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Abstract

What if you could piece together your own custom bio-
metrics and AI analysis system, a bit like LEGO™ blocks?
We aim to bring that technology to field operators in the
field who require flexible, high-performance edge AI system
that can be adapted on a moment’s notice. This paper intro-
duces CHAMP (Configurable Hot-swappable Architecture
for Machine Perception), a modular edge computing plat-
form that allows operators to dynamically swap in special-
ized AI “capability cartridges” for tasks like face recog-
nition, object tracking, and document analysis. CHAMP
leverages low-power FPGA-based accelerators on a high-
throughput bus, orchestrated by a custom operating system
(VDiSK) to enable plug-and-play AI pipelines and crypto-
graphically secured biometric datasets. In this paper we
describe the CHAMP design, including its modular scal-
ing with multiple accelerators and the VDiSK operating
system for runtime reconfiguration, along with its crypto-
graphic capabilities to keep data stored on modules safe
and private. Experiments demonstrate near-linear through-
put scaling from 1 to 5 neural compute accelerators, high-
lighting both the performance gains and saturation limits
of the USB3-based bus. Finally, we discuss applications of
CHAMP in field biometrics, surveillance, and disaster re-
sponse, and outline future improvements in bus protocols,
cartridge capabilities, and system software.

1. Introduction
Edge computing for performing in-situation AI tasks has

become crucial in scenarios ranging from defense and secu-
rity to disaster response. Field operators often face evolving
mission requirements, needing to switch rapidly between AI
tasks such as object detection, vehicle tracking, or biomet-
ric recognition and identification in unpredictable environ-
ments. Traditional fixed-function vision systems or cloud-
based analytics are insufficient when real-time responsive-

Figure 1. A depiction of the CHAMP prototype, consisting of an
NVIDIA Jetson AGX Orin married with a custom high-throughput
USB 3.0 bus. In this configuration, the bus is populated with with
3 Intel Movidius 2 Compute Stick modules and a final high-speed
USB drive storing a large encrypted biometric database (leftmost
module).

ness, portability, and adaptability are required. There is a
clear need for an edge AI platform that is reconfigurable in
the field by non-experts, to handle diverse tasks under power
and size constraints.

In this paper, we present CHAMP (Configurable Hot-
swappable Architecture for Machine Perception), an edge
computing platform designed to address these needs.
CHAMP provides a small, lightweight module that can be
rapidly deployed and reconfigured with a variety of AI ca-
pabilities. The key innovation is a set of plug-and-play
capability cartridges, each implementing a specific ma-
chine learning task (e.g., object detection, face recogni-
tion, natural language processing) on a low-power FPGA
or neural accelerator. Operators can hot-swap cartridges
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to change or chain capabilities without powering down the
system. The cartridges interface through a high-bandwidth
CHAMP bus to a central controller, which runs the custom
VDiSK operating system[3] to orchestrate data flow and
resource management across cartridges. Figure 1 shows
a prototype CHAMP testbed, that incorporates multiple
FPGA USB accelerators on a base NVIDIA Jetson ORIN
board.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on modular AI systems, neu-
ral network accelerators on FPGAs, and existing orches-
tration software like NVIDIA’s Triton. Section III details
the CHAMP system design, including cartridge architec-
ture, bus topology, FPGA integration, and the VDiSK OS.
Section IV presents experimental results on performance
scaling using multiple AI accelerator “sticks” to emulate
CHAMP cartridges, demonstrating the benefits and limits of
modular scaling. Section V explores use cases of CHAMP
in biometrics, object tracking, document exploitation, and
beyond. Section VI outlines future work to enhance the
bus protocol, expand cartridge diversity, and improve the
VDiSK software. Finally, Section VII concludes the paper.

2. Related Work

2.1. Modular AI Systems and Hot-Swap Architec-
tures

The concept of modular, reconfigurable AI hardware is
gaining traction as AI moves to the edge. Traditional vi-
sion systems like the Cognex In-Sight cameras [11] inte-
grate imaging and inference in a single device, but reconfig-
uring their algorithms typically requires external software
updates and cannot be done in real-time by non-specialists.
CHAMP differs by allowing physical reconfiguration of ca-
pabilities on the fly through hot-swappable cartridges, a
feature more common in enterprise hardware (e.g., hot-
pluggable storage or network modules) than in edge AI de-
vices.

