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Abstract—Language Models (LMs) typically adhere to a “pre-
training and fine-tuning” paradigm, where a universal pre-
trained model can be fine-tuned to cater to various special-
ized domains. Low-Rank Adaptation (LoRA) has gained the
most widespread use in LM fine-tuning due to its lightweight
computational cost and remarkable performance. Because the
proportion of parameters tuned by LoRA is relatively small,
there might be a misleading impression that the LoRA fine-tuning
data is invulnerable to Membership Inference Attacks (MIAs).
However, we identify that utilizing the pre-trained model can
induce more information leakage, which is neglected by existing
MIAs. Therefore, we introduce LoRA-Leak, a holistic evaluation
framework for MIAs against the fine-tuning datasets of LMs.
LoRA-Leak incorporates fifteen membership inference attacks,
including ten existing MIAs, and five improved MIAs that
leverage the pre-trained model as a reference. In experiments, we
apply LoRA-Leak to three advanced LMs across three popular
natural language processing tasks, demonstrating that LoRA-
based fine-tuned LMs are still vulnerable to MIAs (e.g., 0.775
AUC under conservative fine-tuning settings). We also applied
LoRA-Leak to different fine-tuning settings to understand the
resulting privacy risks. We further explore four defenses and
find that only dropout and excluding specific LM layers during
fine-tuning effectively mitigate MIA risks while maintaining
utility. We highlight that under the “pre-training and fine-tuning”
paradigm, the existence of the pre-trained model makes MIA a
more severe risk for LoRA-based LMs. We hope that our findings
can provide guidance on data privacy protection for specialized
LM providers.

Index Terms—Language Model, Membership Inference, LoRA
Fine-tuning, Privacy.

I. INTRODUCTION

LANGUAGE Models (LMs) have been extensively utilized
in a variety of Natural Language Processing (NLP) tasks,

including legal advise [1], scientific research [2], etc. Despite
the belief that pre-trained LMs such as ChatGPT [3] and
Llama [4] have exhibited the rudiments of Artificial General
Intelligence (AGI), their data-driven nature results in sub-
optimal performance in specialized domains [5]. To address
this issue, the general paradigm for tailoring LMs to down-
stream tasks consists of two steps: pre-training and fine-tuning.
The pre-training process aims to learn rich language features
and structures from a massive corpus in an unsupervised way,
forming the pre-trained models capable of mastering general
language patterns. Consequently, these pre-trained models can
serve as a remarkable starting point and further fine-tuned
on vertical domains in a supervised way, resulting in the
specialized models that are adept at diverse downstream tasks.

(�)Correspondence to: Tianshuo Cong (congtianshuo@gmail.com).
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Fig. 1: Overview of LoRA-Leak. LoRA-Leak aggregates in-
formation from the specialized fine-tuned model and its pre-
trained model to launch more powerful MIAs against LMs.

For example, codeLlama [5] and AstroLLaMA [6] are the fine-
tuned variants of Llama-2 [4] on programming domain and
astronomy domain, respectively.

The performance of the fine-tuned specialized LMs hinges
on two key factors: the fine-tuning algorithms and the fine-
tuning datasets (see Figure 1). Given the current scale of pa-
rameters in LMs, the computational cost of full-parameter fine-
tuning is prohibitively expensive (e.g., a 16-bit full-tuning for
Llama-7B requires 60GB of GPU memory [7]). This limita-
tion has spurred the rapid development of Parameter-Efficient
Fine-Tuning (PEFT) [8]. Specifically, Low-Rank Adaptation
(LoRA) [9] is the state-of-the-art (SOTA) Parameter-Efficient
Fine-Tuning (PEFT) framework with the highest usage. By
the end of 2023, there were over 12,000 LoRA models on
Hugging Face, with some receiving over one hundred thousand
downloads per month [10]. Since LoRA only trains side-
loaded rank-decomposition matrices while keeping the model
backbones frozen, it only needs 16GB to fine-tune Llama-
7B, which can be further reduced to 6GB through its 4-bit
quantization version qLoRA [11]. Moreover, a high-quality
fine-tuning dataset is also paramount as it serves as the
specialized knowledge source and determines the upper limit
of the model’s capability. Considering the potential presence of
privacy-sensitive information within fine-tuning datasets, such
as those in financial and medical domains, a comprehensive
assessment for privacy leakage associated with fine-tuning
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datasets is of vital importance.
Membership Inference Attacks (MIAs) [12], in which at-

tackers aim to determine if a specific sample was part of the
training data of a target model, pose a persistent privacy threat
to machine learning models. Recently, with the emergence of
an increasing number of specialized LMs in the open-source
model zoo (e.g., Huggingface1), conducting MIAs against the
fine-tuning datasets of the LoRA-based fine-tuned LMs has
become a prominent research focus. Since LoRA only fine-
tunes a small subset of the model’s parameters, recent studies
suggest that their fine-tuning datasets are invulnerable to MIA
[13], [14]. However, the current research fails to recognize
that the publicly accessible pre-trained model could introduce
additional privacy threats.

Our Work. We propose LoRA-Leak, a holistic evaluation
framework for measuring the vulnerability of LoRA-based
fine-tuned LMs against MIAs. To comprehensively assess the
privacy risks of the LoRA fine-tuning dataset, we formulate
three Research Questions (RQs):

• RQ1: Is MIA still a serious privacy threat for LoRA-based
fine-tuned LMs?

• RQ2: Can incorporating pre-trained model information
lead to the design of more potent MIAs?

• RQ3: What LoRA fine-tuning strategies can mitigate the
threat of MIAs?

To answer RQ1, we propose LoRA-Leak, a comprehensive
framework for MIA against LoRA finetuning, incorporating
fifteen diverse attack methods (see Table I). Subsequently,
we assess the effectiveness of MIAs in LoRA-Leak against
nine LoRA fine-tuned LMs, developed using three widely
used LMs and three practical fine-tuning datasets under a
conservative setting to prevent overfitting. Our experimental
results demonstrate that LoRA-Leak can achieve high AUC
scores against LoRA-based fine-tuned LMs. For instance,
the AUC scores against Llama-2 model fine-tuned on AG
News [15], OAsst [16], and MedQA [17] are 0.765, 0.721,
and 0.775, respectively.

To demonstrate the necessity of introducing pre-trained
models for answering RQ2, we compare the effectiveness of
different MIAs the performance of various MIAs with and
without using the pre-trained model as a reference. We observe
that the calibration from the pre-trained model can consistently
amplify the privacy risk (see Table II). For a more in-depth
analysis, we discuss the impact of different kinds of reference
models [12]. As Figure 4 shows, introducing other kinds of
reference models cannot achieve the optimal attack results as
introducing pre-trained models.

To address RQ3, we comprehensively discuss various fine-
tuning settings. We first analyze the influence of fine-tuning
hyperparameters on the attack effect, such as the fine-tuning
epoch and the selection of LoRA fine-tuning modules. Fur-
thermore, we discuss four potential defenses. We first explore
three traditional defense strategies, i.e., dropout, weight decay,
and differential privacy (DP), in which only dropout can mit-
igate the risk of MIAs while preserving utility. Furthermore,

1https://huggingface.co/models.

in Section VI-D, we demonstrate that fine-tuning excluding
specific modules can also mitigate privacy risks.

In summary, our contributions are as follows:
• We introduce LoRA-Leak, a comprehensive evaluation

framework on MIAs against LoRA-based fine-tuned
LMs.

• We propose that introducing pre-trained models into the
inference attacking pipeline can effectively amplify the
privacy risks.

• We explore four defenses and find that dropout and fine-
tuning excluding specific layers can mitigate the threat of
LoRA-Leak.

