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1 Introduction

Modern software systems are increasingly exposed to
security vulnerabilities. Many of these are reported
through the Common Vulnerabilities and Exposures

Abstract

Detecting security vulnerabilities in open-source software is a critical task that
is highly regarded in the related research communities. Several approaches have
been proposed in the literature for detecting vulnerable codes and identifying the
classes of vulnerabilities. However, there is still room to work in explaining the
root causes of detected vulnerabilities through locating vulnerable statements
and the discovery of paths leading to the activation of the vulnerability. While
frameworks like SliceLocator offer explanations by identifying vulnerable paths,
they rely on rule-based sink identification that limits their generalization. In
this paper, we introduce VulPathFinder, an explainable vulnerability path
discovery framework that enhances SliceLocator’s methodology by utilizing a
novel Graph Neural Network (GNN) model for detecting sink statements, rather
than relying on predefined rules. The proposed GNN captures semantic and
syntactic dependencies to find potential sink points (PSPs), which are candidate
statements where vulnerable paths end. After detecting PSPs, program slicing
can be used to extract potentially vulnerable paths, which are then ranked by
feeding them back into the target graph-based detector. Ultimately, the most
probable path is returned, explaining the root cause of the detected vulnerability.
We demonstrated the effectiveness of the proposed approach by performing
evaluations on a benchmark of the buffer overflow CWEs from the SARD
dataset, providing explanations for the corresponding detected vulnerabilities.
The results show that VulPathFinder outperforms both original SliceLocator
and GNNExplainer (as a general GNN explainability tool) in discovery of
vulnerability paths to identified PSPs.
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(CVE) database [1]. To defend against these threats,
researchers have developed different automated vul-
nerability detection methods. Graph-based methods,
in particular, have shown superior success due to their
ability to capture the structural and semantic depen-
dencies in code [2]. Despite their effectiveness in de-
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tecting vulnerable code, most current graph-based
models act as black boxes, offering little to no insight
into why a particular code is flagged as vulnerable.
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Without such an explanation, it would be difficult for
developers to debug and mitigate detected flaws.

Vulnerability detection techniques can generally be
grouped into two main categories: rule-based methods,
which include both static and dynamic analysis, and
data-driven approaches [5]. Because it is difficult to
define vulnerabilities, rule-based methods suffer from
high false-positive rates, especially on complex code [5].
In contrast, data-driven methods such as deep learn-
ing have emerged as powerful alternatives capable of
generalizing from large code corpora. This capability
is enabled by the extensive availability of open-source
vulnerability data, which provides a rich foundation
for training and analysis [6]. Data-driven approaches
can learn the latent information from vulnerable pat-
terns and have shown better performance compared
to static tools that utilize predefined rules [5].

Among data-driven approaches, both sequence-
based and graph-based approaches have been widely
explored [5]. Sequence-based methods serialize code
into tokens and apply neural networks to identify vul-
nerability patterns. Graph-based models have proven
effective by representing code as abstract syntax trees
(ASTs), control-flow graphs (CFGs), or program de-
pendence graphs (PDGs), enabling them to capture
structural and semantic code dependencies [7]. How-
ever, despite their success, these models often yield
coarse-grained predictions and lack transparency,
making it difficult for developers to understand why
a function or code snippet is flagged as vulnerable.
This black-box nature poses significant challenges for
analyzing root cause, trust, and fixing.

To address the limitation mentioned above, we pro-
pose VulPathFinder, a Graph Neural Network (GNN)-
based approach for identifying most probable paths
from the potential sources to the detected vulnera-
bility sink statements. VulPathFinder enhances the
vulnerability path discovery method used by Slice-
Locator [1] by utilizing a GNN model to first detect
potential sink points (PSPs), i.e., the statements that
are more likely to be the last chain of a vulnerable
trace in the code. Unlike rule-based methods such as
SliceLocator, which consider a set of predefined rules
to identify candidate sink points, our method will be
context-aware and capable of generalizing to unseen
sink statements. Indeed, by training a GNN model
to find PSPs, VulPathFinder better captures com-
plex vulnerability patterns, retaining control and data
dependencies between statements that might not be
covered by rule-based approaches. After finding PSPs,
inspired by the SliceLocator, we perform backward
slicing starting from each of the sink points in the
list. As a result, we will have a list of candidate paths
leading to a sink point that make some corresponding
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subgraphs. Subgraphs are then fed into off-the-shelf
graph-based detectors to compute their likelihood of
being vulnerable. The subgraph with the most likeli-
hood of being vulnerable is finally chosen. It shows
the corresponding best candidate vulnerable path to
be considered as the explanation of the detected vul-
nerability.

