
 
 

Virtual local area network over HTTP for launching an insider attack 
 

Yüksel ARSLAN1 

 
 
 

1  Yüksel Arslan yuksel.arslan@ankarabilim.edu.tr 
    Department of Software Engineering, Ankara Science University, Ankara, Turkey 

Abstract 

Computers and computer networks have become integral 

to virtually every aspect of modern life, with the Internet 

playing an indispensable role. Organizations, businesses, and 

individuals now store vast amounts of proprietary, 

confidential, and personal data digitally. As such, ensuring 

the security of this data from unauthorized access is critical. 

Common security measures, such as firewalls, intrusion 

detection systems (IDS), intrusion prevention systems (IPS), 

and antivirus software, are constantly evolving to safeguard 

computer systems and networks. However, these tools 

primarily focus on defending against external threats, leaving 
systems vulnerable to insider attacks. Security solutions 

designed to mitigate risks originating from within the 

organization are relatively limited and often ineffective. 

This paper demonstrates how a Local Area Network 

(LAN) can be covertly exposed to the Internet via an insider 

attack. Specifically, it illustrates how an external machine 

can gain access to a LAN by exploiting an unused secondary 

IP address of the attacked LAN, effectively bypassing 

existing security mechanisms by also exploiting Hyper Text 

Transfer Protocol (HTTP). Despite the presence of robust 

external protections, such as firewalls and IDS, this form of 

insider attack reveals significant vulnerabilities in the way 
internal threats are addressed.  

      

Key words: Insider threat, tunneling, VPN (Virtual Private 

Network), firewall, intrusion detection and prevention 

system. 

1. Introduction 

Information system attacks can be broadly categorized 

into four groups: organized, non-organized, insider, and 

outsider attacks [1]. Insider attackers, who may be current or 

former employees, business partners, or contractors, 

represent a particularly serious threat. These individuals 

often have access to network resources either in the present 
or from past engagements and possess detailed knowledge of 

internal company policies, processes, and applications. 

Insider attackers may also collaborate with external 

malicious actors to facilitate security breaches [2]. 

While traditional security systems such as firewalls, 

Intrusion Detection Systems (IDS), and Intrusion Prevention 

Systems (IPS) are primarily designed to protect networks 

from outsider threats, attackers increasingly exploit the 

privileges and access rights of insiders to circumvent these 

defenses. As insider threats become more prevalent, there is 

growing recognition that the most significant risks to an 
organization’s security may originate from within. For 

instance, a recent study reported an increase in organizations 

experiencing insider attacks from 66% in 2019 to 76% in 

2024 [3], [4]. 

Malware such as trojan horses, worms, and spyware are 

often employed to carry out attacks from within a network. 

These programs can be easily introduced to a company’s 

computers via email attachments or through malicious 

websites. This paper examines the methods by which a 

seemingly secure LAN can be compromised by an insider 

attack. Specifically, it demonstrates how Virtual Private 

Network (VPN) technology, in conjunction with 

vulnerabilities in the Windows Operating System (OS) and 

the Transmission Control Protocol/Internet Protocol 

(TCP/IP) stack, can be exploited to bypass security 
mechanisms such as firewalls, IDS, and IPS. 

To this end, we designed and implemented server and 

client software to execute an attack, wherein an internet-

connected machine can be transformed into one connected to 

the target LAN. This foothold allows an attacker to perform 

additional attacks more easily within the compromised 

network. Given that Windows XP, an OS no longer 

supported by Microsoft, is used in this research as the LAN 

OS, it highlights how legacy systems remain a key 

vulnerability in organizational networks. 

This paper is structured as follows: Section 2 gathers 

some related work, Section 3 provides a general overview of 
the LAN architecture and associated security devices. 

Section 4 explores the specific components of the Windows 

OS that are leveraged for the attack. Section 5 details the 

development and functioning of the client and server 

software used in the attack. Finally, Section 6 presents the 

results and discusses key findings. 

2. Literature review 

This section synthesizes existing research on insider 

threat detection and prevention mechanisms, and 

exploitation of HTTP and network broadcast traffic by 

malicious actors. Because our paper also exploits the same 

subjects. 
Insider threats, due to the authorized nature of the access 

involved, present a unique challenge in cybersecurity. The 

growing sophistication of these threats has led to a 

proliferation of research into detection and prevention 

techniques, many of which are grounded in behavior analysis 

and anomaly detection.  Al-Mhiqani et al. [5] discuss the 

complexity of insider threats and how behavior-based 

detection methods can offer promising approaches to 

identifying malicious activities. These methods analyze 

deviations from typical user behavior, which may signal 

unauthorized activities such as data exfiltration or sabotage. 

