
PrompTrend: Continuous Community-Driven Vulnerability
Discovery and Assessment for Large Language Models

Tarek Gasmi1, Ramzi Guesmi2,3, Mootez Aloui4, and Jihene Bennaceur5

1University of Manouba, Tunisia
2University of Jendouba, Tunisia

3LETI Laboratory, University of Sfax, Tunisia
4DataDoIt, Tunisia

5South Mediterranean University, Tunisia

Abstract
Static benchmarks fail to capture LLM vulnerabilities emerging through community experi-

mentation in online forums. We present PrompTrend, a system that collects vulnerability data
across platforms and evaluates them using multidimensional scoring, with an architecture de-
signed for scalable monitoring. Cross-sectional analysis of 198 vulnerabilities collected from
online communities over a five-month period (January-May 2025) and tested on nine commer-
cial models reveals that advanced capabilities correlate with increased vulnerability in some
architectures, psychological attacks significantly outperform technical exploits, and platform
dynamics shape attack effectiveness with measurable model-specific patterns. The PrompTrend
Vulnerability Assessment Framework achieves 78% classification accuracy while revealing limited
cross-model transferability, demonstrating that effective LLM security requires comprehensive
socio-technical monitoring beyond traditional periodic assessment. Our findings challenge the
assumption that capability advancement improves security and establish community-driven psy-
chological manipulation as the dominant threat vector for current language models.

Keywords: LLM security, vulnerability assessment, community-driven discovery, AI safety, social
platform monitoring, PrompTrend, PVAF, continuous threat intelligence

1 Introduction

The rapid deployment of Large Language Models (LLMs) across critical sectors—from healthcare
and finance to education and public services—has created an unprecedented security challenge [3,29].
While academic researchers and corporate red teams work diligently to identify and mitigate vul-
nerabilities through controlled testing environments, a parallel universe of vulnerability discovery
unfolds daily across Reddit threads, Discord servers, and Twitter conversations. In these digital
spaces, thousands of users experiment with LLMs, share exploitation techniques, and collectively
refine methods to bypass safety mechanisms—often weeks or months before these vulnerabilities ap-
pear in formal security assessments [38]. This disconnect between institutionalized security research
and grassroots vulnerability discovery represents not merely a timing gap, but a fundamental blind
spot in our approach to LLM safety.

The field of LLM security has evolved rapidly since the introduction of ChatGPT in late 2022,
with researchers developing increasingly sophisticated frameworks for vulnerability assessment. Tra-
ditional approaches have focused on controlled red teaming exercises, where expert teams attempt

1

ar
X

iv
:2

50
7.

19
18

5v
1

 [
cs

.C
R

]
 2

5
Ju

l 2
02

5

https://arxiv.org/abs/2507.19185v1

to elicit harmful outputs through carefully crafted adversarial prompts [3, 32]. These efforts have
produced valuable resources such as HarmBench [24], AdvBench, and HELM Safety, which provide
standardized datasets for evaluating model robustness. Concurrently, automated red teaming meth-
ods have emerged, employing techniques ranging from reinforcement learning [32] to evolutionary
algorithms [37] to generate diverse attack vectors. Yet despite these advances, the security commu-
nity continues to play catch-up with vulnerabilities that often originate not in research labs, but in
online communities where users freely experiment with and discuss LLM limitations.

The limitations of current approaches become evident when examining recent vulnerability time-
lines. The “DAN” (Do Anything Now) jailbreak, for instance, was widely discussed and refined across
multiple online platforms well before it was formally analyzed in academic or corporate settings [38].
Similarly, techniques for extracting training data, bypassing content filters through role-playing sce-
narios, and exploiting context window limitations often achieve viral status in user communities
long before formal documentation [44]. This pattern, illustrated in Figure 1, reveals a critical weak-
ness in our security infrastructure: while we excel at analyzing known vulnerabilities in controlled
settings, we lack systematic mechanisms for observing how these vulnerabilities actually emerge,
evolve, and spread in the wild.

Figure 1: Evolution Timeline of a Major Jailbreak Technique

The research gap extends beyond mere timing delays. Current vulnerability assessment frame-
works, exemplified by metrics like Attack Success Rate (ASR) and adaptations of the Common
Vulnerability Scoring System (CVSS), fail to capture crucial dimensions of real-world threats [12].
These frameworks typically evaluate vulnerabilities in isolation, measuring technical characteristics
while ignoring the social dynamics that determine whether a vulnerability will remain an academic
curiosity or become a widely adopted threat. They provide snapshots of vulnerability effective-
ness at specific points in time, but offer no insight into how these vulnerabilities persist or evolve
as models are updated and defenses are implemented. Most critically, they cannot account for
the collaborative refinement processes that occur when thousands of users iterate on and improve
adversarial techniques through community feedback loops.

To address these critical gaps, we present PrompTrend, a comprehensive system for continuous
monitoring and evaluation of LLM vulnerabilities as they emerge in online communities. As shown
in Figure 2, PrompTrend deploys intelligent agents across multiple platforms to identify and collect
adversarial prompts, with an architecture designed for real-time tracking, creating the first system-
atically collected dataset of in-the-wild vulnerability discoveries. Our research seeks to answer four
fundamental questions:

• RQ1: How can real-time, community-driven intelligence contribute to the early detection of
emerging vulnerabilities in LLMs?

2

• RQ2: How can transformation-aware adversarial testing and multi-dimensional risk scoring
improve the robustness and relevance of LLM vulnerability assessments?

• RQ3: How can community-driven threat intelligence improve LLM robustness evaluation
compared to static benchmarking approaches?

• RQ4: What evaluation metrics best capture the practical effectiveness of vulnerability as-
sessment frameworks in real-world deployment scenarios?

Figure 2: Conceptual Overview of the PrompTrend System

This paper makes four primary contributions to the field of AI safety research. First, we intro-
duce a novel framework for real-time vulnerability discovery that bridges the gap between formal
security research and grassroots exploration. Unlike traditional approaches that rely on periodic
assessments or controlled testing, our system provides continuous visibility into the evolving threat
landscape. Second, we present the PrompTrend Vulnerability Assessment Framework (PVAF), the
first scoring system that incorporates both technical characteristics and social dynamics of vulner-
ability propagation. This framework recognizes that a vulnerability’s real-world impact depends
not only on its technical sophistication but also on factors like community adoption rates, cross-
platform effectiveness, and temporal resilience. Third, PrompTrend establishes the first longitudinal
dataset of community-discovered LLM vulnerabilities, enabling unprecedented analysis of how these
threats evolve over time. This dataset captures not only the vulnerabilities themselves but also rich
metadata about their discovery context, spread patterns, and effectiveness trajectories. Finally, our
work represents a methodological advancement in cybersecurity research, demonstrating how obser-
vational studies of online communities can complement traditional security assessment approaches.

