.7250 1.0000 0.4500 0.6206
PrimeVul Tl 0.7375 1.0000 0.4750 0.6441
T2 0.6650 1.000 0.3250 0.4906
T3 0.6750 0.6750 0.6750 0.6750
Normal and T4 0.6020 0.5590 0.9534 0.7048
SVEN Tl 0.5551 0.5488 0.6977 0.6143
T2 0.6220 0.6279 0.6279 0.6279
T3 0.6220 0.5864 0.8682 0.7000

Table 10 shows the results of this experiment, which reveal
several interesting patterns:

1. Complete robustness against comments removal:
LLMxCPG is unaffected by the comment removal trans-
formation (T4) because our slice construction approach
inherently ignores comments, focusing solely on execu-
tion paths. As a result, the constructed slices are free of
comments by design.

2. Dataset-Dependent Robustness: The model shows
varying levels of robustness across different datasets.
Notably, it demonstrates the highest robustness on the
FormALI dataset, where performance improves slightly
under transformations (F1-score increase of 2.10%).

3. Transformation Impact: Among the transformations,
T3 (function extraction) generally had the most signif-
icant impact on the model’s performance, particularly
affecting recall. This suggests that the slice-based ap-
proach is somewhat sensitive to changes in function
boundaries.

4. Precision-Recall Trade-off: For PrimeVul, we observe
an interesting trade-off where transformations lead to
decreased precision but improved recall, indicating that
the model becomes more conservative in its vulnerability
predictions under code transformations.

The robust performance of LLMxCPG, particularly on the
FormALl dataset, can be attributed to two key factors. First,
our CPG-based slice construction inherently focuses on se-
mantic relationships rather than syntactic features, making it
naturally resistant to surface-level code changes. Second, by
constructing slices that capture essential vulnerability-related
interactions, we effectively filter out irrelevant code modifica-
tions.

These findings highlight the importance of semantic-aware
vulnerability detection approaches and suggest that future im-
provements should focus on maintaining robust performance
across diverse vulnerability patterns while preserving the abil-
ity to capture essential semantic relationships in the code.

5 Discussion

Limitations in Vulnerability Type Coverage. Current code
property graph (CPG) approaches, while effective for many
vulnerability types, face inherent limitations in modeling cer-
tain classes of security flaws. As demonstrated by Yamaguchi
et al. [40], vulnerabilities like race conditions and design er-
rors remain challenging to express using graph traversals
since they often depend on runtime properties or require
deeper understanding of the system’s intended design. This
limitation stems from the static nature of CPG analysis, which
cannot capture dynamic program behaviors or complex archi-
tectural decisions.

Dataset Quality and Availability. A significant challenge
in vulnerability detection research is the scarcity of high-
quality datasets. As evidenced in the PrimeVul study, existing
benchmarks suffer from poor data quality, low label accu-
racy, and high duplication rates. For instance, their analysis
revealed that only 38%-64% of functions labeled as vulnera-
ble in popular datasets actually contained security flaws. The
ReposVul paper further highlights this issue by demonstrat-
ing how vulnerability-fixing commits often include unrelated
code changes, leading to noisy labels when using automated
collection methods. This data quality problem fundamentally
limits the effectiveness of machine learning approaches for
vulnerability detection.

Project-level Vulnerability Detection. The promising per-
formance of LLMxCPG on project-level vulnerability detec-
tion, despite being primarily trained on function-level data,
suggests significant potential for advancing automated se-
curity analysis of complex software systems. While achiev-
ing 0.634 accuracy on ReposVul demonstrates meaningful
progress, the pipeline’s performance variance across differ-
ent complexity metrics indicates opportunities for further en-
hancement. A critical path forward lies in the development
of high-quality, project-level vulnerability datasets that cap-
ture the intricate dependencies and interactions present in
real-world codebases. The creation of these curated datasets,
combined with LLMxCPG’s capability to handle complex
code structures through its CPG-guided approach, could sig-
nificantly advance the state-of-the-art in project-wide vulner-
ability detection. This represents a promising direction for
future research, potentially enabling more comprehensive and
reliable security analysis of large-scale software projects.

