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Abstract—Python software development heavily relies on third-
party packages. Direct and transitive dependencies create a
labyrinth of software supply chains. While it is convenient to
reuse code, vulnerabilities within these dependency chains can
propagate through dependencies, potentially affecting down-
stream packages and applications. PyPI, the official Python
package repository, hosts many packages and lacks a com-
prehensive analysis of the prevalence of vulnerable dependen-
cies. This paper introduces PyPitfall, a quantitative analysis
of vulnerable dependencies across the PyPI ecosystem. We
analyzed the dependency structures of 378,573 PyPI packages
and identified 4,655 packages that explicitly require at least one
known-vulnerable version and 141,044 packages that permit
vulnerable versions within specified ranges. By characterizing
the ecosystem-wide dependency landscape and the security
impact of transitive dependencies, we aim to raise awareness
of Python software supply chain security.

Index Terms—Software Supply Chain, Python, Dependency
Analysis

1. Introduction

Modern software engineering relies heavily on third-
party packages, creating complex software supply chains.
While this practice accelerates development by avoiding
reinventing the wheel, it also introduces security risks.
Vulnerabilities in one package can propagate through its
dependencies, potentially affecting downstream packages
and applications [1].

Python, first released in 1991 as Python 0.9.0 [2], has a
rich ecosystem of packages contributed to and maintained
by a large community of developers. At the time of writing,
Python Package Index (PyPI), the official Python package
repository, hosts 627,810 projects and over 6 million re-
leases [3]. An empirical study in 2019 reported 178,592
packages in PyPI and 76,997 contributors, with 156,816,750
import statements [4]. The proliferation of packages and
their dependencies has led to increased complexity and
security concerns [5], [6]. We will take a closer look at
PyPI and its ecosystem in §2.1.

Understanding the nature and extent of these dependen-
cies is the first step in addressing their security risks. A

package may have direct dependencies (packages that are
directly required) and transitive dependencies, which are in-
directly needed for the package due to nested dependencies.
The chain of dependencies can be long and complex, as
shown in §2.3. A single package may depend on hundreds of
others, each with its dependencies, forming a deep software
supply chain labyrinth. Unfortunately, vulnerabilities can
exist anywhere within this structure and affect the entire
chain.

Existing tools, such as pip-audit [7] and
in-toto [6], focus on detecting known vulnerabilities
in installed packages or during the Continuous Integration
and Continuous Delivery (CI/CD) pipeline. Existing studies
have also focused on detecting malware in PyPI [8] or
characterizing the PyPI ecosystem [4], but not on analyzing
the security dependency labyrinth of the entire ecosystem.

In this paper, we present PyPitfall, a quantitative analysis
of vulnerable dependencies in the PyPI ecosystem. While
we did not discover new vulnerabilities, we focused on
analyzing the existing dependencies and the prevalence of
dependencies on specific versions of packages known to
be vulnerable. We analyze the dependency metadata of
378,573 PyPI packages and identify 4,655 packages that
explicitly require a vulnerable package version and another
141,044 packages that allow for a vulnerable version in their
dependency constraints. For those that require a vulnerable
version, the package would not work if the vulnerable
version was not installed or unavailable.

Through our ecosystem-wide study, we quantitatively
analyze the dependency relationships among Python pack-
ages and the security risks of dependencies on stale pack-
ages with known vulnerabilities. Our work aims to raise
awareness of the security implications of complex transitive
dependencies in Python software supply chains. The main
contributions of this paper are listed as follows:

• We present a comprehensive analysis of the PyPI
ecosystem, including 378,573 packages, including
their direct and transitive dependencies.

• We analyze the impact of transitive dependencies on
the security of Python packages and identify 4,655
packages that explicitly require other packages with
known vulnerabilities.
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• We provide ecosystem-wide insights into Python
software supply chain security. We have responsi-
bly disclosed our findings to the Python Packaging
Authority, which maintains PyPI [9].

2. Background

To understand the complexity of Python’s dependency
ecosystem and the associated security risks, we first provide
an overview of the PyPI and its dependency model, and
survey the existing works on Python supply chain security.

2.1. Python Package Index (PyPI)

Figure 1: The number of packages in PyPI over the years.

