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We study the security of a quantum key distribution (QKD) protocol under the one-sided device-
independent (1sDI) setting, which assumes trust in only one party’s measurement device. This
approach effectively provides a balance between the experimental viability of device-dependent
(DD-QKD) and the minimal trust assumptions of device-independent (DI-QKD). An analytical
lower bound on the asymptotic key rate is derived to provide security against collective attacks,
in which the eavesdropper’s information is limited only by the function of observed violation of a
linear quantum steering inequality, specifically the three-setting Cavalcanti–Jones–Wiseman–Reid
(CJWR) inequality. We provide a closed-form key rate formula by reducing the security analysis to
mixtures of Bell-diagonal states by utilizing symmetries of the steering functional. We show that
the protocol tolerates higher quantum bit error rates (QBER) than present DI-QKD protocols by
benchmarking its performance under depolarizing noise. Furthermore, we explore the impact of
detection inefficiencies and show that, in contrast to DI-QKD which requires near-perfect detection,
secure key generation can be achieved even with lower detection efficiency on the untrusted side.
These findings demonstrate the viability of using 1sDI-QKD with current technology and highlight
its advantages as a steering-based substitute for secure quantum communication.

I. INTRODUCTION

Quantum key distribution (QKD) allows two parties
to share a secret key, with security provided by the prin-
ciples of quantum physics rather than computational as-
sumptions [1, 2]. The seminal BB84 protocol [3] demon-
strated that quantum states cannot be measured with-
out disturbing them, enabling the detection of any eaves-
dropping attempt. Thereafter, the E91 protocol [4] in-
troduced an entanglement-based approach where secu-
rity is certified via Bell inequality violation[5, 6], and
the BBM92 protocol [7] proposed a related scheme that
employs entanglement[8] without relying on nonlocal cor-
relations. Although these protocols are theoretically se-
cure under idealized assumptions, real-world implemen-
tations involve imperfect and potentially untrusted de-
vices, opening up vulnerabilities through various adver-
sarial attacks [9, 10].

Attack strategies in QKD are typically classified into
individual, collective, and coherent attacks, in increasing
order of generality. In individual attacks, the adversary
measures each signal independently [11–15], whereas in
collective attacks, Eve interacts identically with each sig-
nal but defers measurement for joint processing [10, 16].
Coherent attacks are the most powerful, allowing arbi-
trary joint operations on all signals [17, 18]. Security
proofs against these strategies often rely on entangle-
ment [8] or Bell nonlocality [5, 6, 19], and were ini-
tially device-dependent [17, 20]. To address trust is-
sues in devices, the device-independent QKD (DI-QKD)

∗ roy.pritamphy@gmail.com
† berasanu007@gmail.com
‡ archan@bose.res.in

paradigm has gained prominence, particularly after foun-
dational security results [16, 21]. DI-QKD has since ad-
vanced through protocols using asymmetric Bell inequal-
ities [22], random states [23], or random measurement
bases [24], and experimental demonstrations [25, 26]. Se-
curity is guaranteed solely by the violation of Bell in-
equalities [5, 6], making DI-QKD the most robust cryp-
tographic framework. However, its implementation re-
mains challenging due to strict requirements such as high
detection efficiency [27] and loophole-free Bell tests [28–
32].

To mitigate the practical limitations of DI-QKD, par-
ticularly the need for high detection efficiencies and
entanglement, several intermediate frameworks have
been introduced. Semi-device-independent QKD (SDI-
QKD)[33] ensures security by assuming trusted state
preparation while leaving measurement devices un-
characterized. Notably, variants based on quantum
contextuality[34] have demonstrated security without
relying on nonlocality. In comparison, measurement-
device-independent QKD (MDI-QKD) [35, 36] achieves
security under the assumption of trusted entangled state
preparation, even with untrusted measurement devices.

Under ideal collective attacks, control over just one
measurement device and the source is sufficient to com-
promise security, as demonstrated by the security anal-
yses in Refs. [16, 27]. The 1sDI-QKD framework, which
fits in between DI-QKD and SDI/MDI/DD-QKD in
the hierarchy of trust models, is based on this obser-
vation and assumes trust in only one party’s device,
usually Bob. The structure of 1sDI-QKD is consistent
with the concept of quantum steering, which was first
proposed by Schrödinger [37], and formalized later by
Wiseman et al. [38]. Various criteria, such as Reid’s
uncertainty-based test [39], the CJWR inequality [40, 41],
entropic [42], fine-grained [43], and sum-uncertainty-
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relation-based formulations [44], can be used to identify
steering, which captures the ability of a trusted party
to nonlocally affect the state of an untrusted party. Its
distinction from entanglement and Bell nonlocality has
been established both theoretically [45, 46] and experi-
mentally [40, 47], and further quantified using dedicated
measures [48–51]. Steering has also been shown to play
an important role in certification of quantum states and
measurements in the one-sided device-independent sce-
nario [52–54].

Several protocols have explored the 1sDI-QKD regime
under various assumptions and models [43, 55–58]. The
works of Branciard et al. [55] and Tomamichel et
al. [56] have focused on entropy-based security proofs
for BBM92-like or prepare-and-measure schemes, and
although they align with the steering scenario, their
security bounds depend solely on QBER and are not
explicitly connected to steering inequality violations.
Pramanik et al. [43] considered individual attacks and
demonstrated steering-based security only in that lim-
ited regime. Mukherjee et al. [57] focused on the use-
fulness of steerable states in QKD but did not ana-
lyze explicit attack models. More recently, Masini and
Sarkar [58] have employed a semidefinite-programming-
based approach for proving security against coherent at-
tacks, but without deriving closed-form expressions.

