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Abstract

The intellectual property of deep generative networks
(GNets) can be protected using a cascaded hiding network
(HNet) which embeds watermarks (or marks) into GNet out-
puts, known as box-free watermarking. Although both GNet
and HNet are encapsulated in a black box (called operation
network, or ONet), with only the generated and marked out-
puts from HNet being released to end users and deemed se-
cure, in this paper, we reveal an overlooked vulnerability in
such systems. Specifically, we show that the hidden GNet
outputs can still be reliably estimated via query-based re-
verse engineering, leaking the generated and unmarked im-
ages, despite the attacker’s limited knowledge of the system.
Our first attempt is to reverse-engineer an inverse model for
HNet under the stringent black-box condition, for which we
propose to exploit the query process with specially curated
input images. While effective, this method yields unsatisfac-
tory image quality. To improve this, we subsequently pro-
pose an alternative method leveraging the equivalent addi-
tive property of box-free model watermarking and reverse-
engineering a forward surrogate model of HNet, with bet-
ter image quality preservation. Extensive experimental results
on image processing and image generation tasks demonstrate
that both attacks achieve impressive watermark removal suc-
cess rates (100%) while also maintaining excellent image
quality (reaching the highest PSNR of 34.69 dB), substan-
tially outperforming existing attacks, highlighting the urgent
need for robust defensive strategies to mitigate the identified
vulnerability in box-free model watermarking.

Introduction

Recently, deep neural networks (DNNs), especially gener-
ative networks (GNets), have demonstrated their powerful
ability to handle various tasks, surpassing previous state-
of-the-art techniques. However, the resources required to
train such models, whether in terms of time, money, or la-
bor, are immense. For example, the widely used generative
DNN application GPT-4 requires more than 24,000 GPUs
for training (Liu et al. 2023b), resulting in significant ex-
penses. Therefore, it is imperative to safeguard these assets
from intellectual property infringement.

Previous efforts in safeguarding the intellectual property
of DNN models aim at two primary goals: 1) Ownership
verification and 2) Model stealing tracing, also known as
surrogate attack tracing. Both goals can be accomplished
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Figure 1: Flowchart of the victim model considered in this
paper, where image denoising is used as an example.

through watermarking techniques. The watermarking pro-
cess embeds marks, e.g., encoded identity information, into
the to-be-protected model or its outputs. Subsequently, a ver-
ification process can extract the embedded information to
verify the ownership. In the case of model stealing tracing,
model watermarking has shown its effectiveness in retaining
the embedded marks in surrogate models, which can then be
extracted through the verification process.

Among all categories of model watermarking, box-free
watermarking stands out due to its ability to handle high-
entropy outputs (e.g., images) and its flexibility in extract-
ing watermarks solely from protected models’ outputs. In
this subdomain, Zhang et al. (Zhang et al. 2020) proposed
the first box-free framework for image processing models.
Although existing box-free methods have shown robustness
against common image processing, surrogate attacks, and
applicability to other generative tasks (Wu et al. 2020; Zhang
et al. 2021; Huang et al. 2023; Zhang et al. 2024; An et al.
2025), in this paper, we reveal an overlooked vulnerability
that query-based reverse engineering can leak the generated
and unmarked images, enabling watermark removal.

We build on the prior works (Wu et al. 2020; Zhang et al.
2020, 2021, 2024) as depicted in Figure 1. Considering im-
age denoising as an example, the noisy image, denoted by
a; € A, is processed by GNet, whose output, denoised im-
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age b; € B, is not released. Instead, b; is further processed
by the hiding network (HNet) for watermark embedding, re-
sulting in a processed and marked image, b, € B’, which
is the actual output of the model. Notably, GNet and HNet
are encapsulated as a black-box called operation network
(ONet). The extraction network (ENet) takes b. as input to
retrieve the embedded watermark, while an all-white image
indicates the absence of watermarks.