Behavior-based detection can rely on supervised and 
unsupervised machine learning algorithms that classify 

unusual actions as potential threats. Furthermore, signature-

based detection approaches also continue to play a role in 

identifying known malicious behavior patterns by matching 

observed actions with predefined threat signatures [5].  

Although behavior-based approaches are increasingly 

effective, they require large datasets to train models capable 

of distinguishing between normal and anomalous activities.  



The field of big data analytics has contributed significantly 

to this area, providing advanced tools for processing vast 

amounts of network traffic data, user logs, and activity 

metrics. Gheyas and Abdallah [6] conducted a systematic 

review of these detection techniques, revealing that mostly 

used machine learning algorithm is Bayesian Networks 

followed by Support Vector Machines, Fuzzy Inference 

Systems, Gaussian Mixture Models, K-nearest neighbor 
algorithm, game theoretic approach, and regression-base 

models [6]. 

HTTP is one of the most common protocols used in 

network communication, and its ubiquity makes it a frequent 

target for attackers looking to blend malicious activities with 

legitimate traffic. Guofei Gu's study on botnets, for example, 

illustrates how command and control (C&C) channels often 

exploit HTTP traffic to evade detection by security systems. 

Botnet communication, when encapsulated within HTTP, 

becomes harder to detect because it mimics regular user 

traffic. This makes distinguishing between legitimate HTTP 
requests and potentially malicious traffic a significant 

challenge for network security tools [6]. Further exploration 

into the role of HTTP in malware activity was conducted by 

Rossow et al. through the development of Sandnet, a network 

traffic analysis tool that identifies the presence of malware 

on a network by analyzing protocol-level behaviors. Their 

findings revealed that DNS and HTTP were the most 

frequently exploited protocols, largely due to the minimal 

scrutiny placed on these high-volume traffic streams [7]. 

Another major vulnerability in modern LANs is the use 

of broadcast traffic, which can unintentionally expose critical 
information to potential attackers. Ullah et al. [9]  highlight 

that broadcast traffic, which is often employed in various 

networking protocols for device discovery and service 

advertisements, frequently contains sensitive information 

that can be intercepted and exploited. While broadcast traffic 

facilitates network efficiency, it also poses a significant 

security risk when leveraged by insider threats. Attackers can 

exploit broadcast messages to gain access to network 

configurations or sensitive communications, thereby 

broadening their attack surface [9]. 

3. LAN description in this study 

LANs are typically secured behind a firewall, as shown 

in Figure 1. Internet access for devices within the LAN is 
generally facilitated through a single public Internet Protocol 

(IP) address shared by all connected devices. Internally, the 

LAN uses private IP addresses, which are not routable over 

the public internet. These private addresses are reserved 

exclusively for communication between devices within the 

LAN and cannot be used to initiate direct communication 

with external networks. 

Firewalls enforce stringent rules designed to protect the 

LAN from external threats. By default, they permit outbound 

connections from internal devices to external networks (e.g., 
the internet) but block unsolicited inbound connections. 

Outbound connections are restricted to specific Transmission 

Control Protocol (TCP) or User Datagram Protocol (UDP) 

ports, with modifications to these rules controlled by network 

security administrators. This makes it highly challenging to 

directly access or compromise a device within the LAN from 

outside the network. 

Figure 1 illustrates the multiple security layers positioned 

between an external attacker and a protected LAN, 

emphasizing the inherent difficulties in launching an external 

attack on internal network resources. 
The aim of this study is to demonstrate how an attacker 

can circumvent these protective mechanisms and gain access 

to all resources on a LAN protected by a firewall. While such 

access can typically be achieved through the use of VPN 

software, doing so requires specific configurations on the 

firewall and router, which are generally restricted to system 

administrators [10]. In contrast, this study presents a method 

by which an ordinary LAN user, without administrative 

privileges, can perform an insider attack using specially 

developed software. 

Traditional VPN software typically provides a graphical 
user interface (GUI) to display network resources available 

to the user. The software developed for this study utilizes the 

Windows XP operating system's native GUI to display 

network resources to the attacker. Once deployed, the 

attacker gains access to all computers and shared resources 

within the target network via the Windows XP “Network 

Neighborhood” tool, simulating the appearance of a 

legitimate user connected to the LAN. 

