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Abstract
As DRAM density continues to scale, the Rowhammer vulnerabil-
ity increases in severity due to heightened charge leakage, which
lowers the activation threshold required to induce bit flips. To
mitigate this risk, industry-standard solutions have shifted from
memory controller-based row activation counters, which require
large SRAM storage with significant area and power overheads,
to in-DRAM row activation counters. The DDR5 JEDEC standard
incorporates a modified DRAM architecture featuring per-row acti-
vation counters (PRAC) and an Alert Back-Off (ABO) signal that
notifies the memory controller (MC) to trigger mitigation mech-
anisms. However, PRAC introduces a performance overheads by
incrementing counters during the precharge operation, adding an
additional delay to the precharge phase. Furthermore, when the
ABO signal is triggered upon a row reaching the Alert threshold,
RFMab indiscriminately stalls all memory requests at the memory
channel level, even when only a single bank is being accessed
heavily, leading to unnecessary performance degradation. In this
work, we propose PRACtical, an optimized approach to improving
the performance of existing PRAC+ABO mechanisms while main-
taining security guarantees. To reduce counter update latency, we
introduce a centralized increment circuit, allowing the memory con-
troller to proceed with subsequent activations to other subarrays
without suffering the increment delays. To minimize unnecessary
memory stalls and make the system resilient against memory per-
formance attacks based on channel stalling upon Alert, we enhance
RFMab with bank-level granularity, enabling the memory controller
to selectively stall only the affected banks rather than the entire
memory channel. This is achieved by introducing a register in the
DRAM that shows the banks under attack upon an Alert signal. Our
proposed techniques improve the performance over state of the
art opportunistic PRAC and ABO, by 8% (20% max). Additionally,
PRACtical saves an average of 19% energy relative to PRAC+ABO.
PRACtical is resilient to performance attacks, showing less than 6%
slowdown on an aggressive performance attack, while providing
the same security as PRAC+ABO.
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1 Introduction
Rowhammer [13, 15, 36, 47] is a well-known serious vulnerabil-
ity affecting DRAM: repeated access to one or more target rows
can induce bit flips in adjacent rows. The bit flips occur due to
charge leakage from repeated activations of a DRAM row, which
can accelerate charge leakage in nearby memory cells, causing their
state to change. When a row is activated a sufficient number of
times within a single refresh interval, it may corrupt the contents

of nearby rows. The estimated minimum number of such activa-
tions that could induce a bit flip is referred to as the Rowhammer
Threshold, denoted by 𝑁RH. As DRAM technology has scaled to
smaller feature sizes, 𝑁RH has significantly decreased—from ap-
proximately 140K activations in earlier DDR3 devices to as low as
4.8K in LPDDR4 modules [33, 36]; it is expected to drop further in
future generations. Concerningly, the significant drop in 𝑁RH leads
to a noticeable increase in the frequency of DRAM bit flips [40].
Accordingly, mitigation strategies must continuously evolve to re-
main effective against increasingly demanding and sophisticated
threat conditions.

DRAM plays a critical role in determining the performance of
memory-intensive workloads, leading to the well known memory
wall [18, 19, 74]. As Rowhammer threats continue to increase with
memory scaling, the proposed mitigations have come at a substan-
tial cost to DRAM performance. JEDEC [28] has recently introduced
a new standard mitigation mechanism for the Rowhammer vulner-
ability in DDR5 memory devices. This mechanism incorporates
two key components: Per-Row Activation Counters (PRAC) [29] and
Alert Back-Off (ABO) protocol. PRAC, inspired by the Panopticon
framework [6], implements an in-DRAM architectural enhance-
ment where each row is extended to store an activation counter.
When the number of activations to a row exceeds a predefined Alert
threshold, themechanism should triggermitigation for that row and
its neighboring rows. This mechanism enables localized, row-level
tracking without incurring the area and power overhead associated
with external SRAM-based counters [52, 60]. The ABO protocol [29]
complements PRAC by providing a signaling mechanism through
which the DRAM device can notify the memory controller (MC)
when a critical activation threshold is crossed. The MC sends all-
bank RFM (RFMab) triggering targeted refresh operations, thereby
preventing potential bit flips. While the PRAC+ABO framework
marks a significant improvement in integrated, hardware-supported
Rowhammer mitigations under reduced thresholds [9, 53, 71], it
also introduces several critical limitations that compromise both
performance and scalability, particularly in high-performance or
multi-threaded environments.

First, the integration of PRAC requires architectural modifica-
tions that impact critical DRAM timing parameters [23, 28]. Specif-
ically, the logic responsible for updating the per-row counters in-
troduces an additional latency of around 5ns to the row cycle time
(𝑡RC). Even more significantly, the precharge timing (𝑡RP) is ex-
tended from 15ns to 36ns to accommodate the read-modify-write
(RMW) operations needed for per-row counter updates. These mod-
ifications directly affect memory access latency and throughput,
especially in workloads with high row buffer conflicts, as illustrated
in Figure 1 (a) (Baseline vs. PRAC+ABO).
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Figure 1: Comparison of baseline DRAM (top), PRAC+ABO (middle), and the proposed design (bottom). PRAC+ABO introduces
(a) access latency from counter update overhead and (b) all-bank stalls due to coarse-grained RFM recovery. The proposed
mechanism mitigates both by enabling subarray-level PRAC updates and bank-level mitigation. The gray regions illustrate the
performance improvements enabled by the proposed approach. Register read operation takes 10ns in PRACtical in part (b).

Second, after ABO is signalled to MC from DRAM, MC sends
RFMab command to DRAM for recovery. This command operates at
the memory channel granularity. Therefore, the memory controller
must conservatively stall all requests across the entire channel, even
if only a single bank is affected, as illustrated in the middle row of
Figure 1 (b). Since all banks undergo recovery, even in the absence
of an actively hammered (hot) row, the mechanism opportunistically
refreshes potential victim rows to preemptively mitigate future at-
tacks. Our analysis reveals that this opportunistic strategy results in
a threefold increase in recovery refreshes, underscoring the ineffi-
ciency and potential redundancy of these additional operations. We
further observe that, across a set of memory-intensive benchmarks,
on average, only 1.16 out of 64 banks need recovery at any given
time (See §3.2). Consequently, the remaining banks are unneces-
sarily stalled, leading to avoidable performance degradation. This
coarse-grained design limits memory-level parallelism, degrading
performance and responsiveness in scenarios where finer-grained
mitigation would suffice.