Our attacks are grounded in a key observation that if an
attacker can craft queries to circumvent the functionality
of GNet, they may extract HNet’s information to infer the
watermark embedding mechanism, thereby enabling water-
mark removal against b,. Based on this, we first present
a simple and intuitive method to reverse-engineer an in-
version network of the HNet, denoted by HNet ™!, which
is a watermark removal operator to b;. However, such an
inversion-based removal attack resulted in limited image
quality, which motivates us to propose the second attack. We
notice that the watermark embedding process in the victim
model in Figure 1 is additive in nature, which can be mod-
eled by b; = b; + 0;,, where 4, is the equivalent represen-
tation of the to-be-embedded watermark §. Built on this, we
demonstrate how the additive property can be exploited to
estimate the private b;. Both attacks are evaluated under the
realistic and challenging black-box condition, where the at-
tacker only has access to the victim model’s inputs (a;) and
outputs (b}). Our contributions are as follows:

* We discover, via query-based reverse engineering, that
encapsulating GNet and HNet into a black box is still
insecure in protecting GNet and its outputs.

* We show that HNet can be inverted via specially crafted
queries, which leads to watermark removal and leaking
of GNet outputs.

* We further propose an improved remover leveraging
on the additive equivalence of the watermark, which
achieves better image quality.

* We discuss a query screener to be deployed at the API to
defend against the proposed attacks.

* We conduct extensive experiments on image processing
and generation tasks to demonstrate the effectiveness of
our proposed methods.

A comprehensive review of related work is provided in the
supplementary material.

Problem Formulation

Box-free Model Watermarking Basics
The existing shared box-free model watermarking workflow
is depicted in Figure 1, and the related notations are summa-
rized in Table 1. The workflow is modeled as

* Image operation: b; = GNet(a;),

* Watermark embedding: b, = HNet(Concat(b;, 9)),

« Watermark extraction: § = ENet (b)),

where GNet can be deraining, image generation, or an arbi-
trary image-to-image model, Concat() is the channel-wise
concatenation operation, and the extraction yields an esti-
mated watermark & which is supposed to be 0. Note that

Table 1: List of notations.

Notation Definition
GNet Generative network
HNet Hiding network
ONet Operation network (GNet + HNet)
ENet Extraction network
SNet Surrogate network of HNet
D Discriminator
1,7 Sample index, i # j
do All-white image (no watermark)
) Watermark image
8 Latent representation of § for a;
0 Latent representation of § for b;
a; € A | To-be-processed image (input of GNet)
b, e B Processed unmarked (by GNet) image
b, € B’ Processed marked (by ONet) image
b€ B Watermark removed b
e, € F Generic unmarked image (B C E)
b;j € B | Processed unmarked (not by GNet) image
b, € B b; marked by HNet

ENet can also take an unmarked b; or an arbitrary image,
e;, as input, and the output is expected to be dy. To protect
GNet, it is pretrained and frozen, while the defender jointly
trains HNet, D, and ENet, to minimize the combined loss

Lioint = B1 Lridelity + B2 Lmark + F3Ladv, (D

where

Lrigeiy = »_ MSE (b, b;) , 2)

Y [MSE(S, §) + MSE (ENet(e;),80)| . 3)

(2

Lawy =Y _ [log(D(b;)) + log(1 — D(¥}))] )
In the above framework, Lrigcliry €nsures the marked image
is visually indistinguishable from the processed unmarked
image, Lk ensures successful watermark extraction from
marked images b; as well as successful null extraction (all-
white output) from unmarked images e; which can be the
processed unmarked b; or any images not related to GNet.
Additionally, the adversarial loss L4, improves the embed-
ding quality so the discriminator cannot distinguish marked
and unmarked images. Other loss functions, e.g., consis-
tency loss (Zhang et al. 2020) and perceptual loss (Johnson,
Alahi, and Fei-Fei 2016), can be further added to improve
the performance.