Importantly, the developed software requires no 

alterations to the firewall, router, or Intrusion 

Detection/Prevention Systems (IDS/IPS), allowing the 

attacker to bypass the need for administrative access. This 
ability to circumvent conventional security measures 

highlights the vulnerabilities posed by insider threats and 

legacy systems. 

 

Internet Router/Gateway Firewall LANAttacker

Intrusion detection/

prevention system

 

 

Figure 1 Generalized Local Area Network Devices Connection 

 

 



4. Windows XP OS-Based LAN 

Functionality  

The physical connection of computers within a LAN is 

established via a switch or hub, which operates at Layer 1 

(physical layer) and Layer 2 (data link layer) of the Open 

Systems Interconnection (OSI) model. To facilitate resource 

sharing and manage network operations, the Windows XP 

operating system (OS) provides various utilities. In this 

section, we examine how Windows XP OS supports efficient 

LAN functionality by focusing on its TCP/IP configuration 

and the Computer Browser Service.  

 4.1 TCP/IP configuration in Windows XP  

Windows XP OS allows multiple IP addresses to be 

assigned to a single network interface, enabling the system to 

handle multiple network communications efficiently. When 

a computer is configured with multiple IP addresses, the OS 

processes incoming and outgoing packets by checking each 

assigned IP address sequentially. For instance, when sending 

a packet such as a ping request, the OS first compares the 
destination IP address with the network address of the 

primary IP address. If there is no match, the OS proceeds to 

check subsequent IP addresses. If a match is found, the 

packet is sent to that IP address using the appropriate network 

interface. In cases where no match is found, the packet is 

forwarded to the configured gateway IP address for routing 

outside the local network. 

This feature of assigning multiple IP addresses can be 

exploited by an attacker’s computer (referred to here as the 

server or attacker computer). In such an attack, the attacker 

configures their computer with two IP addresses: one private 

IP address matching the network address of the targeted LAN 

and another IP address for internet connectivity, a public IP 

address. This dual-IP configuration enables the attacker to 

establish communication with both the attacked LAN and the 

external internet, providing a means to conduct malicious 

activities on the network.  

4.2 Windows XP OS Computer Browser Servis [11] 

The Windows XP "Network Neighborhood" feature 

provides users with a graphical interface that displays all the 

computers connected to the LAN. By selecting a computer, 

users can also view shared resources available on that 

machine. This functionality is enabled by the Windows XP 

Computer Browser Service, which operates through the 

broadcast of network information. 

Each computer on the LAN periodically broadcasts its 

computer name and a list of its shared resources. A 

designated "main browser" aggregates this information and 
responds to network resource requests from other computers. 

The main browser also periodically announces its status, 

ensuring that all other computers on the network recognize 

its role. This service allows users to easily browse available 

computers and shared resources within the network. 

However, the broadcast-based nature of this service 

introduces a vulnerability. The client software developed for 

this study exploits the broadcast packets sent by the 

Computer Browser Service. Specifically, the malicious 

insider's client computer intercepts these broadcast packets 

and transmits them to the attacker over the internet. This 

unauthorized access allows the attacker to gain detailed 

information about the network's resources and computers, 

facilitating further attacks.  

5. A Virtual Local Area Network over 

HTTP  

  5.1 Design and Implementation 

This section details the design and implementation of 

two software programs: the client application, which 

operates within the compromised network, and the server 

application, which runs on the attacker's machine. The client 

can be executed by an insider or through phishing techniques, 

and once activated, the server integrates into the 

compromised network as if it were any other connected 

device. 

5.1.1. Client Software 

The client software operates on any network-connected 

computer and serves as an intermediary between the attacker 

and the LAN. It processes incoming traffic by decapsulating 

packets received from the attacker, stripping off the headers 

added by the server to bypass firewall protections. After 

decapsulation, the software forwards the packets to the LAN 

(as depicted in Figure 5). Simultaneously, it captures 

broadcast packets from the LAN (excluding those originating 
from the server itself) and packets addressed to the server. 

These packets are encapsulated before being transmitted to 

the server. The encapsulation process involves adding the 

appropriate TCP, IP, and Ethernet headers to the packet, 

effectively creating a tunnel between the LAN and the server 

(illustrated in Figure 2). 

