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Abstract—We present VulGuard, an automated tool designed
to streamline the extraction, processing, and analysis of com-
mits from GitHub repositories for Just-In-Time vulnerability
prediction (JIT-VP) research. VulGuard automatically mines
commit histories, extracts fine-grained code changes, commit
messages, and software engineering metrics, and formats them
for downstream analysis. In addition, it integrates several state-
of-the-art vulnerability prediction models, allowing researchers
to train, evaluate, and compare models with minimal setup.
By supporting both repository-scale mining and model-level
experimentation within a unified framework, VulGuard addresses
key challenges in reproducibility and scalability in software
security research. VulGuard can also be easily integrated into
the CI/CD pipeline. We demonstrate the effectiveness of the tool
in two influential open-source projects, FFmpeg and the Linux
kernel, highlighting its potential to accelerate real-world JIT-VP
research and promote standardized benchmarking. A demo video
is available at: https://youtu.be/j96096-pxbs.

I. INTRODUCTION

Software vulnerabilities negatively impact the reliability, se-
curity, and functionality of software systems to an unignorable
degree, leading to severe damage to both users and companies.
A notable mention would be the 2024 CrowdStrike outage, a
misalignment between expected field and actual input caused
a cascade of system failures, affecting millions of devices and
disrupting essential services worldwide [1], [2]. This incident
highlights the significant financial and operational burdens of
post-deployment detected vulnerabilities, as well as the hidden
technical risks within software systems.

To mitigate these challenges, Just-In-Time Vulnerability
Prediction (JIT-VP) [3] has emerged as a promising approach
to improving software quality assurance. At the early stages
of the software development life cycle, JIT-VP techniques
can identify security-threatening modifications in the software
system, allowing developers to take immediate action. As a
result, integrating JIT-VP into the development life cycle can
improve the security inspection procedure and reduce the costs
associated with future remediation.

Despite significant advancements in Just-In-Time Vulner-
ability Prediction (JIT-VP) [3], [4], [5], real-world adoption
remains limited. A primary obstacle lies in the complexity of
data curation: extracting, cleaning, and preprocessing commits

from heterogeneous and evolving software repositories is often
repository-specific, error-prone, and labor-intensive. This chal-
lenge results in reduced experimental scale and inconsistent
model evaluation [6]. Furthermore, existing research rarely
addresses integration with modern development workflows,
thereby hindering the delivery of actionable feedback to devel-
opers and limiting the practical utility of academic models [7].
To close this gap, there is a need for a unified tool that
streamlines the end-to-end JIT-VP pipeline, from data collec-
tion and preprocessing to model training and evaluation, while
supporting seamless integration into real-world development
environments.

To address these challenges, we introduce VulGuard, a
unified tool for evaluating JIT-VP techniques. This tool has
been employed in the empirical study on JIT-VP presented
in our recently accepted paper at ICSME 2025 [7]. VulGuard
offers three main features: (1) dataset construction, (2) model
training, and (3) model evaluation. For dataset construction,
our tool is designed to extract various features from commits,
such as expert features [3], [8], property graphs [4], messages,
and code changes. It also provides a tool to train and evaluate
state-of-the-art JIT-VP techniques. Notably, VulGuard adopts a
realistic evaluation setting that incorporates both vulnerability-
related and neural commits, in accordance with the findings
of our empirical study [7]. The VulGuard pipeline begins by
cloning the given GitHub repositories to the local machine,
then leveraging git application to extract commit data, and the
V-SZZ [9] algorithm to trace the vulnerable commits.

Once the dataset is constructed, VulGuard can utilize it to
train and evaluate the implemented techniques.

To summarize, key features of VulGuard include:

e Construct new datasets for JIT-VP research, which are
also extensible for other vulnerability analysis tasks.

e Support multiple programming languages, including
C/C++, Java, JavaScript, and Python.

« Integrate multiple JIT-VP techniques to train and evaluate
in real-world settings.

« Installable Python package with Command-line interface.