Threat Model

We consider a stringent yet practical threat model in this pa-
per, in which GNet and HNet are encapsulated together as a
black-box API, referred to as operation network (ONet), and
deployed as a cloud service. End users can thus only have
their query image a; and observe the processed and marked
image b;. Meanwhile, ENet is assumed to be operated by an



authorized party for watermark extraction and verification,
and it is inaccessible to end users including attackers. The
goal of the attack is to remove the watermark embedded in
ONet output without significantly degrading image quality,
allowing for further attacks like watermark-free surrogate
model training. That is to say, ideally, the attacker aims to
restore from the observed b; to b;, removing the watermark
while preserving the effect of GNet. The generic attacking
model is thus given by

Remove(a;, b;) = b;. )
Note that ENet(b;) = do corresponds to the ideal null
extraction, while the removal attack may also be consid-
ered successful if ENet(Remove(a;, b})) significantly dif-
fers from J. The successful estimation of b; from the only
observable a; and b} reveals the vulnerability from the black-
box ONet, which is analyzed in the next section.

Proposed Methods

In this section, we first reveal the overlooked vulnerability
in box-free model watermarking. Building on this, we pro-
pose query-based reverse engineering attacks that efficiently
remove the embedded watermark. The first attack trains an
inversion network of HNet to remove the embedded water-
mark with simple and intuitive insight. However, we ob-
serve the unsatisfactory image quality preservation with this
method. To address this, we propose the second attack based
on our observation of the additive equivalence property in
box-free model watermarking, which demonstrates signifi-
cantly improved performance in maintaining output image
quality. Last, we summarize the proposed attacks and dis-
cuss a potential defensive mechanism.

Vulnerability Analysis

From an attacker’s perspective, GNet and HNet appear
tightly coupled in ONet because the intermediate output b;
is unobtainable. Therefore, breaching this coupling to ex-
tract information from either model becomes a critical step
in compromising the watermarking system.

Since ONet is deployed as a commercial cloud service, its
functionality is typically known to both users and potential
attackers. Our attacks are based on a key observation: if the
attacker can construct inputs b; € B, j # ¢ that satisfy
approximate identity transformation under GNet, i.e.,

GNet(b;) ~ b;, 6)
then GNet can be effectively bypassed, thereby exposing the
watermarking mechanism implemented by HNet. For exam-
ple, when GNet is instantiated as a deraining model, b; can
be images captured in rain-free environments. When GNet
functions as an image generation model, such as Stable Dif-
fusion (Rombach et al. 2022), b; can be masked images
where only a small patch is provided for operation. Building
on this insight, we develop two attack strategies described in
the following sections.

First Attack: Inversion of HNet
The query process with b; as inputs can be expressed as
ONet(b;,d) = HNet(GNet(b;), d) ~ HNet(b;,d) = b},
(
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Figure 2: Demonstration of watermark extraction using the
difference between b} and b; as the input to ENet to ver-
ify the additive property. (a) Deraining with box-free model
watermarking in (Wu et al. 2020). (b) Text-image-to-image-
based image editing with box-free model watermarking in
(Wu et al. 2020) and prompt “Emphasized planet appear-
ance”. (c) Deraining with box-free model watermarking in
(Zhang et al. 2024). (d) Text-image-to-image-based image
editing with box-free model watermarking in (Zhang et al.
2024) and prompt “Roman bath ruins”.

where the approximation is based on (6). With a curated set
of b; and b, we are able to train a surrogate model of the

inversion of HNet, denoted as HNetfl, to efficiently conduct
watermark removal by minimizing following removal loss

Lremova = »_ MSE (HNet ™ (b)), b;) - (8)
J

The number of queries needed to achieve a well-trained
HNet ™! is within acceptable range, as shown in our experi-
ments. However, an inferior performance in image quality
for b; = HNet™!(b}) is observed when compared to b;,
which could negatively impact the performance of further at-
tacks. One hypothesis is that the inherent high non-linearity
of the DNN model renders the training of an optimal inverse
network exceedingly challenging, particularly under condi-
tions where the distribution of training data varies and the
architecture of the HNet remains unknown to the attacker.
In the next section, we introduce our second attack, which
trains a surrogate model of HNet rather than its inversion.
This method exploits the additive equivalent property ob-
served in box-free model watermarking to directly estimate
b;, resulting in substantial image quality improvement.