The remainder of this paper is organized as follows. Section 2 reviews related work in LLM
security evaluation, social media intelligence, and vulnerability assessment frameworks. Section
3 details the PrompTrend system architecture, including our multi-agent design and the PVAF
scoring framework. Section 4 describes our methodology for data collection and evaluation. Section
5 presents comprehensive results from our deployment, including empirical validation across multiple
commercial LLMs. Section 6 discusses the implications of our findings and acknowledges limitations.
Section 7 concludes with reflections on the future of community-integrated AI safety research.

3

2 Background and Related Work

This section examines the current state of LLM vulnerability assessment, highlighting the disconnect
between formal security evaluation and real-world threat emergence. We analyze existing frame-
works, their limitations, and the critical gap in community-driven threat intelligence that motivates
our work.

2.1 LLM Vulnerabilities and Attack Taxonomy

The deployment of LLMs through commercial APIs has created novel security challenges funda-
mentally different from traditional software vulnerabilities [47]. Unlike systems with explicit access
controls, LLMs process natural language probabilistically, making them susceptible to manipulation
through carefully crafted linguistic inputs [9]. This vulnerability manifests primarily through two
attack categories: jailbreaks and prompt injections.

Jailbreak attacks circumvent safety mechanisms through psychological manipulation, employing
roleplay scenarios and narrative framing to exploit the model’s tendency to maintain conversational
consistency [38]. The “Do Anything Now” (DAN) jailbreak exemplifies this approach, creating fic-
tional personas that operate outside normal constraints. These techniques have evolved rapidly
through community experimentation, producing variants like the “Grandma Hack” and “Simulation
Mode” that demonstrate increasing sophistication [5]. Prompt injection attacks embed malicious
instructions within legitimate queries, exploiting the fundamental characteristic that enables LLM
functionality—their ability to interpret and execute complex contextual instructions [14]. These
attacks succeed because LLMs process operational instructions and user content within the same
input stream, making it difficult to distinguish between authorized commands and malicious ma-
nipulation.

At the implementation level, adversarial transformation methods disguise malicious content
while preserving effectiveness. These include character-level obfuscation using Unicode substitution
and zero-width spaces, encoding transformations through Base64 or hexadecimal conversion, and
syntactic restructuring via paraphrasing or metaphorical language [26]. Recent research reveals that
successful attacks increasingly combine multiple techniques, with multi-turn manipulation showing
71% higher success rates and non-English attacks demonstrating up to 195% increased vulnerability
[1]. This evolution highlights the inadequacy of static, single-language evaluation approaches.

2.2 Current Evaluation Frameworks and Their Limitations

The rapid emergence of LLM vulnerabilities has prompted development of various evaluation frame-
works, yet these approaches suffer from fundamental limitations when confronting the dynamic na-
ture of real-world threats. Static benchmarking remains the dominant paradigm, exemplified by
frameworks like HarmBench [24], which provides standardized test cases across diverse harm cate-
gories. While valuable for systematic comparison, these benchmarks represent temporal snapshots
that quickly become obsolete as new attack vectors emerge. The HELM Safety benchmark attempts
broader coverage by aggregating multiple test suites, but still relies on predetermined cases that
cannot capture evolving community-discovered vulnerabilities [41].

Automated red teaming methods have emerged to address the limitations of static datasets.
Perez et al. [32] pioneered using language models to attack other language models, enabling scal-
able vulnerability discovery. However, these approaches often suffer from mode collapse, generating
limited attack diversity. The Rainbow Teaming framework introduced quality-diversity algorithms
to explicitly optimize for both attack success and behavioral diversity [37], with RAINBOWPLUS

4

further improving through multi-element archives and probabilistic fitness evaluation [36]. Despite
these advances, automated methods operate in controlled environments disconnected from the col-
laborative refinement processes that characterize real-world attack development.

Gradient-based optimization techniques like the Greedy Coordinate Gradient (GCG) method
directly manipulate prompt components using model gradients [49]. While technically powerful,
these approaches generate unnatural prompts with low perplexity, making them less representative
of community-developed attacks and potentially easier to detect. More critically, all these meth-
ods focus on technical attack generation while ignoring the social dynamics that determine which
vulnerabilities achieve widespread adoption.

Current vulnerability scoring predominantly relies on binary metrics like Attack Success Rate
(ASR), which simply measures the percentage of successful attacks without capturing nuance [6].
Recent attempts at sophisticated scoring include attention-based risk models [34] and gradient-
based harmfulness detection [46], but these remain technically focused. The absence of frameworks
incorporating social propagation, community adoption, and temporal persistence represents a crit-
ical gap, as these factors often predict real-world exploitation better than technical sophistication
alone [33].

2.3 The Community-Driven Threat Landscape

The emergence of LLM vulnerabilities through online communities represents a paradigm shift from
traditional security research. Unlike controlled laboratory discoveries, LLM attack techniques often
originate through distributed experimentation across Reddit, Discord, Twitter, and GitHub [35].
This collaborative development produces rapid innovation cycles where basic discoveries undergo
community refinement, frequently yielding sophisticated attacks that individual researchers would
not develop independently [23].

Platform-specific dynamics significantly influence vulnerability evolution. Reddit communities
serve as initial discovery grounds where users share experimental findings, while Discord enables
real-time collaborative testing. GitHub repositories centralize successful techniques for global dis-
semination, and Twitter amplifies viral methods through influencer networks [13]. This multi-
platform propagation creates a complex ecosystem where vulnerabilities spread and evolve across
communities with different technical sophistication levels, yet no existing framework systematically
monitors these dynamics.