To evaluate the performance of the proposed model
for sink point detection, we used a set of standard clas-
sification metrics. Moreover, to show the end-to-end
performance of the explanation method (explainabil-
ity) against the rival methods, we used the Trigger-
ing Line Coverage (TLC) metric [1] to compare the
achieved results with the original SliceLoocator as well
as GNNExplainer [8]. The latter is a model-agnostic
explanation method for GNNs that is most influential
for a given prediction. The results achieved show that
VulPathFinder not only brings in acceptable precision
and recall in sink point detection but also brings in
higher end-to-end performance in terms of TLC that
shows better explainability.

The rest of the paper is organized as follows: Sec-
tion 2 reviews the related work in conventional static
and dynamic approaches, deep learning, and explain-
able Al approaches. In Section 3, the proposed method
is explained. In Section 4, experimental setup, evalua-
tion metrics, and implementation details are explained.
The results are shown in Section 5. Limitations are
addressed in Section 6, and finally, we conclude the
paper in Section 7.

2 Related Work

2.1 Conventional Static and Dynamic
approaches

Static analysis tools such as CodeQL [9] and Find-
Bugs [10] use fixed rules to find vulnerabilities without
executing the code; however, they suffer from high
false positives and may miss complex vulnerabilities
because defining vulnerable patterns is a challenging
task [5]. Dynamic analysis tools such as Valgrind [11]
and AddressSanitizer [12] find vulnerabilities at run-
time, but they depend on test cases and may miss
unexecuted paths.

2.2 Deep learning-based approaches

The use of deep learning for detecting vulnerable func-
tions and code snippets has increased rapidly in recent
years, thanks to the abundant vulnerable open-source
datasets [6]. Graph Neural Networks (GNNs), in par-
ticular, have shown strong capability in capturing pat-
terns inside graphs and have been widely applied to
tasks such as traffic analysis [13] and social network
modeling [14]. By representing source code as a graph,




graph-based models can be leveraged to find intrinsic
semantic and structural patterns by retaining control
and data dependency inside code [7]. There exist dif-
ferent graph representations, such as abstract syntax
tree (AST), control flow graph (CFG), control depen-
dence graph (CDG), data dependence graph (DDG),
and code property graph (CPG). CPG integrates AST,
CFG, CDG, and DDG to create a unified view that
encodes the syntactic and semantic dependencies [7].
Some works have used solely the sequence of tokens
as their code representation, but by mapping code to
a graph G = (V, E), where V are nodes which denote
entities like variables or statements, and E are edges
inside the graph which show dependencies between
two entities, we can better represent dependencies
among statements.

Several works have used GNN, such as Devign [15],
which is a Gated Graph Recurrent Network-based
method that represents source code in a composite
graph of ASTs, CFGs, and DFGs. Reveal [2] first
extracts rich syntax-semantic features using Gated
Graph Neural Network and embeds these features
via code property graphs, then maximizes the sepa-
ration between vulnerable and non-vulnerable code
in real-world datasets using representation learning.
DeepWukong [16] first generates the CFG and Vari-
able Flow Graph (VFG) to construct a PDG. It then
conducts forward and backward traversals to create
an Extended Flow Graph (XFQG). Then it converts
statement tokens into Doc2Vec vectors. Subsequently,
information from XFG edges, along with vectorized
code tokens, is used as input for k-GNNs. IVDetect [17]
is an interpretable method that first produces sub-
token sequences of the code and then leverages BGRU
with an attention mechanism to integrate ASTs, vari-
able names, type features, sub-token sequences, and
data/control dependencies into a comprehensive code
representation. The representation is then processed
by the Feature-Attention Graph Convolutional Net-
work (GCN) model for training. Then it employs an
explanation model called GNNExplainer [8] to iden-
tify critical sub-graphs as the explanation.