Second Attack: Forward HNet

The Additive Equivalent We note that the watermark em-
bedding process is a nonlinear high-dimensional mapping
from the unmarked b; to the marked b governed by HNet,
but it can also be equivalently expressed as an additive form
in which the additive expression of watermark is the residual
between ) and b, i.e.,

b, = b; + &y, )

where ¢}, is the additive equivalent of the watermark § em-
bedded into b;, and in our considered models, 5{71— is the la-
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Figure 3: Workflow of victim model and the proposed attacks. Images in Domain B, which are watermark-free, can be estimated
from all known quantities, showing watermark-free (all-white) outputs from ENet.

tent representation of §. The justification for (9) stems from
the first-order Taylor expansion of HNet(b;, §) around ori-
gin point of §

HNet(bi, (5) ~ HNet(bi, 0) + V(;HNet(bi, O) )
b — by ~ VsHNet(bs,0) - 6 = 8., (10)

where Concat() is omitted for brevity in (10). It reveals
that ;, can be approximated as a certain transformation em-
ployed to watermark ¢ by HNet, i.e., the latent representa-
tion of 4. It then holds that

dp; = b; — b;
= HNet(Concat(b;, )) — b;. (11)

We can verify the above analysis by extracting the water-
mark using the residual as input to ENet and check if it holds
that

ENet(d;,) = 4. (12)

The verification results are shown in Figure 2. It can be seen
from the 61'71» column, or more clearly observed in its 50x
amplified visualization, that the residual keeps the texture
information about the image content but has most semantic
information lost. However, it is successfully verified that the
watermark can still be reliably extracted from d;,. This in-
dicates that ENet can not only extract the watermark from

marked images, i.e., ENet(}) = 4, but also restore from the
watermark’s latent representation to its original image form
as shown in (12), in the absence of attacks.

Estimate of b; We now demonstrate that the additive na-
ture of box-free watermarking can be exploited to expose the
private information about b; which should not be released in
the black-box threat model. Replace b; in (11) by a; and ac-
cording to (9), we have

HNet(Concat(a;, §)) = a; + 6.,
~ a; + O
—a; + b — b, (13)
which yields
b; = a; — (HNet(Concat(a;, §)) — b}), (14)

where the rationale of approximation 4/, =~ ¢;, is based
on ENet(d.;) ~ ENet(d;;) and is verified in quantita-
tive experiment. The portion (HNet(Concat(a;,d)) — b})
is the to-be-processed component for GNet, e.g., the noise
component in denoising, the bone component in deboning,
and transformation residual in image generation. Note that
in (14), both a; and b; are available to the attacker, while
HNet(Concat(a;, d)) is unknown since it is encapsulated in
a black box. However, the attacker can curate special data



to query ONet, similar to the first attack, and the outputs
of these queries can reveal the underlying functionality of
HNet, enabling the creation of a surrogate hiding network
that approximates forward HNet, as illustrated in the next
subsection.

Attack Process We perform a query-based reverse engi-
neering similar to the first attack by curating b; to bypass
GNet. With the curated b; and b} pairs, instead of training
an inverse of HNet, we train a surrogate model denoted by
SNet that approximates HNet, establishing the guess map-
ping from processed but unmarked images to processed and
watermarked images by minimizing the following simple
loss function

Lsurrogae = Y MSE (SNet(b;), b)) . (15)
J

It is important to note here that despite SNet approximates
HNet, it does not concatenate the input with a mark but in-
stead directly process b;. The rationale lies in that ¥, inher-
ently contains the mark 6 embedded by HNet. Upon con-
vergence, SNet grabs the functional essence of the black-
box protected HNet. Therefore, we can replace the unknown
component HNet(Concat(a;, §)) in (14) by its approximate
SNet, yielding

b; = a; — (SNet(a;) — b)), (16)
obtaining the estimation of the processed but unmarked
(equivalently, watermark-removed) image b;, with all com-

ponents known to the attacker. Note that (16) is our proposed
realization of the generic removal attack in (5).