II. PRELIMINARIES

A. Causal Language Model (CLM)

A causal language model (CLM) is designed for next-token
prediction tasks over a token space T . It first takes a sequence
of tokens x1:n ∈ T n as input and transforms each token xi

into a continuous embedding ei. These embeddings are then
fed into a decoder-only transformer M, which produces the
probability of each token xn+1 ∈ T being the next token, i.e.,
pn = ⟨Pr(xn+1|x1:n)⟩xn+1∈T .

The primary purpose of such a model is to generate reason-
able text completions for user inputs by repeatedly performing
next-token predictions. This is achieved by training the model
on a collection of token sequences in an autoregressive man-
ner: For each training sample x1:n ∈ T n, the objective is
to minimize the model’s perplexity (PPL) on that sequence,
defined in the form of average cross-entropy loss as

L(x1:n;M) = − 1

n− 1

n−1∑
i=1

log pi,xi+1
. (1)

B. Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA) is one of the most widely
used Parameter-Efficient Fine-Tuning (PEFT) algorithms for
model fine-tuning [10]. For a pre-trained model Mpt, this
method selects only a subset of layers for fine-tuning. For each
selected layer, it freezes the pre-trained weight Wi ∈ Rd×k

and introduces two additional decomposition matrices ∆i =
(Ai, Bi) ∈ Rd×r×Rr×k to fine-tune, where r ≪ min(d, k) is
the hyperparameter of rank. In the resulting fine-tuned model
Mft, its layer is then represented as:

W ′
i = Wi +AiBi. (2)

C. Membership Inference Attack

Membership inference (MI) is a privacy game where an
adversary A, given access to a machine learning model M,
aims to determine whether a specific record x is part of the
model’s training dataset D, i.e., A(x;M) → {0, 1}. The
adversary wins if and only if A(x;M) = I[x ∈ D]. To achieve
this, the adversary will choose a score function S(x;M) → R
and a threshold τ ∈ R. Finally, the adversary determines
membership based on the rule A(x;M) = I[S(x;M) > τ ].
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Fig. 2: The pipeline of LoRA-Leak. The sample x is fed to the target model to infer its membership. During the forward and
back propagation, the internal states of the model can be perturbed as the dotted line indicates. Some internal states of the
model can be extracted to initiate attacks as the red arrow indicates. These signals can be further calibrated by pre-trained
models to obtain more effective MIAs.

TABLE I: The list of fifteen MIAs integrated within LoRA-Leak. LoRA-Leak incorporates eight well-established MIAs, and
refines six of these leveraging the pre-trained model as a reference.

Attack Internal State Augmented Perturbation Used to attack LoRA’s Dft? Calibrated by referencing Mpt?

LOSS [18] l - ✓ ([13]) ✓ ([19])
zlib [20] l - × × (already calibrated by zlib)
Neighborhood [21] l x̃ ✓ ([22]) ✓ (Ours)
SPV [22] l - ✓ × (already calibrated by Msp)
MoPe [23] l M̃ft × ✓ (Ours)
Min-K% [24] h - × ✓ (Ours)
Min-K%++ [25] h - × ✓ (Ours)
GradNormθ [26] ∂l/∂∆ - × × (no correspondence for Mpt)
GradNormx [26] ∂l/∂e - × ✓ (Ours)

III. RELATED WORK

A. MIAs against Neural Networks

Membership inference attack (MIA) was initially proposed
to detect the training sample of image classification tasks in
artificial neural networks [27]. It utilizes shadow datasets to
train multiple shadow models as proxies to mimic the behavior
of the target model. The prediction results of these shadow
models are then collected to train a binary classifier, which
learns the characteristics of membership samples. Nasr et
al. [28] extend this approach to the white-box setting, where
the model’s internal gradients are also available. Based on
this additional feature, the classifier could achieve a more
accurate result. However, as the model’s complexity increases,
it becomes impractical to select effective and learnable features
for training the classifier.

Another approach is to identify an explicit intermediate
signal from the model to determine membership. For example,
using the prediction correctness [29] or prediction confi-
dence [30] as a metric for membership. The Likelihood Ratio
Attack (LiRA) [12] is one of the most effective metric-based
MIAs, which calibrates the membership signal by comparing
the prediction confidence between the target model and the
shadow models. We extend the idea to develop MIAs against
fine-tuned language models.

Despite proposing various attacks, there is also theoretical
research on the mechanics of membership inference. Yeom
et al. [31] highlight that the primary threat of membership
inference is due to overfitting. Additionally, Bentley et al. [32]
further quantitatively associate the risk of membership infer-
ence with the target model’s generalization gap. Therefore, we

report the model’s generalization gap to measure its inherent
vulnerability to membership inference.

B. MIAs against Pre-trained Language Models

With the advent of Pre-trained Language Models (PLM),
the membership inference attacks against their pre-training
corpora are surpassing. Earlier research primarily adapted
from the MIAs against neural networks, such as the LOSS
attack [18] and the LiRA attack [19]. Recently, several attacks
that specifically exploit the characteristics of LMs have been
proposed. For example, the difference of token probabilities
inspires Min-K% [24] and Min-K%++ [25], while MoPe [23]
exploits the smoothness around the training points. However,
the credibility of these attacks is hindered by their faulty
evaluation method [33]. Because PLMs lack transparency
regarding their training corpus, these works use corpora from
before and after the model’s knowledge cut-off date as a proxy
for ground truth. Consequently, there is a distribution shift
between members and non-members, allowing even classifiers
without access to the model to achieve high accuracy [34]. As
for the benchmark with a fair membership split, these attacks
degrade to a nearly random performance against PLMs [35].
Therefore, we explore whether those attacks against PLMs can
be effective against the fine-tuning corpus in LoRA fine-tuning
under a fair membership split.

C. MIA against Fine-tuned Language Models

There are also MIAs against LLM’s fine-tuning samples.
The neighborhood attack [21] calibrates the loss signal by
the average loss of rephrased samples. MIA-SPV [22] further
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enhances this attack with LiRA by comparing the calibrated
loss from the target model with the calibrated loss from a
self-prompted shadow model. Although this attack has been
reported to achieve good performance, it is important to
note that their target models were trained for 10 epochs,
making them inherently vulnerable to membership inference
(See Section V-B). Consequently, many MIAs could achieve
similar performance, rendering the advantage of this method
unclear. Moreover, this attack is computational-intensive for
generating self-prompt samples.

Although existing MIAs against fine-tuned LLMs are del-
icate and promising, they often overlook the significance of
the pre-trained model. The reference attack [36], a simple yet
effective approach, draws inspiration from the LiRA attack by
using the pre-trained model as a shadow model to calibrate the
loss signal of the target model. This suggests that referencing
pre-trained models could further amplify the privacy risks
associated with LoRA fine-tuned LMs. Therefore, we extend
this concept to fill the gaps in all existing MIAs by calibrating
their signals with their pre-trained model.

LoRA has already been the most used language model fine-
tuning algorithm [10], but the studies for its privacy risks are
still incomplete. Wen et al. [13] reported that LoRA fine-tuning
is invulnerable to MIAs. However, their work only employs
the LiRA attack [19], which may not fully reveal the MIA
risks of LoRA fine-tuning. In our work, we comprehensively
explore the privacy risks evoked by LoRA with fifteen MIAs
against different fine-tuning settings and defense strategies.

Recently, Liu et al. [14] proposed PreCurious, a framework
designed to amplify membership inference risks in fine-tuned
language model by poisoning its pre-trained model. However,
their threat model is strong because the victim must use the
corrupted model provided by the adversary. In this work, we
assume the victim uses the official open-source pre-trained
model that is also accessible to the adversary. This is a more
practical threat model in LoRA fine-tuning scenarios that still
significantly amplifies privacy risks.