To the best of our knowledge, no existing 1sDI-QKD
protocol derives a closed-form asymptotic key rate that
quantitatively depends on the violation of a steering in-
equality, in direct analogy with how DI-QKD protocols
relate Bell violations to Eve’s information [16, 27]. This
gap motivates the need for analytical key rate expressions
based on observable steering violations, which would sim-
plify certification and enhance practical relevance.

The DI-QKD security proof by Acín et al.[16] is no-
table for analytically linking Bell inequality violations to
asymptotic key rates, enabling device-independent cer-
tification based on observable quantities. Motivated by
this, in the current work we establish a closed-form bound
for 1sDI-QKD where the key rate is directly expressed
in terms of steering inequality violation, thus opera-
tionalizing the role of steering in secure key generation.
Among various criteria [39, 40, 42, 43, 46], the Caval-
canti–Jones–Wiseman–Reid (CJWR) inequality [40, 41]
is especially suited for this task due to its linearity, ge-
ometric clarity, and analytical applicability to a broad
class of two-qubit states.

In this work, we evaluate a 1sDI-QKD protocol that
employs the CJWR steering inequality as a security wit-
ness. The protocol uses three binary Pauli measurements
per party, with key bits extracted from rounds where
both parties measure along σz, ensuring low data leakage.
The other rounds are used to estimate the CJWR param-
eter F3, enabling security verification without basis rec-
onciliation. The security of our protocol is analyzed un-
der collective attacks, where the adversary applies iden-
tical and independent operations across rounds. A com-
posable lower bound on the asymptotic key rate is derived

using the Devetak–Winter formula, with the CJWR vi-
olation acting as the key security witness. Leveraging
dimensionality reduction and symmetry arguments, we
focus on Bell-diagonal states, for which both the Holevo
quantity and the CJWR parameter admit closed-form
expressions. This enables an explicit key rate formula
in terms of the observed QBER and steering inequality
violation.

We evaluate the robustness of our CJWR-based 1sDI-
QKD protocol under depolarizing noise, showing that it
tolerates a QBER of up to 8.62%, higher than standard
DI-QKD protocols, while relying on weaker trust assump-
tions than DD schemes. To address practical imperfec-
tions, we model detection inefficiency on the untrusted
side via null outcomes and derive key rate expressions
for both post-selected and non-post-selected scenarios.
Our analysis reveals that secure key generation remains
possible with detection efficiencies as low as 74.5% under
ideal visibility, surpassing typical DI-QKD detection ef-
ficiency thresholds [18, 22, 27, 55] and emphasizing the
protocol’s practical advantage in lossy settings.

The manuscript is organized as follows. Section II mo-
tivates the use of the CJWR inequality in the context
of one-sided device-independent quantum key distribu-
tion along with outlining the general framework of 1sDI-
QKD. In Section III, we present the security proof under
optimal collective attacks. Section IV discusses the ro-
bustness of the CJWR-based 1sDI-QKD protocol, while
Section V examines the effects of detection inefficiency.
Finally, Section VI highlights the salient features of our
approach and outlines future research directions.

II. CJWR-BASED 1SDI-QKD PROTOCOL

Entanglement-based QKD provides inherent security
based on quantum mechanics. The BBM92 scheme [7] de-
pends on strong measurement correlations without utiliz-
ing nonlocality, whereas the Ekert91 protocol [4] certifies
key security through violations of Bell inequality. Due
to its sensitivity to loss and detection inefficiencies, DI-
QKD [10, 16, 25, 27] undermines trust in all devices but
is experimentally demanding. The 1sDI-QKD [55, 56],
where only one party’s device is trusted (typically Bob’s),
provides a practical alternative. Here, quantum steer-
ing [37, 38], an intermediate form of nonclassicality, en-
ables security certification against an untrusted device,
making 1sDI-QKD more tolerant to experimental imper-
fections.

Quantum Steering [37, 38] is a form of quantum cor-
relation that lies between entanglement and Bell nonlo-
cality. It captures the ability of one party to influence
the conditional state of another through local measure-
ments nonlocally. A bipartite state is said to be steerable
when it cannot be described by a local hidden state (LHS)
model, where the trusted party’s outcomes arise from a
pre-existing quantum ensemble independent of the un-
trusted party’s measurement choice. Violations of steer-
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ing inequalities [40–43, 47] thus serve as one-sided device-
independent witnesses of quantumness. Among these,
the CJWR inequality [40] offers a symmetric and exper-
imentally [47, 59] friendly criterion for detecting steering
in two-qubit systems, making it particularly suited for
1sDI-QKD protocols.

For n measurement settings per party, the CJWR
steering function is defined as

Fn(ρ, µ) =
1√
n

∣∣∣∣∣
n∑
i=1

⟨Ai ⊗Bi⟩

∣∣∣∣∣ ≤ 1, (1)

where Ai = ûi ·σ⃗, Bi = v̂i ·σ⃗, and µ = {ûi; v̂i}ni=1 specifies
the measurement directions, with v̂i orthonormal and ûi
unit vectors in R3.