On the software side, frameworks such as NVIDIA’s Tri-
ton Inference Server support serving multiple AI models
with dynamic management in cloud and edge environments.
Triton enables deployment of models from different frame-
works and can load/unload models on demand to adapt to
workload changes [25]. This inspired aspects of CHAMP’s
VDiSK operating system: much like how Triton man-
ages model ensembles and concurrency in software, VDiSK
manages a collection of hardware AI modules, routing data
between them and handling their addition or removal dur-
ing operation. However, unlike Triton which assumes a
fixed hardware platform (GPU/CPU servers), CHAMP pro-
vides a physical modularity—operators can insert a new
hardware module (e.g., a face recognition cartridge) and the
system will automatically incorporate it into the processing

pipeline. For containers, Kubernetes Edge [7] provides
centralized management and orchestration of lightweight
software containers across resource-constrained edge de-
vices. While CHAMP does not currently utilize or integrate
with [7], its ability to orchestrate containers over networks
offers an advantage that we hope CHAMP might leverage
in the future.

Prior academic work has explored modular architec-
tures in the context of sensor networks and reconfigurable
computing. For example, research in dynamic partial re-
configuration of FPGAs [19] allows hardware logic to be
swapped at runtime to adapt to new tasks, which paral-
lels CHAMP’s goal but at the silicon configuration level.
The work in [10] demonstrates reconfigurable FPGAs en-
able versatile, multi-purpose vision systems with compet-
itive performance and robustness to various degradations,
while significantly reducing size, weight, and power re-
quirements for edge deployment as compared to GPU-based
systems. Our approach leverages swappable hardware mod-
ules at a higher abstraction, which is more accessible to
end-users than either of the previous academic implemen-
tations. CHAMP combines ideas from hot-swappable com-
puting components and AI model management servers to
create a field-deployable, user-reconfigurable AI system.

2.2. Neural Network Accelerators on FPGAs and
ASICs

A cornerstone of CHAMP is the use of specialized ac-
celerators in each capability cartridge. There is a rich body
of work on neural network acceleration using FPGAs and
ASICs, which we draw upon for cartridge design. FPGAs
offer customizable parallelism and are often used to speed
up deep learning inference within power or latency con-
straints [18]. Surveys such as Mittal’s work in 2020 provide
comprehensive overviews of FPGA-based CNN accelera-
tors, highlighting techniques like model quantization and
pipeline parallelism to optimize performance per watt[22].
Specific examples include Qiu et al.’s “DeepCNN” acceler-
ator on a Xilinx FPGA, which demonstrated that an embed-
ded FPGA could run convolutional networks with signifi-
cant speedups by exploiting model sparsity and 16-bit fixed-
point arithmetic[26]. CHAMP’s VDiSK software layer can
manage interaction between arbitrary FPGA accelerators,
as long as it has a software module layer that abstracts its
input and output into a unified message format. Currently,
we have implemented two of these software drivers for
CHAMP, specifically for the Intel Movidius Neural Com-
pute Stick 2 (NCS2), and the Google Coral USB (GC) ac-
celerator.

The NCS2 is powered by the Intel Movidius Myriad X
Vision Processing Unit (VPU). The NCS2 is a USB-based
device capable of running deep neural network inferences
on only a few watts, delivering up to 4 trillion operations



per second (4 TOPS) of performance [16]. Notably, multi-
ple NCS2 devices can be used in parallel on one host to lin-
early scale throughput, as advertised by Intel[16]. Google’s
Coral Edge TPU achieves 4 TOPS on 2 W, resulting in about
about 2 TOPS/W, and can run lightweight vision models
like MobileNet at over 400 FPS in a power-efficient man-
ner.