IV. LORA-LEAK

In this section, we introduce LoRA-Leak, a comprehensive
framework for MIAs against LoRA fine-tuning. We begin by
outlining the threat model of LoRA-Leak. Next, we present a
systematic taxonomy that identifies the essential components
of MIAs to categorize all existing MIAs within this framework.
This framework proposes a neglected attacking surface that
utilizing the pre-trained model as a reference could further
enhance existing MIAs.

A. Threat Model

In our threat model, the victim is a model fine-tuner aiming
to build a specialized CLM Mft for a downstream task using
their private dataset Dft. To achieve this, the victim first
obtains a renowned PLM Mpt that is publicly released by
a benign party, such as OpenAI’s GPT-2 or Meta’s Llama-2.
Subsequently, the victim fine-tunes Mpt on Dft using LoRA
to get the resulting model Mft. Finally, the victim publicly

releases the fine-tuned LoRA model Mft in a model zoo such
as Hugging Face.

Adversary’s Goal. The adversary’s goal is to infer whether
a record x belongs to the fine-tuning dataset Dft of the
target model Mft. Note that the adversary aims to infer the
membership in the victim’s private fine-tuning dataset Dft,
rather than the pre-training dataset that is used to train Mpt.

Adversary’s Knowledge. The adversary has full knowledge
of the final fine-tuned LoRA model Mft but does not know
its fine-tuning details such as the fine-tuning hyperparameters.
The attacker also does not know any information about the
fine-tuning or pre-training datasets, even their domains. How-
ever, we additionally assume the adversary has full knowledge
of the pre-trained model from which the target model was fine-
tuned. This assumption is based on the fact that LoRA models
must be used with their pre-trained model. Consequently, the
name of the pre-trained model is typically specified in the
target LoRA model’s metadata or model card, allowing the
adversary to effortlessly obtain this PLM by referencing the
name.

Adversary’s Capability. We assume that the adversary pos-
sesses sufficient GPU resources for model inference and
backpropagation. Since the adversary fully possesses the fine-
tuned model and its pre-trained model, that means they can
self-host these models. As a result, the adversary has white-
box access to the models, including all internal states during
inference, such as sample loss, predicted token probabilities,
and gradients, etc. However, the adversary cannot interfere
with the pre-training and fine-tuning process, nor can they
poison the victim’s pre-trained model or fine-tuning dataset,
as these actions typically require sophisticated supply-chain
attacks. Some literature [22] proposed a gray-box scenario,
where the adversary is limited to access partial internal states,
such as the loss of the sample or prediction probabilities
of each token. While these attacks appear to operate in a
more constrained scenario, current inference APIs, such as
OpenAI’s Developer Platform2 and Hugging Face’s Inference
Endpoints3, do not provide any internal states that aligns their
assumption. Therefore, we focus on the white-box scenario to
fully expose the threat of membership inference in a passive
setting.

B. Holistic Framework for MIAs against LMs

As discussed in Section II-C, the essence of MIA lies in
selecting an appropriate score function S(x;M) that effec-
tively differentiates between members and nonmembers. Here,
we identify the key components involved in the design of
S(x;M), including Intermediate States, Augmented Perturba-
tions, and Referenced Calibrations. We will demonstrate how
this holistic framework can encompass existing MIAs and lead
to our proposed enhancements.

Internal States. To calculate S(x;M), the text sample x is fed
into the fine-tuned model M for forward or backpropagation.

2https://platform.openai.com/docs/api-reference/chat/create
3https://huggingface.co/docs/inference-endpoints/index



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

During this process, the adversary can collect various internal
states as their knowledge base for initiating the attack. As
illustrated in Figure 2, there are four internal states that
correlate with the sample’s membership status. The loss of
sample is denoted as L(x;M). Empirically, members tend to
have smaller loss value than nonmembers, leading to the well-
known LOSS attack [18], whose score function is defined as

Sloss(x;M) = −L(x;M). (3)

The predicted next-token probabilities for position i are de-
noted as pi = ⟨Pr(xi+1|x1:i)⟩xi+1∈T , which represents the
model’s confidence that each token being the next-token given
on all previous tokens. The Min-K% [24] attack utilizes
the fact that the model is less likely to predict words in
the membership sentence with low probabilities. Therefore,
this attack selects K% of tokens with the lowest predicted
probabilities and calculates the score function as the average
log likelihood of these selected tokens, i.e.,

SMin-K%(x;M) = −
∑

xi+1∈Min-K%(x) log pi,xi+1

|Min-K%(x)|
. (4)

The Min-K%++ [25] attack further utilizes the probability of
the nonmember tokens, resulting in the score function

SMin-K%++(x;M) = −
∑

xi+1∈Min-K%(x)

log pi,xi+1
−µ(log pi)

σ(log pi)

|Min-K%(x)|
.

(5)
Another internal state is the gradients of the fine-tuned model
with respect to the sample loss, i.e., ∂L/∂∆(x). Because
these gradients tend to be smaller for members, Wang et.
al. [26] proposed using the norm of these gradients as the
score function, i.e.,

SGradNormθ
(x;M) = −∥∂L/∂∆(x)∥. (6)

They also suggested that the gradients on the input embed-
dings (∂L/∂e) could serve as an approximation of ∂L/∂∆,
resulting in the score function

SGradNormx(x;M) = −∥∂L/∂e(x)∥. (7)

Augmented Perturbations. In addition to performing stan-
dard forward and backward propagation, the adversary may
introduce augmented perturbations into the pipeline to collect
internal states of nonmembers. There are two approaches to
introduce perturbations, as represented by the dashed line
in Figure 2. The neighborhood attack [21] perturbs the sam-
ple x into N paraphrased samples x̃1, . . . , x̃N by replacing
random words with predicted ones using mask-filling models
like BERT [37] or T5 [38]. The losses of these paraphrased
samples are then collected to calculate the score function as

SNei(x;M) =
1

N

N∑
i=1

L(x̃i;M)− L(x;M). (8)

The MoPe attack [21] adds Gaussian noise to the model
parameters, resulting N perturbed models M̃1, . . . ,M̃N . The

sample’s loss on the perturbed models are then collected to
calculate the score function as

SMoPe(x;M) =
1

N

N∑
i=1

L(x;M̃i)− L(x;M). (9)

Referenced Calibrations. In addition to using internal states
for membership inference, the adversary can employ external
references to calibrate the score function. For instance, Carlini
et al. [20] proposed calibrating the sample loss with the
entropy of input data evaluated by the zlib compressor, i.e.,

Szlib(x;M) = |zlib(x)| − SLOSS(x;M). (10)

Additionally, other models can serve as effective references
for calibration. For example, the LiRA attack [19] utilizes the
pre-trained model as a reference to calibrate the fine-tuned
model’s LOSS score function, i.e.,

SLiRA(x;M) = SLOSS(x;Mpt)− SLOSS(x;M). (11)

The SPV-MIA attack [22] trains a self-prompted model Msp

to calibrate the neighborhood score function, i.e.,

SSPV(x;M) = SNei(x;Msp)− SNei(x;M). (12)

C. Pre-trained Model Calibration
As highlighted in Table I, while LoRA has emerged as the

most widely adopted fine-tuning algorithm for LMs, only a
limited number of existing MIAs have been explored against
LoRA fine-tuning datasets. Moreover, most attacks do not
calibrate their scores with external references. Given that
the pre-trained model of the target LoRA model is publicly
accessible, we propose pre-trained model calibration to the
performance of existing MIAs without incurring additional
costs. This technique leverages the pre-trained model as a
reference to recalibrate the MIA scores.