In two-qubit systems, the two-setting CJWR inequal-
ity F2 fails to identify certain steerable states that remain
Bell local [47, 48]. To detect such states and highlight the
distinction between steering and Bell nonlocality, we con-
sider the three-setting measure F3. This steering func-
tion can alternatively be expressed in terms of the sin-
gular values λ1, λ2, λ3 of the correlation matrix T associ-
ated with ρAB , where the matrix elements are defined as
tij = Tr[(σi ⊗ σj)ρAB ]. These singular values character-
ize the strength of quantum correlations between the two
subsystems along orthogonal measurement directions. In
this form, the steering function becomes

F3 =
√
λ21 + λ22 + λ23. (2)

A violation of the bound, i.e., F3 > 1, confirms that the
state ρAB is steerable from Alice to Bob. Such violations
serve as a practical witness for steering-based quantum
correlations and form the foundation for establishing se-
curity in 1sDI-QKD protocols.

The three-setting CJWR inequality shares a symmetry
structure similar to the CHSH inequality but captures
a different class of nonclassical correlations, particularly
relevant in one-sided device-independent scenarios. Its
experimental applicability and robustness motivate the
adoption of the CJWR function as the steering witness
in our 1sDI-QKD protocol, as detailed below.

Protocol Overview: Alice and Bob share the maxi-
mally entangled Bell state |ϕ+⟩ = 1√

2
(|00⟩ + |11⟩), i.e.,

ρAB = |ϕ+⟩⟨ϕ+| ∈ C2 ⊗ C2. Bob’s measurement de-
vice is trusted and fully characterized, while Alice’s is
treated as a black box. Both parties randomly choose in-
puts x, y ∈ {1, 2, 3}, corresponding to Pauli observables:
A1 = σx, A2 = −σy, A3 = σz for Alice; and B1 = σx,
B2 = σy, B3 = σz for Bob (See Fig.1).

Security is certified through the violation of the CJWR
steering inequality for 3-setting (n = 3) Eq. (1) :

F3 =
1√
3

∣∣∣∣∣
3∑
i=1

⟨Ai ⊗Bi⟩

∣∣∣∣∣ ≤ 1, (3)

with F3 > 1 indicating steerability from Alice to Bob
despite Alice’s untrusted device.

Only the rounds in which both parties measure in the
σz basis (i.e., x = y = 3) are used for raw key generation,
and the corresponding outcomes are kept secret. In con-
trast, the outcomes from rounds where the measurement
settings span all three Pauli bases (x, y ∈ {1, 2, 3}) are
publicly disclosed and used solely for evaluating the steer-
ing parameter F3. This separation between security esti-
mation and key extraction prevents basis mismatch and
simplifies the key rate analysis. Moreover, by disclosing
outcomes only in the non-key-generating rounds, the pro-
tocol limits information leakage and aligns structurally
with Bell-based DI-QKD protocols, such as that of Acín
et al. [16], enabling a direct comparison of steering- and
Bell-based security frameworks. The quantum bit error
rate (QBER) quantifies the probability that Alice and
Bob obtain different outcomes when measuring in the
same basis. Specifically, the QBER is defined as,

Q = p(a3 ̸= b3 | A3, B3), (4)

representing the probability that their outcomes disagree
when both measure observables A3 and B3, which ideally
should yield identical results in the absence of noise or
eavesdropping.

After parameter estimation, Alice and Bob proceed to
the classical post-processing stage. They first perform er-
ror correction over an authenticated classical channel to
reconcile discrepancies in their raw keys. This is followed
by privacy amplification, typically using universal hash-
ing [60], to compress the reconciled key and remove any
partial information available to an eavesdropper. The
amount of extractable secret key is directly determined
by the measured QBER and the observed steering viola-
tion F3, ensuring composable security even in the pres-
ence of device imperfections on Alice’s side.

III. SECURITY ANALYSIS AGAINST
COLLECTIVE ATTACKS

In our protocol, only Bob’s measurement device is as-
sumed to be trusted and well characterized, while Alice’s
device is treated as completely untrusted. This setting
defines the 1sDI scenario, where the security of the key
must be established without relying on any knowledge
about Alice’s internal operations. Instead, all security
claims are based entirely on the observed correlations be-
tween Alice and Bob’s measurement outcomes.

Although this model is less restrictive than DI-QKD,
it still provides strong security guarantees. In partic-
ular, it avoids certain experimental challenges such as
the detection loophole, which limits the practicality of
device-independent approaches [27]. In what follows, we
show how the violation of the CJWR steering inequality,
along with the measured QBER, can be used to certify
the presence of secure correlations and to derive a bound
on the secret key rate. The CJWR inequality violation
serves as evidence of nonclassical steering correlations,
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FIG. 1: Schematic of a one-sided device-independent QKD protocol. A source distributes entangled two-qubit states
to Alice and Bob. Alice’s device is untrusted (black box), while Bob’s is fully trusted. Inputs x, y ∈ {1, 2, 3} are

chosen using trusted random number generators, yielding binary outcomes a, b ∈ {+1,−1}. Security is certified via
quantum steering, e.g., violation of the CJWR inequality.

assuming trust only in Bob’s measurement device. To-
gether, these quantities allow Alice and Bob to estimate
Eve’s accessible information.

We assume that Alice, Bob, and Eve share a tripartite
pure state |ΦABE⟩ ∈ H⊗N

A ⊗H⊗N
B ⊗HE,, where N is the

number of rounds used for key generation. Without loss
of generality, we take the local Hilbert spaces to be of
equal finite dimension, i.e., HA ≃ HB ≃ Cd.