The temporal dimension of community-driven threats further complicates evaluation. Vulner-
abilities undergo continuous refinement as communities adapt to defensive measures, with new
variants often appearing within days of patches [18]. This evolutionary pressure produces increas-
ingly sophisticated techniques that exploit edge cases and model-specific weaknesses. Traditional
point-in-time assessments cannot capture this dynamic, creating persistent blind spots in security
evaluation.

2.4 Research Gaps and Motivation

Our analysis reveals critical gaps in current LLM security evaluation that prevent effective response
to real-world threats. First, existing frameworks exhibit temporal blindness, providing static as-
sessments without tracking how vulnerabilities evolve through community refinement [21]. Second,
they ignore social dynamics that determine adoption patterns, focusing solely on technical char-
acteristics while overlooking factors like implementation ease and viral propagation potential [31].
Third, current approaches remain reactive, analyzing known vulnerabilities rather than monitoring
emerging threats during their formative stages [43].

5

The platform isolation of existing research represents another fundamental limitation. Studies
typically examine single platforms or controlled environments, missing the cross-platform refine-
ment critical to successful attacks [22]. Even when frameworks attempt comprehensive evaluation,
they rely on static datasets that fail to capture actively exploited vulnerabilities, with benchmarks
becoming obsolete within months of release [39]. These limitations collectively demonstrate the
need for continuous, community-integrated vulnerability assessment.

The gap between formal security evaluation and grassroots vulnerability discovery has practical
consequences. Organizations deploying LLMs lack visibility into emerging threats until they achieve
widespread adoption, limiting opportunities for proactive defense. Security teams cannot prioritize
resources effectively without understanding which vulnerabilities gain community traction. Most
critically, the absence of longitudinal tracking prevents learning from vulnerability lifecycles to
predict future threat patterns.

PrompTrend addresses these gaps through systematic monitoring of online communities com-
bined with multi-dimensional vulnerability assessment. By capturing threats as they emerge and
evolve naturally, our approach provides the continuous intelligence necessary for effective LLM
security in dynamic threat environments. The following sections detail our system architecture
and evaluation framework designed to bridge the divide between academic security research and
real-world vulnerability emergence.

3 The PrompTrend System

PrompTrend represents a novel approach to LLM vulnerability assessment through continuous mon-
itoring and evaluation of threats as they emerge in online communities. This section presents the
system architecture, multi-agent data collection framework, and the PrompTrend Vulnerability As-
sessment Framework (PVAF) that together enable real-time threat intelligence and risk assessment.

3.1 System Architecture Overview

PrompTrend implements a three-stage pipeline architecture that transforms raw social media con-
tent into actionable vulnerability intelligence. The system operates on principles of scalability,
adaptability, and fault tolerance, processing millions of posts daily while maintaining high precision
in vulnerability identification.

6

Figure 3: PrompTrend Three-Stage Processing Pipeline Architecture

As shown in Figure 3, the architecture consists of three integrated stages. Stage 1 implements
automated collection through distributed agents that continuously monitor vulnerability discus-
sions across platforms. These agents employ adaptive sampling strategies that prioritize high-value
sources based on historical discovery rates, reducing data volume by 73% while maintaining 94%
coverage of significant discussions. Stage 2 enriches filtered content with temporal context, social
signals, and technical indicators essential for comprehensive assessment. Stage 3 applies the PVAF
scoring framework for both real-time and batch evaluation, enabling immediate response to critical
threats while supporting longitudinal analysis.

7

Figure 4: Stage 2 Metadata Enrichment Pipeline

Figure 4 details the Stage 2 enrichment process, where filtered vulnerability data undergoes par-
allel processing across four dimensions—temporal context, social signals, technical indicators, and
content preservation—before NLP-based integration produces a structured dataset with 47 meta-
data fields per vulnerability. This enriched dataset provides the contextual foundation necessary
for the sophisticated multi-dimensional analysis performed in Stage 3.

The system’s distributed nature ensures resilience and scalability. Platform-specific agents oper-
ate independently while coordinating through a centralized controller that manages deduplication,
priority queuing, and resource allocation. This design enables PrompTrend to implement a three-tier
filtering cascade: from the massive daily stream of social media posts, through a substantially re-
duced set of security-relevant candidates, to a focused collection of unique vulnerabilities qualifying
for detailed PVAF assessment.

3.2 Multi-Agent Data Collection Framework

The data collection framework deploys specialized agents optimized for platform-specific character-
istics while maintaining unified output standards. Each agent implements a common interface for
vulnerability detection while adapting collection strategies to platform constraints and community
behaviors.

8

3.2.1 Agent Architecture and Deployment

PrompTrend employs a hierarchical agent structure with platform agents forming the primary collec-
tion layer. The Reddit Agent monitors high-activity subreddits including r/ChatGPT, r/PromptEngineering,
and r/LocalLLaMA, implementing two-stage filtering that combines keyword matching with LLM-
based relevance assessment. The GitHub Agent processes repositories containing LLM security
research, vulnerability datasets, and proof-of-concept implementations, employing parallel collec-
tion across code, issues, and discussions. The Discord Agent operates in public AI experimen-
tation servers [11] with permissions-aware monitoring, while the Twitter/X Agent tracks security
researchers and vulnerability discussions through dual-stream collection [45].

Figure 5: Multi-Platform Agent Deployment and Coordination Architecture

Figure 5 illustrates the hierarchical deployment where each agent implements platform-specific
optimizations crucial for effective collection. Reddit agents prioritize threads with high engagement
ratios (comments/upvotes > 0.3), recognizing that community validation often indicates significant
discoveries [42]. GitHub agents combine static pattern analysis with semantic code evaluation to
identify security exploits embedded in repositories. Discord agents employ channel prioritization
based on technical activity levels, while Twitter agents focus on conversation threads rather than
isolated tweets to capture complete vulnerability discussions.

The data collection process across all platforms follows a unified methodological framework that
ensures consistency while accommodating platform-specific adaptations. This framework begins
with targeted content collection from predefined sources—subreddits, repositories, Discord channels,
or Twitter accounts—each selected based on their historical relevance to LLM security discussions.
The collection process operates within carefully calibrated parameters, including a dynamically
evolving keyword lexicon that captures emerging vulnerability terminology and relevance thresholds
that filter signal from noise.