Although no further drivers have been implemented,
other accelerator platforms are also good candidates for in-
tegration within the CHAMP system. ASIC accelerators
like the Hailo-8 chip could push efficiency further, deliver-
ing up to 26 TOPS on 5 W; a recent modular product by
Unigen integrates two Hailo-8 chips (52 TOPS total) into
an E3.S hot-swappable card for edge servers. This trend to-
ward high-performance, low-power AI accelerators in com-
pact form factors underlines the feasibility of CHAMP’s
cartridge approach. Each CHAMP cartridge can host an
FPGA or ASIC like those above, tailored to a specific AI
task.

The VDiSK operating system [3] in CHAMP orches-
trates these heterogeneous accelerators. Similar to how an
OS manages different co-processors, VDiSK must handle
communication and scheduling between cartridges. Prior
work on multi-FPGA systems and distributed inference pro-
vides relevant insights. For instance, model-parallel ap-
proaches partition neural networks across multiple acceler-
ators, and frameworks like OpenVINO allow deploying in-
ference across CPU, GPU, and NCS devices concurrently.
CHAMP’s VDiSK builds on such ideas to dynamically allo-
cate inference tasks to whichever cartridges are present, and
ensure the data (e.g. video frames or feature tensors) flows
through the chain of accelerators in the correct sequence.

2.3. The VDiSK Operating System

CHAMP’s runtime software, called VDiSK (an acronym
we define as the Virtual Distributed Streaming Kernel), is
a lightweight operating system designed for orchestrating
modular AI pipelines. It was introduced in [3], and has
been extensively modified to provide the more complex ca-
pabilties required by CHAMP. Its role is analogous to an in-
ference server combined with a router: it recognizes when
cartridges are added or removed, queries their capabilities,
and manages a message-passing interface over the CHAMP
bus so that data is handed off between cartridges efficiently.
CHAMP operates on a special fork of VDiSK that includes
CHAMP specific features for hotswapping that we describe
below. The code for CHAMP will be provided on github
upon release of the paper.

VDiSK uses a publish/subscribe model for data ex-
change between cartridges, not unlike ROS (Robot Oper-
ating System) [21] topics for sensor data, but optimized for
high-throughput streaming of imagery and vectors. Each
cartridge, upon insertion, registers with VDiSK, advertis-
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Figure 2. A visual description of the interplay between CHAMP
hardware modules, the NVIDIA ORIN-based orchestrator, and the
VDiSK software. Figure is inspired by [3]. CHAMP modules
(left) provide specific capabilities that come together within the
orchestrator (bottom), and can be matched against galleries within
a database module (top right), which also defines the necessary
matching calculation for the template type it stores.

ing the type of data it consumes and produces (for exam-
ple, “takes an image frame, outputs bounding boxes and
labels”). VDiSK then links the output of one cartridge to
the input of the next in a pipeline according to the physical
order of cartridges or a user-specified sequence. This de-
sign was influenced by the NVIDIA Triton server’s model
ensemble feature, which can route outputs of one model to
another internally[24].

A key challenge for the CHAMP fork of VDiSK is main-
taining stable operation during hot-swap events. When a
cartridge is removed or inserted, the OS briefly buffers in-
coming data and reconfigures the pipeline routing. We en-
sure that if a module is removed, its upstream neighbor is
instructed to pause or redirect output, and its downstream
neighbor either receives a default pass-through or triggers
an alert for operator intervention. Our design goal is to limit
downtime to mere seconds when reconfiguring, so that the
system can effectively adapt on the fly.

The next section details the actual architecture of
CHAMP’s hardware and how VDiSK and the bus enable
this hot-swappable capability.

3. System Design of CHAMP

3.1. Overall Architecture and Bus Topology

At the heart of CHAMP is a Orchestrator Compute
Module, an Nvidia Jetson AGX Orin, and the CHAMP
communication bus backplane. The bus is a off-the-shelf
high-speed interface that provides both power and data con-
nectivity to the plug-in capability cartridges. Physically,
the bus is a multi-drop high-speed USB3.1 Gen1 bus that
operates at 5 Gbps. Each cartridge connects via the stan-
dardized USB protocol.