To facilitate packet capture and transmission, the client 

software leverages the open-source packet capture library 

WinPcap [12]. This library allows for direct interaction with 

the Ethernet adapter, bypassing the default Windows XP 

TCP/IP stack. 

TCP(HTTP)Data IP Ethernet

Figure 2 Headers added to packet from client to server 

The client software consists of three core components: 

Connection establishment, encapsulation /decapsulation and 

sniffer modules. 

5.1.1.1 Connection Establishment Module: 

The client software initiates a connection to the server 

via TCP port 80 using the Indy TCP Client library [13]. The 

connection is established through the standard TCP 3-way 

handshake protocol (illustrated in Figure 3). During this 
process, the firewall records the source and destination IP 

addresses, along with the respective port numbers. When 

subsequent packets from the server are received, the firewall 

compares the recorded values to ensure the IP addresses and 

port numbers match. If they do, the packets are allowed to 

traverse the firewall and enter the LAN [14]. 

Client port number is also important. Statically 

configured port numbers may be changed by anti-

virus/firewall software. During the connection establishment 

process sniffer module captures the port number assigned by 

the Windows XP OS and informs the 



encapsulation/decapsulation module. After connection 

establishment the work of connection establishment module 

finishes.  

As shown in Figure 3, the connection establishment 

process follows these steps:  

1. In the SYN 1 packet, the client sends a sequence 

number (SEQ) to the server, randomly chosen between 0 and 
0 – (216-1).  

2. In the SYN 2 packet, the server acknowledges the 

client's SEQ number by sending an acknowledgment number 

(ACK = SEQ + 1) and provides its own SEQ number.  

3. Finally, the client responds with an ACK to confirm 

receipt of the server’s SEQ number.  

At this point, the TCP connection is fully established. 

In this implementation, the Indy TCP Client and Indy TCP 

Server modules are used to handle these operations, utilizing 

the native Windows XP TCP/IP stack [13].  

During the connection process, the sniffer module 
monitors network traffic to capture critical connection 

details, such as the dynamic TCP port number assigned by 

the Windows XP operating system. This information is 

relayed to the encapsulation/decapsulation module to ensure 

that the correct port numbers and SEQ/ACK numbers are 

used in communication. Any mismatch in these values results 

in the firewall blocking the connection. 

Once the connection is established, the role of the 

connection establishment module concludes, while the 

sniffer module continues monitoring and relaying key 

connection parameters. 

Client Server

SYN 1

Seq,Port number

SYN 2

Seq,Port number

SYN 3

ACK

ACK

 

Figure 3 Connection establishment (TCP 3-way 

handshake) [15] 

5.1.1.2 Encapsulation/Decapsulation Module: 

Upon successful connection establishment, this module 

is activated and notified by the connection establishment 

module. It manages the encapsulation and decapsulation of 

packets received from the sniffer module, depending on their 

origin and destination. 

The client application processes two types of packets: 

those originating from within the LAN and those coming 

from the Internet (specifically from the server).  

Case 1: For packets originating from the LAN and 

addressed either to the server (with the server's second IP 

address, 192.168.0.14) or broadcast packets (with the 
destination Ethernet address FF:FF:FF:FF:FF), the client 

software adds the necessary TCP, IP, and Ethernet headers as 

outlined in Table 1. To avoid network loops, the client 

software ensures that broadcast packets originating from the 

server are not sent back to the server. After encapsulation, the 

packet is forwarded to the LAN, where it will be received by 

the LAN's gateway (router). The gateway checks its 

forwarding table to determine the appropriate interface to 

transmit the packet. If only one interface exists (the default 

interface), the gateway sends the packet to the Internet. 
Before reaching the gateway, however, the firewall intercepts 

the packet. The firewall inspects the packet to verify the 

established connection by referencing its network address 

translation (NAT) table and confirming the sequence (SEQ) 

numbers. Figure 4 illustrates the handling of packets from the 

LAN. 

Case 2: The second type of packet processed by the 

client software are those originating from the Internet, sent 

by the server (attacker). These packets have the server's 

primary IP address (e.g., 195.212.102.201). Upon receiving 

such packets, the client software decapsulates the headers 
added by the server software and forwards the remaining data 

to the LAN. This data is then delivered to the intended 

recipient in the LAN, as specified by the server. Figure 5 

demonstrates how packets from the server are handled and 

transmitted to the LAN after decapsulation. 