While the PRAC+ABO mechanism represents meaningful
progress toward an in-DRAM Rowhammer mitigation, it introduces
two key performance-related drawbacks: (1) increased memory ac-
cess latency due to counter update overhead, and (2) channel-wide
stalls caused by the coarse granularity of RFMab. These challenges
do not undermine the mechanism’s ability to prevent Rowham-
mer bit flips, but they do limit its efficiency and suitability for
performance-sensitive systems. As such, there is a pressing need
for a more fine-grained, low-overhead mitigation framework that
minimizes latency and preserves DRAM throughput whilemaintain-
ing effective protection. To address the performance and energy
limitations of the existing PRAC+ABO framework, we propose
PRACtical — a minimal and efficient redesign that improves both
responsiveness and scalability of PRAC+ABO. This new design
introduces two key enhancements. First, it leverages subarray-level
increment logic to decouple counter updates from global precharge
timing, allowing subsequent activations to proceed in other sub-
arrays without incurring the additional latency associated with
PRAC’s read-modify-write operations. While prior works have
explored and leveraged subarray-level parallelism to enhance mem-
ory performance and efficiency [23, 37], the introduction of the
PRAC standard imposes new constraints that limit such parallelism.
In this work, we demonstrate that with modest modifications to the

DRAM circuitry, it is possible to restore a degree of subarray paral-
lelism by overlapping the activation of a new row with the counter
update of the previously accessed row. This significantly reduces
access delay and enables known subarray-level parallelism for
per-row counter updates. Second, PRACtical provides a new RFM
command called RFM_MASK that eliminates stalling every bank once
ABO is signalled from DRAM to MC, thereby ensuring that only
the affected banks are stalled in response to a threshold violation.
This fine-grained control minimizes unnecessary interference with
unrelated memory traffic and improves overall system throughput.
PRACtical makes small modifications to the memory controller and
DRAM.

Together, these enhancements enable precise, low-latency and
low-energy Rowhammer mitigation with minimal disruption to
normal DRAM operations, as demonstrated in the bottom row
of Figure 1 (a) and (b). Our performance evaluation, detailed in
Section 6, utilizing DRAM simulation with Ramulator [43], demon-
strates that PRACtical achieves mean performance improvement
of 8% over opportunistic PRAC+ABO for high-performance and
memory-intensive applications while maintaining the security guar-
antees of PRAC+ABO-based mitigations [9, 53, 71]. In summary,
the key contributions of this paper are:
• We identify two major performance bottlenecks in the

PRAC+ABO mechanism: precharge-induced latency caused by
PRAC updates, and coarse-grained channel-wide stalling due
to RFMab.

• We propose a centralized increment circuit that enables
subarray-level parallelism, minimizing the counter update over-
head during precharge.

• We introduce a bank-level recovery scheme that minimizes
unnecessary stalls by isolating mitigation to the affected bank.

• We integrate these two mechanisms into PRACtical, a low-
overhead Rowhammer mitigation framework that improves
performance while preserving the security guarantees of
PRAC+ABO.

• We evaluate PRACtical using Ramulator, showing lower per-
formance overheads compared to PRAC+ABO with minimal
hardware modifications.
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Figure 2: DRAM Organization and Per-Row Activation
Counter (PRAC) extension.

2 Background
In this section, we provide an overview of key background topics,
including DRAM architecture, the Rowhammer vulnerability, and
existing mitigation strategies. We also describe the PRAC+ABO
mechanism introduced in the DDR5 standard, which forms the
basis for our proposed performance enhancements.

2.1 DRAM Architecture and Parameters
Modern DRAM is organized hierarchically into ranks, banks, subar-
rays, rows, and columns, as illustrated in Figure 2. At the top of this
hierarchy, the memory controller communicates with DRAM mod-
ules via a dedicated memory channel. Each module is composed of
one or more ranks, which share access to the memory channel in a
time-multiplexed fashion. A rank comprises several DRAM chips,
and each chip contains multiple banks.Within each bank are numer-
ous subarrays, forming the fundamental building blocks of memory
storage. Each subarray is implemented as a two-dimensional array
of cells, accessed via rows (wordlines) and columns (bitlines). A
single DRAM cell includes a capacitor, which holds a bit of data
as an electric charge, and an access transistor that enables read
and write operations. Each subarray contains its own local row
buffer, which temporarily holds the contents of an activated row.
Only one subarray at a time can forward its data to the global row
buffer shared across the bank, enabling read and write operations to
proceed. To access data, the memory controller issues an Activate
(ACT) command, which opens a specific row by transferring its
contents into the row buffer. Subsequent read or write operations
are performed on this open row, resulting in a low-latency row hit.
If a different row within the same bank must be accessed, the cur-
rent row must first be closed using a Precharge (PRE) command,
which restores the contents of the row buffer to the array and resets
the bitlines.

DRAM access behavior is governed by a set of well-defined
timing parameters specified by the JEDEC standard [28], as sum-
marized in Table 1. We use DDR5-3200AN timings. For example,
the Row Access Strobe (RAS) latency defines the minimum delay

between an ACT and a subsequent PRE command within the same
bank. Additionally, to maintain data integrity, DRAM cells require
periodic refreshing within a retention window denoted as 𝑡REFW,
typically 32ms. To amortize the cost of refresh, DRAM divides its
cells into 8192 refresh groups, and a Refresh (REF) command is
issued every 𝑡REFI = 3900ns to refresh one group at a time.

Parameter Description Base PRAC
𝑡𝑅𝐴𝑆 Minimum time a row must be kept open 32ns 16ns
𝑡𝑅𝑃 Time to precharge an open row 15ns 36ns
𝑡𝑅𝐶 Time between successive ACTs to a bank 47ns 52ns
𝑡𝑅𝑇𝑃 Minimum time for a PRE after a RD to the

same bank
7.5ns 5ns

𝑡𝑊𝑅 minimum time for a PRE after a WR to the
same bank

30ns 10ns

Table 1: DRAM Timing Standards

2.2 Read Disturbance Attacks
Modern DRAM is increasingly vulnerable to read disturbance ef-
fects, where the act of accessing one memory row can inadvertently
influence the integrity of data stored in nearby rows. This phenom-
enon arises from the shrinking physical dimensions of DRAM cells
and the reduced noise margins between them. As manufacturing
processes continue to scale, the isolation between adjacent rows
weakens, making DRAM cells more susceptible to charge leakage
and electromagnetic coupling.

The most prominent example of a read disturbance attack is
Rowhammer [36], where an attacker repeatedly activates (i.e.,
opens) a single DRAM row, known as the aggressor row, within
a refresh interval. If the number of activations exceeds a certain
threshold, electrical interference can induce bit flips in adjacent
victim rows. Since its discovery, Rowhammer has been shown to
compromise system security in various ways, including enabling
privilege escalation [65], breaking isolation between virtual ma-
chines [56], and subverting browser-based sandboxes [21].

Beyond Rowhammer, newer variants continue to expose the
fragility of DRAM. RowPress [41] demonstrates that simply hold-
ing a row open for an extended duration—without repeated activa-
tions—can cause similar disturbance effects in neighboring rows.
This shows that both temporal access frequency and row residency
time can lead to data corruption, expanding the threat model be-
yond traditional Rowhammer.