For the security analysis, we assume that Eve performs
a collective, or i.i.d., attack [10, 16, 18, 19, 21, 27, 61–
67]. In this setting, the state and measurement procedure
used by Eve are the same in every round, and indepen-
dent across rounds. As a result, the total shared state
between Alice, Bob, and Eve takes the form |ΦABE⟩ =

|ϕABE⟩⊗N , where |ϕABE⟩ the state is shared in a sin-
gle round of the protocol. In addition, we assume that
the devices are memoryless, meaning the measurement
in each round depends only on the current input and not
on previous rounds.

We adopt a one-way classical post-processing strategy
from Bob to Alice, following the approach of Refs. [16,
19, 27, 62]. Under this setting, the asymptotic key rate
can be bounded using the Devetak–Winter formula[61]:

r1sDI ≥ I(A3 : B3)− χ(B3 : E), (5)

where I(A3 : B3) is the mutual information between Alice
and Bob, and χ(B3 : E) is the Holevo quantity, repre-
senting an upper bound on the information accessible to
Eve about Bob’s outcomes.

The choice of Bob-to-Alice communication is particu-
larly advantageous in our protocol, as also discussed in
Ref. [62]. Since Bob’s device is trusted, this direction
of classical post-processing allows for a tighter bound on
Eve’s accessible information. Consequently, the relevant
leakage term in the key rate expression is χ(B3 : E),
rather than χ(A3 : E), which would apply if Alice’s data
were revealed in the classical post-processing step.

Our main objective is to derive an upper bound on
Eve’s accessible information, quantified by the Holevo

quantity χ(B3 : E). To achieve this, we follow a sequence
of steps outlined below:

Step 1: To compute a tight upper bound on Eve’s ac-
cessible information, we simplify the analysis using tech-
niques similar in spirit to those introduced in Ref. [27].
In the one-sided device-independent scenario, Bob’s mea-
surement device is fully trusted and assumed to perform
Pauli measurements. Therefore, even if Eve prepares a
general state in Cd ⊗ Cd, Bob effectively accesses only
a two-dimensional Hilbert space. As a result, without
loss of generality, we can assume that the shared state
distributed by Eve is a qudit–qubit state. Certain sym-
metries inherent in the CJWR inequality can be used to
simplify the analysis by reducing the effective dimension
of the shared state. This is formalized in the following
lemma.

Lemma 1 (Reduction to a two-qubit subspace). Let
ρ ∈ Cd⊗C2 be a bipartite quantum state, where Bob per-
forms projective measurements along the Pauli directions
σ1, σ2, σ3, and Alice performs Hermitian dichotomic ob-
servables A1, A2, A3 satisfying A2

l = I. Then, the quan-
tum steering expression

F3(ρ) :=
1√
3

∣∣∣∣∣
3∑
l=1

⟨Al ⊗ σl⟩ρ

∣∣∣∣∣ (6)

is bounded by F3(ρ) ≤
√
3. The bound is tight if and

only if the observables Al mutually anticommute. In such
cases, the optimal value is achieved in a two-qubit system.

Proof. Define the CJWR operator:

BCJWR :=

3∑
l=1

Al ⊗ σl.
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Expanding the square of the CJWR operator,

B2
CJWR =

(∑
l

Al ⊗ σl

)2

= 3 I⊗ I+
∑
l<m

[Al, Am]⊗ σlσm,

where we used A2
l = I, σ2

l = I, and the anticommutation
relations {σl, σm} = 0 for l ̸= m, which implies σmσl =
−σlσm.

If the observables mutually anticommute, i.e.,
{Al, Am} = 0 for l ̸= m, then [Al, Am] = 2AlAm. Hence,

B2
CJWR = 3 I⊗ I+ 2

∑
l<m

AlAm ⊗ σlσm.

Each term AlAm ⊗ σlσm has operator norm at most 1,
since all factors are unitary.

We use the operator norm (or spectral norm) to bound
the CJWR steering operator. For a Hermitian operator
O, the operator norm is defined as

∥O∥∞ = sup
∥ψ∥=1

|⟨ψ|O|ψ⟩|,

which corresponds to the largest eigenvalue in magnitude
of O. Using this, we obtain the following bound on the
CJWR operator:

∥B2
CJWR∥∞ ≤ 3 + 6 = 9, ⇒ ∥BCJWR∥∞ ≤ 3.

An explicit example achieving the maximum is given
by choosing Al = σl and taking ρ as the maximally en-
tangled singlet state, for which F3(ρ) =

√
3 [40, 48].

Our proof strategy mirrors the dimensionality reduc-
tion argument employed in the CHSH scenario [68],
where any two dichotomic observables with eigenvalues
±1 are shown to generate a two-dimensional invariant
subspace. In our case, the set of three mutually anticom-
muting observables A1, A2, A3 similarly generate a repre-
sentation of the real Clifford algebra Cl3(R), whose min-
imal irreducible representation is two-dimensional [69].
This justifies the restriction to a two-qubit system with-
out loss of generality. Hence, there exists a subspace
H2 ⊆ HA such that Al act as σl on H2

∼= C2.
Define the projected state ρeff := (P ⊗ I)ρ(P ⊗ I) ∈

C2 ⊗ C2, where P : HA → H2 is the projection. Since
the CJWR operator acts trivially outside this subspace,

F3(ρ) = F3(ρeff).