PyPI serves as Python’s official repository for third-
party software libraries, hosting 627,810 projects totaling
27.0 TB of release files as of the time of writing [3],
[10]. It enables developers worldwide to share and distribute
their Python code, enabling a collaborative ecosystem for
efficient software development. We looked up the number
of packages in PyPI by looking at the cached versions of
the PyPI website [3] since 2017 (the earliest date we could
find) and show the trend in Figure 1.

When developers write codes that import other pack-
ages, Direct Dependencies are formed. Transitive Dependen-
cies are formed when the dependent packages themselves
require additional ones. As packages build upon one another,
complex dependency relationships are often created without
developers’ awareness, sometimes spanning multiple lay-
ers of transitive dependencies. While the software supply
chain facilitates rapid development through code reuse, its
complexity introduces a fundamental trade-off: the conve-
nience gained may be counterbalanced by the dependency
maintenance efforts. Ensuring the security and availability
of applications requires careful management and vetting of
their dependencies, as well as keeping up with the latest
versions and security advisories.

Another essential aspect of PyPI is that it is a
community-driven platform, where anyone who passes basic
registration and email verification can publish [11]. Mal-
ware has been found in PyPI packages [8], [12], [13], and

several tools have been developed to detect malware in
PyPI packages, such as Microsoft’s OSSGadget [14] and
Bandit4Mal [15]. Malware that is intentionally named to
resemble legitimate packages (also known as typosquat-
ting [16]) poses a primary risk to software supply chain
security because it can be inadvertently imported. Although
malware is out of the scope of this paper, the presence of
security issues in PyPI packages can further complicate the
dependency landscape, as any vulnerabilities in a package
can propagate to its dependencies.

2.2. PyPI Dependency Model

Python package management is standardized through
Python Enhancement Proposals 508 (PEP 508) [17], which
defines a standard format for specifying direct dependencies.
When a package is installed, pip resolves the dependencies
recursively, downloading and installing the required pack-
ages. Interestingly, the resolution process is not always suc-
cessful, as packages may have infeasible (e.g., in Figure 3)
or conflicting version requirements. Following PEP 508 and
PEP 440 [17], [18], a package may use logical operators
such as ==, !=, >=, <=, >, and < to specify versions of a
dependency that are required. Packages that require outdated
dependencies can conflict with others that require newer
versions of the same packages [19]–[21].

In Figure 2a, we showcase the dependency structure
of cdk-sns-notify [22], a package related to cloud
software engineering, which has a total of 49 dependencies
spanning 22 levels of depth. The dependency is the second-
longest acyclic dependency structure we found in our study,
with the deepest one having 23 levels of depth but appearing
to be using the Python versioning constraint system to
implement the logic of Sudoku (see Figure 2b and §3.1).

The complexity has led to a well-known phenomenon
called “dependency hell” [23], where developers struggle to
resolve version conflicts and maintain compatibility among
Python packages. Given that packages are often updated
independently, a package that works well today may break
tomorrow due to an update in one of its dependencies. De-
velopers struggle to keep their code up-to-date with the latest
versions of their dependencies, leading to a situation where
they are forced to choose between using outdated packages
or risking compatibility issues with newer versions [24],
[25]. If a developer opts for the former, they may miss
important security updates.

To cope with dependency conflicts, pip uses a back-
tracking resolver to find a compatible set of package ver-
sions by trying “every possible combination” of dependen-
cies [26]. SmartPip has modeled dependency resolution as
constraint satisfaction problems and proposed solving them
using a Satisfiability Modulo Theories (SMT) solver [27].
UPCY [28] utilizes a graph-based algorithm to update out-
dated dependencies safely. Recent advancements of Large
Language Models (LLMs) have also been applied to de-
pendency resolution [29]. However, these approaches do
not study or address the underlying issue of dependency
complexity.



(a) The dependency structure of cdk-sns-notify, showing only the first five levels and a maximum of 15 dependencies at each level.

(b) The dependency structure of aait-store-cut-part-016 (at the bottom-left corner of the figure), showing only the first 20 levels.