2.3 Explanation approaches

Despite the effectiveness of GNN-based detectors at
flagging vulnerable code, the interpretations and ex-
planations of the cause of vulnerability remain un-
known; these models just output a prediction score
for each input without explaining the cause of the pre-
diction. Recently, explainable AT (XAI) has emerged
to address this gap [18]. Several techniques, such as
GNNExplainer [3], CFExplainer [19], demonstrate the
cause of predictions yielded by models by highlighting
parts of the input that influence model outputs. GN-
NExplainer learns a minimal subgraph and a subset

of node features that alone are sufficient to yield the
same prediction as the full graph [8]. CFExplainer is a
counterfactual explanation that identifies the smallest
modifications to a graph’s structure needed to reverse
the model’s prediction [19]. In the scope of vulnerabil-
ity detection, it highlights which structural modifica-
tions could transform a code snippet from being clas-
sified as vulnerable to non-vulnerable, or vice versa.
However, these methods often struggle with granu-
larity and usability when applied to complex source
code. This is because these models capture the dif-
ference between vulnerable code and non-vulnerable
code without capturing the intrinsic behavior of vul-
nerabilities and their execution paths, and a slight
change in input results in drastically different expla-
nations. Also, most of the explainers deal with the
models themselves, ignoring insights about the taint
tracking and slicing. So, static analysis concepts such
as taint propagation and slicing can be a promising
complement to explainers.

3 The Proposed Approach

In this section, we present our framework, Vul-
PathFinder, which enhances vulnerability path dis-
covery by utilizing a GNN model to detect PSPs.
Previous works (including SliceLocator) [3, 4] con-
sidered predefined rules—such as those related to
library /API call, array usage, pointer usage, and
arithmetic operations—to locate candidate sink
points. In contrast, we employ a data-driven ap-
proach to locate candidate vulnerability sink points.
This is the most important difference between our
work and previous ones. By training a GNN model
to find PSPs, our method better captures complex
vulnerability patterns, retaining control and data
dependencies between statements that might not be
covered by rule-based approaches [7]. VulPathFinder
offers several advantages over rule-based approaches.
First, by training a specific model to identify PSPs,
we can have a context-aware model that can capture
vulnerable patterns. Second, VulPathFinder can be
generalized to find unseen sink points across various
vulnerability types.

The overall framework is depicted in Figure 1, which
consists of four main phases:

(1) Training GNN model for Sink Point Detection,

(2) Identification of PSPs: In this phase, taking
advantage of the trained GNN model from the
previous step, we find a list of PSPs,

(3) Flow Path Generation: By having the list of
PSPs, we perform backward slicing starting from
each of the sink points in the list. At the end of
this phase, we will have a list of candidate paths
leading to a sink point.,

(4) Flow Path Selection: In the last phase, the pre-
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diction score of each path is separately fed into
the graph-based detector, and the path with the
prediction score closest to the prediction score
of the whole original graph will be chosen as the
vulnerable path and considered as the explana-
tion of the vulnerability.

Figure 2 shows an example of a buffer overflow
function, and its corresponding CPG is illustrated in
Figure 3. We can see that the sink line is line 8, and
several paths can be extracted by performing backward
slicing, suchas 1 -—>5->8,1->6-> 8, 7> 8§, etc.
So by ranking these paths based on their prediction
score, we can select the path with the highest score
as the explanation for the given vulnerable function.
Each step is detailed below:

3.1 GNN Training for Sink Point Detection

In order to train the GNN model, we used the Software
Assurance Reference Dataset (SARD) [20]. SARD
provides ground-truth annotations for vulnerability-
triggering statements; these were used to label cor-
responding CPG nodes as ’sink’ (triggering points)
or 'non-sink’. These labels are used in the training
process as node labels for the node classification task
to classify each node as either sink or non-sink. To
achieve robustness and overcome class imbalance, we
preprocessed the dataset to balance positive and neg-
ative samples to overcome the imbalance issue. We
used a Graph Convolutional Network architecture,
which uses message passing to capture dependencies
among neighboring nodes in the CPG. We used 6
GCN layers, each followed by batch normalization and
ReLU activation function to stabilize training and
also to introduce nonlinearity. We also added Dropout
with a probability of 0.5 after each hidden layer to
prevent overfitting. As for node features, we trained
128-dimensional Word2Vec embeddings by using a
random walk to encode node types (e.g., Identifier,
CallExpression) and their content (e.g., variable name
or function calls). The final output of the final layer
is 1 or 0, representing sink or non-sink class for each
node. Figure 4 presents GNN’s architecture.