Limitations of Binary Classification. While LLMxCPG
does output a binary classification (vulnerable/safe), we de-
signed our approach to mitigate reasoning opacity through
several mechanisms. The CPG-based slice construction inher-
ently preserves reasoning pathways by capturing execution
flows and data dependencies that contribute to vulnerability
presence. For example Figure 4 provides visibility into how
specific code elements interact to create vulnerable condi-
tions. In order to explore the reasoning effect on this task, we
fine-tuned LLMxCPG-D with reasoning traces extracted from
DeepSeek-v3, but the results did not improve as expected as
the accuracy was similar to binary classification. This was
likely due to the quality and quantity of available reasoning
traces. Recent distillation work [13] (e.g., from DeepSeek-R1
to Qwen-2.5) demonstrates that effective reasoning transfer re-
quires substantial data volumes (i.e., 800k datapoints), which
exceeded our available data for this specific task. Enhancing
vulnerability reasoning through high-quality traces remains a
future work.

Context Length Limitation of the Base LLM for
Query Generation. While the base model for LLMxCPG-Q
(Qwen/Qwen2.5-Coder-32B-Instruct) supports a 128K token
context, we fine-tuned it with a 32K token limit due to con-

straints in our available computing power. It is worth noting
that while versions of Qwen (and other models) with even
larger context windows (e.g., 1M tokens) are available, fine-
tuning these necessitates substantial computational resources,
which were beyond our current capacity. Consequently, the
query generation process with LLMxCPG-Q is most effec-
tive for codebases or commit files that fit within this 32K
fine-tuned context length (and theoretically 1M given the
necessary resources). Importantly, this context length limi-
tation was specific to the query model (LLMxCPG-Q) and
did not pose a problem for our detection model (LLMxCPG-
D, based on Qwen/QwQ-32B-Preview). The Code Property
Graph (CPG) based slicing was indeed effective in reducing
the code to a manageable size for the detection model (even
when limting the context to 8K in LLMxCPG-D for faster
generation), ensuring its input context was not exceeded. This
addresses the core function of CPG in our framework — to
precisely slice and reduce code to fit the detection model’s
context effectively.

6 Related Work

Deep Learning Approaches. The evolution of deep learning
in vulnerability detection progresses through several archi-
tectural paradigms. Initial approaches centered on sequential
modeling, with VulDeePecker [22] establishing the viability
of LSTM networks for processing code gadgets. SySeVR [20]
advanced this foundation by introducing systematic feature
extraction based on semantic relationships. A pivotal investi-
gation by Chakraborty et al. [2] revealed a critical limitation:
while deep learning models demonstrated promising results,
their decision-making often relied on superficial code pat-
terns rather than fundamental vulnerability characteristics.
Architectural innovations emerged to address these limita-
tions. LineVul [9] introduced transformer-based architectures
for fine-grained vulnerability detection at the line level, while
Steenhoek et al. [31] incorporated dataflow analysis principles
into deep learning frameworks to enhance detection efficiency.
Graph-based representations have proven particularly effec-
tive, with several notable implementations. Vul-LMGNN [23]
achieved superior results by integrating pre-trained code lan-
guage models with code property graphs through a specialized
gated Graph Neural Network architecture. FUNDED [34] en-
hanced the reliability of graph-based approaches through auto-
mated data acquisition and probabilistic learning mechanisms.
ReGVD [25] further refined graph neural network architec-
tures, demonstrating substantial performance improvements
through targeted architectural modifications.