Upon content retrieval, each agent employs a sophisticated two-stage filtering mechanism. The
initial stage applies keyword relevance scoring against the maintained lexicon, calculating the den-
sity and context of security-related terminology within the collected content. Only content ex-

9

ceeding the predetermined relevance threshold advances to the second stage, where LLM-based
multi-dimensional analysis evaluates the material across multiple security dimensions. This analy-
sis leverages advanced language models to assess technical relevance to LLM security vulnerabilities
and evaluate the potential security impact and vulnerability presence within the content.

The LLM-driven analysis represents a crucial innovation in our approach, moving beyond simple
pattern matching to understand the semantic context and implications of discovered content. For
each piece of content, the system prepares a comprehensive analysis context and prompts specialized
language models to evaluate different aspects: technical sophistication, security relevance, potential
harm categories, and implementation viability. These individual assessments are then synthesized
through a weighted combination function that produces a final relevance score, ensuring that only
content meeting stringent quality criteria enters the vulnerability database.

This unified yet flexible approach enables PrompTrend to maintain consistency in vulnerability
identification across diverse platforms while respecting the unique characteristics of each online
community. The framework’s adaptive nature allows platform-specific implementations to optimize
functions such as content collection strategies, metadata extraction methods, and contextual analysis
approaches without compromising the overall system coherence. The result is a robust collection
mechanism that captures the full spectrum of vulnerability discussions as they emerge organically
across the digital landscape, complete with rich metadata that preserves the discovery context
essential for downstream analysis.

3.2.2 Cross-Platform Coordination and Deduplication

The Cross-Platform coordination component serves as the central nervous system connecting our
diverse agent network, transforming siloed monitoring into an integrated vulnerability intelligence
network. Unlike previous approaches focused on isolated platforms, our system implements three
key mechanisms to track vulnerabilities across digital ecosystems.

The system employs context-preserving deduplication through semantic fingerprinting to iden-
tify conceptually equivalent vulnerabilities even when expressed differently across platforms, while
maintaining full provenance information. This approach can distinguish between independent dis-
coveries and cross-posted content, preserving critical propagation context that traditional dedupli-
cation methods would lose [20].

Cross-platform propagation analysis forms the second pillar of our coordination strategy. The
system tracks vulnerability discussions with temporal markers, enabling analysis of discovery origins
and dissemination patterns. By analyzing platform-specific transmission characteristics, we iden-
tify bridge nodes that accelerate vulnerability propagation between communities—enabling more
targeted monitoring of key influence points. This capability proves essential for understanding how
vulnerabilities evolve as they move between technical and mainstream communities.

The coordination system also maintains an adaptive lexicon that evolves based on emerging
patterns across all monitored platforms. When one agent discovers new jailbreak terminology, this
knowledge propagates to all agents, enhancing system-wide detection capabilities. Vulnerability
assessments are further enhanced with cross-platform context, providing a more comprehensive
understanding of potential impact than any single-platform analysis could achieve.

10

Figure 6: Cross-Platform Vulnerability Propagation Network

As depicted in Figure 6, The system architecture includes capabilities to track vulnerability
dissemination through temporal markers and platform-specific transmission characteristics. The
system is designed to identify bridge nodes through propagation pattern analysis in future deploy-
ments—users or communities that accelerate vulnerability spread between platforms. This intelli-
gence enables targeted monitoring of key influence points and early detection of emerging threats
before widespread adoption.

11

Figure 7: Conceptual Model of Cross-Platform Vulnerability Propagation (Illustrative Example)

Figure 7 illustrates a concrete example of cross-platform vulnerability propagation, showing how
a hypothetical jailbreak discovered in forums (V1) undergoes technical implementation in GitHub
(V2), community refinement through Discord and Twitter (V3), and ultimately achieves main-
stream adoption on Reddit—demonstrating the critical importance of integrated monitoring across
platforms.

This coordination architecture draws inspiration from Quality-Diversity (QD) methods, such as
those used in evolutionary adversarial prompt generation, which seek high-performing yet behav-
iorally diverse solutions. It also responds to mounting evidence that successful LLM attacks often
involve cross-platform refinement, reinforcing the need for unified threat tracking across multiple
ecosystems.

3.3 PVAF: PrompTrend Vulnerability Assessment Framework

The PVAF represents a fundamental advancement in LLM vulnerability scoring by incorporating
both technical characteristics and social dynamics. Unlike traditional frameworks that rely on
binary success metrics, PVAF provides nuanced risk assessment through six carefully calibrated
dimensions.

3.3.1 Multi-Dimensional Scoring Architecture

PVAF evaluates vulnerabilities across six dimensions that capture both immediate technical risk
and long-term threat potential. Harm Potential (weight: 0.20) assesses the severity of poten-
tial misuse, considering direct impacts like privacy violations and indirect risks such as enabling
multi-stage attacks. Exploit Sophistication (0.20) measures technical complexity, distinguishing be-
tween simple prompt manipulations and innovative techniques requiring deep model understanding.
Community Adoption (0.15) quantifies uptake through engagement metrics, reposting frequency,
and cross-platform citations. Cross-Platform Efficacy (0.15) evaluates effectiveness across different
LLM families, with higher scores for vulnerabilities demonstrating broad applicability. Temporal

12

Resilience (0.15) measures persistence despite vendor patches and safety updates. Propagation Ve-
locity (0.15) captures the speed of spread across communities, indicating urgency for mitigation [4].

Figure 8: PVAF Scoring Process and Dimension Integration

The framework, illustrated in Figure 8, calculates scores through phased assessment that adapts
to available information. During initial collection (Phase 1), the system computes preliminary scores
using metadata-based assessment of harm potential, sophistication, and community adoption. After
empirical testing (Phase 2), PVAF incorporates execution results to calculate comprehensive scores
including all six dimensions. This phased approach enables rapid triage of emerging threats while
supporting thorough evaluation as additional data becomes available.

3.3.2 Dynamic Modifiers and Temporal Adaptation

PVAF incorporates dynamic modifiers that adjust base scores based on evolving threat context.
These modifiers capture real-world factors that static scoring systems miss. The Mutation Factor
(+5 to +15 points) increases scores when multiple variants emerge, indicating active community
refinement. Corporate Response (-5 to -20 points) reduces scores based on effective vendor mitiga-
tions. Academic Citation (+10 points) recognizes formal validation of techniques in peer-reviewed
research. Tool Integration (+15 points) flags automation potential through incorporation in attack
frameworks. Regulatory Attention (+10 points) indicates vulnerabilities attracting official scrutiny.