Figure 2: Simplified dependency structures of the two Python packages with the deepest dependency structures in the PyPI
ecosystem. Boxes represent packages, and edges represent dependency relationships. Arrows are omitted for simplicity. The
numbers on the edges indicate the version constraints of dependencies (if any).

Figure 3: The dependency structure of square-0-5,
showing a circular dependency that causes an infinite loop.

2.3. Software Supply Chain Security

The complex network of dependencies in PyPI packages
described in §2.2 forms a software supply chain that is as
strong as its weakest link. No matter how deeply nested a
vulnerable package is, the entire chain is at risk if it exists.
Software supply chain attacks have become a significant
concern in recent years [6], [30]–[33]. Unfortunately, there
is no perfect solution to this problem as each package is
maintained (or lacks maintenance) by different developers.
A study in 2019 [4] analyzed the PyPI ecosystem for frame-
work, operating system, development status, license, and
other metadata, but it did not focus on the security aspects
of dependencies. Recent works have studied software supply
chain security [34], [35], but a comprehensive analysis of
the entire PyPI ecosystem is still lacking.

3. Motivations and Assumptions

3.1. Preliminary Analysis of PyPI Dependency

Given the PyPI ecosystem’s reliance on third-party
packages and their complex dependencies, this work aims
to empirically analyze the security of the Python soft-
ware supply chain, especially the risk exposed through
transitive dependencies. To motivate our study, we con-
ducted a preliminary analysis of the dependency struc-
ture of several packages available on PyPI. Figures 2a
and 2b, respectively, show the (simplified) two longest
acyclic dependency structures that we found in PyPI: Pack-
age aait-store-cut-part-016 [36] has the longest
acyclic dependency chain with a total of 117 dependencies
spanning 23 levels, whereas package cdk-sns-notify’s
dependencies span across 22 levels.

Moreover, we observed packages with unresolvable de-
pendencies, where the dependency structure is not a Di-
rected Acyclic Graph (DAG), resulting in circular depen-
dencies. Figure 3 illustrates a case where the package
square-0-5 depends on itself after 75 jumps, causing
the pip install command to run into an infinite loop.
Upon further study, we find that the package names and
dependency constraints were creatively utilized to enforce
Sudoku rules [37].



3.2. Motivations

Our preliminary analysis of the PyPI ecosystem revealed
that many packages depend on specific versions of other
packages, which may be vulnerable. The sheer scale of
the PyPI ecosystem, with over 627,810 packages, makes
it impractical to analyze each package and its dependen-
cies manually. Existing tools focus on scanning for known
vulnerabilities in installed packages or during the CI/CD
pipeline [6], [7]. A comprehensive, ecosystem-wide study
is needed to navigate the Python supply chain security
landscape. In this study, we aim to answer the following
research questions:

• RQ1: What is the scale of the dependency complex-
ity in the PyPI ecosystem?

• RQ2: To what extent do Python packages depend
on packages with known vulnerabilities?

• RQ3: How do transitive dependencies affect the
security of Python packages?

3.3. Trust Assumptions

In this study, we assume that Python package devel-
opers are not malicious and do not intentionally introduce
vulnerabilities into their packages. However, as the number
of dependencies grows, developers may not be aware of
the known security issues in their dependent third-party
packages, causing software security to be temporal [38].
Failure to update direct dependencies or unawareness of
vulnerabilities in transitive dependencies leads to potential
exposures to known bugs. Malware, typosquatting, and the
intentional introduction of vulnerabilities are outside the
scope of this work.

4. Design

We designed PyPitfall to systematically analyze the en-
tire PyPI ecosystem to identify and assess the exposure of
packages to known vulnerabilities in package dependencies.
The analysis pipeline is shown in Figure 4. The pipeline con-
sists of four main components: data collection, dependency
resolution, version constraint calculation, and comparison of
vulnerable versions.

4.1. Data Collection

The first step in our data collection process is to obtain
the names of all PyPI packages using the official index [39]
specified by PEP 503 [40]. As our study focuses on the
current state of the PyPI ecosystem, we used the latest
version of all available packages. Because PyPI does not
provide a direct way to obtain the dependency metadata
of a package, we had to use tools to collect this infor-
mation. Indeed, pip needs to use a backtracing algorithm
to resolve each layer of transitive dependencies [26]. We
reuse this mechanism to dry-run the installation of each
package through a third-party tool called Johnnydep [41]
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Figure 4: The architecture of PyPitfall.

and record the dependency metadata (including names and
version specifiers). Collecting this data and its analysis helps
us understand RQ1.