Once the GNN model was trained and deployed to
detect sink points, the approach proceeded as follows:
3.2 Identification of PSPs

We utilized the pretrained GNN model from the pre-
vious step to detect candidate sink points. At the end
of this step, a list of PSPs is returned.

3.3 Backward Slicing

Inspired by SliceLocator [4], we generate a list of
potential vulnerable paths by performing backward
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slicing from each of the predicted sink points in the
previous step, all the way up to the source of the path.
Then, we will have a list of candidate paths to further
examine in the next step.

3.4 Flow Path Scoring and Selection

Following the methodology of SliceLocator, the se-
lection of the most probable path is determined by
leveraging a target graph-based vulnerability detec-
tor such as Devign, Reveal, or IVDetect to assign an
importance score to each path. Finally, the path with
the highest importance score will be returned as the
explanation of the vulnerable input code. To be pre-
cise, we calculate the probability of the given code
graph G as follows

pa = ®(vec(G))

where ® represents the target detector model, and
vec denotes the Word2Vec embedding function that
transforms G into its vector representation. Then, for
each path, we calculate the same probability, but this
time only for the subgraph corresponding to that path.
Then we calculate the importance score for each path
as follows:

ISy =1—(pc —py)
The closer the probability p, of each subgraph g is to

that of the original graph G, the higher the likelihood
that the subgraph contains vulnerable statements.

4 Experimental Evaluation

In this section, the experimental setup used to evaluate
our approach is shown. We describe the dataset, the
configuration of the training process, the metrics used
for evaluation, and the baselines. All of the developed
codes of VulPathFinder and datasets used in this work
are available in our GitHub repository [21].

4.1 Dataset

For our experiment, we used the SARD dataset [20].
We included six C/C++ weaknesses: CWE-121 to
CWE-126, which are different sorts of buffer over-
flow. This selection resulted in a total of 9660 vulnera-
ble functions, with each function containing multiple
statements that are represented as nodes in our pro-
gram graphs. Source code is parsed into graphs using
Joern [22] and SVF [23], with duplicates removed via
MD5 hashing.

4.2 Evaluation Metric

To evaluate the performance of our GNN model for
sink point detection, we use standard classification
metrics, including Precision, Recall, and F1-Score [5].
To evaluate the end-to-end performance of our expla-
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Figure 1. Overview of the VulPathFinder Vulnerability Path Discovery Framework.
void CWE121_Stack_Based_Buffer_Overflow () c
{
1 int * data;
2 int * dataBadBuffer = (int *)ALLOCA(50*sizeof (int)); e
3 int * dataGoodBuffer = (int *)ALLOCA (100*sizeof (int))
4 if’(globalReturnsTrueDrFalse()) 6
{
5 data = dataBadBuffer; O Sink Node
} ()
s1ee () Non-Sink Node
6 ) data = dataGoodBuffer; a @ CFG Edge
{
7 int source[100] = {0}; o DDG Edge
8 memmove (data, source, 100*sizeof (int)) ; AY
9 printIntLine (data[0]); e 9 —> CDG Edge

Figure 2. Buffer overflow example in C

Figure 3. Control flow graph with CFG, DDG, and CDG
edges.

nation method, we adopt the Triggering Line Cov-
erage (TLC) metric, which is also used by the base-
line method, SliceLocator, allowing for a fair com-
parison [1]. TLC measures the overlap between the
reported path, which serves as an explanation, and
the actual ground truth statements that trigger the
vulnerability. TLC is calculated with the following
equation:

|s® N sY|

EM

TLC =

where s¢ denotes the set of statements in the predicted
vulnerable path and s” represents the set of labeled
triggering statements as ground truths.

4.3 Target Vulnerability Detectors

To thoroughly evaluate VulPathFinder’s ability to pro-
vide explanations for different black-box models, we
adopted three state-of-the-art graph-based vulnera-
bility detectors as our targets: Devign [15], Reveal [2],
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and IVDetect [17]. These models were chosen because
they represent prominent deep learning approaches
for vulnerability detection and were also utilized as
target detectors in the SliceLocator study, allowing for
direct comparison [4]. For each of these detectors, we
used their publicly available implementation. These
models then served as the ’black-box’ detectors for
which VulPathFinder generated explanations for the
vulnerability path discovery task.