Summary and Further Discussion

To summarize, both attacks operate in two steps: attack
preparation and attack execution, as illustrated in Figure 3.
We note that these attacks essentially rely on the require-
ment for identity transformation to bypass GNet. As a coun-
termeasure, we propose implementing API detection to eval-
uate the similarity between the input a; and the output b; of
GNet. A practical implementation involves computing the
Euclidean distance of a; and b;. If the distance falls below
a predefined threshold, the system directly returns a; with
warning.

Experiments

We demonstrate the effectiveness of our proposed ap-
proaches by attacking two state-of-the-art box-free model
watermarking methods (Wu et al. 2020; Zhang et al. 2024)
for the tasks of image deraining and image generation, re-
spectively, with the latter focusing on the text-image-to-
image-based image editing using Stable Diffusion (Rom-
bach et al. 2022). For the ease of notation, (Wu et al. 2020)
is referred to as Vw, and (Zhang et al. 2024) as Vzpang. No-
tably, Vzhang is the promoted version of (Zhang et al. 2021),
which alleviates the vulnerability against normal image aug-
mentation attacks. However, since our attack method does
not involve any image augmentation operations, and the wa-
termark embedding and extraction processes in (Zhang et al.
2021) and “Vzpan” are identical, we treat both as the same
victim and avoid redundant discussion.

Settings

Dataset Following victims, The PASCAL VOC dataset
(Everingham et al. 2010) is used for image deraining task.
It is composed of 12, 000 images from Domain A with rain-
drop noise, which is generated by algorithm (Zhang and Pa-
tel 2018), and 12, 000 derained images from Domain B. We
equally divide the dataset into two parts, each containing
6, 000 noised and 6,000 denoised images, to serve as train-
ing data for the victim models and both attacks, respectively.
For image generation, we randomly generate 12, 000 images
(served as a;) by Stable Diffusion (Rombach et al. 2022)
and also split them evenly for training the victim model
and attacks. In addtion, all the images in both datasets are
256 x 256 RGB images.

Metric We evaluate the quality of watermark-removed im-
ages by two commonly used metrics, i.e., peak signal-to-
noise ratio (PSNR) and multi-scale structural similarity in-
dex (MS-SSIM) (Wang, Simoncelli, and Bovik 2003), re-
spectively. The watermark removal success rate of our pro-
posed attack is defined as

SRRemove =1- SRExtracu (17)

where SRExuact 18 the rate of successful watermark extrac-
tions, and a single extraction is successful if the normal-
ized correlation coefficient between the ENet output and the
ground-truth watermark ¢ is greater than 0.96.

Qualitative Results

Watermark Removal The qualitative results of our pro-
posed attacks against Vwy, (Wu et al. 2020) and Vzpang
(Zhang et al. 2024) are presented in Figure 4. In each sub-
figure, the attack against deraining task is shown in the first
row, while attack against image generation task is shown
in the second row. Columns from left to right represent to-
be processed image (a; € A), processed unmarked image
(b; € B), processed marked image (b; € B’), watermark

removed image ZA)2 € B , embedded watermark (6), ENet ex-
tracted watermark from b, € B’, and ENet extracted output

from watermark removed b;. It can be seen in the fi gures that
both proposed attacks can successfully remove the water-
mark, although dispersed noise dots remain when attacking
Vwa.

Noise Estimation With a slight abuse of terms, we call
the to-be-processed image component for GNet, i.e., a; — b;,
collectively as “noise” (it is actually the rain component
in deraining and transformation residual in image genera-
tion). Recall (14), we note that the key factor enabling the
forward HNet attack is the tractable estimation of the noise
component (SNet(a;) — b}). Figure 5 shows the qualitative
experimental results of the proposed forward HNet attack
for noise estimation in both deraining and image generation
tasks against the two victim models. The columns from left
to right represent the to-be-processed image (a; € A), pro-
cessed unmarked image (b; € B), the ground-truth noise,
and the estimated noise, respectively. Both noise images are
amplified 10x for better visibility. It can be seen that the
estimated noise patterns show significantly high similarity
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Figure 4: Qualitative demonstration of (a) HNet ! attack on

the deraining task and (b) image generation task, with the
first row attacking V, (Wu et al. 2020) and the second row
attacking Vzpane (Zhang et al. 2024). Similarly, (c) Forward
HNet attack on the deraining task and (d) image generation
task, with the first row attacking Vw, (Wu et al. 2020) and
the second row attacking Vznane (Zhang et al. 2024).

to their respective ground-truth patterns, and the normalized
correlation coefficients between the estimate and ground-
truth noise patterns are 0.883, 0.981, 0.892, and 0.979, re-
spectively, from top to bottom.