Vulnerability information typically comes from the Na-
tional Vulnerability Database (NVD) [42] or other security
advisories. We are aware of the Python Packaging Advisory
Database [43] that provides an extensive list of known
vulnerabilities in various Python packages. However, due
to the sheer number of packages in the PyPI ecosystem, we
decided to focus on a curated list of known vulnerabilities
that affect Python libraries to showcase and raise awareness
of the issue of using vulnerable packages in the PyPI ecosys-
tem and leave the analysis of the larger known vulnerability
dataset for future work. We will provide more details in §5.

For each vulnerability, we record the affected pack-
age name, version, severity, and the range(s) of vulnera-
ble versions. Some ranges are concise, such as <1.3.0,
while others involve logic operators, such as (>=2.0.0 ∧
<2.0.6) ∨ (<1.26.17), as seen in CVE-2023-43804.

4.2. Dependency Constraint Calculation

As we utilize the pip to resolve the dependencies, we
rely on it to determine whether a package’s dependency con-
straint can be satisfied. As shown in Figure 4, the ones that
pip fails to resolve will be recorded as unresolvable
dependencies and excluded from further analysis. In §2.2,
we have shown a case where pip runs into an infinite loop
due to the circular dependencies.

Constraint Aggregation: We also need to aggregate
the version constraints of each package’s dependencies to
avoid false positives. A package P may depend on another
package D via multiple paths. Each path imposes different
version constraints. For example, P → A → D≥1.5 and



P → B → D≥1.7. The effective constraint on D required
by P is the intersection of all constraints imposed along
all paths. The effective constraint becomes D≥1.7 in this
example. We calculate the effective constraint set, denoted
as S, for every dependency D of the package P .

PEP 440 Versioning Standard: PEP 440 [18] de-
fines the versioning standard for Python packages, which is
widely adopted but not universally followed by all packages.
We perform fault-tolerant parsing to convert all version
strings into logical structures for comparison, such as nor-
malizing version strings (e.g., treating 1.0 and 1.0.0 as
equivalent) and handling pre- and post-release tags (e.g.,
beta, rc, dev). Our design utilizes Python’s standard
packaging library to ensure compatibility with PEP 440.

4.3. Vulnerable Version Comparison

Let S be the set of versions of dependency D allowed
by package P ’s effective constraints, and let V be the set
of versions of D known to be vulnerable, we compute the
intersection I = S ∩ V .

We define a Guaranteed Exposure as the condition
where the entire set of allowed versions falls within the
vulnerable set.

Guaranteed Exposure if S ⊆ V

Any successful installation of P will inevitably result in
a vulnerable version of D being installed. The installation
will fail if the vulnerable version is yanked (removed) from
PyPI.

We define a Potential Exposure if the intersection of
the two sets is non-empty, and the required set is not fully
contained in the vulnerable set.

Potential Exposure if (I ̸= ∅) ∧ (S ̸⊆ V )

The dependency D may be installed in a vulnerable version,
depending on how pip resolves the dependencies based on
other packages’ constraints. In this case, the dependency
constraints allow for the installation of both vulnerable
and non-vulnerable versions. Although a Potential Exposure
is not as severe as a Guaranteed Exposure, it remains a
concern because the dependency resolution process will not
update the version of D to a non-vulnerable version if the
vulnerable version exists in the environment [26].

The comparison outputs the list of packages guaranteed
or potentially exposed. This analysis helps us understand
RQ2 and RQ3 by quantifying known vulnerabilities’ expo-
sure in the PyPI ecosystem based on documented vulnera-
bilities and explicit dependency constraints.

5. Implementation Details

In this section, we detail the implementation of PyPitfall,
which analyzes the known vulnerabilities in the Python
package dependencies.