The security implications of these attacks are severe. Bit flips
in sensitive memory structures such as page tables, kernel space,
or encryption keys can be exploited to gain arbitrary code ex-
ecution, bypass memory isolation, or compromise confidential-
ity [16, 20, 21, 56]. Tomitigate read disturbance attacks, a wide range
of defenses have been proposed. These typically follow a two-phase
approach: (1) Detecting aggressor rows, using techniques such as
memory controller-based row activation counters [34], probabilistic
sampling [36, 68], or in-DRAM tracking [26, 54]; and (2) Applying
preventive measures, such as Target Row Refresh (TRR) [16, 44],
domain-aware memory allocation [62], or row remapping [59].
While many of these defenses are effective at reducing bit flips,
they often incur significant performance overheads and hardware
complexity, especially when mitigation is applied conservatively to
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avoid false negatives. As DRAM continues to scale and disturbance
thresholds fall, there is a growing need for efficient, low-latency,
and fine-grained mitigation mechanisms that preserve performance
without compromising reliability or security.

2.3 PRAC and ABO in Modern DRAM Standards
To address the growing threat of Rowhammer attacks, recent JEDEC
standards have introduced two complementary in-DRAM mitiga-
tion mechanisms: Per-Row Activation Counter (PRAC) andAlert
Back-Off (ABO). These mechanisms aim to detect and mitigate
malicious or excessive row activations efficiently, while remaining
scalable for high-density DRAM systems.

2.3.1 PRAC. This feature is designed to mitigate Rowhammer at-
tacks with minimal area and power overhead by embedding activa-
tion tracking directly within the DRAM array. Specifically, PRAC
extends each DRAM row with a dedicated activation counter. Every
time a row is precharged, its corresponding counter is incremented
by the increment logic in the global row buffer shared between
all subarrays within a bank, as illustrated in Figure 2. This incre-
ment operation is performed during the precharge phase and is
implemented as a read-modify-write (RMW) sequence at the bank
level. When a precharge command (PRE) is issued, the DRAM bank
reads the activation counter of the recently accessed row, updates
its value, and writes it back before deactivating the wordline. This
sequence introduces additional latency to the precharge operation,
requiring DRAM timing parameters to be extended to accommodate
the counter update overhead. While PRAC enables fine-grained
tracking of row activations without relying on external memory
controller storage, its bank-wide RMW implementation creates per-
formance bottlenecks by delaying subsequent accesses to other
non-conflicting subarrays until the counter update completes, as
illustrated in top and middle rows of the Figure 1 (a). The perfor-
mance impact of this overhead is analyzed in detail in Section 3.

2.3.2 ABO. This mechanism complements PRAC by providing
a signaling interface between the DRAM device and the memory
controller. When a PRAC counter in any bank reaches a pre-defined
threshold, the corresponding bank sends an ABO signal to notify
the memory controller that mitigation is needed. Upon receiving
the ABO signal, the memory controller initiates a pre-recovery
phase lasting 180ns, during which it continues to serve memory
requests normally as shown in Figure 3. After this window, the
controller issues an RFMab command to trigger targeted mitigation.
Each RFMab command incurs a latency of 350ns and applies to all
banks in the channel (typically 64 banks). During this period, the
memory controller stalls requests to the channel while the banks
perform recovery operations, such as refreshing victim rows, as
shown in the middle row of Figure 1 (b). If multiple banks reach
the threshold in close succession, the memory controller may need
to issue multiple RFM commands, each separated by a recovery
window. This can amplify the performance impact, especially under
aggressive access patterns that frequently trigger mitigation events.

To prevent back-to-back ABO signals, the protocol requires a
minimum number of ACT commands between two consecutive
alerts. In Figure 3, this value is denoted by 𝑛. It also corresponds to
the number of required RFM operations, as each RFM can service

Order

Normal Operation

ABO
Pre-Recovery 180 ns

Memory Ctrl. Stops Sending Requests
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ACT ACT ACT RFM ACT

ACT ACT ACT RFM ACTRFM ACT

ACT ACT ACT RFM ACTRFM ACT
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PRAC-4

n ACT

Normal Operation

RFM RFM
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(n = 4)

Phases

ACT ACT

Figure 3: Alert-back-off (ABO) overview

only a limited number of victim rows per invocation. After all RFM
commands are completed, one additional ACT is permitted. The
allowed values for 𝑛 are 1, 2, or 4, as illustrated by PRAC-1, PRAC-2,
and PRAC-4 in Figure 3, as well as in Figures in Sections 3 and 6.
Consequently, the minimum and maximum ABO intervals range
from 350ns to 1500ns, each preceded by a fixed 180ns pre-recovery
window.

2.4 Mitigations Based On PRAC+ABO
Several recent works build on the PRAC+ABO framework to
strengthen its security guarantees and reduce its performance
overheads. In this paper, we focus on three representative de-
signs—Chronus [9], QPRAC [71], and MOAT [53]—which propose
distinct approaches to improving the effectiveness and efficiency
of in-DRAM RowHammer mitigation.

Chronus [9] introduces architectural modifications to decou-
ple PRAC counter updates from the critical path of DRAM access.
By relocating per-row counters to a dedicated metadata subar-
ray, Chronus reduces the serialization overhead associated with
precharge operations. It also proposes enhancements to the ABO
protocol by holding the alert signal until all mitigations are com-
plete, ensuring stronger coordination between DRAM and the mem-
ory controller.

QPARC [71] revisits PRAC’s security model as originally pro-
posed in the Panopticon framework [6], and identifies two new at-
tack vectors that exploit timing gaps in counter updates. To address
this, it introduces a priority-based queue that tracks frequently ac-
cessed rows and schedules them for mitigation through ABO. This
queuing mechanism enables timely and targeted mitigation while
preserving compatibility with the existing PRAC+ABO interface.

MOAT [53] focuses on simplifying mitigation logic by replacing
queue-based designs with a tracking mechanism. It uses two SRAM
registers to monitor one hot row at a time, applying proactive
refreshes below a configurable threshold and issuing ABO signals
when the threshold is exceeded. While MOAT reduces hardware
complexity, it may face limitations under workloads with multiple
simultaneous hot rows.

3 PRAC+ABO Limitations and Motivation
While PRAC+ABO provides a low-cost, JEDEC-standardized ap-
proach for in-DRAM Rowhammer mitigation, it introduces signifi-
cant performance bottlenecks and security risks due to its coarse-
grained design. This section presents a detailed analysis of the over-
heads introduced by PRAC updates and ABO-triggered channel-
wide stalls. We also show how these issues can be exploited by
adversaries to launch memory performance attacks. All insights are
derived from cycle-accurate simulations, as described in Section 5.
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3.1 Impact of PRAC Updates on DRAM Latency
PRAC extends each DRAM row with an activation counter that is
incremented during the Precharge (PRE) command using a read-
modify-write (RMW) operation, as illustrated in Figure 2. This up-
date is performed at the bank level, using logic typically located
near the global row buffer. As a result, when a PRE command is is-
sued, the DRAMmust first read, modify, and write back the counter
value associated with the activated row before deactivating the
wordline and returning to an idle state. This serialization delays sub-
sequent memory operations, even when they target non-conflicting
subarrays. To accommodate this RMW sequence, DRAM timing pa-
rameters are modified. Specifically, the precharge latency increases
from 15ns to 36ns, and the activation-to-activation interval (𝑡𝑅𝐶 ) in-
creases from 47ns to 52ns. Interestingly, the row active time (𝑡𝑅𝐴𝑆 ) is
reduced from 32ns to 16ns, partially offsetting the impact. Neverthe-
less, the increase in 𝑡𝑅𝐶 introduces a minimum 5ns delay between
successive row activations — particularly impactful in workloads
with high row buffer conflicts.