The bus topology allows cartridges to be arranged in a
chain. Logically, cartridges form a pipeline: e.g., a first



cartridge might perform object detection on video frames,
passing its output (bounding boxes) to the next cartridge
which performs face recognition, which then passes iden-
tified faces to a third cartridge that checks them against a
biometric database, which can be encrypted via VDiSK’s
built-in homomorphic encryption for templates. This lin-
ear pipeline model is enforced by VDiSK, though future
versions of CHAMP could allow more complex graphs
(branching pipelines) with appropriate bus arbitration.

Because multiple CHAMP main modules can also be
linked (for scaling out), the bus interface can be extended
externally via ports that connect two CHAMP units. For
example, two CHAMP modules can be connected via Gi-
gabit Ethernet or a high-speed serial link to share data be-
tween their respective cartridge pipelines, effectively cre-
ating a larger distributed pipeline. This modular scaling
means an operator could daisy-chain full CHAMP units if a
task grows in complexity beyond what a single unit can han-
dle, all while maintaining the plug-and-play ease of adding
or removing pieces.

3.2. Capability Cartridges

Each capability cartridge is a self-contained AI accel-
erator specializing in a particular function. Internally, a car-
tridge consists of a low-power computational device (such
as an FPGA, VPU, or ASIC), local memory, and a bus in-
terface controller. We opted for FPGAs in our initial design
due to their flexibility: a single cartridge type can be re-
programmed to a different function if needed, although in
normal operation each cartridge is flashed with a fixed bit-
stream corresponding to its advertised capability.

The cartridges are small (a few inches in length, similar
to a thick USB stick form factor) and rugged, suitable for
field deployment. They are also low-power; typically each
draws 5–10 Watts or less, so that the entire CHAMP system
can run off battery packs if necessary to support extended
field deployments. Currently implemented cartridges in-
clude:

• Object Detection Cartridge: Cartridge that runs
YOLOv3 or Mobilenet-SSD for real-time detection of
people, vehicles, objects, etc.

• Face Detection Cartridge: Implements Reti-
naface [13] to detect facial bounding boxes

• Face Recognition Cartridge: Implements
FaceNet [29] and provides output embeddings to
be matched against in Cosine Simlarity space.

• Facial Quality Scoring Cartridge: Implements CF-
FIQA [2] to provide quality socres for facial bounding
boxes.

• Gait Recognition Cartridge: Implements Gaitset [5]
and the BodyPix [12] segmenting algorithm to extract
embeddings from gait analysis.

• Database/Storage Cartridge: a special module that
provides storage (e.g., an SSD or memory buffer)
for logging data or holding large reference databases
(faces) that other cartridges can query. Implements
homomorphic encryption capabilities for template pri-
vacy and security from [3].

While these cartridges only represent a small portion of
possible tasks a technician may want to perform, they are a
good starting set. Many more cartridges with a wide range
of capabilities are in the process of being implemented,
however take time to convert and distill into form factors
runnable on small VPU accelerators. All cartridges con-
form to a common protocol for data exchange over the bus.
This includes a framing for messages (e.g., image frames
are tagged with sequence numbers and partitioned if large,
inference results are tagged with metadata about type and
size). The bus controller on each cartridge can also perform
flow control; if a cartridge’s processing time is slower than
the input rate, it can signal upstream modules or the main
controller to throttle the data flow, preventing overload.

Critically, cartridges are hot-swappable. The bus hard-
ware supports live insertion: power pins are staggered so
that ground makes contact first, then power, then data pins,
to avoid transients. The main module monitors the bus for
new connection events or removal events (using USB’s stan-
dardized device detection and a Zeroconf [6]). When a new
cartridge is inserted, the main module pauses the pipeline
for a brief moment (a few milliseconds to a second), ad-
dresses the new cartridge, and initiates a handshake. The
new cartridge reports its capability ID (a predefined code
for each type of function) and its data format. VDiSK then
integrates this into the pipeline at the correct position. For
example, if the cartridge was inserted in slot 2 of 4, it be-
comes the second stage in the pipeline. Conversely, on re-
moval, VDiSK will either bridge the gap (if the pipeline can
continue without that function) or pause the pipeline and
notify the operator that a capability is missing.