This completes the proof that the optimal value of the
CJWR expression is achieved within a two-qubit sub-
space, and any higher-dimensional scenario does not offer
an advantage.

Step 2: In the previous step, we argued that, without
loss of generality, Eve can restrict herself to preparing a

bipartite state in C2 ⊗ C2, where Alice’s measurements
are fixed to be qubit Pauli observables. We now investi-
gate which class of C2⊗C2 states enables Eve to extract
the maximum possible information, while maintaining an
optimal value of the CJWR expression between Alice and
Bob. In the following lemma, we show that any such two-
qubit state ρ ∈ C2⊗C2 can be reduced to a Bell-diagonal
form without affecting the CJWR value.

Lemma 2 (Reduction to Bell-diagonal form). Let ρ ∈
C2 ⊗ C2 be a two-qubit state shared between Alice and
Bob, and suppose Bob performs fixed Pauli measurements
σx, σy, σz. Then there exists a Bell-diagonal state ρΛ
such that the CJWR steering expression

F3(ρ) =
1√
3

∣∣∣∣∣
3∑
i=1

⟨Ai ⊗ σi⟩ρ

∣∣∣∣∣
remains unchanged:

F3(ρ) = F3(ρΛ).

Moreover, ρΛ can be obtained from ρ by applying a sym-
metrization under conjugation by σy⊗σy followed by tak-
ing the real part.

Proof. The CJWR functional depends only on the two-
point correlators ⟨Ai⊗σi⟩, and not on local marginals or
off-diagonal coherences in other Bell-state bases. Con-
sider the symmetrized state:

ρ̄ =
1

2
[ρ+ (σy ⊗ σy)ρ(σy ⊗ σy)] .

This operation preserves all correlators of the form ⟨Ai⊗
σi⟩, since the Pauli matrices σi are either invariant or
change sign under conjugation by σy, and Ai can be re-
defined accordingly. As a result,

F3(ρ) = F3(ρ̄).

Moreover, this conjugation eliminates off-diagonal ele-
ments connecting Bell states with opposite σy⊗σy eigen-
values.

To remove the remaining imaginary parts of the off-
diagonal terms, we take the real part:

ρΛ =
1

2
(ρ̄+ ρ̄∗)

=

ΛΦ+

ΛΨ−

ΛΦ−

ΛΨ+

 (7)

yielding a real, symmetric state diagonal in the Bell basis
(i.e. {|Φ+⟩ , |Ψ−⟩ , |Φ−⟩ , |Ψ−⟩}). Since both steps pre-
serve the relevant correlators, we have:

F3(ρ) = F3(ρΛ),

and thus it suffices to restrict the security analysis to
Bell-diagonal states.
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Following the symmetrization, the state ρ can be lo-
cally rotated within the (x, z) plane to arrange the Bell-
state eigenvalues in a fixed order [27], such as ΛΦ+ ≥ ΛΨ−

and ΛΦ− ≥ ΛΨ+ , without affecting the CJWR functional.
These rotations are unitary operations that preserve two-
qubit correlators ⟨Ai⊗σi⟩, and thus leave F3(ρ) invariant.

Step 3: Without loss of generality, Eve can send any
mixture of Bell-diagonal state like ρAB =

∑
Λ pΛρΛ,

where Λ is a classical ancilla known to her. Now, we need
to calculate the Holevo bound χΛ(B3 : E) for that Bell-
diagonal state. For the Bell diagonal state the Holevo
bound χΛ(B3 : E) can be calculated as,

χΛ(B3 : E) = S(ρE)−
∑
b3=±1

p(b3)S(ρE|b3)

= −
4∑
i=1

Λi log2 Λi −
1

2

(
S(ρE|+1) + S(ρE|−1)

)
,

(8)
here Λ1 = ΛΦ+ ,Λ2 = ΛΨ− ,Λ3 = ΛΦ− ,Λ4 = ΛΨ+ .

To determine a secure key rate in a 1sDI-QKD, we use
Bob’s σz measurement to assess Eve’s accessible infor-
mation, χΛ(B3 : E). This decision is motivated by the
necessity for device-independent security proofs to pro-
vide a strong, worst-case bound on Eve’s knowledge that
is valid for all attacks compatible with the observed steer-
ing or CJWR violation. The upper bound on χΛ(B3 : E)
is given by,

χΛ(B3 : E) ≤ −
4∑
i=1

Λi log2 Λi − h(Λ1 + Λ3). (9)

Here h(x) = −x log2 x− (1− x) log2(1− x), h(x) is the
binary entropy. The upper bound in Eq. (9) is tight for
Bell-diagonal states when Bob measures σz, which is the
case where Eve gains maximal information (see Lemma
5 of Ref. [27]). Although Bob’s trusted apparatus al-
lows flexibility in choosing an optimal measurement ba-
sis for key generation (e.g., σ⃗ · n̂), analyzing σz ensures
a conservative, analytically tractable security proof that
avoids reliance on numerical optimization and guaran-
tees robustness across implementations. This approach,
standard in DI and 1sDI-QKD, strengthens the security
analysis by addressing the worst-case scenario, ensuring
the key remains secure as long as the observed Bell vio-
lation exceeds the classical threshold.