To quantify this impact, we evaluated a set of memory-intensive
workloads under two timing configurations: (1) a baseline DRAM
configuration using standard DDR5 timings, and (2) a PRAC-
enabled configuration with updated timings, as specified in Table 1.
The results, shown in Figure 4, indicate that workloads experience
an average slowdown of 6%, with a maximum of close to 20% for
462.libquantum. These slowdowns are primarily attributed to in-
creased latency introduced by PRAC counter updates, particularly
in scenarios involving frequent row activations within the same
bank. Although the row access time increases by only 10% (from
47ns to 52ns), the observed system-level performance overhead
can reach up to 20%. This discrepancy arises because rows are
not always precharged immediately after access. In many cases, a
row remains open for extended durations due to row buffer policy,
reducing the impact of a longer row access time. However, the
increased precharge latency, nearly a 100% increase in the PRE tim-
ing, becomes the dominant contributor to performance degradation,
especially when frequent rows are not immediately precharged.

We also evaluatedmultiple Alert thresholds (64, 128, and 256) and
observed only minor variations in slowdown across these configu-
rations. This suggests that the performance degradation is largely
due to static timing overheads from PRAC’s counter update logic,
rather than the dynamic triggering of ABO or mitigation proce-
dures. As expected, applications with low row conflict rates, such as
447_dealII and 444_namd, exhibited significantly less performance
impact.

Observation 1: The updated DDR5 timings introduce per-
formance overhead, slowing down benign workloads by geo-
metric mean of 6%.

PRACtical proposes reducing the performance overhead of PRAC
by performing counter updates within the local row buffers of indi-
vidual subarrays. Modern DRAM architectures commonly adopt
a density-optimized open-bitline structure [11, 24, 31, 42], which
places sense amplifiers on both sides of a subarray and allows
adjacent subarrays to share these amplifiers. As a result, when a
subarray is performing a counter update, the memory controller
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latency of PRE command.
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Figure 5: Ratio(%) of Subarray conflicts.

must delay not only accesses to that subarray but also to its neigh-
boring subarrays. To evaluate the practical impact of this constraint,
we measure the percentage of subarray conflicts relative to total
row buffer conflicts. Assuming a configuration with 256 subarrays
per bank, Figure 5 presents the ratio of subarray conflicts, including
those involving adjacent subarrays, to total row buffer conflicts.
The results demonstrate that subarray conflicts are relatively rare,
accounting for only 1.24% on average across a diverse set of work-
loads. This observation indicates that enabling PRAC updates at the
subarray level can enhance performance by permitting concurrent
accesses to subarrays that are not involved in counter updates.

3.2 Inefficiency of Channel-Wide Stall of RFMab
The ABO mechanism notifies the memory controller when a row’s
activation count crosses the threshold. After the 180ns pre-recovery
period, the controller issues an RFMab command, triggering a 350ns
stall across the entire memory channel even if only a small subset
of banks require mitigation.

This coarse-grained stall mechanism is overly conservative.
Across a wide range of benign workloads, our measurements show
that, on average, only 1.16 out of 64 banks require mitigation when
an ABO signal is raised (Figure 7) and maximum of 4 banks need
mitigation across all recovery periods (Figure 8). As a result, over
90% of the banks are unnecessarily stalled during each recovery
phase, significantly reducing memory-level parallelism and penal-
izing threads accessing unaffected banks.
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Although a bank may not require recovery, i.e., it does not con-
tain any hot rows, the issuance of the RFMab command blocks mem-
ory accesses to all banks within the channel. To utilize this other-
wise idle period, prior works [9, 53, 71] adopt opportunistic mitiga-
tion strategies. These strategies proactively refresh potential victim
rows whose counters are likely to reach the critical threshold in
the near future. Specifically, upon issuance of RFMab, each bank re-
freshes rows adjacent to the row with the highest activation count
(i.e., the most likely aggressor), thereby ensuring that banks do
not remain idle and reducing the need for issuing additional RFMab
commands in the future.

However, this approach introduces inefficiencies. Not all of the
refreshes performed are strictly necessary, leading to redundant
operations. To quantify this overhead, we compare the number
of total RFM refreshes that are strictly required to those actually
performed under opportunistic mitigation. As shown in Figure 6,
the results, aggregated as the geometric mean across multiple PRAC
variants (PRAC-1, PRAC-2, PRAC-4) and thresholds (64, 128, 256),
demonstrate that opportunistic mitigation incurs more than a 3×
increase in RFM refreshes. This analysis underscores a significant
trade-off: while opportunistic mitigation reduces idle bank time and
preempts future violations, it comes at the cost of approximately
70% higher RFM-related energy consumption in DRAM.

Observation 2: In benign workloads, fewer than 10% of banks
require mitigation during an ABO-triggered recovery period,
while opportunistic mitigation performs 3x more recovery
refreshes than needed.

3.3 Exploiting ABO: Performance Attacks
The coarse-grained nature of the ABO protocol introduces a new
form of unfairness in DRAM systems, making them susceptible to
performance slowdown attacks. Because the ABO signal triggers
channel-wide stalls without identifying the specific bank responsi-
ble for the excessive activation, a malicious actor can exploit this
limitation to repeatedly disrupt system-level memory access.

In particular, an attacker can intentionally issue frequent row
activations to a single bank to induce an ABO event. Since the mem-
ory controller stalls the entire memory channel upon receiving an
alert, without visibility into which bank requires mitigation, benign
workloads distributed across other banks also suffer from the result-
ing stall. This lack of spatial granularity makes it extremely difficult
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to attribute the cause of the alert or to selectively suppress malicious
access patterns, rendering existing defenses ineffective against such
attacks. MOAT [53] proposed the Torrent-of-Staggered-ALERT
(TSA) attack, a performance degradation strategy that carefully
coordinates ALERTs across multiple DRAM banks. In this attack,
each bank repeatedly activates a small set of rows (e.g., rows A,
B, C, D, E) to trigger an ALERT. Crucially, banks issue ACTs in a
staggered fashion: a bank only initiates activation once all targeted
rows in the previous bank have caused ALERTs and entered the
mitigation phase. This serialized activation ensures that when one
bank is under mitigation, other banks are forced to stall, as there are
no eligible rows to activate without interference. This deliberate
serialization of ALERTs forms a torrent of staggered mitigation
events, significantly throttling memory concurrency. The attack
was shown to reduce system throughput by 24% with four banks
and up to 52% with 17 banks, aligning with the tFAW constraint.