5.1. Data Collection

5.1.1. PyPI Package List. We used the PyPI Simple In-
dex [39] to retrieve a comprehensive list of packages avail-
able on PyPI. We obtained 616,266 valid package names out
of 627,810 packages claimed on PyPI (98.2%). We estimate
that the remaining packages are either invalid or unavailable
for download.

5.2. Known Vulnerability List

Common Vulnerabilities and Exposures (CVE) is a stan-
dardized method of identifying vulnerabilities in software
and is maintained in established public databases, such as
NVD and MITRE [42], [44]. We searched NVD and MITRE
databases for the term “Python library” to find known vul-
nerabilities in Python libraries. Each identified CVE entry
was manually curated to ensure: (1) the vulnerability is re-
lated to a Python package in PyPI (excluding built-in Python
libraries), and (2) the entry provided sufficient information
regarding the affected package name and vulnerable version
ranges. As discussed in §4.1, we focused on CVEs that affect
Python libraries (thus the search term “Python library”). We
curated 67 CVE entries that met our criteria, with 26 not
seen in the Python Packaging Advisory Database [43] as of
the time of writing [43]. We have suggested including these
CVEs in the Python Packaging Authority maintainers.

5.3. Dependency Retrieval

5.3.1. Tool Selection. The Johnnydep [41] tool was se-
lected for resolving package dependencies. Under the hood,
Johnnydep uses the pip API to “dry-run” the installation
of each package and triggers dependency resolution without
actually downloading the package. As discussed in §3.1
and 4.2, the dependency resolution process relies on correct
definitions of dependencies by individual packages. Our
workflow treats the dependency resolution as a black box,
and we do not attempt to resolve any issues that arise during
the process. If the package fails to resolve, we record it
as unresolvable and exclude it from the next steps.
Johnnydep outputs a tree structure of the dependencies,
which is then parsed into JSON format to represent the
dependency information, as described below.

5.3.2. Automated Data Collection Workflow. A Python
script was developed to automate the following steps for
dependency collection:

• Input Handling: The partitioned (for parallelism)
package lists were read from a file, and each package
name was processed sequentially.

• Dependency Extraction: For each package name,
the script invoked Johnnydep as a process and
waited for its completion.

• Error Handling: A try-except block within
a while loop managed potential errors during
Johnnydep execution.



• Output: The raw dependency structure outputs gen-
erated by Johnnydep for each successfully pro-
cessed package were captured and stored.

• Output Formatting: The raw outputs were parsed
into a structured JSON format for the next steps.

The parallelized data collection was mainly distributed
across four machines running Ubuntu 22.04, with varying
hardware configurations (4 - 16 CPU cores, 8 - 32 GB RAM,
and wired/Wi-Fi connections). The dependency collection
process’s total runtime was approximately 17 days, account-
ing for the time taken to process the 616,266 packages and
occasional interruptions due to system crashes.

Figure 5: Distribution of the number of direct dependencies
per package.

Figure 6: Distribution of the depth of dependency chains.

5.3.3. Challenges in Dependency Collection. Despite the
automated workflow, several challenges were faced during
the data collection process. First, circular dependencies have
caused the dependency resolution to enter infinite loops (see
§3.1), and in some cases, the system would crash due to
excessive resource consumption. Detecting circular depen-
dencies is challenging, as they can occur at any level of
transitive dependencies. We rely on two methods to mitigate
these issues: (1) Johnnydep has a built-in mechanism
to detect previously-visited nodes and break out of the
loop, and print <circular dependency marker> in

the output, and (2) our workflow uses a simple timeout
mechanism to terminate the process or manually recover
a machine that crashed.

Second, some packages were not resolvable due to
incorrect or stale dependencies or compatibility issues
with the system. Certain libraries require a specific ver-
sion of Python. For example, analysis cannot be con-
ducted when resolving the dependency for the package
snakemake-interface-report-plugins, as John-
nydep needs a version of Python greater than 3.11 to work.
The system used Python 3.10, preventing the package’s
dependencies from being resolved. Other libraries require
a specific CPU architecture or operating system environ-
ment, which can lead to unexplained permission errors and
resolution failures. Direct or transitive dependencies on non-
existent packages, including the ones that never existed or
were yanked, can cause the resolution to fail. Deprecated
package names can also lead to failures, such as using
‘sklearn‘ instead of the canonical ‘scikit-learn‘ [45]. These
factors contributed to 237,693 (38.6%) packages being un-
resolvable, and 378,573 packages’ dependencies were suc-
cessfully resolved.