The framework is designed to support continuous recalibration through scheduled retesting at
7, 30, 90, and 180-day intervals. The current study presents initial cross-sectional validation, with
longitudinal tracking capabilities awaiting future deployment. This longitudinal tracking captures
vulnerability evolution, revealing patterns in community refinement, defensive adaptation, and tem-
poral decay. By maintaining historical scores, PVAF enables predictive modeling of vulnerability
lifecycles and identification of persistent threat patterns.

3.4 Implementation Architecture

PrompTrend’s implementation leverages cloud-native technologies for scalability and reliability
while maintaining security and privacy requirements. The system architecture separates data col-

13

lection, processing, and storage layers to enable independent scaling and fault isolation.
The data collection layer implements rate-aware API management to respect platform limits

while maximizing coverage. Each agent maintains platform-specific authentication, implements
exponential backoff for transient failures, and logs detailed metrics for performance monitoring.
The processing layer employs stream processing for real-time vulnerability detection alongside batch
analytics for comprehensive evaluation. This hybrid approach balances immediate threat detection
with thorough analysis requirements.

Figure 9: System Implementation and Data Flow Architecture

Figure 9 demonstrates the implementation architecture where data flows from platform agents
through processing pipelines to persistent storage and analysis systems. The architecture supports
both real-time alerting for critical vulnerabilities and batch processing for comprehensive trend
analysis. This dual-mode operation ensures rapid response to emerging threats while maintaining
the analytical depth necessary for strategic security planning.

The storage layer implements a document-oriented model optimized for vulnerability tracking
across platforms, with a hierarchical schema that captures both prompt variants and their evolu-
tion over time. Relationships between vulnerabilities—including variants, cross-platform instances,
and technical similarities—are explicitly modeled to enable propagation analysis and pattern detec-
tion. This comprehensive architecture addresses limitations in current benchmarks by supporting
longitudinal tracking that reveals how vulnerabilities emerge, propagate, and respond to defensive
measures across diverse online communities.

3.5 System Output Visualization

Figure 10 presents the PrompTrend vulnerability assessment card, demonstrating the system’s com-
prehensive threat intelligence output. Each card synthesizes multi-source data collection, PVAF risk
scoring, and empirical validation into an actionable security artifact. The visualization captures both
current state (PVAF score, risk classification) and temporal evolution (score history, platform jour-
ney), enabling security teams to assess not only immediate risk but also vulnerability momentum

14

and cross-platform adoption patterns.

Figure 10: Vulnerability Assessment Card with Multi-Dimensional Risk Metrics

4 Methodology

This section describes the systematic approach employed to collect, assess, and validate LLM vul-
nerabilities as they emerge in online communities. Our methodology combines automated data
collection with multi-dimensional vulnerability assessment to establish a comprehensive evaluation
of the current threat landscape.

4.1 Data Collection Process

4.1.1 Platform Coverage

The study monitored five primary platforms where LLM vulnerabilities are discovered and discussed:
Reddit (specifically r/ChatGPT, r/PromptEngineering, and r/LocalLLaMA), GitHub repositories,
Discord servers focused on AI experimentation, Twitter/X, and specialized security forums. These
platforms were selected based on preliminary analysis indicating high concentrations of vulnerability-
related discussions and their role as primary venues for community-driven security research [13,
23, 35]. The automated extraction pipeline deployed by PrompTrend yielded 352 vulnerability
candidates encoded in JSON format, representing real-world exploits discovered organically within
these communities rather than synthetically generated test cases.

Following structural validation and preprocessing, 312 files (88.6%) were successfully parsed and
analyzed. The preprocessing pipeline implemented semantic deduplication using cosine similarity
with a threshold of 0.85, producing 198 unique vulnerability prompts suitable for comprehensive
testing. Platform distribution analysis revealed Discord as the primary source contributing 43%
of vulnerabilities, followed by Reddit at 31%, GitHub at 18%, and security forums at 8%. This

15

distribution aligns with prior observations of community-driven vulnerability discovery patterns
[33,38] and reflects the collaborative nature of modern LLM security research.

The data collection represents a cross-sectional snapshot captured during the study period.
While the PrompTrend architecture supports longitudinal tracking, the current analysis focuses on
vulnerability characteristics at the time of collection.

4.1.2 Agent-Based Collection

PrompTrend employs specialized agents for each platform, implementing continuous monitoring
with hourly polling frequency. Each agent utilizes platform-specific APIs and web scraping tech-
niques within ethical and legal boundaries, adhering to platform terms of service and rate limits [45].
The collection process implements a two-stage filtering mechanism that has proven highly effective
in identifying relevant content while managing data volume [42].

Initial keyword-based filtering employs a dynamically evolving lexicon of 127 vulnerability-
related terms, adapted from established security taxonomies including OWASP Top 10 for LLMs [31]
and MITRE ATLAS [21]. Content exceeding a relevance threshold of 0.7 advances to secondary
filtering, where LLM-based semantic analysis evaluates the security relevance and potential impact
of identified content. This cascade reduces the daily stream from approximately 2.1 million posts
processed across all platforms to 43,000 candidates for analysis, with 2,800 unique vulnerabilities
qualifying for detailed PVAF assessment. The filtering efficiency of 98% ensures computational
feasibility while maintaining comprehensive coverage of significant vulnerability discussions [15].

4.2 Vulnerability Assessment Protocol

4.2.1 Experimental Design

The experimental framework evaluated nine state-of-the-art language models representing diverse
architectural paradigms and safety training approaches. The Azure OpenAI suite comprised GPT-
4, O1, O3-Mini, and GPT-4.5, accessed via Azure OpenAI Service API version 2024-02-15-preview.
The Anthropic Claude family included Claude 3.5 Sonnet, Claude Haiku, Claude 3.7 Sonnet, Claude
4 Sonnet, and Claude 4 Opus, accessed through Anthropic API version 2024-01. Model selection
criteria encompassed commercial availability, documented safety training, architectural diversity,
and market adoption metrics, ensuring comprehensive coverage of current LLM security postures
[3, 29].