BreakHammer [8] introduces a score-based mitigation frame-
work that assigns a score to each hardware thread based on its
contribution to Rowhammer mitigation events. This approach is
particularly effective when mitigation logic is implemented within
the MC, where score attribution can be performed at finer spa-
tial granularity, such as individual banks or row activations. How-
ever, performance degradation attacks may evade detection under
BreakHammer when mitigations are signaled via coarse-grained
mechanisms such as the Alert Back-Off (ABO) signal.
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A broader class of memory performance degradation attacks ex-
ploits the observation that Rowhammer mitigations, such as recov-
ery operations, are triggered more frequently at lower thresholds.
As the mitigation frequency increases, overall system performance
degrades significantly. To evaluate the performance cost associated
with frequent mitigation, we study the impact of varying thresh-
olds— 64, 32, and 16 as considered in prior works [9, 71]. Assuming
a refresh interval (tREFI) of 3900 ns and a refresh operation la-
tency (REF) of 410 ns, approximately 67 row activations can be
issued within one tREFI interval. We consider a closed-row mem-
ory policy where each activated row is closed after access. For a
realistic scenario, an attacker can alternate between two rows to
issue repeated activations. Under a threshold of 64, this behavior
can typically trigger one Alert per tREFI. For thresholds of 32 and
16, the number of ALERTs increases proportionally, allowing an
attacker to induce two to three (or even four) ALERTs within the
same interval. Based on this analysis, we evaluate performance
degradation under scenarios involving one, two, and three ALERTs
per tREFI duration to quantify the impact of aggressive mitigation
triggering. As shown in Figure 9, even a single ABO event per
interval results in a 20–30% slowdown for most applications. With
three alerts per interval, performance degradation exceeds 80% in
several cases. Interestingly, workloads such as h264_encode exhibit
resilience due to their lower sensitivity to DRAM stalls, but most
others are highly vulnerable. These results demonstrate that the
lack of bank-level precision in ABO signaling can be exploited by
attackers to inflict disproportionate slowdowns on benign threads,
emphasizing the need for spatially-aware mitigation mechanisms.

Observation 3: Coarse-grained ABO signaling enables at-
tackers to trigger repeated channel-wide stalls, leading to
excessive performance loss.

4 PRACtical Design and Implementation
To overcome the limitations of PRAC+ABO, we introduce PRACti-
cal—an enhanced version that builds upon the original framework.
PRACtical extends the underlying mechanisms to significantly re-
duce performance overheads while maintaining the robust secu-
rity guarantees offered by state-of-the-art Rowhammer mitigation
techniques. This section presents an overview of the design and
implementation of PRACtical.

4.1 Overview and Design Goals
The core design principle of PRACtical is to minimize the perfor-
mance overheads inherent in the original PRAC+ABO mechanism.
Specifically, the design aims to achieve the following two objectives:
G1: Reduce PRAC update latency through subarray-level

decoupling. Enable subarray-level counter updates to allow
overlapping the counter update time of a row with activation
of the next row when rows are non-conflicting at subarray-
level, eliminating the 21ns counter update delay.

G2: Minimize unnecessary memory stalls with fine-grained
recovery command. Refine RFMab to operate at bank-level
granularity, allowing the memory controller to stall only the
affected banks instead of the entire channel.

4.2 Hardware Modifications
PRACtical introduces minimal hardware modifications to enable
fine-grained, low-latency RowHammer mitigation by enhancing
the PRAC+ABO feature.

First, to support subarray-level PRAC updates, the traditional
bank-level increment logic, typically located near the global row
buffer, is replaced with a centralized increment circuit that is con-
nected to local row buffers in subarrays through a different bus
(8-wire bus for 8-bit counters). This design allows counter updates
without delaying the subsequent memory accesses to the memory
bank that do not conflict at the subarray level. Correspondingly,
the memory controller is extended with subarray mapping logic
and an address decoder capable of identifying the target subarray
for each memory request.

Second, to enable fine-grained bank-level recovery stalling, the
DRAM chip is modified to include a new control register called the
Bank Alert (BA) register. This register contains one bit per bank,
where each bit indicates whether a given bank has any rows with
an activation number higher than the Alert threshold. The contents
of the BA register are communicated to the memory controller and
serve as a mask, allowing the controller to selectively stall only the
requests to the banks under mitigation while continuing to issue
commands to unaffected banks.

4.3 PRACtical Mechanism
PRACtical introduces two core mechanisms to reduce the perfor-
mance overheads associated with the PRAC+ABO framework while
maintaining its security guarantees against RowHammer attacks.

4.3.1 Subarray-Level PRAC Updates. This mechanism improves
subarray-level parallelism by enabling PRAC counter updates at
the subarray level, rather than enforcing bank-wide delays. In the
original PRAC design, counter updates introduce additional latency,
particularly during precharge operations, because the increment
logic is shared at the bank level. This design forces all subarrays
within the bank to stall while the update completes. PRACtical
addresses this limitation by introducing a centralized PRAC incre-
ment logic that connects to the local row buffers of all subarrays,
as illustrated in Figure 10.

Upon receiving a memory access request, the memory controller
computes the subarray identifier (Subarray ID) for the target row
1 . If the new request targets the same subarray or nearby subarray
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Figure 11: Illustration of conflicting (top row) and non-
conflicting (bottom row) memory accesses across subarrays,
demonstrating how PRACtical uses parallelism by avoiding
unnecessary delay.

that is currently undergoing a PRAC update (i.e. subarray conflict)
2 , the controller applies the required timing constraints to ensure
that the update completes before issuing a new activation 3 . In
contrast, if the access targets a different non-conflicting subarray,
the controller can proceed with the activation command immedi-
ately, without waiting for the PRAC update to finish 4 . In this case,
counter value of the precharged row is forwarded to the increment
unit and the entire row is transferred from the global to the local
row buffer. This precharge operation takes 15 ns to complete. After
this delay, the increment circuit updates the counter and transmits
the new value to the corresponding local row buffer via a dedicated
counter data bus. This approach allows subarrays to operate in-
dependently, preventing unrelated memory accesses from being
delayed by PRAC updates in other subarrays, as illustrated in Fig-
ure 11. As a result, PRACtical reduces access latency, particularly
in workloads that exhibit diverse subarray access patterns.

4.3.2 Bank-Level Stall for Recovery. PRACtical addresses the lim-
itation of coarse-grained mitigation in the original PRAC+ABO
framework by introducing bank-level recovery stall, enabling the
memory controller to restrict mitigation only to the affected banks
rather than stalling the entire memory channel. This selective mit-
igation is made possible through the use of a BA register, which
functions as a mask to identify and isolate banks requiring Rowham-
mer mitigation as illuatrated in Figure 12.

When the PRAC counter of a bank exceeds the Alert threshold,
the DRAM device sends the ABO signal to the memory controller
1 . Upon receiving this signal, the memory controller enters a

Bank 1 Bank nBank 2

. . .