An essential task of the encapsulation/ decapsulation 

module is handling fragmentation and defragmentation. In 

Ethernet networks, the maximum transmission unit (MTU) is 

1500 bytes, meaning packets larger than this must be 

fragmented [13]. If a packet received by the client software 

exceeds 1460 bytes (due to added TCP and IP headers shown 

in Table 1), it is fragmented. The client software utilizes the 

TCP window field to manage fragmentation. If the window 

value is 1, the packet is marked as fragmented and stored 

until the remaining fragments arrive. Packets are divided at 

most into two fragments. The encapsulation/decapsulation 

module checks if a packet is fragmented, stores it, and 

reassembles it once the second fragment has been received 

before forwarding it to the LAN. 

5.1.1.3 Sniffer Module: 

The Sniffer module is responsible for capturing all 

network traffic transmitted to and from the client computer. 

It forwards these captured packets to the 

encapsulation/decapsulation module for further processing. 

During the connection establishment phase, the Sniffer 

module extracts critical parameters such as sequence (SEQ) 

numbers and TCP port values, which it relays to the 

encapsulation/decapsulation module to ensure proper packet 

handling and prevent network issues. 

The Sniffer module leverages the WinPcap application 

programming interface (API) [12] to directly interface with 

the Ethernet adapter, bypassing higher-level network stacks 

and allowing for efficient packet capture at the data link 

layer. By capturing both incoming and outgoing traffic, the 

Sniffer module ensures that the client software can inspect 

and manipulate all relevant packets. However, this 

introduces the potential for packet looping. To address this, 

the encapsulation/decapsulation module is designed to 

prevent loops from occurring during packet transmission. 

 



Table 1 TCP, IP and ethernet header values encapsulated by the client software 

ETHERNET 

Ethernet destination address (MAC) MAC address of the gateway (router) in LAN. 

Ethernet source address (MAC) MAC address of the client computer. 

Ethernet Protocol 0x0800 shows ethernet protocol is the previous protocol  

IP 

IP version 0x45 

IP service 0 

IP length 40 + length of payload in this packet 

IP ident X random number 

IP flags + offset 0x4000 

IP time to live 0x80 

IP protocol 0x06 shows that the protocol is TCP 

IP checksum Routers check this value if it is not correct, they drop the packet. 

It is calculated by the client software. 

Source IP address  192.168.0.108 (client IP address) 

Destination IP address 195.212.102.201 (server Internet IP address) 

TCP 

TCP source port It is captured by the sniffer module during connection 

establishment 

TCP destination port 0x5000 

TCP sequence number Next sequence no= sequence no + length of payload of previous 

packet 

TCP ACK number ACK number = sequence number of previous packet + length 

of payload of previous packet 

TCP length,resv,flags 0x5018 

TCP window The client is just relaying data, so flow control done by the 

server OS and the computer on the LAN. We used this field for 

fragmentation. 0: no fragmentation, 1: fragmented 

TCP checksum 0x06d8 entered as a constant value, we do not check 

TCP urgent pointer 0 

 

LAN public IP address:

195.174.145.217

Network IP address:192.168.0.0 

Net mask         :255.255.255.0

Gateway IP :192.168.0.254

LAN

Client:

192.168.0.108

HeaderDATA

Server(Attacker):

Public IP: 195.212.102.201

Second/private IP : 192.168.0.14

Netmask      : 255.255.255.0

Gateway IP  : 195.212.102.1

 

Figure 4 A packet being received from the LAN and sent to attacker (server) 

 



Server(Attacker):

Public IP: 195.212.102.201

Second/Private IP : 192.168.0.14

Netmask      : 255.255.255.0

Gateway IP  : 195.212.102.1

LAN

Network IP address:192.168.0.0 

Netmask     :255.255.255.0

Gateway IP :192.168.0.254

LAN public IP:

195.174.145.217

Client:

192.168.0.108

D
A

T
A

Header DATA

Figure 5 A packet from the attacker being received and sent to the LAN 

5.1.2. Server (attacker) software 

The server software runs on an Internet-accessible 

computer using the Windows XP operating system. For 

communication, the server’s TCP port 80 must be open and 

reachable from the Internet. The server connects to the 

Internet via Ethernet, ensuring compatibility with the 
network protocols used in the attack. Once the attack is 

successful, the server gains visibility into all computers 

within the compromised LAN and their shared resources 

through the Windows XP network neighborhood application. 