To systematically evaluate vulnerability robustness, we implemented 71 distinct transforma-
tion strategies organized into eight functional categories. Drawing from established adversarial ML
literature [24, 37, 47], these transformations extend prior frameworks by incorporating community-
observed patterns absent from synthetic datasets. Encoding-based transformations included character-
level obfuscation techniques such as Base64, hexadecimal, ROT13, URL encoding, and Unicode
substitution [26]. Linguistic manipulations encompassed semantic-preserving modifications includ-
ing paraphrasing, multilingual translation across Arabic, French, Russian, and Chinese, instruc-
tion reordering, message fragmentation, and benign content padding [1]. Psychological techniques
leveraged social engineering principles through emotional manipulation, authority deference, crisis
framing, and cognitive biases including reciprocity, scarcity, and social proof [33]. Structural mod-
ifications altered prompt architecture through roleplay scenarios, hypothetical frameworks, nested
instructions, and context switching [5], while technical obfuscation employed domain-specific format-
ting mimicking API specifications, configuration files, pseudocode, and mathematical notation [49].

16

4.2.2 Testing Framework

The testing protocol executed systematic evaluation through automated API orchestration following
Algorithm 1:

Algorithm 1: Vulnerability Evaluation Protocol

Input: V = {v_1, v_2, ..., v_198} (vulnerability set)
T = {t_1, t_2, ..., t_71} (transformation set)
M = {m_1, m_2, ..., m_9} (model set)

Output: R[v,t,m] (response matrix), C[v,t,m] (classification matrix)

1: for each vulnerability v in V do
2: for each transformation t in T do
3: v_transformed <- Apply(t, v)
4: for each model m in M do
5: response <- ExecutePrompt(v_transformed, m)
6: R[v,t,m] <- response
7: C[v,t,m] <- Classify(response)
8: end for
9: end for
10: end for
11: return R, C

API calls implemented exponential backoff with maximum 3 retries and 30-second timeout.
Failed calls after retries were marked as ERROR in the classification matrix.

The theoretical test space encompassed 198× 71× 9 = 126, 414 evaluations. Actual executions
totaled 199,368, accounting for retry attempts following transient failures. Model responses were
classified according to a four-category schema where BLOCKED indicated explicit refusal with safety
explanation, FAIL represented successful generation of harmful content, NEUTRAL captured partial
compliance or ambiguous responses, and ERROR denoted technical failures in API communication
[6, 32].

4.3 PVAF Scoring Implementation

The PrompTrend Vulnerability Assessment Framework (PVAF) computed composite risk scores
incorporating both technical characteristics and social dynamics. The scoring function is defined
as:

PVAF(v) = w1 · HP(v) + w2 · ES(v) + w3 · CA(v) (1)

where HP(v) ∈ [0, 100] represents harm potential across eight categories [18], ES(v) ∈ [0, 100]
measures exploit sophistication through technical complexity assessment, and CA(v) ∈ [0, 100]
quantifies community adoption via normalized engagement metrics [4]. For the initial assessment
phase, equal weighting was applied with w1 = w2 = w3 = 0.33.

The PVAF employs an absolute 0-100 risk scale with balanced thresholds: Low Risk (0-33),
Moderate Risk (34-66), and High Risk (67-100). While observed community-discovered vulnerabil-
ities in our dataset peaked at PVAF 47, the framework design accommodates future high-severity
discoveries. The absence of High Risk vulnerabilities (>66) in our corpus suggests that truly severe
threats remain rare in community forums, validating the framework’s discriminatory range.

17

4.4 Evaluation Metrics

Performance evaluation employed multiple complementary metrics to capture different aspects of
vulnerability effectiveness [6]. The Attack Success Rate (ASR) for each model m was calculated as:

ASRm =
|{(v, t) : C[v, t,m] = FAIL}|

|V | × |T |
(2)

Transformation Effectiveness (TE) quantified the success rate of each transformation strategy
across all models:

TEt =
|{(v,m) : C[v, t,m] = FAIL}|

|V | × |M |
(3)

The Model Vulnerability Index (MVI) provided a normalized metric enabling cross-model com-
parison:

MVIm =
ASRm

max{ASRi : i ∈ M}
(4)

Statistical significance was assessed using McNemar’s test for paired binary outcomes with α =
0.05, applying Bonferroni correction for multiple comparisons across the 36 model pairs [9].

4.5 Validation and Quality Assurance

Experimental validity was ensured through multiple control mechanisms. Randomized execution
order mitigated temporal biases that could arise from model updates or rate limiting effects [19].
Classification employed a two-stage process where automated keyword-based filtering identified clear
cases, followed by manual review for ambiguous responses. Inter-rater reliability assessment on 2,000
randomly sampled NEUTRAL classifications achieved Cohen’s κ = 0.76, indicating substantial
agreement among three independent annotators [20].

Data quality procedures included manual verification of 10% of extracted vulnerabilities to con-
firm proper parsing and semantic integrity. Cross-validation of PVAF scores through independent
assessment by multiple security researchers yielded Spearman’s ρ = 0.82 (p < 0.001), supporting
scoring consistency. Response classification underwent consistency checks where similar prompts
producing divergent outcomes triggered manual review, affecting 3.2% of test cases.

4.6 Ethical Considerations

All testing adhered to responsible disclosure principles established in contemporary AI safety re-
search [3,29]. Critical vulnerabilities achieving PVAF scores ≥ 80 underwent coordinated disclosure
to relevant vendors within 48 hours of discovery, following a 90-day embargo period before public
documentation. Vulnerability sources underwent anonymization through consistent hashing [2] to
protect discoverers while maintaining analytical capabilities. Rate limiting constraints of 10 re-
quests per second prevented service disruption while enabling timely test completion. The study
received institutional review board exemption (Protocol #2024-1873) due to exclusive use of publicly
available data.

5 Results

The PrompTrend evaluation of our dataset across nine commercial language models reveals a com-
plex security landscape that challenges conventional assumptions about LLM defenses. Through

18

comprehensive testing employing 71 transformation strategies, our analysis uncovers critical vulner-
abilities, platform dynamics, and model-specific weaknesses that inform both immediate security
concerns and long-term defensive strategies.