Memory Ctrl. DRAM Rank

Bank Alert (BA) Register

1 0 0

0 1 n-1

. . .

under
attack

Trigger RFM

1 ABO

2

Send
RFM_MASK
Command

 180 ns

4

Send BA to Mem Ctrl.

Send DRAM
Commands

Based on BA
Mask

3

5

Figure 12: Bank-Level Recovery Stall in PRACtical Using the
Bank Alert (BA) Register and RFM_MASK.

pre-recovery window, lasting 180 nanoseconds, during which it
continues to process memory requests as normal 2 . After this
window, the controller issues RFMab command to the DRAM to
initiate recovery. PRACtical repurposes this command into a new
command, termed RFM_MASK (Masked Refresh Management), which
performs two key functions; it initiates recovery and functions as a
register read command. First, the RFM_MASK command triggers the
in-DRAM recovery mechanism for the affected bank 3 . Second, it
returns the contents of the BA register to the memory controller,
indicating which banks are currently under mitigation 4 . The BA
register is reset once it is read. After its reset, a bank can set the cor-
responding bit in the register. The controller uses this information
as a bitmask to manage access granularity during recovery. For any
new memory request, the memory controller checks whether the
target bank is marked as active in the BA register. If the request
targets an unaffected bank, the controller proceeds to issue the
command without delay. However, if the request targets a bank
under recovery, the controller stalls the request until the mitigation
phase completes 5 .

Figure 13 illustrates how PRACtical leverages bank-level recov-
ery stall to improve memory parallelism during RFM refreshes. In
this example, Bank 1 exceeds the Alert threshold and triggers an
ABO signal, initiating a short pre-recovery phase followed by the
recovery phase. The banks modify their own bits in the register.
Bank 1 will set its bit to 1. Upon receiving the RFM_MASK command
the DRAM sends the contents of the BA register (0b1001) to the
MC, which encodes the mitigation status of all banks. The BA mask
in this case indicates that Bank 1 is under mitigation. As a result,
the memory controller selectively stalls requests to Bank 1 while
continuing to issue accesses to unaffected Banks 2 and 3. This fine-
grained handling contrasts with the baseline PRAC+ABO design,
where all banks would be stalled upon any ABO event. PRACtical
thus reduces unnecessary interference and improves memory-level
concurrency during mitigation.

5 Experimental Methodology
Weutilize a cycle-accurate, open-sourcememory simulator, Ramula-
tor 2.0 [43, 57]. Our evaluation is on the existing PRAC+ABO frame-
work and our proposed solution, PRACtical. We use the provided
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Figure 13: In this example, Bank 1 triggers ABO and enters
recovery. Based on the BA mask, accesses to Banks 1 are
stalled, while Banks 2 and 3 remain accessible.

PRAC+ABO with RFM in Ramulator2.0. Furthermore, we evaluate
Chronus [9] with PRACtical and compare the performance.

System configuration is presented in table 2. We use a pool of
traces from SPECCPU2006 [1], SPECCPU2017 [2], TPC [70], Media-
Bench [17] and YCSB [14]. The category of each trace is determined
based on row buffer conflict per kilo instructions (RBMPKI). The
traces are divided into High (H: ≥10 RBMPKI), Medium (M: 2–10
RBMPKI), and Low (L: <2 RBMPKI) memory usage, as shown in
Table 3. For evaluation, we use 4 different traces to form groups of
HHHH, MMMM, LLLL, HHMM, MMLL, and LLHH as mixed work-
loads, represented in Table 4. For evaluation, we use 10 workloads
from each group and run 100M instructions for simulation. Our
simulation configuration aligns with previous wroks [9, 50, 71].

6 Evaluation
In this section we evaluate the performance improvements and com-
pare results against similar state-of-the-art works. First, PRACtical
is compared against standard PRAC with an Alert Back-Off signal
to show performance benefit over standard JEDEC specifications.

Table 2: Simulator Configurations

Parameter Configuration
CPU 4-core, 4.2 GHz, 128-entry instruction window
Last-Level Cache 2MB per core, total 8MB (16-way set-associative)
Memory Controller 32-entry read/write queues

Scheduling: FR-FCFS + Cap of 4
Address mapping: MOP

Main Memory DDR5 DRAM, 1 channel, 2 ranks, 8 bank groups,
4 banks/group, 64K rows/bank

Memory
Usage

Benchmarks

High
(H)

429.mcf, 433.milc, 434.zeusmp, 450.soplex, 459.GemsFDTD, 462.libquantum,
470.lbm, 482.sphinx3, 483.xalancbmk, 510.parest, 519.lbm, 549.fotonik3d, gups,
520.omnetpp

Medium
(M)

436.cactusADM, 473.astar, 507.cactuBSSN, 557.xz, jp2_decode, jp2_encode, tpcc64,
tpch17, tpch2, wc_8443, wc_map0, ycsb_aserver, ycsb_bserver, ycsb_cserver,
ycsb_eserver

Low
(L)

401.bzip2, 403.gcc, 435.gromacs, 444.namd, 445.gobmk, 447.dealII, 456.hmmer,
458.sjeng, 481.wrf, 500.perlbench, 502.gcc, 508.namd, 511.povray, 523.xalancbmk,
526.blender, 538.imagick, 541.leela, 544.nab, grep_map0, tpch6, ycsb_abgsave

Table 3: Grouping of Benchmarks by Memory Usage

Workload Mixed Types
HHHH Mix0 to 9
MMMM Mix10 to 19
LLLL Mix20 to 29
HHMM Mix30 to 39
MMLL Mix40 to 49
LLHH Mix50 to 59

Table 4: Mapping of Workload Types to Mixed Types

Then, we evaluate PRACtical’s effectiveness on one PRAC+ABO-
based solution, QPRAC. We also show how resilient PRACtical is
to chain attacks 3.3.

6.1 Performance and Energy Evaluation
PRACtical vs. PRAC+ABO. The performance evaluation results
comparing PRACtical with the standard (opportunistic) PRAC+ABO
framework are presented in Figure 14 and geometric mean results
are shown in Figure 15. The evaluation includes both PRACtical
and PRAC across configurations with n=1,2, and 4 RFMs as PRAC-1,
PRAC-2, and PRAC-4, respectively, with Alert thresholds of 64, 128,
and 256. We use a suite of mixed workloads composed of traces with
high, medium, and low memory usage characteristics. The results
demonstrate that PRACtical outperforms the baseline PRAC+ABO
framework. Along the mixes, high and medium memory intensity
combinations showcase more speedup (up to 20%). Mean values
show that PRACtical provides 7-9% better performance. This per-
formance improvement benefits mostly from subarray-level PRAC
updates. The overhead was 6% on average. Hence, PRACtical has
2-3% performance improvement due to bank-level recovery stalling.
Although this performance improvement might seem very low, the
critical target of this optimization is to eliminate energy inefficiency.