We use the entropic inequality given in Lemma 6 of
Ref. [27] to upper-bound Eve’s accessible information.
It states that for a Bell-diagonal state with eigenval-
ues Λ1,Λ2,Λ3,Λ4 (all ≥ 0 and summing to 1), R2 =
(Λ1−Λ2)

2+(Λ3−Λ4)
2, and taking into account S(Λ) =

−
∑4
i=1 Λi log2 Λi − h(Λ1 + Λ3), the following inequality

holds:

S(Λ) ≤ h

(
1 +

√
2R2 − 1

2

)
if R2 >

1

2
, (10)

S(Λ) ≤ 1 if R2 ≤ 1

2
, (11)

with equality in the first bound if and only if either Λ1,3 =
0 or Λ2,4 = 0.

Step 4: We now relate Eve’s accessible information to
the CJWR function F3(ρ). For a Bell-diagonal state ρΛ,
the correlation matrix TΛ is diagonal in the Pauli basis,
with entries given by TΛ

11 = Λ1 − Λ2 − Λ3 + Λ4, TΛ
22 =

−Λ1 − Λ2 + Λ3 + Λ4, TΛ
33 = Λ1 − Λ2 + Λ3 − Λ4. The

optimal CJWR value for such a state is

FΛ
3 =

√
(TΛ

11)
2 + (TΛ

22)
2 + (TΛ

33)
2.

As shown in Step 3 under optimal attack, this can be
compactly written as FΛ

3 =
√
4R2 − 1, where R is de-

fined in terms of the Bell-state probabilities and the
threshold R = 1/

√
2 corresponds to the classical limit

for the CJWR inequality, analogous to the CHSH case in
Ref. [27].

Since Eve’s most general collective strategy can involve
preparing a mixture of Bell-diagonal states, we consider
ρAB =

∑
Λ pΛρΛ. In this case, her accessible information

is given by

χ(B3 : E) =
∑
Λ

pΛχΛ(B3 : E). (12)

Using the entropic bound from Step 3, χΛ(B3 : E) ≤
S(FΛ

3 ), and the fact that S(·) is concave, we obtain

χ(B3 : E) ≤
∑
Λ

pΛS(FΛ
3 ) ≤ S

(∑
Λ

pΛFΛ
3

)
.

Moreover, by convexity of the CJWR expression (see
Eq. (3)) and the triangle inequality (|a+ b| ≤ |a| + |b|),
it holds that F3(ρAB) ≤

∑
Λ pΛF3(ρΛ), which implies

χ(B3 : E) ≤ S (F3(ρAB)) .

Assuming uniform marginals for Alice and Bob, the
mutual information becomes I(A3 : B3) = 1 − h(Q),
where Q is QBER. Combining all steps, the key rate un-
der optimal collective attacks in the 1sDI scenario (see
Eq. (5)) is lower bounded by

r1sDI ≥ 1− h(Q)− h

(
1 +

√
(F2

3 − 1)/2

2

)
. (13)

IV. NOISE TOLERANCE OF CJWR-BASED
1SDI-QKD

To quantitatively compare the noise tolerance of 1sDI-
QKD against DI and DD protocols, we consider a widely
used noise model in the QKD literature [10, 16, 27, 55,
70–72]. In this model, the maximally entangled Bell state
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|ϕ+⟩ is subjected to depolarizing noise, resulting in the
mixed state

ρν = ν |ϕ+⟩ ⟨ϕ+|+ (1− ν)
I
4
, (14)

where ν ∈ [0, 1] denotes the visibility, quantifying the
strength of the noise. To evaluate the secret key rate
achievable in the 1sDI-QKD scenario, we employ Eq. (13)
and compute the relevant quantities from this state. The
QBER is given by Q = 1−ν

2 , as obtained from Eq. (4),
while the CJWR correlator evaluates to F3 = ν

√
3. We

can rewrite this (Q,F3) as a correlation,

F3 =
√
3(1− 2Q). (15)

This relation in Eq. (15) is independent of any assump-
tions on the source or Alice’s measurement device, relying
solely on the observed statistics Q,F3.

For the DI and DD scenarios, we use the corresponding
key rate expressions derived in previous works. In the DI
case, the key rate is bounded using the observed viola-
tion of a Bell inequality, typically the CHSH inequality,
following the approach of Ref. [16]. The relevant key rate
expression is a function of the CHSH parameter B and
QBERQ, which, under depolarizing noise, takes the form
B = 2

√
2ν and Q = 1−ν

2 . In the CHSH scenario, the cor-
relation is given by B = 2

√
2(1−2Q)[16]. In contrast, the

key rate for the device-dependent (DD) scenario [16] is
computed under the assumption of full trust in both the
state preparation and measurement devices. In this set-
ting, the Devetak–Winter formula [61] applies directly,
with the secret key rate determined by the mutual in-
formation between Alice and Bob and the conditional
entropy of Eve.

2 4 6 8 10 12

QBER Q (%)

0.0

0.2

0.4

0.6

0.8

1.0

S
e
cr

e
t

k
e
y

ra
te

r

Qc = 7.1%

Qc = 8.62%

Qc = 11%

rDI

r1sDI

rDD

FIG. 2: Comparison of key rates (r) as a function of the QBER
(Q). The red dashed line represents the key rate rDI in the DI
scenario based on Bell inequality violation. The blue solid line

corresponds to the 1sDI key rate r1sDI certified via CJWR
steering inequality violation. The green dotted line shows the DD

key rate rDD, where both parties’ devices are trusted.