5.3.4. Vulnerability Matching and Classification. After
collecting dependency data, we compared the dependencies
against the known vulnerabilities in our curated CVE list
using a Python program that we developed. Due to the large
size of the dependency dataset (about 32 GB), we used
ijson [46], an iterative JSON parser, to load the data in
a memory-efficient manner. The vulnerability data was also
loaded into memory as a map, with package names as keys,
for efficient lookups for each encountered dependency.

We use packaging.version.parse, which sup-
ports PEP 440 versioning standards, to compare the version
strings. We also handle potential logical operators in vul-
nerability ranges (see §4.3) as multiple comparisons. An
iterative Depth-First Search (DFS) algorithm (implemented
using collections.deque as a stack) was used to tra-
verse the nodes in each dependency structure in our dataset.
Each item that is pushed onto the stack represents a node
to visit, which contains the dependency package name, its
associated data (e.g., any further transitive dependencies),
the traversal path from the top-level package as a list of
package names, and the direct version constraints imposed
on this dependency by its parent in the current traversal path.

We checked if the dependency package name was a key
in the vulnerability map for each dependency node popped
from the stack. If it does, we iterate through each CVE
associated with the package name and each corresponding
vulnerability constraint set (V ). We then compare the direct
dependency constraints (Sdirect, representing the constraints
from the parent node in the current path) against the vulnera-
bility constraint set (V ). The algorithm ensures low memory
usage and efficient processing by only storing the current
path and the direct constraints for each dependency node.

As discussed in §4.3, our comparison algorithm
identifies two types of vulnerabilities: potential ex-
posure and guaranteed exposure. It first determined



Figure 7: Number of dependency occurrences in the entire
PyPI ecosystem (including both direct and transitive) among
the top 100 most depended-upon packages.

if any overlap existed between the version set de-
fined by Sdirect and the set V by calculating lower
and upper version bounds for both sets and utilizing

Figure 8: Distribution of detection depths of circular de-
pendencies among all 1,075,559 detected occurrences of
circular dependencies.

packaging.specifiers.SpecifierSet for check-
ing specific version constraints (==). If an overlap is found,
the algorithm checks whether Sdirect is entirely contained
within the vulnerability set V . The check compares the
version bounds of Sdirect and V . We ran the matching
algorithm on a single machine with 8 CPU cores and 32
GB of RAM, which took approximately 7 days to complete.
Finally, we save the findings in a JSON file for further
analysis.

6. Result Analysis

We present the results of our analysis of the PyPI ecosys-
tem, focusing on the dependency structures of 378,573
packages, which we successfully resolved for dependencies.
Our vulnerability matching algorithm (see §5.3.4) matched
4,655 packages with Guaranteed Exposures to known vul-
nerabilities, and another 141,044 packages with Potential
Exposures.

6.1. Dependency Complexity

Our study revealed a highly interconnected web of de-
pendencies in the PyPI ecosystem in these 378,573 packages
(which we refer to as the top-level packages). There are
57,767 unique packages and 47,974,375 dependency nodes
identified in the dependency structures of these packages. On
average, each top-level package has 2.6 direct dependencies
and 129.6 (non-unique) transitive dependencies that span an
average of 2.3 levels of depth.

Figure 7 shows the number of occurrences in the entire
PyPI ecosystem (including direct and transitive dependen-
cies) among the top 100 most depended-upon packages.
The most depended-upon package is setuptools, a stan-
dard library for packaging Python projects, with 7,329,798
occurrences. The second most depended-upon package is
zope.interface, a library for defining interfaces in
Python, with 2,501,533 occurrences among all dependency
structures. Figure 5 illustrates the distribution of direct de-
pendencies per package. Despite most packages having a



Figure 9: Version density of the top 15 most dependent packages. Each violin plot shows the distribution of the requested
versions of the package by its dependents across the PyPI ecosystem. The width of the violin plot indicates the density of
the version requests.