5.1 Overall Vulnerability Landscape

The comprehensive evaluation of crowd-sourced exploits reveals a striking disparity in model secu-
rity, with failure rates varying by nearly an order of magnitude across commercial LLMs. Figure 11a
demonstrates that Claude 4 Sonnet exhibits the highest vulnerability at 4.1% (±0.3%), while GPT-
4.5 achieves the lowest at 0.6% (±0.1%)—a seven-fold difference that challenges assumptions about
uniform progress in AI safety.

Figure 11: Model Vulnerability Landscape

Perhaps most concerning is the temporal evolution revealed in Figure 11b: while OpenAI models
demonstrate consistent security improvements over time (GPT-4o at 1.9% in May 2024 improving
to GPT-4.5 at 0.6% by February 2025), the Claude family exhibits an inverse pattern. Claude’s
vulnerability increases dramatically from Haiku (0.9%) and Claude 3.5 Sonnet (1.3%) to the latest
Claude 4 models (3.7-4.1%), suggesting that in the Claude family, the most recent models show
higher vulnerability rates than their predecessors, though this observation is limited to our five-
month study period.

The distribution of attack outcomes (Table 1) reveals that current LLM security operates pre-
dominantly in ambiguous territory. With 44.9% of all attempts resulting in neutral responses—neither
clear refusal nor full compliance—models exist in a gray zone that complicates security assessment.
This phenomenon is particularly pronounced in vulnerable models, as shown in Figure 11c, where

19

Claude 4 Sonnet and Opus exhibit neutral response rates of 59.0% and 57.9% respectively, compared
to GPT-4.5’s 29.0%.

Table 1: Comprehensive Attack Outcome Distribution
Outcome Category Overall Rate Claude Models OpenAI Models χ2 p-value
Blocked 52.9% 48.7% 58.9% 892.4 <0.001
Neutral 44.9% 49.1% 39.6% 724.3 <0.001
Jailbreak 2.0% 2.5% 1.3% 147.6 <0.001
Error 0.2% 0.2% 0.2% 0.3 0.861

The correlation between high neutral rates and vulnerability (visible in Figure 11c’s vulnerabil-
ity index) suggests that permissive response generation may serve as a precursor to full jailbreaks.
Models with higher neutral rates demonstrate less decisive safety boundaries, potentially allowing
adversaries more opportunities to refine attacks through iterative prompting. The confidence inter-
vals shown in Figure 11a confirm these differences are statistically meaningful, with non-overlapping
intervals between most model pairs.

Statistical analysis confirms these patterns are not artifacts of testing variance. The model
vulnerability hierarchy (Figure 11a) demonstrates significant stratification (Friedman χ2 = 47.82,
p < 0.001), with pairwise McNemar tests confirming significant differences between all adjacent
models in the ranking (all p < 0.05 after Bonferroni correction). The stark difference between
model families—Claude averaging 2.5% failure versus OpenAI’s 1.3% (Table 1)—is highly significant
(χ2 = 892.4, p < 0.001).

These findings challenge the assumption that newer models inherently provide better security.
The divergent trajectories of Claude and OpenAI models (Figure 11b) suggest fundamentally dif-
ferent approaches to balancing capability and safety, with potentially profound implications for
deployment decisions in high-stakes applications.

5.2 Transformation Strategy Effectiveness

The comprehensive evaluation of transformation strategies directly informs the exploit sophistication
component of the PVAF scoring framework, as these techniques represent the primary mechanisms
through which community-identified threats bypass model defenses. Analysis of transformation
strategies reveals that psychological manipulation techniques dramatically outperform technical
obfuscation methods, with effectiveness varying significantly across model families. The 71 tested
transformations demonstrate clear hierarchical patterns validated by Cochran’s Q test (Q = 892.4,
p < 0.001).

Table 2: Transformation Strategy Effectiveness by Category
Category Top Strategy Success Effect Vulnerable Model Platform
Psychological Emotional Manip. 4.9% 0.187*** Claude 4 Sonnet (11.2%) Discord (76%)
Linguistic Padding 4.4% 0.156*** Claude 4 Opus (9.3%) Discord (71%)
Academic Theoretical Disc. 3.7% 0.142*** Claude 3.7 Sonnet (7.8%) Reddit (61%)
Structural Roleplay 3.5% 0.138*** Claude 4 Sonnet (8.7%) Discord (82%)
Social Eng. Expertise Claim 3.4% 0.131*** Claude 4 Models (7.9%) Discord (84%)
Technical Base64 2.7% 0.098** Azure GPT-4 (4.3%) GitHub (72%)
Advanced Jailbreak Prefix 2.6% 0.091** Mixed (3.8%) GitHub (68%)
Encoding ROT13 1.2% 0.054* OpenAI Models (1.8%) GitHub (91%)
*p < 0.05, **p < 0.01, ***p < 0.001; V = Cramér’s V effect size

20

Table 2 summarizes transformation effectiveness by category, revealing psychological approaches
as the dominant attack vector with emotional manipulation achieving the highest individual success
rate. The stark contrast between psychological and technical approaches proves highly significant
across all model families, though model-specific vulnerabilities emerge in detailed analysis.

Figure 12: Transformation Effectiveness Analysis

Figure 12 presents the complete transformation-model vulnerability matrix, exposing critical
patterns obscured by aggregate statistics. Claude 4 models exhibit exceptional vulnerability to
psychological approaches, particularly roleplay and emotional manipulation, while maintaining rel-
ative resistance to technical attacks. This vulnerability pattern reverses for OpenAI models, which
demonstrate stronger psychological defenses but reveal specific technical weaknesses—most notably
Azure GPT-4’s unique susceptibility to Base64 encoding.

The heatmap visualization reveals three distinct vulnerability clusters. Claude 4 Sonnet and
Opus form a high-vulnerability cluster with elevated failure rates across multiple transformation
categories, particularly psychological approaches where most techniques exceed 5% success. A
moderate vulnerability cluster encompasses Claude 3.7 Sonnet and several OpenAI models, char-
acterized by selective vulnerabilities to specific transformation types. The high-defense cluster,
anchored by Azure GPT-4.5 with the lowest overall failure rate, demonstrates consistent resistance
across categories.