Formally, let S denote a score function of an MIA targeting
the LoRA fine-tuned model M. We introduce a calibrated
score function, which utilizes the pre-trained model Mpt as
a reference, defined as:

Spt-ref(x;M) = S(x;Mpt)− S(x;M). (13)

Here, S(x;Mpt) estimates Pr(x ∈ Dpt;Mpt), which serves
as the a priori probability of the membership status of x.
Conversely, S(x;M) estimates Pr(x ∈ Dft;M). Therefore,
this score function captures the variation in confidence before
and after fine-tuning. Compared to the original score function
derived solely from the fine-tuned model, the calibrated one
can make the membership status of members and nonmembers
more distinguishable.

However, among all existing MIAs, only the LOSS at-
tack has been enhanced using this calibration technique, as
demonstrated in Equation (11). Consequently, despite the
scoring functions that already utilize reference calibration
(Szlib, SSPV) and the score function incompatible to Mpt

(GradNormθ), we can enhance five MIAs by Equation (13),
including SMin-k%, SMin-k%++, SGradNormx

, SNei, and SMoPe.
Ultimately, as shown in Table I, our proposed LoRA-Leak

framework encompasses a total of fifteen MIA attacks, includ-
ing five newly introduced MIAs.
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V. EVALUATION

In this section, we will evaluate all membership inference
attacks in LoRA-Leak. First, we will outline our experimental
settings and considerations for membership inference evalua-
tion. Next, we will analyze their applicability to fine-tuning
datasets and demonstrate the superiority of our pre-trained
model calibration method. Finally, we will discuss the privacy
risk of LoRA fine-tuning under different hyperparameters
using LoRA-Leak.

A. Experimental Settings

Models. We select three representative open-source LMs as
our pre-trained models for fine-tuning, i.e., GPT-2 XL [39],
Pythia-2.8B [40], and Llama-2 7B [4], with parameter sizes
ranging from 1.5 billion, 2.8 billion, and 7 billion, respectively.
The chosen pre-trained models have been extensively used for
LoRA fine-tuning.

Datasets. We focus on the following three downstream tasks
to fine-tune LMs and evaluate the MIA risks.

• AG News [15] is a text classification task that categorizes
news articles into four classes based on their titles and
contents. We leverage this dataset to simulate scenarios
where LLMs are fine-tuned to adherent to specific output
formats.

• Open Assistant Conversations (OAsst) [16] is a textual
dataset containing multi-round conversations between
users and AI chatbots in real-world scenarios. In our
evaluation, we utilize its subset, the OpenAssistant TOP-1
Conversation Threads dataset [41], which is particularly
suitable for fine-tuning LLMs into general-purpose chat-
bots. The conversations of this dataset are converted to
ChatML format [42].

• MedQA [17] is an English single-choice Question An-
swering (QA) task for medical exams. Each question
has five options to choose from. We leverage MedQA
to mimic the scenarios where LLMs are fine-tuned on
sensitive datasets for domain adaptation.

For the AG News and OAsst tasks, we randomly select
10,000 items to construct the fine-tuning dataset DAG

ft and
DOA

ft , respectively. Similarly, for the MedQA task, we ran-
domly select 8,000 samples to build DMed

ft . Additionally, for
each of these three tasks, we randomly select 1,000 samples
distinct from their respective Dft to form their validation
datasets Dval (e.g., DAG

val ).
To evaluate the effectiveness of MIAs, for each task, we

randomly select 512 items from its Dft as the members
to infer. Meanwhile, we randomly select 512 items that are
disjoint from its Dft ∪ Dval as non-members.

Metrics. We focus on three key metrics: PPL@val, GAP, and
AUC. These metrics assess the performance of the fine-tuned
models, the susceptibility of fine-tuned models to MIAs, and
the effectiveness of MIAs, respectively.

• Model Utility: Perplexity (PPL) reflects the model’s un-
certainty regarding a given text. We leverage the model’s
PPL on the validation set (denoted as PPL@val) as an

TABLE II: The AUC of different MIAs against models
fine-tuned from Llama-2. We highlight the results of the
pt-referenced attacks .

Attacks AG News OAsst MedQA

zlib 0.640 0.530 0.575

GradNormθ 0.669 0.546 0.600

LOSS 0.648 0.530 0.600
↪→+Pre 0.705 0.583 0.609

Neighborhood 0.613 0.500 0.551
↪→+Pre 0.718 0.646 0.646

Min-K% 0.664 0.550 0.635
↪→+Pre 0.731 0.595 0.674

Min-K%++ 0.735 0.687 0.689
↪→+Pre 0.765 0.721 0.775

MoPe 0.635 0.508 0.560
↪→+Pre 0.731 0.561 0.640

GradNormx 0.650 0.567 0.624
↪→+Pre 0.679 0.588 0.613

indicator of its specialized utility. PPL can be calculated
through Equation (1). A lower PPL@val suggests that the
model exhibits better utility.

• Overfitting Level: The generalization gap (GAP) is
defined as the perplexity difference between the fine-
tuning dataset and the validation dataset, i.e.,

GAP = PPL@val − PPL@ft. (14)

Since membership inference threat is primarily due to
overfitting [31], we use this metric to evaluate the over-
fitting level of the fine-tuned models on the fine-tuning
datasets, thereby reflecting their hardnesses against MIAs.
A lower GAP value (around zero) implies the model
is less overfitting, making membership inference more
challenging and practical.

• Effectiveness of MIAs: We use the Area Under the
Receiver Operating Characteristic Curve (AUC) to eval-
uate the effectiveness of MIAs. A higher AUC indicates
that an MIA is more effective at distinguishing between
members and non-members. The reason to use AUC
lies in the fact that all attacks in LoRA-Leak predict a
score of membership rather than making a hard decision.
Therefore, varying thresholds yield the dynamic change
of false-positive rates and true-positive rates, and AUC
could capture this characteristic.

B. Effectiveness of LoRA-Leak

Setups. In this section, we fine-tune all pre-trained models
for 10 epochs. For each epoch, we record the perplexity on
the fine-tuning and validation sets to monitor the extent of
overfitting. Additionally, we perform LoRA-Leak within each
epoch and report the best AUC among the eight non-referenced
MIAs and six referenced MIAs. The experimental results are
shown in Figure 3.

Utility of Target Models. According to Figure 3, we could ob-
serve that LoRA fine-tuning effectively reduces the perplexity
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Fig. 3: The perplexity of training and validation dataset as the fine-tuning epoch increases, as well as the best AUC achieved
for non-referenced and pt-referenced MIAs.

on training samples, indicating that it helps the model memo-
rize information about the training data. However, as the num-
ber of epochs increases, the perplexity on validation samples
first decreases and then starts to increase. Consequently, the
model’s performance on downstream tasks initially improves
and then declines.

Relationship of Overfitting Level to MIA Risks. We notice
that the perplexity gap between the fine-tuning set and the
validation set increases as fine-tuning progresses, indicating
that the model’s overfitting level intensifies. Consequently,
the effectiveness of all MIAs also increase with this growing
gap. This observation highlights the significant impact of
overfitting on the risk of membership inference. Notably, the
best AUC can approach 1.0 when the model is trained for
10 epochs, especially for Llama-2. However, the advantage
of non-referenced MIAs versus pre-trained model-referenced
MIAs varies. For instance, among all models fine-tuned on
MedQA, the pre-trained model-referenced MIA consistently
outperforms the non-referenced MIA. Conversely, for models
fine-tuned on OAsst, the pre-trained model-referenced MIA
performs well when the model has not been severely overfitted,
but the non-referenced MIA gains an advantage as overfitting
intensifies. This is because the scale of the membership score
shrinks as fine-tuning progresses, making the calibrated score

less applicable.