To enable a consistent and transparent comparison
across different security models, we evaluate the key rates

for the DD, 1sDI, and DI scenarios using a common de-
polarizing noise model ρν , parameterized by the visibil-
ity ν. The resulting key rates, plotted as functions of
the QBER in Fig. 2, reveal distinct noise thresholds for
each protocol. For the fully DI-QKD protocol, the crit-
ical QBER is QDI

c = 7.1% [10, 16, 27], while in the DD
scenario it increases to approximately 11% [16, 17, 27].
Our CJWR-based 1sDI-QKD protocol achieves a critical
QBER of Q1sDI

c = 8.62%, which lies between these two
regimes:

QDI
c < Q1sDI

c < QDD
c . (16)

This intermediate robustness highlights the advantage
of the 1sDI setting, which tolerates more noise than fully
device-independent protocols while considering fewer as-
sumptions than fully device-dependent approaches. Fur-
thermore, our protocol compares favorably with other
steering- or nonlocality-based schemes: for instance, a
DI-QKD protocol based on three-setting Bell inequalities
yields a threshold of Qc = 7.5% [18], while one employing
an asymmetric Bell inequality reports Qc = 8.34% [22].

V. DETECTION EFFICIENCY IN 1SDI-QKD

While our previous analysis assumes ideal detection
conditions, realistic implementations of QKD must ac-
count for detection inefficiencies, particularly due to the
well-known detection loophole [10, 27], which poses a
major challenge for DI-QKD protocols. In such proto-
cols, where both parties are untrusted, achieving secure
key distribution requires very high detection efficiencies.
Specifically, efficiencies on the order of 92.3% [27] or even
94.5% [18, 55] are necessary under assumptions of ideal
visibility (ν = 1).

The primary reason for such stringent requirements is
that Eve may exploit undetected events in either party’s
device to simulate nonlocal correlations. However, in the
1sDI scenario, only one party (Alice) is untrusted, while
the other (Bob) uses a trusted, fully characterized mea-
surement device. This relaxation allows for more practi-
cal implementations with comparatively lower detection
efficiency thresholds.

In the 1sDI scenario, detection inefficiency manifests
through no-click events on Alice’s side, which we de-
note by the null outcome ∅. This effectively increases
Alice’s output alphabet to three possible outcomes:
{+1,−1,∅}. Following the approach of Ref. [27], we ad-
dress this by deterministically mapping the null outcome
to −1, thereby reducing the measurement to a binary-
output POVM. The resulting effective measurement op-
erators on Alice’s side take the form{

ηAA+1|i, ηAA−1|i + (1− ηA)I
}
, (17)

where ηA ∈ [0, 1] denotes Alice’s detection efficiency, and
A±1|i are the ideal POVM elements for input i.

Since Bob’s device is trusted, we do not explicitly
model his inefficiency and consider only those rounds in
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which his detector clicks. As Eve cannot exploit losses on
the trusted side, this selective treatment remains secure
and operationally relevant.

There are two natural ways to incorporate the detec-
tion inefficiency into the key rate analysis. In the first, we
adopt a non-post-selected strategy, retaining all rounds,
including those where Alice registers a null outcome. In
this case, the QBER becomes QPS′ = 1−νηA

2 , explicitly
dependent on the product of the state visibility ν and
Alice’s detection efficiency ηA.

In contrast, a postselection-based strategy, similar to
that used in Ref. [55], discards all rounds in which Alice
does not report a valid outcome. In this case, the QBER
is independent of ηA and takes the form QPS = 1−ν

2 .
It is important to emphasize that although postselec-

tion may improve the observed QBER, it cannot be used
when estimating Eve’s information. Post-selection can
introduce side information to Eve if she has any control
or knowledge over the detection process, especially since
Alice’s device is untrusted. Consequently, the bound on
Eve’s Holevo information must be derived from the entire
ensemble of rounds, without post-selection, to preserve
composability.
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FIG. 3: Comparison of secret key rates r as a function of Alice’s
detection efficiency ηA under ideal visibility (ν = 1) for a

1sDI-QKD protocol. The red dashed curve corresponds to the key
rate without post-selecting QBER (Eq. 18), while the blue solid
curve represents the post-selected case (Eq. 19), where QBER is
constant. Post-selection allows secure key generation at lower
detection efficiencies, down to 74.5%, highlighting a practical

advantage over fully device-independent QKD.

To model the effect of loss on the steering parame-
ter, we adopt the null-outcome mapping described above.
Under this model, the observed CJWR steering param-
eter becomes F3 = ηAν

√
3, indicating that detection in-

efficiency scales linearly with the visibility and degrades
the strength of the observed steering correlations.

Using this modified expression, we can now write the
corresponding key rate expressions for the two cases.
When no post-selection is applied, the secure key rate

becomes

r1sDIPS′ = 1− h(QPS′)− h

(
1 +

√
(F2

3 − 1)/2

2

)
, (18)

whereas under postselection, the key rate is given by

r1sDIPS = ηA(1−h(QPS))−h

(
1 +

√
(F2

3 − 1)/2

2

)
. (19)

These expressions provide a complete and realistic
framework for evaluating the performance of our 1sDI-
QKD protocol under lossy conditions. The post-selection
strategy benefits from improved QBER but at the cost
of reduced key throughput, while the non-post-selected
version ensures data integrity at the expense of tighter
efficiency requirements.