3.3. VDiSK Orchestration and Software Stack

The Main Compute Module runs a lightweight Linux
with the VDiSK OS software stack on top. VDiSK is imple-
mented as a set of Linux daemons and kernel modules: one
kernel driver manages the physical bus (detecting devices,
reading/writing from bus addresses), and a user-space dae-
mon handles the high-level orchestration (capability regis-
tration, data routing, and health monitoring).

When the CHAMP system boots, VDiSK enumerates
any cartridges present and builds an initial pipeline graph.
It loads the necessary support libraries or drivers for each



type of cartridge. Cartridges can operate in two modes:
streaming mode (continuous data flow, e.g., video frames)
or request-response mode (discrete queries, e.g., database
lookup cartridge). VDiSK abstracts these differences by
treating everything as a stream of messages, which could
be a continuous stream or a sporadic one.

CHAMP’s version of VDiSK also exposes a simple user
interface for operators on a connected console or even a mo-
bile app via WiFi/Bluetooth (as the main module has wire-
less connectivity. The code utilizes the ComfyUI workflow
editor [8] to allow an operator to see which cartridges are
present and active, and can manually re-order or toggle cer-
tain pipelines via this interface if needed. However, the pri-
mary mode of configuration is physical: the operator just
plugs in the cartridges in the desired order and the system
auto-configures accordingly, which has been a design goal
to make CHAMP usable by non-technical personnel.

Figure 3. A sample workflow shown in the CHAMP visualization
software, which is implemented within fork of the ComfyUI work-
flow [8] editor that auto populates groups and modules based on
which modules are actively plugged into the CHAMP system.

The system design emphasizes modularity and scalabil-
ity: you can add capability by plugging in another cartridge,
or increase throughput by linking multiple CHAMP mod-
ules. The combined hardware/software infrastructure en-
sures these changes happen with minimal disruption to run-
ning operations. Next, we evaluate how effective this design
is via a series of experiments.

4. Experiments and Performance Evaluation
We built a CHAMP prototype to validate the hot-

swappable design and to measure the performance scaling
when multiple accelerators are used in tandem. In our cur-
rent prototype, the CHAMP bus is approximated using a
USB 3.0/3.1 bus with multiple Neural Compute Stick ac-
celerators acting as capability cartridges. While this setup
differs from the final envisioned hardware (which would use
a custom backplane and FPGA-based cartridges), it allows
us to emulate the scenario of chaining or parallelizing infer-
ence tasks with up to five accelerators on a single bus. We
focus on measuring throughput (frames per second, FPS)

for a constant workload as we vary the number of active
accelerator sticks, as well as observing the overhead of hot-
swap operations.

4.1. Throughput Scaling with Multiple Accelerators

Our test scenario uses a pre-trained object detection
model (MobileNetv2 [28]) running on Intel Movidius Myr-
iad X sticks (Intel NCS2 devices)[16] using the NCSDK
MobileNetv2 port [23], and the Google Coral utilizing the
implementation from [30]. The orchestrating ORIN sys-
tem distributes incoming video frames to the NCS2 devices
for inference. We measure the achieved frame processing
rate for 1 through 5 NCS2 devices on the same USB3 bus.
For fairness, we use asynchronous inferencing with a batch
size of 1 per device (the model is small enough that each
stick processes one frame at a time with minimal latency).
We disrtribute each frame to all operating modules at once,
which all perform MobileNetv2 computations simultane-
ously. The experiment is performed in this way to simulate
high load on the USB3.0 bus, in attempt to measure its data
throughput limitations.

# of Modules Intel NCS2 Coral USB
1 15 25
2 13 22
3 10 19
4 8 17
5 6 15

Table 1. Measured inference throughput scaling with up to five
USB3 neural accelerators, each running Mobilenetv2 [28]. In
practice, diminishing returns occur beyond 3–4 devices due to bus
bandwidth and coordination overheads.