LLMs for Vulnerability Detection. Large Language Models
(LLMs) have emerged as a transformative approach to vulner-
ability detection, though recent research has revealed impor-
tant nuances in their application. PrimeVul [5] provided criti-
cal insights by demonstrating that conventional benchmarks
substantially overestimate model performance, necessitating

more rigorous evaluation methodologies. VulBERTa [14] es-
tablished that domain-specific pre-training protocols signif-
icantly enhance detection capabilities, while VulSim [29]
introduced an innovative multi-dimensional embedding ap-
proach that simultaneously captures semantic, contextual, and
syntactic code properties. Recent advances have focused on
specialized fine-tuning strategies and architectural integra-
tion. VulLLM [6] developed a multi-task instruction fine-
tuning framework that demonstrably improves model gen-
eralization across diverse vulnerability types. MSIVD [41]
advanced this direction through carefully designed instruc-
tion sets and decomposed task structures, achieving enhanced
detection accuracy. Hybrid architectures have shown particu-
lar promise, with VDDA [3] successfully combining deep
learning with attention mechanisms, and CPVD [42] en-
abling cross-project vulnerability detection through graph
attention networks. Foundational models including Unix-
Coder [11], CodeBERT [7], and GraphCodeBERT [12] have
demonstrated the value of incorporating structural code infor-
mation during the pre-training phase, establishing essential
building blocks for future advances in the field.

LLMxCPG, differs from previous approaches by uniquely
leveraging LLMs to generate valid CPGQL queries for travers-
ing code property graphs. Unlike traditional deep learning
approaches that directly learn from code representations, or
pure LLM approaches that may miss structural information,
LLMxCPG uses LLMs to guide the graph traversal process
itself. While VulLLM and MSIVD demonstrate the poten-
tial of fine-tuned LLMs, and Vul-LMGNN shows promise in
combining LMs with graph neural networks, our approach
maintains interpretability through explicit query generation.
This novel integration preserves the benefits of graph-based
program analysis while utilizing LLMs’ pattern recognition
capabilities in a more controlled and explainable manner.

7 Conclusion

In this paper, we have presented LLMxCPG, a novel vulner-
ability detection approach that effectively addresses funda-
mental limitations in current deep learning-based methods.
By combining Code Property Graphs with Large Language
Models, our framework achieves superior performance across
multiple evaluation dimensions. The empirical results demon-
strate substantial improvements over existing approaches,
with F1-score increases of up to 40% and consistent perfor-
mance on rigorously verified datasets. LLMxCPG’s ability
to maintain robust detection capabilities under code trans-
formations while generalizing effectively to complex, multi-
function codebases represents a significant advancement in
automated vulnerability detection. These results establish
LLMxCPG as a promising foundation for future research in
software security analysis.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback
and their help to improve the quality of this manuscript.

Ethics Considerations

Our vulnerability detection research adheres to responsible
disclosure protocols and established security research guide-
lines. We carefully balance the benefits of identifying security
weaknesses against potential risks. All discovered vulnera-
bilities are reported through appropriate channels, allowing
sufficient time for patches before public disclosure. We main-
tain strict confidentiality throughout the research process and
ensure our methods do not compromise system integrity or
user privacy.

Open Science

Our source code, fine-tuned models, and testing datasets is
available publicly to the community to foster research in this
field at: https://github.com/gcri/llmxcpg and https:
//zenodo.org/records/15614095.

References

[1] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo,
Lili Bo, Bin Li, Xiaolei Liu, Xingwei Lin, and Wei
Liu. Snopy: Bridging sample denoising with causal
graph learning for effective vulnerability detection. In
Proceedings of the 39th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE *24,
page 606618, New York, NY, USA, 2024. Association
for Computing Machinery.

2

—_—

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding,
and Baishakhi Ray. Deep learning based vulnerability
detection: Are we there yet. In IEEE Transactions on
Software Engineering, 2021.

3

—_

Jia Chang, Zheng Ma, Bin Cao, and Erping Zhu. Vdda:
An effective software vulnerability detection model
based on deep learning and attention mechanism. In
26th International Conference on Computer Supported
Cooperative Work in Design, pages 474-479, 2023.