Our tool with manual is available at Github release [10].
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Fig. 1: Architecture of VulGuard
II. RELATED WORKS

Zeng et al. [11]’s replication study is the closest to our work,
which provides a codebase for extracting commit-level features
and metadata. It also includes implementations of several
Just-in-Time (JIT) defect prediction baselines: CC2Vec [12],
DeepJIT [13], DBN-JIT [14], LR-JIT [8], and their proposed
method, LAPredict. We include some models from their
work, including DeepJIT, LR-JIT, and LAPredict. However,
our tool differs from their replication in multiple aspects.
First, we offer user-friendly environments to facilitate adoption
by both researchers and practitioners through two primary
usage scenarios. (1) Our tool can be installed as a Python
library, enabling integration into various software projects.
(2) Besides supporting direct usage through Python library
imports, we also provide an intuitive command-line interface
(CLI), thereby accommodating diverse user preferences and
workflows. These features provide both individual usage for
research and integration usage for deployment. Second, our
tool is designed to address the task of JIT-VP, whereas the
focus of Zeng et al.’s study lies within the domain of JIT-DP,
resulting in implementation-wise differences. Instead of em-
ploying the traditional B-SZZ algorithm [15] to identify bug-
inducing commits, we utilize V-SZZ [9], which is designed
to improve the accuracy of labeling vulnerability-inducing
commits. We offer a greater variety of tools with the imple-
mentation of two more JIT-DP approaches, TLEL [16] and
SimCom [17], and three state-of-the-art JIT-VP approaches,
i.e., VCCFinder [3], JITFine [18], and CodeJIT [4].

JITBot [19] is a GitHub application for users to integrate
into their own GitHub Action pipelines [20]. Similarly to
our work, JITBot has been created to address the problem
of the lack of adoption of JIT-DP tools in CI/CD pipelines.
Unfortunately, to the best of our knowledge, JITBot is no
longer publicly available on GitHub. Moreover, while JITBot
only supports the application phase of JIT-DP models using
a specific built-in model, VulGuard facilitates the end-to-end
development of JIT VP. This includes data mining, model
training, and deployment, all within an accessible environment
provided as a Python library.

III. ARCHITECTURE

VulGuard is built to streamline the data extraction process,
as well as to train and evaluate prediction models for vulner-
ability research. VulGuard has two main modules: Extraction
and Evaluation, as shown in Figure 1. We cover these modules
in detail in the following subsections.

A. Extraction Module

This module of VulGuard can be divided into four main
tasks: commit collection; feature extraction; commit anno-
tation and data splitting. We also integrate a graph builder
module, which generates a graph representation of commits.

1) Commit Collection: VulGuard takes input from a lo-
cal Git repository. Following practices established in prior
work [21], [22], [23], VulGuard filters out merge commits,
whitespace-only commits, and comment-only commits to fo-
cus on meaningful code modifications. In addition, only com-
mits that involve changes in source code files based on the
primary language of the repository are retained. Specifically,
the tool considers files with extensions: .c/.h for C, .cpp for
C++, java for Java, .js for JavaScript, and .py for Python.

2) Feature Extraction: In this task, VulGuard leverages Git
to systematically collect key information from each commit,
including commit messages, code changes, file-level metadata,
and blame information for line-level authorship tracking. The
raw data are then processed to derive relevant features that re-
flect code quality, developer activity, and temporal patterns [8],
[3]. The features extracted in this step can be customized. All
output information is serialized in .jsonl format.

Another key feature of VulGuard is its support for parallel
execution of git diff and git blame operations. Since
the metadata extraction for each commit is independent and
both git diff and git blame are read-only operations,
this parallelization is safe and highly effective. By leverag-
ing concurrent processing, VulGuard significantly accelerates
collecting fine-grained code changes and line-level authorship
information without compromising repository integrity.