Energy Comparison. In this evaluation, we compare the en-
ergy consumption of PRACtical and PRAC+ABOwith opportunistic
mitigation. Figure 16 depicts the difference in the energy consump-
tion due to extra RFM refreshes of opportunistic mitigation. The
results align with our expectations; while the opportunistic mode
of PRAC+ABO improves performance by preemptively refreshing
rows before they become hot, it also introduces a large number of
unnecessary refreshes, significantly increasing energy consump-
tion. On average, across all evaluated recovery and threshold con-
figurations, opportunistic PRAC+ABO consumes 19% more energy
compared to PRACtical. Across different configurations of recover-
ies (1,2, and 4) and thresholds, the values slightly vary. The biggest
difference happens with PRAC-4 (rec=4), and the threshold 64,
which aligns with the observation of the most unnecessary RFM re-
freshes in sec 3. These findings underscore a fundamental trade-off:
while opportunistic mitigation strategies canminimize performance
degradation by anticipating high-activation rows early, this comes
at the cost of substantially increased energy usage, reducing the
overall efficiency of the memory system.

PRACtical vs Baseline architecture. In this evaluation, we
assess the performance of PRACtical in comparison to a baseline
architecture, where the baseline represents a DRAM system with-
out any Rowhammer mitigation mechanisms. As illustrated in Fig-
ure 17, PRACtical achieves performance levels nearly identical to
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Figure 14: Performance evaluation of PRACtical using normalized speedup over PRAC+ABO
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Figure 15: Performance Comparison of PRACtical and oppor-
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Figure 16: Energy Comparison of PRACtical and PRAC for
recoveries of 1, 2, and 4 and thresholds of 64, 128, and 256

the baseline. The only observable performance degradation is a
minor slowdown of approximately 1%, which occurs under the con-
figuration with a recovery count of 1 or 2 RFMs and a threshold of
64. This minimal overhead demonstrates that PRACtical introduces
negligible performance penalties, effectively maintaining baseline
performance even in the presence of Rowhammer protection.

Non-opportunistic PRAC+ABO vs PRACtical. We have
shown that opportunistic mitigation has a wide energy-
performance trade-off. In order to save performance, PRAC+ABO
can be non-opportunistic, meaning that upon recovery (during
RFMab), only the banks, that have rows with activation count equal
to greater than Alert threshold, are undergoing recovery procedure.
As expected, the banks that have all rows with counters less than
Alert threshold will stay idle during this period, downgrading the
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Figure 17: Performance Comparison of PRACtical and Base-
line architecture for recoveries of 1, 2, and 4 and thresholds
of 64, 128, and 256. Baseline architecture refers to no mitiga-
tion.
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Figure 18: Performance Comparison of PRACtical and non-
opportunistic PRAC for recoveries of 1, 2, and 4 and thresh-
olds of 64, 128, and 256

performance. However, this method ensures only necessary number
of refresh operations are performed, saving the energy. The results
are shown in Figure 15. Our evaluation considers thresholds of 64,
128, and 256, with a configuration of 1, 2, and 4 RFMs per recovery.
Across all combinations of recovery mechanisms (denoted as RFMs)
and thresholds, we observe an average performance improvement
of approximately 20%. The lowest performance gain, around 10%,
occurs when the threshold is set to 256 and only one RFM recovery
is employed. In contrast, the highest performance improvement is
observed under the configuration with a threshold of 64 and one
RFM recovery, where performance improves by more than 50%.
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Figure 19: Normalized performance of Chronus implemented
with PRACtical over PRAC+ABO.

Chronus equipped with PRACtical vs. PRAC. Chronus [9]
optimizes the counter update mechanism in DRAM by relocating
per-row activation counters to a dedicated, independent subarray.
While this design introduces additional energy overhead, since each
row activation results in two separate row accesses (one for the
target row and one for the corresponding counter row) and occupies
valuable DRAM space, it effectively eliminates the performance
penalty typically incurred by in-place counter updates.

In this evaluation, we integrate the PRACtical bank stallingmech-
anism and subarray-level PRAC update into the Chronus architec-
ture and compare the combined approach against the Chronus with
an opportunistic PRAC+ABO framework. As shown in Figure 19,
the hybrid Chronus+PRACtical implementation achieves the same
performance as the base implementation with PRAC+ABO. These
results demonstrate that simple and energy efficient PRACtical can
indeed have the same result as expensive and inefficient base design.
Note that even though the PRACtical has a small PRAC overhead
due to subarray conflicts, this is negligible in complete design. Also
note that the Chronus has more energy difference due to double row
activation, which incurs an additional 19.07% energy consumption
for each row access. We can conclude that PRACtical can achieve
same (even better at lower thresholds) performance with very low
energy consumption.

6.2 Hardware Overhead and Complexity
Analysis

In this section, we discuss the practicality perspective of the pro-
posed solution, PRACtical. Specifically, we discuss the practicality
of PRACtical in two aspects: changes to JEDEC standards and the
area overhead of changes.
Changes to JEDEC Standards: PRACtical requires several archi-
tectural modifications to both the DRAM device and the memory
controller (MC) interface. The most critical modification is to decou-
ple the increment circuit from the global circuit and connect it to the
subarray’s local row buffers. Another required modification stems
from the fact that MCs typically lack knowledge of the subarray
mapping within each DRAM bank. However, this can be addressed
with a dedicated register in DRAM that holds subarray mapping
information. Then, at boot time, the MC can read these registers and
store the corresponding mapping functions in its internal registers
for use during execution. Additionally, another hardware extension
involves introducing a single register that maintains one bit per
bank to track whether the bank needs mitigation. For a 64-bank
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Figure 20: Normalized performance of PRACtical for each
single benign benchmark when there is a performance at-
tack.

channel, this mechanism requires only a 64-bit register, making it
a low-overhead enhancement.
Area Overhead of Increment Circuit: PRACtical introduces two
critical modifications to the DRAM architecture: (1) an increment
unit and its control path integrated into local row buffers, and (2)
an n-bit register to represent the bank mask in an n-bank DIMM.
In our evaluation setup, the DIMM consists of 64 banks, which
requires an 8-byte (64-bit) register to track bank-level status. The
first modification decouples the increment logic from the global
row buffer and shares it across local row buffers. Since the counter
update overlaps with the activation of the next row, it must be
routed to the correct subarray. To enable this, we need to have
an additional global row address decoder that maps addresses to
subarray IDs and row addresses within subarrays, along with an
additional comparator in each subarray to resolve subarray ID
matches. This ensures that counter updates can be independently
delivered, even when the comparator is concurrently needed for
the next precharge operation. We evaluate the area overhead of this
modification using CACTI [5] and Synopsys Design Compiler [69],
and find it to be only 0.03%, making it negligible.