[4

—_

Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun
Chen, and David Wagner. Diversevul: A new vulnerable
source code dataset for deep learning based vulnerabil-
ity detection. In Research in Attacks, Intrusions and
Defenses, pages 654-668, 2023.

[5] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin
Sitawarin, Xinyun Chen, Basel Alomair, David Wagner,

(6]

(7]

(8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

Baishakhi Ray, and Yizheng Chen. Vulnerability detec-
tion with code language models: How far are we? arXiv
preprint arXiv:2403.18624, 2024.

Xiang Du, Mingji Wen, Jiacheng Zhu, Zicheng Xie,
Bingfeng Ji, Han Liu, Xiaofei Shi, and Hai Jin.
Generalization-enhanced code vulnerability detection
via multi-task instruction fine-tuning. arXiv preprint
arXiv:2406.03718, 2024.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting
Liu, Daxin Jiang, et al. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint
arXiv:2002.08155, 2020.

Joseph L Fleiss. Measuring nominal scale agreement
among many raters. Psychological bulletin, 76(5):378,
1971.

Michael Fu and Chakkrit Tantithamthavorn. Linevul:
A transformer-based line-level vulnerability prediction.
In Proceedings of the 19th International Conference on
Mining Software Repositories, pages 608—620, 2022.

Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse,
Lucas C. Cordeiro, Bernd Fischer, and Denis A. Nicole.
Esbmec 5.0: an industrial-strength ¢ model checker. In
Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 18,
page 888891, New York, NY, USA, 2018. Association
for Computing Machinery.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. Unixcoder: Unified cross-modal
pre-training for code representation. arXiv preprint
arXiv:2203.03850, 2022.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert:
Pre-training code representations with data flow, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Hazim Hanif and Sergio Maffeis. Vulberta: Simpli-
fied source code pre-training for vulnerability detection.
arXiv preprint arXiv:2205.12424, 2022.

Jingxuan He and Martin Vechev. Large language models
for code: Security hardening and adversarial testing. In
Proceedings of the 2023 ACM SIGSAC Conference on

https://github.com/qcri/llmxcpg
https://zenodo.org/records/15614095
https://zenodo.org/records/15614095

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Computer and Communications Security, pages 1865—
1879, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685, 2021.

J Richard Landis and Gary G Koch. The measurement
of observer agreement for categorical data. biometrics,
pages 159-174, 1977.

Yi Li, Shaohua Wang, and Tien N Nguyen. Vulner-
ability detection with fine-grained interpretations. In
Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 292—
303, 2021.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
and Zhaoxuan Chen. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE

Transactions on Dependable and Secure Computing,
19(4):2244-2258, 2021.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
and Zhaoxuan Chen. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE
Transactions on Dependable and Secure Computing,

19(4):2244-2258, 2021.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. Vuldeep-
ecker: A deep learning-based system for vulnerability
detection. arXiv preprint arXiv:1801.01681, 2018.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. Vuldeep-
ecker: A deep learning-based system for vulnerability
detection. arXiv preprint arXiv:1801.01681, 2018.

Ruitong Liu, Yanbin Wang, Haitao Xu, Bin Liu, Jianguo
Sun, Zhenhao Guo, and Wenrui Ma. Source code vulner-
ability detection: Combining code language models and
code property graphs. arXiv preprint arXiv:2404.14719,
2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn
Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A ma-
chine learning benchmark dataset for code understand-
ing and generation. arXiv preprint arXiv:2102.04664,
2021.

Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Tien
Le, Quang Huu Tran, and Dinh Phung. Regvd: Revis-
iting graph neural networks for vulnerability detection.
In Proceedings of the ACM/IEEE 44th International

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Conference on Software Engineering, pages 178—182,
2022.