In Fig. 3, we illustrate how the secret key rate varies
with Alice’s detection efficiency ηA, assuming perfect vis-
ibility (ν = 1). The red dashed curve corresponds to the
case without post-selection, where a key can be generated
only if ηA exceeds 82.7%. The blue solid curve shows
the postselected strategy, which lowers the threshold to
74.5%. These values are already significantly below the
critical efficiencies typically required for DI-QKD, where
values above 92% are common [27, 55].

To explore how visibility impacts the security thresh-
old, we further examine the relationship between ν and
the minimum detection efficiency needed for key genera-
tion. As shown in Fig. 4, the threshold ηA decreases with
increasing visibility (ν). For all values of ν, the post-
selected strategy performs better, consistently allowing
secure key generation at lower detection efficiencies. At
ν = 1, we recover the earlier thresholds from Fig. 3, con-
firming consistency between the two analyses.

When compared with other known QKD protocols, our
approach remains competitive. In entanglement-based
protocols with a trusted Bob, critical detection efficien-
cies are around 89.6% without postselection and 83.3%
with postselection [18, 55]. In the DI setting under col-
lective attacks, the requirements are even stricter 92.3%
without postselection and 88.9% with it [27]. The origi-
nal one sided DI-QKD protocol proposed by Branciard et
al. achieves lower thresholds of 78% (without postselec-
tion) and 65.9% (with postselection) using a two-setting
BBM92 like scheme and an entropic uncertainty-based
proof [55]. Under ideal detection conditions, the key rate
obtained from this protocol matches that of the standard
entanglement-based BB84 or BBM92 protocols analyzed
under coherent attacks [10, 17, 27].

Our protocol is inspired by the Ekert91 framework and
is based on the violation of the CJWR steering inequal-
ity [40]. The security is established not via Bell inequality
violation, but through quantum steering, which provides
a robust and realistic alternative when only one device
is trusted. The key rate is analytically derived assuming
collective attacks, and the bound on Eve’s information
is obtained following the approach in Ref. [16]. Notably,
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FIG. 4: Threshold detection efficiency of Alice’s device ηA (in
%) required for a positive secret key rate r1sDI > 0 as a function

of the source visibility ν. The non-postselected strategy is
denoted by the red dashed line, while the postselection case is

represented by the solid blue line.

the critical detection efficiency in steering based proto-
cols depends on the chosen steering inequality. While
we use a fixed bound, experimental studies suggest that
the threshold can be adapted based on observed efficien-
cies [59], potentially pushing the security threshold even
lower.

VI. SALIENT FEATURES AND OUTLOOK

We have presented a security framework for 1sDI-QKD
based on the violation of the CJWR steering inequality,
offering a practically motivated middle ground between
DI and DD quantum cryptographic protocols. By assum-
ing trust only in Bob’s measurement device and treat-
ing Alice’s device as completely untrusted, our approach
aligns well with realistic scenarios, such as asymmetric
user-server QKD architectures.

The main strength of our result is that the derived
key rate under optimal collective attacks depends solely
on two directly measurable quantities: the QBER and
the CJWR steering violation F3. Similar to DI-QKD
approaches based on Bell inequality violations [16], this
avoids the need to reconstruct or assume an explicit
quantum state model, allowing the key rate to be cal-

culated from observed statistics. By reducing the analy-
sis to an effective two-qubit Bell-diagonal scenario and
relating F3 to Eve’s Holevo information, we obtain a
closed-form expression for the asymptotic key rate that is
both analytical and operationally meaningful. Whereas
previous 1sDI-QKD protocols, like those by Branciard
et al. [55], Tomamichel et al. [56], and Masini and
Sarkar [58], rely upon entropy-based uncertainty rela-
tions or numerical postprocessing, our approach explic-
itly incorporates steering violation into the key rate
bound. This makes the protocol particularly attractive
for experimental implementations with constrained re-
sources.

Furthermore, our protocol remains robust against de-
polarizing noise, tolerating up to 8.62% QBER by re-
lying solely on the observed correlations (Q,F3). For
comparison, DI-QKD protocols using three-setting Bell
inequalities tolerate up to Qc = 7.5% [18], while those
based on asymmetric Bell inequalities reach Qc =
8.34% [22]. The resulting performance approaches that
of fully trusted DD schemes, yet preserves significant
device-independence, reinforcing the value of 1sDI-QKD
in practical implementations. Our protocol also shows
favourable thresholds under detection inefficiency, re-
maining secure with efficiencies as low as 74.5% un-
der post-selection. This compares favorably to DI-QKD
thresholds, which often demand efficiencies greater than
87%, as demonstrated in recent photonic DI-QKD (with
noisy preprocessing) implementation [25].

This work’s analytical framework opens up a number of
promising directions for the advancement of 1sDI-QKD
in practice. Incorporating noisy preprocessing [31, 73] is
a crucial extension that could lower the critical detection-
efficiency threshold and increase robustness against ex-
perimental imperfections. In addition, experimental
studies [59] show that linear steering inequalities can
be modified to account for observed losses, as discussed
in Section V. This suggests that our detection thresholds
could be made more tolerant in practical implementa-
tions. Another significant step towards composable secu-
rity is the establishment of finite-size security through the
use of entropy accumulation techniques [66, 67]. Lastly,
investigating alternative steering inequalities with im-
proved loss and noise resilience [43, 44] may increase the
applicability of our method across various quantum net-
work architectures. Such directions collectively aim to
strengthen the viability of 1sDI-QKD as a secure and
scalable solution for near-term quantum communication.
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