Figure 10: Number of guaranteed exposures (‘Required’
dependencies on vulnerable versions, shown in red), and po-
tential exposures (‘Potential’ dependencies, shown in blue).

small number of direct dependencies (fewer than 2), a dimin-
ishing number of packages have many direct dependencies.
Figure 6 illustrates the distribution of dependency structure
depths per package. The graph shows a right-skewed bell
curve with the most common depth being 1, indicating that
most packages have shallow dependency structures, but a
few have deep dependency structures (up to 23 levels of
depth, as described in §3.1).

6.2. Circular Dependency Analysis

1,075,559 circular dependencies were detected by the
dependency resolver and were excluded from the statistics
above. Figure 8 shows a bimodal distribution of detection
depths of circular dependencies. The most frequent value is
around 8.5 levels, and the second peak is around 14.5 levels
of depth. On average, circular dependencies span 10.3 levels
of depth, showing that they are not trivial to resolve and are
hard to detect. Compared with the average depth of PyPI
packages (2.3), the circular dependencies are more likely to
occur at deeper levels.

6.3. Version Analysis

We conducted a version study of the package dependen-
cies across the PyPI ecosystem. Despite the uniformity in
the versioning label format (PEP 440), we found that the
assignments and stepping of version numbers are arbitrary.
For example, the setuptools package (ranked #1 among
the most depended-upon packages) has version ranges from
0.6 to 79.0, whereas the publication package (ranked
#5) has version ranges from 0.0.1 to 0.0.3.

The version requirements of a package are also multi-
faceted: for example, the setuptools package has 628
unique sets of version constraints, and zope.interface
has 59. Figure 9 visualizes the requested version density
of the top 15 most depended-upon packages. The x-axis



Figure 11: The version density distribution of the required exposures for the top 15 most depended-upon vulnerable packages
is shown. The x-axis shows the normalized version number. Grey violin plots indicate the density of version requests by
dependents, and red plots indicate the density of vulnerable versions.

displays the normalized version number, calculated by di-
viding the version number by the maximum version range
requested by its dependents. Each violin plot’s width indi-
cates the density of its version requests. A wider section
of the violin plot indicates more requests for that version
range. This figure shows that most packages have a focused
and small number of version requests.

6.4. Python Software Supply Chain Security

Using the 67 curated CVEs, we found 4,655 guaranteed
exposures and 141,044 potential exposures. The average
depth of the dependency paths for guaranteed exposures is
4.1, and the average depth of potential exposures is 6.2.
The exposure depths are higher than the average depth of
all packages (2.3), potentially indicating that the vulnerable
packages are more likely to be at deeper levels of the
dependency chains. As shown in Figure 10 (in logarithmic
scale), we noticed that the number of guaranteed exposures
diminishes faster than the number of potential exposures,
and there is no guaranteed exposure starting from a depth of
17. As discussed in §5.2, the CVEs we used for our analysis
are not exhaustive, as we focused on Python libraries, and a
larger set of CVEs may yield more findings. We leave this
for future work.

6.5. Vulnerable Version Density

Figure 11 shows the violin plots for the required and
vulnerable versions of the top 15 most depended-upon vul-
nerable packages. Similar to Figure 9, version numbers were
normalized. Note that a package may have multiple disjoint
vulnerable version ranges due to various CVEs or multiple
version ranges associated with a single CVE. Overlapping
violin plots indicate that the requested versions are vulnera-
ble, exposing them to known vulnerabilities in the software
supply chain. Even a small overlap can lead to a large
number of transitively dependent packages being affected.
For example, the urllib3 package’s vulnerability, CVE-
2024-37891, has 2,169 guaranteed exposures. Motivated by
this finding, we conducted a case study on the urllib3
package in §6.6.

6.6. Case Study: urllib3

Urllib3 is a widely adopted Python HTTP library. It is
a dependency of many popular packages, including another
HTTP library, requests, which is among the top 100 most
depended-upon packages (see Figure 7). Our study found
that urllib3 occurs 407,333 times in the dependency
chains, with the deepest occurrences at 22 levels.