3) Commit Annotation: In this task, each commit is labeled
as either vulnerable or non-vulnerable. Specifically, we flag
the commits that have changes introducing vulnerabilities as
positive, while all other commits are flagged as negative. We
implement this practice to mimic the realistic conditions of
the software development cycle [7].

However, accurately identifying vulnerability-inducing
commits remains a challenging problem. A common practice is
to identify fixing commits and then trace back to the vulnerable
origins. To expedite the identification of vulnerability-fixing
commits, we incorporate the regular expression proposed by
Zhou et al. [24] (see Table I). While this technique improves
efficiency, it may introduce noises. As a result, we recommend
complementing the tool with a manual list of patch commits.

Next, we adopt V-SZZ [9], an enhanced variant of the
classic SZZ algorithm [15], which traces the origin of patches
to identify their corresponding inducing commits. Among the
SZZ family, V-SZZ has demonstrated the highest effective-
ness and has been commonly used in vulnerability analysis



TABLE I: Regular expression used to filter patch commits provided by Zhou et al. [24]

Rule name Regular Expression

strong_vuln_patterns

(?1) (denial.of.service|\bXXE\b|remote.code.execution|bopen.redirect|OSVDB]|\bvuln\b]|
\bCVE\b | \bxss\b|\bReDoS\b | \bNVD\b |malicious|x-frame-options|attack|cross.site]|
exploit|directory.traversal|\bRCE\b|\bdos\b|\bXxSRF\b|clickjack|session.fixation|
hijack|advisory|insecure|security|\bcross--origin\b|unauthori[z|s]ed|infinite.loop)

medium_vuln_patterns

(?1) (authenticat (e|ion) |brute.force|bypass|constant.time|crack]|credential|\bDoS\b]|
expos (e|ing) |hack|harden|injection|lockout |overflow|password]| \bPoC\b |proof.of.concept|
poison|privelege|\b(in) ?secur (el|ity) |de) ?serializ|spoof|timing]|traversal)

TABLE II: Summary of approaches studied in this work and
our prior work [7], and their utilized data: Expert Features
(EF), Commit Messages (CM), and Commit Changes (CC).

. Features

Models Technique EF T CM | CC
VCCFinder [3] Machine Learning v v
CodeJIT [4] Graph-based Learning v
LR [8] Machine Learning v
TLEL [16] Machine Learning v
DeepJIT [13] Deep Learning v v
LAPredict [11] Machine Learning v
SimCom [17] Ensemble Learning v v v
JITFine [18] Deep Learning v v v

TABLE III: Metrics supported for model evaluation. ED is
threshold dependent. ID is threshold independent.

Type Name Description
Accuracy Correct predictions out of all predictions.
Precision True positives out of all predicted positives.
DE Recall True positives out of all actual positives.
Fl-score Harmonic mean of precision and recall,
mcc Balanced measure of prediction quality factor in
class imbalance [31].
D ROC-AUC | Area under ROC curve.
PR-AUC Area under Precision-Recall curve.
Recall@20 | Percentage of actual positives found in the top
Effort 20% of ranked predictions.
Effort@20 | Percentage of code inspected to find top 20% of
actual positives.
P-opt Measures effort saved when inspecting files in
optimal versus actual order.

(e.g., [25], [26]). We also integrate other SZZ algorithms,
such as B-SZZ [15], AG-SZZ [21], and MA-SZZ [27], for
comparative evaluations.

4) Data Splitting: The dataset is partitioned using a cus-
tomizable ratio. By default, all commits are ordered by date
to simulate continuous software development [28] and avoid
data leakage [29] and then split using a ratio of 75/5/20% for
training/validation/testing.