Table 1 shows the results. With a single NCS2, the sys-
tem processed about 15FPS on our test video stream. We
observe that as more modules are added to the system the
total FPS rate decreases, likely due to high data traffic on
the bus. In both experiments, FPS tapers off as more devices
are added. It should be noted that in non-simulated scenar-
ios, each module provides a specific capability in line with
the rest sequentially, so each frame is effectively pipelined
through each module. This means that as more capabilities
are added, we only experience a sub-linear slowdown of op-
eration (i.e. a system performing 500% more compute only
slows down by 50%).

The primary cause of the slowdown is contention on the
USB bus and the host CPU coordination overhead. The
USB3 interface has a finite bandwidth (around 5 Gbps the-
oretical for USB3.1 Gen1) which in practice means the host
can only send so many frames and receive results from mul-
tiple devices in parallel before hitting throughput limits. We
noticed that the host CPU utilization also increased with
more devices, as it has to manage multiple inference threads
and USB transfers. In a future CHAMP implementation,



our custom bus could mitigate some of these issues by pro-
viding higher throughput and direct module-to-module data
transfers, but the experiment with USB-based accelerators
is illustrative of general scaling behavior.

These results validate that adding more accelerators (ca-
pability cartridges) to a single CHAMP module can indeed
increase throughput roughly linearly, until overheads set
in. For many real-time applications, even 2 or 3 cartridges
might suffice to meet frame-rate requirements, and CHAMP
allows using just the needed number of accelerators. If fur-
ther scaling is required, one could either move to a more
advanced bus (e.g., PCIe Gen3/4 in a future CHAMP ver-
sion) or distribute the load over multiple CHAMP modules
(as noted, CHAMP modules can be networked).

4.2. Latency and Hot-Swap Behavior

Another set of experiments evaluated the latency added
by the CHAMP pipeline and the impact of hot-swapping
cartridges during operation. In a configuration with 3 NCS2
accelerators in series (simulating a 3-stage pipeline) which
performed facial detection, quality estimation, and embed-
ding extraction respectively, we measured end-to-end infer-
ence latency per frame and found it to be roughly the sum of
individual device latencies plus a small overhead (∼5%) for
buffer handoff between devices. This overhead is the cost
of routing through VDiSK and the bus. Because CHAMP
utilizes gRPC similarly to the FaRO framework [1] and the
BRIAR API [4, 9, 17], message passing between modules
and orchestrator is extremly fast. For example, if each stick
had a 30ms latency for its task, the pipeline handled a frame
in about 95–100ms, indicating efficient streaming with min-
imal overhead.

For hot-swap, we simulated removal of the middle accel-
erator during runtime. Without special handling, this would
break the pipeline, but VDiSK detected the removal and au-
tomatically bypassed that stage (the stage in question was
a network that performs face quality estimation [20]). The
system paused frame processing for approximately 0.5 sec-
onds to reconfigure, after which it resumed processing with
the remaining two stages. The frames that arrived during
the reconfiguration were buffered and processed afterward,
meaning we did not lose data, though output was momen-
tarily delayed. When we re-inserted the device, the system
again paused for about 2 seconds to reintegrate it (slightly
longer due to reloading the model on the stick), and then
the 3-stage pipeline continued as before. This demonstrates
the feasibility of CHAMP’s hot-swap with minimal disrup-
tion, though further refinement is needed to make it truly
seamless.

4.3. Power Efficiency

While our current prototype did not measure power draw
at a fine-grained level, we can extrapolate from known spec-

ifications of the hardware. Each Movidius NCS2 stick con-
sumes about 1–2W when running a model continuously.
Thus, five sticks might use on the order of 7–8W, and in-
cluding the host overhead, the total system might be around
10 W. This is an order of magnitude lower power than
a typical GPU-based inference system achieving similar
throughput, underscoring the advantage of specialized low-
power accelerators. One of CHAMP’s design motivations
is precisely this efficiency: using many small efficient cores
only when needed, rather than one power-hungry device
running at all times.