6.3 Security Evaluation
Resilience against Memory Slowdown Attacks. In Section 3.3,
we stated that the current PRAC+ABO design is vulnerable to
MOAT’s Torrent-of-Staggered-Alerts attack [53], which exploit the
channel-wide stalling behavior of the ABO protocol. Besides, an
attacker can trigger an Alert on a single bank to stall the entire
memory channel frequently to cause performance attacks. PRAC-
tical mitigates this vulnerability by restricting the Alert-induced
stall to only the affected bank. As a result, the effectiveness of per-
formance attack is significantly diminished, as it relies on a single
bank being capable of blocking the entire channel.

To evaluate PRACtical’s robustness, we repeated the perfor-
mance attack experiments on a PRACtical-enabled system. The
results, shown in Figure 20, use the motivation set—consisting of
high memory-intensity, single-trace workloads. Under PRAC+ABO,
the attack-induced slowdowns reached over 80%, severely degrad-
ing the performance of benign workloads. In contrast, PRACtical
demonstrates strong resilience to such memory-based performance
attacks. The system experiences an average (geometric mean) slow-
down of less than 6%. This is primarily due to the attacker operating
on the same banks accessed by these benchmarks. The most slow-
down happens when attacker can induce 3 ABO stalls per tREFIs.
Even in these cases, the maximum observed slowdown remains
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below 6%, which is considered a tolerable level for secure memory
systems.

Security of PRACtical: While PRAC+ABO alone does not con-
stitute a complete security solution on its own. Any secure Rowham-
mer mitigation framework built upon PRAC+ABOmust use a policy
to ensure that any DRAM bank exceeding the activation threshold
is properly mitigated. From this perspective, PRACtical is designed
to preserve this baseline security requirement while delivering
improved performance and energy efficiency. PRACtical targets
optimizations in two key components of the PRAC+ABO frame-
work: the per-row activation counter (PRAC) and the Alert-back-off
signaling mechanism. PRACtical counter updates are committed
in parallel with subarray accesses by leveraging a centralized in-
crement circuitry, in conjunction with a memory controller that
maintains subarray mappings. PRACtical provides memory with an
alert signal to notify MC to stall requests at the bank level. Since we
change channel-level blocking to bank-level blocking, we discuss
the following potential security issue.

Since PRACtical allows access to non-mitigated banks, this poten-
tially provides an attacker with an opportunity during the recovery
for a period to send more activations to a target bank that is close
to the Alert threshold. As an example, assume bank A sets its bit
in RFM_MASK and sends alert and bank B is in normal operation
of serving requests with its highest activation count close to the
threshold, 𝑇 − 1. While the mitigation of bank A is performed, an
attacker can send up to 𝑁ACT =

𝑡RFM_MASK
𝑡RC

ACTs to bank B. 𝑁𝐴𝐶𝑇 is at
most 6 since the RFM duration is 350ns and tRC is 52ns. Therefore,
bank B will have rows with at most 𝑇 + 5 activation counts. PRAC-
tical decreases the Alert threshold by this maximum value (5 in our
system) to account for the worst-case scenario. If during recovery,
the counter of a row in a bank reaches threshold, it sets the bit
and sends the Alert signal. Once this recovery period is finished,
in the next recovery, this bank also performs necessary mitigation.
Since PRACtical uses a safe threshold, it guarantees the same se-
curity as the PRAC+ABO guarantees. In general, PRACtical does
not need to lower the threshold. It can keep the ALERT threshold
same, and have a second threshold that sets bank bits to 1 in BA
register. Once there is row counter reaching the second threshold,
its corresponding bank bit is set to 1. Once a row counter reaches
the Alert threshold, an alert is sent to MC. For simplicity, we lower
the threshold to lower and safe level.

7 Related Work
This paper first eagerly analyzes the efficiency of the existing JEDEC
PRAC+ABO using a diverse set of benchmarks and secondly pro-
poses a new solution called PRACtical to improve the performance
of memory operations while keeping the same security guaran-
tees provided by PRAC+ABO standards. PRACtical is a transparent
hardware solution and can be deeply related to other works, such as
counter-tracking mechanisms, hardware and software mitigations,
and so on.

Counter-tracking mechanism. The concept of using acti-
vation counters was introduced and patented around by many
works [4, 30, 32, 39, 55, 66, 67, 73]. Later works [25, 35, 44, 51] pro-
posed secure in-DRAM tracking mechanisms to tackle energy and

performance issues. Graphene [51] designs lightweight RowHam-
mer protection to identify the frequent inputs of incoming stream
achieving near-zero performance-energy overhead. Mithril [35] is
the first to propose DRAM-memory controller cooperative miti-
gation using in-DRAM tracking. Aamer Jaleel et al. [25] proposes
to manage trackers with probabilistic management policies like
request-stream sampling and random evictions. PROTRR [44] uses
frequent item counting to track aggressor rows in DRAM.

DRAM Performance Mechanisms. Subarray-level parallelism
has been investigated in several prior studies. Kim et al. [37] pro-
posed subarray-level parallel memory access mechanisms to im-
prove memory bandwidth and performance. Hassan et al. [23]
introduced a self-managing DRAM architecture that leverages the
independence of subarrays to enable autonomous management
within DRAM devices. Our approach is to eliminate the obscurity
for subarray parallelism due to the increment circuit design in
PRAC. Specifically, we propose modification of the circuit to enable
overlapping only the counter update phase rather than the entire
precharge phase with the subsequent activation, thereby minimiz-
ing performance overhead. Additionally, Chang et al. [12] explored
subarray-level refresh operations, while HiRa [76] presentsmethods
to reduce refresh latency by concurrently refreshing two rows con-
nected to distinct charge restoration circuitries. BreakHammer [8]
removes the performance overhead of Rowhammer attacks by iden-
tifying and throttling hardware threats that frequently triggter
preventive actions.

Slowdown Attacks. Due to the impact of DRAM on perfor-
mance, the research community has long explored threats that
exploit shared memory subsystems to degrade performance, often
in the form of Denial-of-Service (DoS) attacks [48]. While recent
Rowhammer mitigation mechanisms aim to enhance system reli-
ability, they can inadvertently introduce substantial performance
overheads, particularly when relying on aggressive repair strategies
such as frequent refreshes [7, 46] or row remapping [59]. Differ-
ent works [10, 49, 72] describe ways to exploit RH mitigation for
performance and side channel attacks.

8 Conclusion
In this paper, we tackle the performance and energy overhead inher-
ent in PRAC+ABO. We propose PRACtical, a novel PRAC+ABO en-
hancement featuring a two-level optimization that enables subarray-
level counter updates and allows DRAMbanks tomitigate RowHam-
mer independently without stalling. PRACtical introduces mini-
mal hardware changes—namely, centralized increment circuit con-
nected to subarray and a single global register, called bank-alert
register, where each bit indicates whether a specific bank needs a
mitigation — enabling the memory controller to continue serving
requests to unaffected banks. Our evaluations show that PRACtical
improves performance by a geomean of 8% and saves energy by
an average of 20% over PRAC+ABO. Its performance is same as
the baseline - no mitigation architecture and energy consumption
is minimal. Overall, PRACtical provides an efficient and practical
enhancement to PRAC+ABO, balancing performance and security
with low hardware overhead.
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