As previously discussed, Windows XP allows the 

configuration of multiple IP addresses for a single Ethernet 

interface. The server must configure a second IP address that 

falls within the address range of the targeted LAN. This IP 

address must be unique within the LAN to avoid address 

conflicts. To receive packets from computers in the targeted 

LAN, the server’s IP address must align with the LAN's 
network prefix, such as 192.168.0.0/16. This ensures proper 

routing and prevents IP address collisions. 

The server software is configured with key network 

parameters, including the IP and MAC addresses of the client 

and server machines, as well as the gateway address. The 

client’s IP address is the public-facing IP of the attacked 

LAN, which in the case depicted in Figures 4 and 5, is 

195.174.145.217. 

The server software is structured similarly to the client 

software, consisting of three main components: HTTP server 

module, encapsulation/decapsulation module and sniffer 

module. 

5.1.2.1 HTTP server module: 

The HTTP server module is developed using Delphi 7.0 

and the Indy TCP Server component [13]. It listens for 

incoming connection requests on TCP port 80 (HTTP). 

When a client initiates a connection by sending a SYN 1 

packet, the server responds with a SYN 2 (SYN-ACK) 

packet, completing the TCP 3-way handshake. Once the 

connection is successfully established, the responsibility of 

the HTTP server module concludes, and control is handed 

over to the encapsulation/decapsulation module, which takes 

over the further processing of network traffic. 

 

 

5.1.2.2 Encapsulation/Decapsulation module: 

After the connection is established, the HTTP server 

module notifies the encapsulation/ decapsulation module, 

which then begins processing packets captured by the sniffer 

module. This module inspects incoming packets and 

performs the appropriate encapsulation or decapsulation 
operations. 

Two primary packet types are handled: packets from the 

Internet (originating from the client) and packets generated 

by the server intended for the attacked LAN. 

Case 1: If a packet originates from the client, with the 

client's IP address (the shared public IP address used by the 

entire attacked LAN), the module decapsulates the packet by 

removing the IP and TCP headers added by the client. The 

remaining payload, which is a full LAN packet, is then sent 

to the server's Ethernet interface. The destination IP address 

of this packet may correspond to the server’s second IP 
address (assigned from the attacked LAN's private address 

space), or it could be a broadcast packet. The Windows XP 

operating system processes this packet as if it were received 

from a computer on the LAN. For example, in response to a 

ping request from the LAN, Windows XP responds as a 

regular network node, or in the case of a network browser 

packet, it displays shared resources in the network 

neighborhood. Figure 6 illustrates the decapsulation process, 

where a packet from the client is stripped of its headers and 

passed through the Ethernet card as if received from another 

LAN node. The operating system compares the destination 

IP address with its configured second IP (192.168.0.14) and 
processes the packet accordingly. 

Case 2: The second type of packet is one that the server 

sends to the client. If the destination IP address belongs to 

the attacked LAN's address space or is a broadcast packet 

(excluding LAN-originated broadcasts to prevent loops), the 

module encapsulates the packet with TCP, IP, and Ethernet 

headers as detailed in Table 2. If any header data is missing, 

it is filled in using the information from Table 1. 

Similar to the client software, this module is also 

responsible for handling fragmentation and defragmentation. 

When headers are added to a packet, its total size may exceed 

the maximum segment size, necessitating fragmentation into 

smaller packets. If a fragmented packet is received, the 

module must reassemble the fragments before forwarding the 

data to the server's Ethernet interface. This is achieved by 

storing the first fragment and combining it with subsequent 

fragments before processing. 



5.1.2.3 Sniffer Module: 

It works as in the client software. 

 

LAN public IP address:

195.174.145.217

Network IP address:192.168.0.0 

Net mask         :255.255.255.0

Gateway IP :192.168.0.254

LAN

Client:

192.168.0.108

HeaderDATA

Server(Attacker):

Public IP: 195.212.102.201

Second/private IP : 192.168.0.14

Netmask      : 255.255.255.0

Gateway IP  : 195.212.102.1

DATA

To 192.168.0.14

 

Figure 6 A packet coming from attacked LAN being received by the attacker and sent to second IP 

 

Table 2 TCP, IP and ethernet header values encapsulated by the server software. Missing values are as in  

Table 1 

ETHERNET 

Ethernet destination address (MAC) MAC address of the gateway of the server computer. 