Practical Considerations for Evaluating LoRA-Leak. As
illustrated above, higher epochs can lead to overfitting, enhanc-
ing the effectiveness of MIAs and achieving higher reported
metrics. However, in practical scenarios, the model will be
fine-tuned for optimal performance on downstream tasks rather
than for the lowest perplexity on the training set. Moreover, as
shown in Figure 6 of the Supplementary Material, all attacks
will achieve similarly high AUCs as overfitting intensifies,
making their effectiveness indistinguishable. Therefore, we
believe that the setting of 3 epochs, where the validation
perplexity is relatively low, is a fair representation of the real-
world risk of LoRA fine-tuning.

Non-referenced MIAs’ Performance. We first perform the
non-referenced MIAs as baselines. Here we fix the epoch
number to 3. The AUC for these MIAs aginst Llama-2 are
reported in Table II, and the AUC achieved for other models
are reported in Table IX of the Supplementary Material.
Our findings reveal that the attacks utilize more information
could infer membership better, such as logits for Min-K and
Min-K%++ and gradients for GradNormθ and GradNormx.
Specifically, Min-K%++ consistently acts as the most effec-
tive attack for models fine-tuned from Pythia and Llama-
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Fig. 4: The AUC achieved for three models trained on AG News, using different reference models to enhance the non-referenced
MIAs. We box the highest AUC value in red.

2. However, for GPT-2, Min-K%++ only outperforms other
attacks on the MedQA dataset, while GradNormx is more
effective on the AG News and OAsst datasets. Notably, some
attacks perform worse than the LOSS attack, including the zlib
attack, Neighborhood attack, and MoPe attack, even though
they perform well on inferring membership of pre-training
data [20], [21], [23]. We hypothesize that this discrepancy is
due to the specific characteristics of fine-tuning data and LoRA
modules: (1) Fine-tuning data often involves domain-specific
knowledge rather than general corpus data. Consequently, it
tends to have high entropy and hard to paraphrase, affecting
the effectiveness of zlib and Neighborhood attacks. (2) The
compactness of LoRA parameters makes them sensitive to
perturbations, potentially impacting the effectiveness of MoPe
attacks.

Pt-referenced MIAs’ Performance. We further perform pt-
referenced MIAs against all nine target fine-tuned LMs. As Ta-
ble II and Table IX shows, we could observe that using pre-
trained models as references can enhance the performance
of each attack compared with the corresponding baselines
in most cases. For instance, introducing pre-trained Llama-
2 further enhances the Min-K%++ attack from 0.689 to 0.775
on MedQA. Additionally, even though MoPe is not the best
attack among non-referenced MIAs, its pt-referenced variant
performs as the best attack against GPT-2 and Pythia on OAsst
dataset.

Takeaways: Using the corresponding pre-trained model as
a reference can amplify the effectiveness of existing MIAs
and serve as a more powerful tool for privacy auditing in
the context of LoRA fine-tuning.

C. Impact of Different Reference Models

Despite using pre-trained models as a reference, some MIAs
utilize other models for comparison. For instance, the LiRA
attack adjusts the loss signal by comparing it to the loss of
a shadow model fine-tuned on a dataset with similar distribu-
tions [12]. Additionally, Fu et al. [12] propose constructing a
shadow model by prompting the target model itself. In this
section, we aim to assess the effectiveness of these different
reference models.

Setups. We first construct shadow models following [12]
by fine-tuning three pre-trained models on the TLDR News
dataset [43], which shares similar domains with AG News.
Additionally, we create self-prompt models following [22] by
using the first 16 words of the TLDR News dataset to prompt
the target model, followed by fine-tuning three pre-trained
models on the resulting corpus. We fix the downstream task
as AG News. The AUC results are presented in Figure 4.

Results. Our evaluation reveals that both shadow models
and self-prompt models enhance the claimed baseline attacks.
However, they are generally less effective than using the pre-
trained model as a reference. For example, across all attacks,
using the pre-trained model as the reference could enhance
Min-K%++-Refpt and achieve the most effective MIA among
all attacks while using another model as the reference even
degrades its AUC. Moreover, we observe that some attacks,
such as the Min-K% attack, Neighbourhood attack, and MoPe
attack can be boosted by any reference models, resulting in
AUC increases of 0.067 to 0.127 for Llama-2. Furthermore,
other reference models require additional datasets and fine-
tuning efforts, while the pre-trained model is naturally obtain-
able within the context of LoRA fine-tuning.

Takeaways: The pre-trained model is the most effective
reference model with the most convenience in the context
of LoRA fine-tuning.

D. Impact of Fine-tuning Modules

Setups. Considering that LoRA adapters can be added to
different modules of LMs, in this part, we aim to discuss the
impact of different fine-tuning choices on the effectiveness of
MIAs. We fix the fine-tuning dataset to AG News and keep
all other hyperparameters the same as in Appendix C.

Results. As shown in Table III, we could observe that fine-
tuning different modules results in varying susceptibility to
MIAs. Specifically, excluding attention layers (qkv)
and downscale layers (d) from the feed-forward layers
has minimal impact on the AUC of the best LoRA-Leak
attacks. However, excluding the upscale layer (u) during
fine-tuning could significantly reduce the best MIA AUC.
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TABLE III: Discussion on fine-tuning modules. Here we
report the MIA AUC results (Non-referenced→pt-referenced).
We highlight the three lowest AUC results . The fine-tuning
dataset is AG News.

Model Fine-tuning Module r α MIA AUC

GPT-2

qkv, o, u, d 4 8 0.581→0.603
qkv, o, u 5 10 0.587→0.608
qkv, o, d 5 10 0.533→0.566

u, d 6 12 0.579→0.614
qkv, o 10 20 0.536→0.572

u 12 24 0.595→0.626
d 12 24 0.530→0.559

qkv 16 32 0.545→0.573

Pythia

qkv, o, u, d 4 8 0.682→0.721
qkv, o, u 5 10 0.682→0.723
qkv, o, d 5 10 0.574→0.601

u, d 6 12 0.676→0.717
qkv, o 10 20 0.576→0.609

u 12 24 0.685→0.728
d 12 24 0.553→0.584

qkv 16 32 0.579→0.609

Llama-2

qkv, o, u, d, g 4 8 0.735→0.765
qkv, o, u, g 4 8 0.675→0.702
qkv, o, u, d 4 8 0.659→0.685
qkv, o, d, g 4 8 0.681→0.706
qkv, o, d 6 12 0.603→0.620

u, d, g 6 12 0.727→0.755
qkv, o 8 16 0.588→0.601

u, g 9 18 0.710→0.739
qkv 11 22 0.583→0.597

u 18 36 0.664→0.692
g 18 36 0.680→0.706

d 18 36 0.574→0.585

For instance, for all three models, the fine-tuning modules
corresponding to the three lowest MIA AUC experimental
results did not involve the upscale layer. Meanwhile, we
also evaluate whether excluding certain modules during the
fine-tuning process would affect model performance. When
we only fine-tune the downscale layers, the results of
PPL@val are 1.680, 1.543, and 1.110 for GPT-2, Pythia, and
Llama-2, respectively, while the results will be 1.631, 1.525,
and 1.098 when we include all layers. This means the impact
on model performance is relatively low when excluding certain
modules. Notably, regardless of whether specific modules are
excluded, incorporating information from pre-trained models
consistently enhances the effectiveness of MIAs.

Takeaways: Fine-tuning different modules results in varying
susceptibility to MIAs. Specifically, including the upscale
layers (u) during LoRA fine-tuning makes the model more
vulnerable to MIAs.