As shown in Table 1, our curated vulnerability list in-
cludes several CVEs in urllib3. Note that these are not all



Figure 12: Selected guaranteed exposure dependency paths
for the urllib3 package. Nodes are packages. The edges
indicate the dependency paths and required version con-
straints. For simplicity, we only show the last-level version
constraints.

CVE ID Avg.
Depth

Potential
Pkgs

Required
Pkgs Severity

CVE-2020-7212 6.3 99277 60 High
CVE-2021-28363 6.2 99666 46 Medium
CVE-2023-43804 6.2 100180 1732 High
CVE-2023-45803 6.2 100185 1755 Medium
CVE-2024-37891 6.2 100210 1906 Medium

TABLE 1: Summary of CVEs affecting urllib3, showing
the number of affected top-level packages.

CVEs in urllib3, but only the ones we studied. Among
these vulnerable versions of urllib3, we matched 1,926
unique top-level packages with a guaranteed exposure and
100,213 packages with a potential exposure. The exposures
are respectively 41.4% and 71.1% of our total guaranteed
and potential exposure findings.

We selectively visualized the dependency paths that
introduced guaranteed exposures to urllib3 in Figure 12.
The dark red node indicates the urllib3 package. The
light red nodes indicate the top-level packages that depend
on it through the transitive dependencies (shown as blue
nodes). The graph shows that many popular packages prop-
agate the CVEs in urllib3 down the dependency chains.

7. Related Work

7.1. Software Supply Chain Security

Ellis et al. [1] first proposed risk analysis for the software
lifecycle and externally-sourced software, which is later
known as the software supply chain. The in-toto project [6]
focused on cryptographic provenance to ensure integrity
of software supply chains in different development stages.

Studies by Enck et al. [30] and Hammi et al. [35] empha-
sized the management of software supply chains, including
the build and deployment stages. Ladisa et al. [47] pro-
posed a taxonomy for software supply chain attacks. OSV-
SCALIBR [48] analyzed software composition to scan for
known vulnerabilities. Our work shares a similar goal of
improving software supply chain security.

7.2. Malicious Package Detection and Mitigation

Malicious packages infiltrate the software supply chain
through various means. Typosquatting and combosquatting
attacks, where attackers publish packages with names sim-
ilar to legitimate ones, have been studied extensively in the
Python ecosystem [8], [13], [16], [32], [47]. ZTD-JAVA [33]
used permission control to prevent malicious dependencies
from affecting other software. PyPitfall complements these
studies by analyzing the risks posed by dependencies on
packages with known vulnerabilities, which are uninten-
tionally included in the dependency paths of legitimate
packages.

7.3. Programming Analysis

Static analysis is one of the most common techniques
for identifying and mitigating software bugs [49], [50]. Ruo-
honen et al. [51] conducted a large-scale static analysis of
PyPI packages to identify common security issues. Dynamic
analysis, on the other hand, attempts to identify vulnerabil-
ities by executing the code and has been used to analyze
Python, Java, and C/C++ programs [52]–[54]. PyPitfall is
not a static or dynamic analysis tool; instead, it focuses on
the inter-package relationships and the security implications
arising from dependency declarations (metadata).

8. Limitations

As our study relies on the dependency resolution pro-
vided by pip (via Johnnydep), inaccuracies or omissions
in the dependency resolution process may lead to an under-
estimation of the actual risk. We successfully resolved de-
pendencies for 378,573 packages (60.3%), but the remaining
unsuccessful packages can hide additional software supply
chain risks. Moreover, our vulnerability analysis utilized
a curated list of 67 CVEs, specifically targeting Python
libraries. Using a broader vulnerability dataset, such as the
full Python Packaging Advisory Database [43], would likely
reveal more exposures.

9. Conclusion

This paper presents PyPitfall, a comprehensive analysis
of the PyPI ecosystem’s dependency landscape. By analyz-
ing the dependency metadata of 378,573 PyPI packages, we
quantified the extent to which packages rely on versions with
known vulnerabilities. Our study reveals that 4,655 packages
have guaranteed dependencies on known vulnerabilities, and



141,044 packages allow for the use of vulnerable versions.
Our findings underscore the need for enhanced security
awareness in the Python software supply chain.
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