Niklas Risse and Marcel Bohme. Uncovering the limits
of machine learning for automatic vulnerability detec-
tion. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 4247—-4264, Philadelphia, PA, Au-
gust 2024. USENIX Association.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo La-
zovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood,
and Marc McConley. Automated vulnerability detection
in source code using deep representation learning. In
2018 17th IEEE international conference on machine
learning and applications (ICMLA), pages 757-762.
IEEE, 2018.

Danielle M Seid. Reveal. Transgender Studies Quar-
terly, 1(1-2):176-177, 2014.

Samiha Shimmi, Ashiqur Rahman, Mohan Gadde,
Hamed Okhravi, and Mona Rahimi. Vulsim: Leveraging
similarity of multi-dimensional neighbor embeddings
for vulnerability detection. In 33rd USENIX Security
Symposium, 2024.

Statista Research Department. Number of Common Vul-
nerabilities and Exposures (CVE) reported worldwide
from 1999 to 2024, 2024. Statistical analysis of global
vulnerability trends documented in the CVE database.

Benjamin Steenhoek, Hongyu Gao, and Wei Le.
Dataflow analysis-inspired deep learning for ef-
ficient vulnerability detection. arXiv preprint
arXiv:2312.16771,2023.

Benjamin Steenhoek, Md Mahbubur Rahman, Richard
Jiles, and Wei Le. An empirical study of deep learning
models for vulnerability detection. In Proceedings of the

45th International Conference on Software Engineering,
pages 2237-2248, 2023.

Norbert Tihanyi, Tamas Bisztray, Mohamed Amine Fer-
rag, Ridhi Jain, and Lucas C. Cordeiro. How secure is
ai-generated code: a large-scale comparison of large lan-
guage models. Empirical Software Engineering, 30(47),
2025.

Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei
Tan, Songfang Huang, Dingyi Fang, Yansong Feng,
Lizhong Bian, and Zheng Wang. Combining graph-
based learning with automated data collection for code
vulnerability detection. IEEE Transactions on Informa-
tion Forensics and Security, 2020.

[35] Xinchen Wang, Ruida Hu, Cuiyun Gao, Xin-Cheng Wen,
Yujia Chen, and Qing Liao. Reposvul: A repository-
level high-quality vulnerability dataset. In Proceed-
ings of the 2024 IEEE/ACM 46th International Confer-
ence on Software Engineering: Companion Proceedings,
pages 472483, 2024.

[36] Mark Weiser. Program slicing. IEEE Transactions on
Software Engineering, SE-10(4):352-357, 1984.

[37] Tongshuai Wu, Liwei Chen, Gewangzi Du, Dan Meng,
and Gang Shi. Ultravcs: Ultra-fine-grained variable-
based code slicing for automated vulnerability detection.
IEEE Transactions on Information Forensics and Secu-

rity, 19:3986-4000, 2024.

[38] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu,
Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo,
Wei Zou, and Wenchang Shi. MVP: Detecting vulnera-
bilities using Patch-Enhanced vulnerability signatures.
In 29th USENIX Security Symposium (USENIX Security
20), pages 1165-1182. USENIX Association, August
2020.

[39] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad
Rieck. Modeling and discovering vulnerabilities with
code property graphs. In 2014 IEEE Symposium on
Security and Privacy, pages 590-604, 2014.

[40] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad
Rieck. Modeling and discovering vulnerabilities with
code property graphs. In 2014 IEEE Symposium on
Security and Privacy, pages 590-604, 2014.

[41] Andrew Z. Yang, Huanhuan Tian, Hongru Ye, Ruben
Martins, and Claire Le Goues. Security vulnerability de-
tection with multitask self-instructed fine-tuning of large
language models. arXiv preprint arXiv:2406.05892,
2024.

[42] Chenyu Zhang, Baojiang Liu, Yu Xin, and Liang Yao.
Cpvd: Cross project vulnerability detection based on
graph attention network and domain adaptation. /EEE
Transactions on Software Engineering, 2023.