VI. DEFENSES

In this section, we discuss several potential defense mecha-
nisms against LoRA-Leak. We first discuss three typical fine-
tuning techniques that could potentially defend against MIAs,
including dropout, weight decay, and differential privacy. Ad-
ditionally, based on our findings from Section V-D, we further
explore a novel defense approach that excludes vulnerable
layers during LoRA fine-tuning.

Given that Llama-2 exhibits the highest susceptibility to
membership inference and has become the most widely de-
ployed pre-trained model in the real world, we focus on Llama-
2 throughout this section. For ease of discussion, we explore
the effectiveness of each method independently, while keeping
other irrelevant settings consistent with those in Appendix C.

A. Dropout

Definition. Dropout [44] is a traditional technique used to
mitigate overfitting in deep learning models. It works by
randomly deactivating partial neurons and their corresponding
connections during each training step. By doing so, the depen-
dence between neurons is reduced, which in turn decreases
the risk of MIAs. We leverage the dropout rate, denoted as
η ∈ [0, 1], to determine the proportion of trainable neurons to
be dropped. The experimental results are shown in Table VIII.
The AUC results for each specific MIA are shown in Figure 7.

Results. We first could observe that the fine-tuned models be-
come less vulnerable to MIAs as the dropout rate η increases.
Simultaneously, the overall performance of the models remains
relatively stable even at η = 0.95, where the best MIA AUC
could achieve a reduction of at most 0.154 (i.e., on the AG
News dataset). One extreme case is that, when η = 0.99,
the AUC of the best MIA on the OAsst dataset could even
decrease to 0.543, however, the model utility also degrades.
Considering that dropout also incurs negligible overhead in
terms of computational cost, it is advisable to incorporate
dropout with the LoRA fine-tuning process. Nevertheless,
it’s worth noting that introducing the pre-trained model as
a reference could still result in a stronger attack even when
leveraging dropout.

Takeaways: Combining dropout with LoRA can mitigate
the risk of membership inference, especially in the context
of a high dropout rate. Such mitigation will not compromise
model utility significantly as long as the dropout rate
remains within a reasonable bound.

B. Weight Decay

Definition. Krogh et al. [45] propose that adding a penalty
term for large weights to the original training loss function L
can improve the generalization of machine learning models,
thereby alleviating overfitting. Given that membership infer-
ence is primarily influenced by overfitting, we thus investigate
the effectiveness of weight decay as a defense. To this end,
the modified loss function Ldecay for the LoRA fine-tuning
can be defined as

Ldecay = L+
λ

2
∥∆∥2, (15)

where ∆ represents the weights of the LoRA modules, and λ
is a hyperparameter that represents the weight decay rate.

Setups. We employ the Adam optimizer with the decoupled
weight decay (AdamW) proposed by Loshchilov et al. [46]
to fine-tune Llama-2 on three datasets. During fine-tuning,
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TABLE IV: Results on weight decay defense. We report the best MIA AUC results (non-referenced→pt-referenced) with
varying weight decay rates (λ).

λ
AG News OAsst MedQA

PPL@val GAP Best AUC PPL@val GAP Best AUC PPL@val GAP Best AUC

w/o 1.098 0.059 0.735→0.765 1.041 0.007 0.687→0.721 0.950 0.021 0.689→0.775

10−4 1.099 0.060 0.736→0.764 1.043 0.008 0.687→0.722 0.953 0.023 0.689→0.778
10−3 1.098 0.058 0.733→0.764 1.043 0.008 0.685→0.721 0.952 0.024 0.688→0.776
10−2 1.099 0.059 0.736→0.763 1.042 0.008 0.688→0.723 0.952 0.023 0.689→0.775
10−1 1.098 0.059 0.737→0.766 1.043 0.008 0.687→0.721 0.953 0.024 0.690→0.777

TABLE V: Results on differential privacy defense. We report the best MIA AUC results (non-referenced→pt-referenced) with
varying privacy budgets (ϵ).

ϵ
AG News OAsst MedQA

PPL@val GAP Best AUC PPL@val GAP Best AUC PPL@val GAP Best AUC

w/o 1.098 0.059 0.735→0.765 1.041 0.007 0.687→0.721 0.950 0.021 0.689→0.775

0.1 1.969 -0.031 0.521→0.531 1.255 -0.054 0.508→0.510 1.473 -0.004 0.516→0.516
1.0 1.256 -0.015 0.519→0.527 1.093 -0.039 0.520→0.506 1.134 -0.010 0.515→0.506
10 1.223 -0.011 0.521→0.539 1.080 -0.034 0.524→0.525 1.090 -0.009 0.527→0.520

TABLE VI: Results on excluding vulnerable layers-based defense. We report the best MIA AUC results (non-referenced→pt-
referenced) with excluding varying layers.

Target Module r α
AG News OAsst MedQA

PPL@val GAP Best AUC PPL@val GAP Best AUC PPL@val GAP Best AUC

qkv, o, u, g, d 4 8 1.099 0.059 0.735 →0.765 1.043 0.009 0.687→0.721 0.952 0.024 0.689 →0.775
qkv, o, u, d 4 8 1.098 0.037 0.659→0.685 1.043 -0.003 0.632→0.672 0.958 0.013 0.633→0.710
qkv, o, g, d 4 8 1.097 0.041 0.681→0.706 1.043 -0.001 0.645→0.679 0.957 0.017 0.652→0.734
qkv, o, d 6 12 1.098 0.020 0.603→0.620 1.045 -0.016 0.595→0.628 0.969 0.003 0.592→0.654

we vary the weight decay rate λ from 10−4 to 10−1, while
also considering models without any weight decay. The results
of the best MIA AUC and model utilities are summarized
in Table IV. The AUC results of each MIA are shown
in Figure 8.

Results. Our results reveal that applying weight decay has no
significant impact on the model in terms of both MIA risks
and performance. For instance, all the best AUC fluctuates less
than 0.010 compared to the model without any weight decay.
Additionally, the perplexity on the validation set increases by
at most 0.003.

Takeaways: In the context of LoRA fine-tuning, weight
decay cannot work for mitigating membership inference
risks. This conclusion aligns with [47], which demonstrates
that weight decay can even exacerbate the risk of MIAs for
Convolutional Neural Networks (CNNs).

C. Differential Privacy (DP)

Definition. Differential Privacy (DP) [48] is a classical privacy
protection technique that provides rigorous indistinguishability
for a single entry. Since DP offers provable protection in terms
of dataset privacy, it has become a natural defense against
MIAs. Specifically, a randomized algorithm M with output
space O achieves ϵ-differential privacy if

Pr[M(D) ∈ O] ≤ eϵ Pr[M(D′) ∈ O] + δ

holds for any two adjacent databases D and D′ that differ only
at one entry. The parameter ϵ represents the privacy budget.
A smaller ϵ indicates stronger privacy guarantees.

Setups. We employ DPLoRA [49] implemented by DP-
Transformers [50] to fine-tune Llama-2, varying the privacy
budget ϵ from 0.1 to 10. The results related to DP are sum-
marized in Table V. Additionally, the training and validation
loss during the fine-tuning process is depicted in Figure 11,
and the AUC results of each MIA are shown in Figure 9.