5) Graph Builder: Many recent JIT-VP approaches utilize
structural representations for prediction. As a result, VulGuard
incorporates a graph builder module that is built on the artifacts
provided by CodeJIT [4]. In their study, Nguyen et al. [4]
leverage Joern [30] to generate code property graphs. This
package is integrated into VulGuard with CLL

B. Evaluation Modules

VulGuard provides a framework with model-level cus-
tomization. Currently, we support eight prominent vulnerabil-
ity prediction models: VCCFinder [3], CodeJIT [4], Logis-

tic Regression (LR) [8], LAPredict [11], TLEL [16], Deep-
JIT [13], SimCom [17], and JIT-Fine [18]. These models
represent a diverse set of techniques ranging from classical ma-
chine learning to deep learning and graph-based approaches.
A summary of the methodology of each model is provided in
Table II. Upon evaluation, VulGuard automatically computes
standard classification metrics outlined in Table III.

IV. USAGE

This section covers requirements and usages of VulGuard.
Example commands are available at tool release [10].

A. Requirements

VulGuard is designed to operate on Linux-based systems
equipped with GPU acceleration. For Linux users, we support
installation via the Python library and Conda environment. For
other platforms, it is recommended to follow the instructions
in our package to build and construct your own Docker image.

B. Data Mining

Use case: Extract relevent commit data for JIT-VP. In
addition, automatically identify vulnerability-fixing commits,
and vulnerable introducing commits.

Preparation: VulGuard’s input of mining process is local
Git repository with main languages include C/C++, Java,
JavaScript, and Python. By default, Vulguard identify patch
commits using regular expression (Table I). However, you can
provide the tool with customize patch commits by using jsonl
file with each line following this format.

\ {
2 <commit_id>,
<repo_name>

"commit_id":
3 "Repository":
4 }
Command:
I python -m vulguard.cli mining \
2 -dg_save_folder <save_folder> \
-mode local \
4 —-repo_name <repository_name> \
-repo_path <path/to/repository> \
6 -repo_language <main_language_of_project> \

C. Model Evaluation

Use case: Train and evaluate implemented JIT-VP ap-
proaches. The trained models can be utilized for inference.

Preparation: To train and evaluate JIT-VP approaches,
VulGuard leverages data extracted through a structured data
mining process. By default, the dataset includes vulnerability-
introducing, vulnerability-fixing, and unrelated commits. Users



TABLE IV: Results of the idealized setting experiment from our empirical study [7]. The highest values are in bold.

Metric VCCFinder LAPredict LR TLEL SimCom DeepJIT JITFine CodeJIT | Average

o0 PR-AUC 0.895 0.558 0.780  0.850 0.921 0.906 0.959 0.798 0.833
= MCC 0.746 0.337 0.574  0.701 0.770 0.638 0.864 0.579 0.651
E Fl-score 0.832 0.373 0.671  0.800 0.847 0.759 0.909 0.716 0.738
= | ROC-AUC 0.948 0.620 0.865 0918 0.954 0.946 0.980 0.838 0.884
» PR-AUC 0.809 0.610 0.788  0.829 0.892 0.823 0.885 — 0.805

E MCC 0.447 0.358 0.558  0.627 0.658 0.613 0.716 — 0.568

3 F1-score 0.664 0.458 0.695 0.752 0.786 0.735 0.818 — 0.701
ROC-AUC 0.867 0.699 0.825  0.881 0.913 0.873 0.915 — 0.853

TABLE V: Results of the realistic setting experiment from

our empirical study [7]. The highest values are in bold.

Metric VCCFinder LAPredict LR TLEL SimCom DeepJIT JITFine CodeJIT | Average

80 PR-AUC 0.071 0.041 0.093 0.112 0.134 0.082 0.111 0.079 0.091
= MCC 0.122 0.067 0.192  0.169 0.226 0.138 0.161 0.135 0.151
E Fl-score 0.132 0.086 0.176  0.130 0.231 0.150 0.156 0.142 0.150
= | ROC-AUC 0.688 0.591 0.769  0.795 0.809 0.746 0.790 0.721 0.738
» PR-AUC 0.013 0.010 0.023  0.027 0.031 0.005 0.005 — 0.016