Quantitative Results

The verification results for 6/, ~ J;, are shown in Table 2,
while the quantitative experimental results applying our pro-
posed attacks against the two victim models for deraining
and image generation are summarized in Table 3, where the
Correlation column refers to the average normalized corre-
lation coefficients between the estimated and ground-truth
noises for the proposed forward HNet attack.

Verification for 0/, ~ J;. Table 2 presents the average
PSNR, MS-SSIM, and normalized correlation coefficient
between ¢/, and d;,. The consistently high values of these
metrics strongly support the hypothesis 0/, ~ d;, in the

derivation of forward HNet attack.

Fidelity The fidelity of the proposed attacks is evaluated
using PSNR and MS-SSIM metrics, comparing b; with the
unknown ground truth b;. As shown in Table 3, for the
HNet ™! attack, the average PSNR values exceed 33.38 dB
for deraining task and 31.41 dB for image generation task,
with all MS-SSIM values surpassing 0.986. For the forward

Figure 5: Qualitative demonstration of the proposed forward
HNet attack on noise estimation performance for image de-
raining and generation tasks, where the noise is amplified by
10x for better visibility. (a) Against Vv, (Wu et al. 2020)
(b) Against Vzpane (Zhang et al. 2024).

HNet attack, the average PSNR values are greater than 33.75
dB for deraining and 32.05 dB for image generation, while
all MS-SSIM values are greater than 0.988, for both victims
models, demonstrating very high-fidelity performance. The
fidelity comparison of the two attacks demonstrate the su-
perior image quality performance achieved by the forward
HNet attack. In addition, we notice that the image quality of
the generated image data is inferior to that of the deraining
data. As illustrated in Figure 4, generated images are sig-
nificantly more complex than those in the PASCAL VOC
dataset (Everingham et al. 2010), resulting in the task-wise
image quality differences.

Removal Success Rate All eight sets of experimental re-
sults shown in Table 3 have achieved 100% watermark re-
moval (SRremove = 1.000). This represents a significant
advancement over prior watermark removal methods not
specifically designed for box-free model watermarking, as
our attacks maintain the perfect removal rate while simulta-
neously preserving superior image quality.

Ablation Study

In (7), curated images that satisfy approximate identity
transformation are used as input to bypass GNet encapsu-
lated in ONet, which are subsequently combined with the
corresponding watermarked images to conduct attacks. We
demonstrate the necessity of bypassing GNet in the abla-
tion study where image generation task is considered as an
example. New HNet ™' and SNet are trained using pairs of
images in A and their corresponding watermarked images in



Table 2: Verification for approximation 4/, ~ ¢, in forward HNet attack.

Tasks Vwe (Wu et al. 2020) Vzhang (Zhang et al. 2024)
PSNR (dB)? MS-SSIM1T  Correlationt | PSNR (dB)t MS-SSIM?T  Correlation?
Deraining 34.19 0.948 0.800 34.41 0.9513 0.635
Image Generation 37.48 0.987 0.923 35.84 0.985 0.894

Table 3: Quantitative evaluations and comparisons of proposed attacks against existing methods, where PSNR is in dB, and

0 < Correlation, MS-SSIM, SRremove < 1.