Ethernet source address (MAC) MAC address of the server computer 

IP 

Source IP address 195.212.102.201 (Server computer Internet IP address) 

Destination IP address 195.174.145.217 (Attacked LAN public/Internet IP address) 

TCP 

TCP source port number 0x5000 

TCP destination port number It is captured by the sniffer module during connection 

establishment. 

 

5.2. Some key points explaining the inner working of 

client and server software. 

1- TCP Connection via Port 80: The client software 

initiates a connection to the server software through TCP port 

80 (HTTP). This port is typically open for outgoing 

connections in most Local Area Networks (LANs), ensuring 

that client-initiated connections can pass through firewalls 

without being blocked. The connection is initiated from 

inside the LAN that is being targeted for the attack. 

2- Bypassing Windows XP TCP/IP Stack Restrictions: 

Windows XP's TCP/IP stack does not allow TCP connections 

to be established outside its own stack. If Windows detects a 

TCP packet that is outside its stack, it automatically sends a 

reset packet to the destination. To circumvent this limitation, 

the client software establishes the initial connection using the 

native Windows XP TCP/IP stack. The Indy TCP Server 

module is used on the server side, and the Indy TCP Client 

module on the client side during this connection phase. The 

sniffer module captures critical connection parameters 

during this process, including sequence, acknowledgment, 

and port numbers. Establishing this inside-to-outside 

connection prevents the firewall from blocking subsequent 

packets from the server destined for the client. 

3- Handling Broadcast and Unicast Packets: As 

explained in Section 4.1.1, the client software forwards all 

broadcast packets from the targeted LAN, as well as packets 

addressed to the server. Broadcast packets naturally reach the 

client computer, but how do packets specifically addressed 

to the server reach the client? When a packet is destined for 

the server, it contains the server's IP and MAC addresses in 

the destination fields. The client software takes packets from 

the server and forwards them to the LAN. These packets will 

have the server’s IP and MAC addresses in their respective 

source fields. The server appears to be directly connected to 

the same port as the client. Since Ethernet switches map 

MAC addresses to port numbers (unless a specific security 

rule blocks this behavior), the switch forwards packets based 

on the MAC address, disregarding the IP address. The switch 

can also map multiple MAC addresses to a single port. 

4- Handling Maximum Ethernet Packet Size: Ethernet 

has a maximum packet size of 1500 bytes. The client 

software adds an additional 20 bytes each for the TCP and IP 

headers, potentially creating packets larger than 1500 bytes. 



When client and server software generate packets that exceed 

this limit, the software fragments the packets into smaller 

segments and transmits them as consecutive packets. 

5.2. Ping test 

To demonstrate the attack, consider issuing a ping 

command from a computer with IP address 192.168.0.10 
connected to the LAN shown in Figure 4. The command 

“ping 192.168.0.14” is directed to the second IP address of 

the server computer, even though no device with this address 

exists on the LAN. The source computer (192.168.0.10) 

compares the network part of the destination address with its 

own, assuming that the destination is within the same 

network. To obtain the destination MAC address, the source 

computer sends an ARP request packet with the destination 

MAC address FF:FF:FF:FF:FF . As this is a broadcast 

packet, it is received by all computers on the LAN, including 

the client machine. 
The encapsulation/decapsulation module in the client 

machine encapsulates this packet, which is then forwarded to 

the Internet via the gateway. The packet’s original 

destination IP (192.168.0.14) is encapsulated with the 

server's Internet IP address (195.202.102.201) before 

transmission. Upon receiving the packet, the server identifies 

it as originating from the client, decapsulates the packet, and 

forwards it to its Ethernet interface. Since the ARP packet is 

addressed to 192.168.0.14, matching the server’s second IP 

address, the server responds with an ARP reply containing its 

MAC address. This packet is encapsulated again by the 

server and sent through the Internet back to the client. 

Upon receiving the response, the client decapsulates the 

packet and forwards it to the LAN, where the source 

computer (192.168.0.10) receives the ARP reply and learns 

the MAC address of the server. Following this, the source 

computer sends ICMP echo request (ping) packets to 

192.168.0.14, now with the correct MAC address in the 

Ethernet header. These ping packets are intercepted by the 

client, encapsulated, and sent to the server, repeating the 

process outlined for ARP packets. The server responds with 

ICMP echo reply packets, which are routed back to the client 

and then forwarded to the source computer, completing the 

ping operation. In Figure 7 the captured packets are seen 

during the ping process on the server computer. Because this 

test has been done on a live network, not to expose complete 

details of the network the IP addresses different from the 

ones in Figures-4,5, and 6. 