Results. We conduct the analysis from two perspectives: the
effectiveness of mitigating MIA and the impact on model
performance. Regarding the effectiveness of DP, we observe
that introducing DP can significantly reduce the susceptibility
to MIAs: across all three datasets, the best AUCs among all
MIAs drop to ∼0.5 after applying DP, whereas the best AUCs
are above 0.7 without DP. As the privacy budget decreases,
the AUC of MIAs slightly decreases. However, we notice that
a smaller privacy budget does not provide substantial gains
of MIA protection compared to larger ϵ. For instance, on the
AG News dataset, using DP with ϵ = 0.1 only decreases the
best MIA AUC by 0.008. Moreover, as Figure 9 shows, non-
referenced attacks occasionally outperform the pt-referenced
attacks, but the differences remain marginal. This behavior
suggests that DP effectively renders all attacks akin to random
guessing. Furthermore, though DP is effective in relieving
LoRA-Leak, the enhanced privacy comes at a significant cost to
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model utility. Even with a large privacy budget (e.g., ϵ = 10),
models still experience noticeable performance degradation,
which deteriorates further as ϵ decreases (see Figure 11). Be-
sides the performance hit, we observe that the loss converges
more slowly after applying DP with ϵ = 1.0 and ϵ = 10, and it
converges at an even slower rate when ϵ = 0.1. Additionally,
DP introduces substantial computational overhead, i.e., fine-
tuning on the AG News, OAsst, and MedQA datasets with
DP takes 31×, 7×, and 11× longer runtime, respectively,
compared to fine-tuning without DP.

Takeaways: While DP achieves nearly perfect defense
against LoRA-Leak, its performance impact and computa-
tional cost make it impractical for real-world deployment.

D. Excluding Vulnerable layers

In light of the findings from Section V-D, we identify that
some modules are the key contributors to membership infer-
ence vulnerability, thus we regard excluding these vulnerable
layers as a new defense strategy for LoRA fine-tuning.

Setups. Recall that fine-tuning the up (u) and gate (g) layers
of Llama-2 can amplify the risks of MIAs. To mitigate this,
we fine-tune Llama-2 across all three datasets using all LoRA
modules (i.e., qkv, o, u, g, d) excluding u, g, or both of
them. Note that we adjust their rank r to ensure that the
numbers of the tuned parameters remain roughly the same
across all models. The best MIA AUC results are summarized
in Table VI. The AUC results of each MIA when excluding
certain layers are shown in Figure 10.

Results. First, we can observe that excluding just one of the
vulnerable modules can only reduce the best MIA AUC by
0.041 to 0.080, though removing the gate layers has a more
pronounced impact compared to removing the up layers. When
both vulnerable modules are excluded, the best AUC values
decrease significantly by 0.121 to 0.145. Compared to dropout
defense, excluding one of the modules roughly corresponds to
the impact of a dropout rate with η = 0.85, and excluding
both modules is similar to a dropout rate with η = 0.95.
However, pt-referenced MIAs still consistently perform as the
most effective attack. Regarding model utility, excluding these
layers has minimal impact when fine-tuning on the AG News
and OAsst datasets. However, there is a moderate performance
downgrade when fine-tuning on MedQA. This discrepancy
may be due to the specific correlation between the ability of
medical knowledge and these excluded modules.

Takeaways: Excluding the vulnerable layers provides a
practical defense against MIAs. However, performance
degradation may occur when model knowledge is correlated
with the excluded modules.

VII. LIMITATIONS

Closed-source Language Models. Nowadays, closed-source
large models such as ChatGPT have progressively made
fine-tuning capabilities available through APIs for data up-
loads [51]. However, the output information of closed-source

LLMs is insufficient to initiate MIAs. For instance, OpenAI
API [51] and HuggingFace Serverless Inference API [52]
do not offer access to the loss on inputs, which is crucial
for executing the so-called black-box MIAs [18]. Addition-
ally, the fine-tuning algorithms used by closed-source models
are not publicly available, and users cannot flexibly design
hyperparameters. Therefore, our work focuses on attacking
open-source language models. We leave the design of label-
only membership inference attacks [53], [54] against language
models as our future work.

The Scale of The Target Models. Our evaluation includes a
diverse set of models ranging in parameter size from 125M
to 13B. While we acknowledge that experimenting with even
larger language models would be an exciting opportunity to
explore more advanced capabilities, such an endeavor would
exceed our current technical resources. Moreover, given the
scope of our study, we believe that the additional insights
gained from models with significantly larger parameter sizes
would be marginal, particularly in relation to the increased
computational and infrastructural demands they would impose.
Therefore, we chose to focus on models within this parameter
range, which strikes an optimal balance between technical
feasibility and the value of the insights.

VIII. CONCLUSION

In this paper, we propose LoRA-Leak, a comprehensive
evaluation framework for MIAs against LMs. In LoRA-Leak,
we consider eight non-referenced MIAs and six pt-referenced
MIAs, which provides a systematic quantification for mem-
bership leakage. By conducting experiment on three practical
datasets with three different pre-trained language models, we
present the superiority of the pt-referenced MIA attacks, which
achieves the best performance among existing MIAs. Mean-
while, to demonstrate the generality of our insights, we further
fine-tune the LMs with LoRA variants, and launch LoRA-
Leak against these fine-tuned models. We find that DoRA
will slightly increase of risk of MIA, while qLoRA could
mitigate MIA with the degrade of performance. Additionally,
we discuss four defenses and find that excluding specific LM
layers and dropout can mitigate privacy risks. We hope our
work can benefit the community by presenting comprehensive
insights for auditing the privacy risks of LMs, and provide
valuable insights for selecting the optimal setting of LoRA
fine-tuning to mitigate the risk of MIA.
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APPENDIX

DATASET EXAMPLES

A. AG News

Below is a news article. Please classify it under one
of the following classes (World, Business, Sports,
Sci/Tech).

### Article: Bangladesh paralyzed by strikes Opposition
activists have brought many towns and cities in
Bangladesh to a halt, the day after 18 people died in
explosions at a political rally.

### Class: World

B. OAsst

<|im start|>user
Tell me a knock-knock joke.<|im end|>
<|im start|>assistant
Knock knock!<|im end|>
<|im start|>user
Who’s there?<|im end|>
<|im start|>assistant
Boo.<|im end|>

C. MedQA

Please answer the letter of option truthfully.

### Question: Which of the following compounds
is most responsible for the maintenance of appropriate
coronary blood flow??

### Options: ‘A’: ‘Epinephrine’, ‘B’: ‘Norepinephrine’,
‘C’: ‘Histamine’, ‘D’: ‘Nitric oxide’, ‘E’: ‘VEGF’

### Answer: D

DEFAULT FINE-TUNING SETTINGS OF LORA

We leverage the Supervised Fine-Tuning (SFT) command
provided by the Transformer Reinforcement Learning (TRL)
library [55] for LoRA fine-tuning. The LoRA modules are
added on all linear layers of the pre-trained model, including
both the self-attention modules and the feed-forward modules
of the transformer. These modules are configured with a rank
(r) of 4, and their scaling factor (α) is set to be twice of r. Each
model is trained with a batch size of 16 and a dropout rate of
5%. The default fine-tuning epoch number is 3. We employ
the AdamW optimizer [46], with a fixed learning rate of 10−4

without using the weight decay technique. The text sequences
are truncated to a maximum of 1024 tokens, without resorting
to sequence packing or input masking techniques. All other
hyper-parameters are set as the default values of the script.

125M 350M 750M 1.5B 3B 7B 13B
Size of pre-trained model

0.50

0.55

0.60

0.65

0.70

0.75
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Be
st
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GPT-2@non-referenced
GPT-2@pt-referenced
Pythia@non-referenced
Pythia@pt-referenced
Llama-2@non-referenced
Llama-2@pt-referenced

Fig. 5: The best AUC scores for non-referenced and pt-
referenced MIAs on models fine-tuned on AG News, across
various pre-trained model sizes.