E MCC 0.030 0.028 0.070  0.081 0.073 0.000 0.000 — 0.040

5 Fl-score 0.036 0.025 0.039  0.038 0.034 0.011 0.011 — 0.028
ROC-AUC 0.588 0.591 0.746  0.787 0.779 0.497 0.497 — 0.641

who wish to train or evaluate on a different dataset should

provide a data file of which each line’s format is:

1 {

2 "commit_id":
"feature 1":

<commit_id>,
<value_1>,

5 "feature k": <value_k>,
6 "label": <0 or 1>
}
Command:
Training:

python -m vulguard.cli training \
-dg_save_folder <save_folder> \
-model <model_name> \
4 -repo_name <project_name> \
5 -repo_language <main_language_of_project> \
6 —epochs <epochs>

Testing:

python -m vulguard.cli evaluating)\
-dg_save_folder <save_folder> \
-model <model_name> \
4 -repo_name <project_name> \
5 -repo_language <main_language_of_project>

D. Model Inference

Use case: Utilized trained models to predict new commits.
Preparation: New commits must be extracted and provided
in the same format as model evaluation before inference.
Command:
python -m vulguard.cli inference \
2 -dg_save_folder <save_folder> \
-model <model_name> \
4 —-repo_name <project_name> \
5 —-repo_language <main_language_of_project>

V. DEMONSTRATION

VulGuard has been employed in the empirical study on
JIT-VP presented in our recently accepted paper at [CSME
2025 [7]. The following section summarizes our experiments
and findings, and showcases VulGuard’s potential application.

TABLE VI: Commit distribution overview for FFmpeg and the
Linux kernel. The table reveals the number of vulnerability-
introducing commits (#VIC), vulnerability-fixing commits
(#VFC), vulnerability-neural commits (#VNC), and the total
number of commits in each data split.

Project Split #VIC  #VFC #VNC #Total
Training 3,826 2,519 39,823 43,650
FFmpeg Validation 255 330 3,242 3,827
Testing 1,020 1,903 37,778 40,701
Training 3,461 1,735 796,965 800,426
Linux Kernel Validation 231 616 35,086 35,317
Testing 922 1,691 157,039 157,961
Total 9,715 8,996 1,069,933 1,081,882

A. Data Mining

We apply VulGuard to mine commits from two widely
used and actively maintained open-source projects: FFmpeg
and the Linux kernel. These repositories are selected due to
their extensive contribution histories. We collect all commits
from the master branch as of September 24, 2024. The total
number of commits from the two projects after the filtering
process is 1,081,882. To accelerate the data extraction phase,
we utilize parallel processing with 50 concurrent processes. It
takes approximately 1 hour for FFmpeg and roughly 12 hours
for Linux to complete data extraction. A detailed summary of
the curated datasets is presented in Table VI.

B. Model Evaluation

Using VulGuard, we have conducted an empirical evalu-
ation of the implemented JIT-VP models under two distinct
settings: ideal, which includes only vulnerabilities and their
corresponding fixing commits, and realistic, which also
includes security-unrelated changes, resulting in data enlarge-
ment. The findings reveal a consistent and substantial decline
in model performance when transitioning from the ideal to
the realistic scenario across various evaluation metrics,
i.e., PR-AUC, MCC, Fl1-score, and ROC-AUC. The detailed



results are shown in Tables IV and V for the Ideal and
Realistic settings, respectively. For comprehensive analyses
and discussions, please refer to our full research paper [7].

VI. CONCLUSION AND FUTURE WORK

We introduced VulGuard, a unified and extensible tool
that automates the end-to-end process of mining, processing,
and analyzing software commits for JIT-VP research. Our
empirical evaluation of two influential projects, FFmpeg and
Linux kernel, demonstrates the tool’s practical utility and
effectiveness in real-world scenarios. Looking ahead, our goal
is to enhance VulGuard by incorporating ensemble learning
techniques and large language models like GPT-3/4, which
have been shown to work well for function-level vulnerability
prediction [32], to further boost JIT-VP predictive performance
as well as extend it to other vulnerability tasks [33], [34].
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