4.4. Discussion

The experiments highlight a few important considera-
tions for CHAMP. First, the near-linear scaling at low de-
vice counts is encouraging, as it suggests the modular ap-
proach can yield proportional benefits. Second, the satu-
ration point we observed ( 4-5 devices on USB3) will in-
form the choice of bus technology in CHAMP; a higher-
bandwidth bus or architecture that allows parallel data paths
would push this limit further out. Third, the hot-swap test,
albeit simple, showed that our orchestration approach is vi-
able. However, more complex scenarios (like swapping in a
different type of cartridge that changes the data flow format)
need to be tested in future prototypes. Overall, the prototype
results support the core premise of CHAMP: that a config-
urable, hot-swappable set of AI modules can provide flexi-
ble performance on demand, with manageable overheads.

5. Applications of CHAMP
So who and what is CHAMP designed for? The archi-

tecture is applicable to a wide range of use cases where on-
site AI processing needs to be adaptable and reliable. We
outline several domains and scenarios where CHAMP can
provide significant advantages:

• Field Biometrics and Security: CHAMP can be de-
ployed at checkpoints or during tactical operations to
perform face recognition, fingerprint matching (with
new implemented modules), or gait recognition for
individuals in real-time. An operator can carry a
CHAMP unit with cartridges for face detection and
face ID matching against a watchlist. If the mission
changes (e.g., now needing vehicle recognition or ther-
mal imaging at night), the operator can swap in the ap-
propriate cartridges (vehicle detector, thermal camera
module) on the fly. This is highly relevant for military
Special Forces or law enforcement units that encounter
rapidly evolving scenarios.

• Object Detection and Tracking: For surveillance or
search-and-rescue, CHAMP can serve as a portable an-
alytics hub processing video streams from drones or



cameras. One configuration might include a wide-area
motion detector cartridge, a target classification car-
tridge, and a tracker cartridge. In disaster response, an
operator could use CHAMP with a drone feed: initially
slot in a debris detection module to identify blocked
roads, then replace it with a human body detection
module to look for survivors, depending on mission
needs.

• Disaster Response and Environmental Monitoring: In
a natural disaster, communication networks might be
down, so edge processing is crucial. CHAMP modules
could be set up to analyze sensor data for signs of life
(image, sound sensors), monitor structural damage via
vision algorithms, or even run predictive models for
aftershocks or weather patterns if needed. The mod-
ularity allows responders to tailor the analytics to the
situation at hand by choosing the right set of cartridges.

• Mobile Device Forensics: Law enforcement can use
CHAMP to perform on-site analysis of mobile phones
or laptops obtained in the field. For instance, a
CHAMP unit could include a data extraction cartridge
and a machine learning cartridge to flag illicit content
(like an image classifier for contraband or a cluster-
ing algorithm to visualize communications). The ad-
vantage is that this analysis can happen on-scene (e.g.,
at a border crossing or remote location) without rely-
ing on cloud connectivity, and if new types of analyses
are needed, a new cartridge (say, a deepfake detection
module for videos) can be inserted into the existing
setup.

• Industrial and Commercial Vision Systems: Outside of
government uses, CHAMP could be deployed in fac-
tories for quality control. Unlike fixed vision systems,
a CHAMP-based solution would let technicians swap
in new defect detection modules as products change,
without overhauling the entire system. Similarly in re-
tail, a CHAMP unit could be used for different analyt-
ics (customer counting, shelf inventory checking, etc.)
by switching cartridges based on store needs.

These examples demonstrate CHAMP’s versatility. The
common theme is that CHAMP brings a LEGO™-like plug-
and-play experience to AI deployment: just as one can
build different structures with the same set of LEGO™
bricks, one can assemble different AI pipelines with a set
of CHAMP cartridges. Moreover, because it is edge-based,
it supports real-time decision making in the field and pre-
serves data privacy (no need to stream sensitive data to
cloud).

In particular, defense and intelligence applications stand
to benefit greatly, as noted by potential users in DoD, DHS,
FBI contexts. The ability to carry a small box into a mission

that can be quickly reconfigured for whatever analytic task
is needed (without having to pre-define that at deployment
time) could enhance situational awareness and operational
flexibility.