IMPACT OF LORA VARIANTS

Setups. Given that multiple variants of LoRA have been devel-
oped to date, their associated privacy threats also urgently re-
quire assessment. We here explore two popular LoRA variants,
i.e., Weight-Decomposed Low-Rank Adaptation (DoRA) [56]
and qLoRA [11]. Specifically, we consider the Int8 quanti-
zation and FP4 quantization settings for qLoRA. The pre-
trained model in this part is Llama-2. We evaluate both the
membership inference risks and the performance of these
LoRA variants.

Results. As Table VII illustrates, using DoRA to fine-tune
models slightly increases the effectiveness of LoRA-Leak by
0.004 to 0.008. However, the fine-tuned models experience
a slight decrease in overall performance. For qLoRA, the
effectiveness of LoRA-Leak decreases by -0.001 to 0.014 for
Int8 quantization, and FP4 quantization leads to a further
decrease of 0.024 to 0.030. Additionally, qLoRA fine-tuning
also exhibits performance degradation. Therefore, we could
conclude that lower-precision quantization for qLoRA reduces
vulnerability but at the cost of greater performance degrada-
tion.

Takeaways: Introducing pre-trained models can enhance the
effectiveness of MIA attacks across different LoRA variants,
indicating the presence of general privacy vulnerabilities
within the LoRA paradigm.

IMPACT OF THE SIZE OF PRE-TRAINED MODEL

To investigate the MIA risks associated with varying scales
of pre-trained language models, we further fine-tune different
sizes of pre-trained models on the AG News dataset using
LoRA, including GPT-2 (124M, 335M, 774M, and 1.5B),
Pythia (160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B), and
Llama-2 (7B and 13B). We follow the same fine-tuning
settings as in Appendix C while selecting different rank r
so as to maintain approximately the same number of tuned
parameters. As illustrated in Figure 5, the MIA risk increases
as the size of the pre-trained model scales up to around one
billion (1B) parameters but decreases for models larger than
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TABLE VII: Results on LoRA variants. We report the best MIA AUC (non-referenced→pt-referenced). The model is Llama-2.

Method AG News OAsst MedQA

PPL@val GAP Best AUC PPL@val GAP Best AUC PPL@val GAP Best AUC

LoRA 1.098 0.059 0.735→0.765 1.041 0.006 0.687→0.721 0.950 0.021 0.689→0.775
DoRA 1.099 0.061 0.743→0.769 1.043 0.009 0.689→0.725 0.958 0.029 0.698→0.783

qLoRA (Int8) 1.100 0.057 0.722→0.751 1.044 0.007 0.683→0.722 0.951 0.021 0.686→0.773
qLoRA (FP4) 1.104 0.055 0.700→0.735 1.054 0.008 0.662→0.695 0.955 0.022 0.670→0.751

TABLE VIII: Results on dropout defense. We report the best MIA AUC results (non-referenced→pt-referenced) with the
varying dropout rates (η).

η
AG News OAsst MedQA

PPL@val GAP Best AUC PPL@val GAP Best AUC PPL@val GAP Best AUC

w/o 1.099 0.059 0.735→0.764 1.043 0.009 0.689→0.724 0.952 0.024 0.692→0.779

0.05 1.098 0.059 0.736→0.765 1.041 0.007 0.687→0.721 0.950 0.021 0.689→0.775
0.25 1.098 0.056 0.730→0.758 1.043 0.007 0.681→0.715 0.953 0.023 0.689→0.776
0.45 1.097 0.051 0.714→0.741 1.043 0.005 0.673→0.711 0.953 0.022 0.682→0.769
0.65 1.097 0.046 0.697→0.724 1.042 0.001 0.656→0.693 0.954 0.020 0.676→0.759
0.85 1.096 0.033 0.661→0.686 1.042 -0.007 0.626→0.663 0.955 0.016 0.655→0.736
0.95 1.098 0.014 0.595→0.610 1.043 -0.018 0.580→0.611 0.959 0.009 0.621→0.691
0.99 1.108 -0.003 0.543→0.553 1.050 -0.030 0.523→0.543 0.970 -0.006 0.555→0.602

this range. This is because as the number of model parameters
increases, the model’s expressive power strengthens, leading to
an increased degree of overfitting and thus “memorizing” more
details of the fine-tuning data. This “memorization” heightens
the risk of the model being susceptible to MIAs. However,
once the model parameters reach a certain scale, the risk of
overfitting may actually diminish, particularly when the model
becomes more regularized or exhibits improved generaliza-
tion capabilities. Nevertheless, under all circumstances, pt-
referenced MIAs expose the MIA risk more thoroughly than
non-referenced MIAs in terms of best AUC scores.

OTHER PEFT METHODS

While our work primarily focuses on LoRA-based methods,
we discuss the applicability of LoRA-Leak to other PEFT
methods in this section. We fine-tune the Llama-2 model
on AG News using both Prompt Tuning [57] and IA3 [58].
For Prompt Tuning, we set the number of virtual prompts
as 20 tokens, initialized with “Predict the topic of this news
is World, Sports, Business or Sci/Tech”. The best AUCs for
non-referenced and pt-reference attacks are 0.511 and 0.546,
respectively. For IA3, we add the learned vectors to all atten-
tion and feed-forward layers. The best AUC for non-referenced
and pt-reference attacks are 0.517 and 0.551, respectively.
Overall, the risks associated with these PEFT methods remain
relatively minor. This may be due to the very small parameter
sizes tuned. For instance, Prompt Tuning and IA3 only tuned
82k and 1.5M parameters, respectively, which is far less than
LoRA with 10M parameters. Therefore, although LoRA-Leak
does expose more MIA risks in these PEFT methods, their
vulnerability to MIA remains minimal.
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TABLE IX: The AUC of different MIAs against models fine-tuned from GPT-2 and Pythia. We highlight the results of the
pt-referenced attacks .

Attack GPT-2 Pythia

AG News OAsst MedQA AG News OAsst MedQA

zlib 0.549 0.514 0.536 0.609 0.520 0.536

GradNormθ 0.568 0.512 0.545 0.626 0.533 0.590

LOSS 0.558 0.501 0.544 0.620 0.508 0.579
↪→+Pre 0.578 0.524 0.547 0.661 0.555 0.583

Neighborhood 0.543 0.496 0.519 0.599 0.497 0.536
↪→+Pre 0.566 0.523 0.542 0.653 0.592 0.585

Min-K% 0.559 0.510 0.548 0.629 0.525 0.592
↪→+Pre 0.586 0.531 0.558 0.678 0.564 0.611

Min-K%++ 0.570 0.528 0.569 0.682 0.599 0.633
↪→+Pre 0.603 0.517 0.566 0.721 0.606 0.686

MoPe 0.536 0.519 0.550 0.586 0.514 0.558
↪→+Pre 0.552 0.546 0.592 0.674 0.643 0.650

GradNormx 0.581 0.540 0.555 0.630 0.547 0.602
↪→+Pre 0.566 0.539 0.541 0.606 0.576 0.599
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Fig. 6: The AUC of various MIAs when fine-tuning the pre-trained models with different epochs.
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Fig. 7: The AUC of various MIAs against the fine-tuned Llama-2 with varying dropout rates (η).
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Fig. 8: The AUC of various MIAs against the fine-tuned Llama-2 with varying weight decay rates (α).
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Fig. 9: The AUC of various MIAs against the fine-tuned Llama-2 with varying privacy budgets (ϵ).
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Fig. 10: The AUC of various MIAs against the fine-tuned Llama-2 with and without the up and gate layers.
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Fig. 11: The training and validation loss during Llama-2 LoRA fine-tuning across three datasets when applying differential
privacy with varying privacy budgets ϵ.