[43] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du,
and Yang Liu. Devign: Effective vulnerability identifica-
tion by learning comprehensive program semantics via
graph neural networks. Advances in neural information
processing systems, 32, 2019.

A Code Metrics

This section defines foundational software metrics utilized
in quantitative code analysis, with particular emphasis on
structural and cognitive complexity assessment.

Lines of Code (LOC). A fundamental volumetric met-
ric quantifying program size through source code line enu-
meration. LOC encompasses physical lines containing ex-
ecutable statements, declarations, and definitions, while ex-
cluding blank lines and comments. This metric serves as a
primary indicator of implementation scale and maintenance
burden.

Cyclomatic Complexity (CC). A graph-theoretic metric
measuring program flow complexity through control flow
analysis. CC quantifies the number of linearly independent
paths through program source code, calculated as:

CC=E—-N+2P €))]
where:

» E represents the number of edges in the control flow
graph

* N represents the number of nodes
* P represents the number of connected components

For a given function f, the complexity can be alternatively
expressed as:

CC(f) =1+ p(d) 2)

deD

where D is the set of decision points and p(d) represents
predicates at each decision point.

Number of Functions. A modularity metric quantifying
discrete functional units within the codebase. This metric
encompasses all function declarations and definitions, includ-
ing methods, procedures, and subroutines, providing insight
into code compartmentalization and potential maintenance
complexity.

Number of Branches. A control flow metric enumerating
decision points within the code. This encompasses condi-
tional statements (if-else constructs), switch cases, and loop
conditions. The total branch count B for a program P can be
expressed as:

BP) =Y b 3)

where b; represents individual branching constructs.
Nesting Depth. A structural complexity metric measuring
the maximum level of control structure embedding within the
codebase. For a given code block c, the nesting depth ND is
defined as:
ND(c) = maxd(s))]
SES
where S represents the set of all statements in the code block
and d(s) represents the nesting level of statement s.

B Comparison with Other Base Models

In order to choose the final model that we used in final detec-
tion (i.e., LLMxCPG-D), we fine-tuned Phi-4 (14B), Qwen2.5-
Coder (32B), Codestral (22B), and QwQ-Preview (32B). Ta-
ble 11 shows the comparison among the models on PrimeVul
dataset.

Table 11: Comparison of fine-tuned models on the PrimeVul
dataset.

Model Accuracy F1-score
Phi-4 (14B) 0.5912 0.5356
Codestral (22B) 0.6233 0.5521
Qwen?2.5-Coder (32B) 0.6823 0.6001
QwQ-Preview (32B) 0.7250 0.6206

C Impact of Slice Construction and Query
Generation Model

To assess the impact of code slicing on detection performance,
we evaluate LLMxCPG-D on the test datasets using the full
code, bypassing the CPG slicing step. The model’s perfor-
mance consistently declines across all datasets when slicing
is omitted: FormAlI achieves an accuracy of 0.6762 (down
from 0.8146 with slicing), PrimeVul drops to 0.4875 (from
0.7250), and SVEN falls to 0.5078 (compared to 0.6020).

To further demonstrate the flexibility of the query-based
model, we employ Joern-scan’, a tool that executes predefined
queries targeting various vulnerability patterns, to analyze the
50 samples previously selected for the semantic correctness
experiment (see Section 4.3.1). Notably, Joern-scan fails to
detect any of the vulnerable samples in this subset, as it relies
on a fixed set of sensitive function calls in C. In real-world
scenarios, however, developers often implement custom wrap-
pers around these functions, making them more difficult to
detect using static query-based approaches.

D Choosing a Threshold

The process of choosing a threshold for the model starts by
select few labeled datapoints (e.g., 20 was used for our case)
from the validation splits of the target datasets. Then, we
generate predictions with LLMxCPG-D and maximize the
accuracy by performing a complete search over the interval
of threshold values [0, 1]. Figure 7 shows the effect of vay-
ing threshold on the accuracy of LLMxCPG-D on different
datasets.