 

 

Figure 7 Ping test packet capture at the server computer 

6. Conclusion 

This study presents the development of an insider threat 

scenario, demonstrating how such an attack can be executed 

by a disgruntled employee. In this case, an external computer 
is able to infiltrate a local network, appearing to function as 

a legitimate device within the system. The research 

underscores that such an attack can occur even with robust 

security measures in place. 

Despite the presence of firewalls, antivirus software, 

and intrusion detection and prevention systems, these 

defenses primarily focus on external threats, leaving internal 

vulnerabilities exposed. Consequently, traditional security 

mechanisms are largely ineffective in mitigating insider 

threats. 

Beyond illustrating the mechanics of an insider threat, 

the software developed for this study also provides valuable 

insights into the fundamental workings of LAN. Through 

experimental demonstrations, we have explained key 

processes involved in networking, including detailed 

analyses of the TCP, IP, and Ethernet protocols. By manually 

constructing each header field, the study highlights the 

intricacies of network packet structures, offering an in-depth 

understanding of how these protocols operate in real-world 

scenarios. 

References: 
[1] Securing Cisco IOS Networks, Version 1.1, Cisco 

Systems, 2004  

[2] D. Cappelli, A. Moore, R. Trzeciak, T.J. Shimeall, 
Common Sense Guide to Prevention and Detection of 

Insider Threats, 3rd Edition – Version 3.1, January 2009 

[3] Cybersecurity Insiders (2024), Insider Threat Report 

(Online) Available: https://www.cybersecurity-

insiders.com/portfolio/2024-insider-threat-report-

securonix/, last accessed: 18.08.2024 

[4] Frank L. Greitzer, Andrew P. Moore and Down M. 

Cappelli, Dee H. Andrews, Lynn A. Carroll, Thomas D. 

Hull, Combating the Internal Cyberthreat, IEEE, 

Security and Privacy 2008, January/Ferbuary 

https://www.cybersecurity-insiders.com/portfolio/2024-insider-threat-report-securonix/
https://www.cybersecurity-insiders.com/portfolio/2024-insider-threat-report-securonix/
https://www.cybersecurity-insiders.com/portfolio/2024-insider-threat-report-securonix/


[5] Al-Mhiqani, M. N., et al. (2020). A Review of Insider 

Threat Detection: Classification, Machine Learning 

Techniques, Datasets, Open Challenges, and 

Recommendations,  Applied Sciences 10(15):1-41 DOI: 

10.3390/app 10155208 July 2020. 

[6] Gheyas, I. A., & Abdallah, A. E., Detection and 

prediction of insider threats to cyber security: a 

systematic literature review and meta-analysis, Big Data 
Analytics (2016) 1:6 DOI 10.1186/ s41044-016-0006-0.  

[7] Gu, G., Zhang, J., & Lee, W., BotSniffer: Detecting 

Botnet Command and Control Channels in Network 

Traffic. Proceedings of the 15th Annual Network and 

Distributed System Security Symposium, 2008. 

[8] Rossow, C., et al., Sandnet: Network Traffic Analysis of 

Malicious Software. In 1st Workshop on Building 

Analysis Datasets and Gathering Experience Returns for 

Security (BADGERS), 2011. 

[9] Ullah, F., et al., Data exfiltration: A review of external 

attack vectors and countermeasures, Journal of Network 

and Computer Applications, Volume 101, 2018. 

[10] S. C. Forbacha, M. J. A. Agwu, Design and 

Implementation of a Secure Virtual Private Network 

Over an Open Network (Internet), American Journal of 

Technology, April 2023 

[11] http://www.thenetworkencyclopedia.com/entry/comput
er-browser-service/ , last accessed: 20.08.2024 

[12] Politecnico di Torino, http://winpcap.polito.it 

[13] www.indyproject.org, last accessed: 23.09.2024 

[14] Saadat Malik, Network Security Principles and 

Practices, Cisco Systems, 2003 

[15] W.Richard Stevens, TCP/IP Illustrated, Volume1, 

Addison Wesley, 2001. 

 

http://www.thenetworkencyclopedia.com/entry/computer-browser-service/
http://www.thenetworkencyclopedia.com/entry/computer-browser-service/
http://winpcap.polito.it/
http://www.indyproject.org/