4.4 Baselines

We compare VulPathFinder against two baselines to
benchmark its performance in providing vulnerability
explanations:

SliceLocator: A state-of-the-art technique that em-
ploys a rule-based approach to identify PSPs and then
uses backward slicing to generate explanations for
vulnerabilities [4].

GNNExplainer: A model-agnostic explanation
method for GNNs that identifies a critical subgraph
that is most influential for a given prediction [3].
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Figure 5. Confusion matrix on the test set.

4.5 Implementation and Training Details

The dataset was partitioned into training (70%), val-
idation (10%), and test (20%) sets. Class imbalance
was addressed through a combination of oversampling
the minority class in the training data and using a
weighted loss function during training. All models
were trained on a single NVIDIA RTX 3070ti GPU
with a batch size of 64, using the Adam optimizer.

5 Results

In this section, we present the experimental results
of our evaluation. First, we report the performance
of our GNN model for sink point detection, followed
by results for vulnerability path discovery, comparing
VulPathFinder against the baselines.

5.1 Sink Point Detection Performance

We first evaluated our trained GNN model on the task
of classifying graph nodes as sinks. The performance of
the GNN model on the test set is summarized in Table
1. The model achieved a high precision of 0.97 and a
macro Fl-score of 0.98. The model’s ability to detect
the majority of true sink nodes is highlighted by its
0.99 recall score. This high recall is required because
the correct vulnerable path cannot be included for
analysis if its sink is not identified. The confusion
matrix is shown in Figure 5, and it confirms this low
rate of false negatives for the sink class.

5.2 Vulnerability Explanation Performance

In the second part of our evaluation, we assessed the
end-to-end performance of VulPathFinder in explain-
ing vulnerabilities against the baselines. Table 2 shows
the average TLC scores across the test set for all meth-
ods. VulPathFinder achieved an average TLC score of
98%, outperforming both SliceLocator and GNNEx-




plainer. Although SliceLocator achieves a respectable
average TLC of 92%, its rule-based nature of sink
identification prevents it from generalizing to unfore-
seen vulnerability patterns. GNNExplainer shows the
lowest performance, with an average TLC of 81%.
The reason for the low performance of GNNExplainer
can be attributed to the lack of explicit modeling of
taint flow and dependencies within code, which are im-
portant for understanding many vulnerabilities. This
result highlights a key challenge for applying general-
purpose XAI techniques in the domain of software
security. This observation validates the need to incor-
porate program analysis concepts, such as slicing, to
give insightful explanations of software vulnerabilities.

Table 1. Model Performance Metrics

Metric |Value

Precision | 0.97

Recall 0.99

F1-Macro| 0.98

6 Limitations and Threat to Validity

First, the SARD dataset we used is an academic
dataset that includes synthetic code that might not
be used in real-world software programs [20]. Second,
we only evaluated 6 types of CWEs that are mostly
related to buffer overflow vulnerability. Third, we only
evaluated on c¢/c++ codes, although we can easily ex-
tend this work to use more programming languages
such as Java, Python, etc.

7 Conclusion

In this paper, we introduced VulPathFinder, a GNN-
based framework for explainable vulnerability path dis-
covery that outperforms traditional rule-based meth-
ods. By training a dedicated GNN model to identify
potential sink points (PSPs) in code, our approach
moves beyond the limitations of fixed heuristics and
learns to recognize complex, context-aware vulnera-
bility patterns. By integrating this learned sink de-
tection with program slicing and path ranking, Vul-
PathFinder successfully identifies and highlights the
most probable vulnerable execution paths, providing
developers with actionable insights.

Our experiments on the SARD dataset demonstrate
the superiority of this data-driven approach. The sink
detection model achieved high precision and recall,
and the full VulPathFinder framework significantly
outperformed both the rule-based SliceLocator and
the general-purpose GNNExplainer in terms of Trig-
gering Line Coverage. This work underscores the po-
tential of combining deep learning with program anal-

Table 2. Comparison of TLC scores (explanation power) of
different approaches with three underlying state-of-the-art
graph-based vulnerability detectors

Approach IVDetect|Devign|Reveal
VulPathFinder 0.98 0.99 0.98
SliceLocator 0.90 0.97 0.91
GNNExplainer 0.71 0.86 0.86

ysis principles to build not only accurate but also
interpretable tools for software vulnerability analysis.
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