6. Future Work
While our current CHAMP prototype and design show

promise, there are several areas for significant further de-
velopment to fully realize the vision of a robust, flexible
platform. The present design uses an off-the-shelf USB3-
based bus for expedience, but a custom bus that allows for
less memory transfer overhead, and higher throughput is in
development. Future work will explore using USB-C, PCIe
or even proprietary serial links that offer higher through-
put and lower latency. We aim to design a bus protocol
that supports direct peer-to-peer cartridge communication
(so intermediate data can go from one cartridge to the next
without always traveling up to the main controller). We will
also investigate dynamic reconfiguration of the bus to al-
low cartridges to be re-routed in different topologies (not
just a fixed pipeline). This type of operational mode could
be useful in multi-camera or multi-sensor systems that re-
quire parallel coordination and fusion of sensor output, such
as multi-camera neural high-dynamic-range post processing
techniques [27].

As CHAMP is further developed, we will perform more
in-depth experiments thoroughly analyzing the latency, per-
formance, and power consumption dynamics of CHAMP
under different, more intricate biometric workloads. Fur-
thermore, as the template privacy capability within VDiSK
is refined, we will perform exhuastive experiments on
the speed and power requirements of running privacy-
preserving template encryption and matching techniques in-
line with these workloads, as this type of privacy protection
is an important component of running biometric systems at
the edge.

Additionally, we plan to diversify the types of cartridges
available. Developing new cartridges will also involve port-
ing state-of-the-art models to our low-power hardware. We
hope to leverage techniques like model pruning, quantiza-
tion to low-bit (e.g., 4-bit or binary neural networks), and
even model distillation to fit big AI capabilities into small
cartridges. As we develop CHAMP, we see the potential for
a broader ecosystem. We aim to standardize the cartridge
interface protocol so that third-party developers could cre-
ate new cartridges and drivers compatible with CHAMP. We
would like to extend CHAMP to also work with accelerators
such as the EdgeCortix SAKURA-II [14] and Hailo-8 [15]

Finally, an exciting area of research is how CHAMP
can facilitate multi-modal AI. Because it can host different
types of processing units simultaneously, we plan to experi-
ment with pipelines that fuse, for example, image and audio
data for better scene understanding and biometric match-



ing. With appropriate synchronization support in VDiSK,
one could have a microphone cartridge and a camera car-
tridge both feed into a fusion module that does audio-visual
processing (e.g., detect a person and their speech together to
do speaker identification). The flexibility of CHAMP could
make setting up such multi-modal pipelines much easier
than custom-building a single device for each combination
of sensors.

7. Conclusion

We have presented CHAMP, a novel configurable and
hot-swappable architecture tailored for real-time machine
perception tasks at the edge. By combining modular hard-
ware AI cartridges with a high-speed bus and an intelligent
orchestration OS (VDiSK), CHAMP enables on-demand
reconfiguration of AI capabilities in the field. This approach
empowers non-technical users to adapt their AI toolset to
changing missions simply by swapping modules, rather
than needing to carry multiple devices or perform software
reprogramming under pressure.

Our design and prototype demonstrate that CHAMP can
scale performance by adding accelerators, achieving up to
fourfold increases in throughput with five modules, and that
it can maintain operation with minimal downtime during
module swaps. These features differentiate CHAMP from
static edge AI appliances and make it particularly suited for
applications in defense, security, emergency response, and
flexible industrial automation. Whether it’s identifying per-
sons of interest, translating foreign documents on the fly,
or rapidly deploying a new sensor analysis capability dur-
ing a disaster, CHAMP provides a foundation for agile AI
deployment.

Moving forward, we are focused on refining the bus
and OS for greater performance and robustness, expand-
ing the library of plug-and-play AI cartridges, and engag-
ing with end-users to drive CHAMP towards real-world de-
ployments. As edge computing continues to grow in im-
portance, we believe modular architecture paradigms like
CHAMP will play a key role in delivering AI whenever and
wherever it’s needed, with versatility to meet the unknown
challenges of in-situation fluidity.
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