Victim Removal Deraining Image Generation

Model Attack CorrelationT | PSNR (dB)] | MS-SSIMT | SRremove T | Correlation | PSNR (dB) | MS-SSIMT | SRremove 1

JPEG-20% 26.53 0.940 1.000 24.71 0.936 1.000

JPEG-50% 28.13 0.960 1.000 26.60 0.957 1.000

AWGN-20dB 24.34 0.906 1.000 24.41 0.931 0.570

AWGN-30dB 28.37 0.958 0.280 28.52 0.967 0.000

Vwu Lattice-Interval2 (Liu et al. 2023a) - 13.82 0.681 1.000 - 13.73 0.734 1.000

(Wu et al. 2020) Lattice-Interval8 (Liu et al. 2023a) 24.13 0.915 0.057 24.07 0.935 0.000

‘WEvade-B-Q (Jiang, Zhang, and Gong 2023) 35.98 0.856 0.380 43.11 0.954 0.140

Regeneration-VAE (Zhao et al. 2024) 32.89 0.980 1.000 31.18 0.980 0.970

Regeneration-Diff (Zhao et al. 2024) 22.74 0.845 1.000 21.38 0.841 1.000

HNet— T (Ours) 33.38 0.987 1.000 31.75 0.986 1.000

Forward HNet (Ours) 0.883 33.75 0.990 1.000 0.981 32.05 0.988 1.000

JPEG-20% 27.57 0.955 1.000 24.93 0.943 1.000

JPEG-50% 29.86 0.977 1.000 26.78 0.965 1.000

AWGN-20dB 25.26 0.925 0.998 24.67 0.943 0.995

AWGN-30dB 30.89 0.980 0.384 28.94 0.980 0.010

v, Lattice-Interval2 (Liu et al. 2023a) _ 13.89 0.695 1.000 _ 13.75 0.745 1.000

(Zhang é{‘i;l],g2024) Lattice-Interval8 (Liu et al. 2023a) 24.94 0.956 0.384 24.30 0.947 0.950

‘WEvade-B-Q (Jiang, Zhang, and Gong 2023) 30.95 0.796 0.530 35.00 0.884 0.450

Regeneration-VAE (Zhao et al. 2024) 32.67 0.978 1.000 32.54 0.986 0.980

Regeneration-Diff (Zhao et al. 2024) 22.70 0.858 1.000 21.61 0.853 1.000

HNet— T (Ours) 33.98 0.988 1.000 31.41 0.991 1.000

Forward HNet (Ours) 0.892 34.69 0.992 1.000 0.979 32.60 0.990 1.000

B'. The attack results are illustrated in Figure 6. We notice
that for the two victims and the two attacks, HNet ™! (the
first row of each subfigure) removes the embedded water-
mark (the last column) but at the cost of significant image
quality degradation (the fourth column), thereby failing to
meet the fidelity requirement of our attack goal. In addition,
forward HNet (the second row of each subfigure) fails to re-
move the embedded watermark (the last column), yvhile in-
corporating the original components from a; into b;. These
results collectively demonstrate the need for circumventing
GNet for conducting successful attacks.

Conclusion

We have proposed two black-box watermark removal attacks
driven by query-based reverse engineering against existing
box-free model watermarking under the real-world black-
box setting, specifically image-to-image models. We begin
by showing the simple and efficient attack which removes
watermarks by training an inversion model of HNet but with
inferior performance on output image quality. To fill the
gap, we demonstrate the equivalent additive form of box-
free model watermarking originally performed by the non-
linear HNet and exploit a simple surrogate training under the
practical threat model. Then, a forward HNet attack is de-
veloped, which, based on the surrogate model of HNet, the
query input, and the ONet output, can effectively estimate
the unknown processed and unmarked image, thus achiev-
ing watermark removal with better image quality preserva-
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Figure 6: Ablation study on the need for bypassing GNet in
the proposed attack for image generation task, against (a)
Vwua (Wu et al. 2020) and (b) Vzpang (Zhang et al. 2024). In
each subplot, the first row is HNet ™! attack result, while the
second is forward HNet attack result.

tion. Finally, we point out the necessity of API detection in
box-free model watermarking system against these attacks.
Extensive experiments against the victim models on derain-
ing and image generation tasks demonstrated that our pro-
posed attacks can remove embedded watermarks at perfect
success rates. Overall, our proposed removal attack reveals
the vulnerabilities of box-free model watermarking in real-
world scenarios, highlighting the urgent need for more ef-
fective countermeasures.
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