Shttps://docs.joern.io/scan/

Accuracy vs. Confidence Threshold by Dataset
with Optimal Threshold Points

—— FormAl

038 @ FormAl (Optimal: 0.547)
Primevul

@ PrimeVul (Optimal: 0.594)

—— ReposVul

A Reposvul (Optimal: 0.193)

—— SVEN

@ SVEN (Optimal: 0.334)

Accuracy

0.4 0.6
Confidence Threshold

Figure 7: LLMxCPG-D’s Accuracy vs Confidence Threshold
for Different Datasets.
E Prompt Templates

In this section, we present the employed prompts for query
generation and vulnerability detection.

Instruction:
Your task is to design Precise Joern CPGQL Queries for
Vulnerability Analysis.

Objective:
Develop targeted CPGQL Joern queries to:

¢ Identify taint flows based on your analysis.

» Capture potential vulnerability paths.
Constraints:

¢ Queries must be executable in Joern/CPGQL

* Use Scala language features for query construction

* Last query must use reachableByFlows to identify
vulnerable paths

Output Requirements:

Provide a JSON object with one field "queries": Sequence

of CPGQL queries to detect vulnerability

Expected JSON Output Format:

{
"queries": ["Queryl" , "Query2", ..., "Final
Reachable Flows Query"]

}

Example Output:
Example in Figure 9

Input: <Code>

Figure 8: Prompt to generate CPGQL queries.

https://docs.joern.io/scan/

"queries": [
"val freeCallsWithIdentifier = cpg.method.name("(.*_)?free")
.filter(_.parameter.size == 1)
.callln
.where(_.argument(1).isIdentifier)
o,
"freeCallsWithIdentifier.flatMap(f == {
val freedIdentifierCode = f.argument(1).code
val postDom = f.postDominatedBy. toSetImmutable
val assignedPostDom = postDom.isIdentifier
.where(_. inAssignment)
. codeExact (freedIdentifierCode)
.flatMap(id => id ++ id.postDominatedBy)
postDom
. removedAll(assignedPostDom)
.isIdentifier
. codeExact (freedIdentifierCode}
. reachableByFlows (f.argument(1))
.

Figure 9: Example CPGQL Queries.

Instruction:

You are a security code vulnerability analyzer. Your task is
to carefully analyze the provided code snippet. Note that the
provided code snippet might not be complete, but it has all
the important context.

Your output must be EXACTLY ONE WORD:

* If you detect any potential security vulnerability in the
specified code segment, return: VULNERABLE

* If the code segment appears to be secure and free from
obvious vulnerabilities, return: BENIGN

IMPORTANT GUIDELINES:
Consider common vulnerability types such as:

* Buffer overflows

* Improper input validation

¢ Integer Overflow

* Memory corruption potential

* Double free

 Use after free
Your response must be either 'VULNERABLE’ or "SAFE’
- no additional explanation
Output format:
One word: VULNERABLE or SAFE

Input: <Code>

Figure 10: Prompt to classify code slices.

	Introduction
	Background
	Vulnerability Detection
	Code Property Graphs

	Methodology
	System Overview
	Slice Construction
	Taint Path Extraction
	Interacters: Finding Variables that Interact with the Execution Path
	Backward Slicing for Focused Code Snippet Construction

	Vulnerability Detection

	Evaluation
	Datasets
	Implementation
	Performance Analysis
	Query Generation
	Function-level Vulnerability Detection

	Generalizability
	Function-level Vulnerability Detection
	Project-level Vulnerability Detection

	Misclassification Analysis
	Robustness to Code Augmentation

	Discussion
	Related Work
	Conclusion
	Code Metrics
	Comparison with Other Base Models
	Impact of Slice Construction and Query Generation Model
	Choosing a Threshold
	Prompt Templates