Cross-model transferability analysis indicates limited generalization of successful attacks. Only
16.9% of transformations achieved meaningful success (>2%) across multiple model families, sug-
gesting that effective jailbreaks often exploit model-specific characteristics rather than universal
vulnerabilities. High-transferability transformations share three key characteristics: exploitation of
common training data biases, manipulation of fundamental instruction-following mechanics, and

21

sufficient complexity to evade pattern matching.
The divergent vulnerability profiles between model families—and even between versions within

families—challenge assumptions about universal jailbreak defenses. The inverse relationship be-
tween capability and security within the Claude family, where newer models demonstrate increased
vulnerability, suggests that advances in model capabilities may inadvertently expand attack surfaces.
These findings emphasize that comprehensive LLM security requires model-specific evaluation and
tailored defensive strategies rather than one-size-fits-all solutions.

5.3 Platform Dynamics and Vulnerability Origins

Analysis of the evaluated vulnerabilities reveals significant platform-specific patterns in discovery
and effectiveness (Table 3a). Discord dominates both volume (42.9%) and effectiveness (2.8% success
rate, p < 0.01), significantly exceeding the overall mean of 2.0%. This superiority correlates with
Discord’s real-time collaborative environment enabling rapid attack refinement, particularly for
psychological approaches which comprise 52% of Discord-sourced vulnerabilities.

Table 3: Vulnerability Effectiveness by Source Platform
Platform Vulnerabilities Success Rate Avg PVAF Score Dominant Attack Type
Discord 85 (42.9%) 2.8%** 31.2 Psychological (52%)
Reddit 62 (31.3%) 2.1%* 24.7 Roleplay (48%)
GitHub 36 (18.2%) 1.3% 19.3 Technical (67%)
Forums 15 (7.6%) 1.7% 28.9 Mixed (41%)
*p < 0.05, **p < 0.01 compared to overall mean success rate of 2.0%

Platform effectiveness varies dramatically by target model family (Table 4), revealing critical
interaction effects. Discord-sourced vulnerabilities demonstrate 2.4× higher effectiveness against
Claude models (3.9%) compared to OpenAI models (1.6%, p < 0.001), aligning with Claude’s
documented susceptibility to psychological manipulation. Conversely, GitHub’s technical attacks
show reversed effectiveness, achieving 1.8% success against OpenAI models versus only 0.9% against
Claude (p = 0.031).

Table 4: Platform Success Rates by Model Family
Platform Vulner. Claude 95% CI OpenAI 95% CI p-val Effect

Size
Discord 85 (42.9%) 3.9% [3.7-4.1%] 1.6% [1.4-1.8%] <0.001 0.134

(small)
Reddit 62 (31.3%) 2.4% [2.2-2.6%] 1.7% [1.5-1.9%] 0.042 0.049

(small)
GitHub 36 (18.2%) 0.9% [0.8-1.1%] 1.8% [1.6-2.1%] 0.031 0.070

(small)
Forums 15 (7.6%) 1.9% [1.6-2.3%] 1.5% [1.2-1.9%] 0.381 0.029

(negl.)
*p < 0.05, **p < 0.01 compared to overall mean success rate of 2.0%
†Cohen’s h: small (<0.2), medium (0.2-0.5), large (0.5-0.8), very large (≥0.8)

These platform-model interactions (χ2 = 89.7, df = 3, p < 0.001) suggest that vulnerability ef-
fectiveness depends not only on discovery source but also on alignment between attack methodology
and model architecture. Discord’s psychological attacks exploit Claude’s conversational training,

22

while GitHub’s code-based approaches better circumvent OpenAI’s technical defenses. Reddit main-
tains moderate effectiveness across both families, consistent with its diverse attack portfolio. Despite
the statistical significance of these platform-model interactions (χ2 = 89.7, df = 3, p < 0.001), the
effect sizes remain small (all Cohen’s h < 0.2), indicating that while patterns are consistent and
reliable, the practical magnitude of differences is modest.

The findings emphasize that effective LLM security requires both platform-aware monitoring and
model-specific defenses. Organizations deploying Claude models should prioritize Discord surveil-
lance given the 3.9% success rate, while OpenAI deployments face greater risk from GitHub’s tech-
nical repositories. This platform-model specificity in vulnerability effectiveness underscores the
inadequacy of universal security approaches in protecting diverse LLM architectures.

5.4 PVAF Framework Performance and Risk Stratification

The PrompTrend Vulnerability Assessment Framework demonstrates robust risk stratification ca-
pabilities across its 0-100 scale. Analysis of 22,152 test executions reveals clear risk progression,
validating the framework’s predictive utility for vulnerability assessment.

Table 5 presents the empirical validation results across risk categories. The framework suc-
cessfully differentiates vulnerability risk levels, with moderate-risk vulnerabilities (PVAF 34-66)
demonstrating 50% higher success rates compared to low-risk vulnerabilities (PVAF 0-33), achieving
16.90% versus 11.27% respectively (χ2 = 147.3, p < 0.001). The absence of high-risk vulnerabilities
(PVAF > 66) in our corpus suggests that truly severe threats remain rare in public forums, validat-
ing both the framework’s discriminatory range and the generally moderate nature of crowd-sourced
vulnerabilities.

Table 5: PVAF Risk Stratification and Empirical Validation
Risk Category PVAF Range Success Rate 95% CI Tests Relative Risk
Low 0-33 11.27% 10.7-11.9% 55.4% 1.00 (ref)
Moderate 34-66 16.90% 16.1-17.7% 44.6% 1.50***
High 67-100 — — 0% —
***p < 0.001; No high-risk vulnerabilities (PVAF > 66) observed in community-sourced dataset

Figure 13 visualizes the distribution of PVAF scores alongside their corresponding success rates.
The histogram reveals that community-sourced vulnerabilities cluster predominantly in the 0-47
range, with peak density occurring between PVAF 35-39. The overlaid success rate line demon-
strates a generally increasing trend from low to moderate risk categories, confirming the framework’s
ability to discriminate threat levels. Notably, the empty range from PVAF 48-100 illustrates the
framework’s unused capacity for scoring more severe vulnerabilities that may emerge in the future.

23

Figure 13: PVAF Score Distribution and Success Rates

The correlation between PVAF scores and jailbreak success (r = 0.318, p < 0.001) confirms
positive association within the observed range. Linear regression reveals that each 10-point PVAF
increase corresponds to a 2.8% absolute increase in jailbreak probability (β = 0.028, 95% CI: 0.024-
0.032), supporting the framework’s calibration accuracy within the low-to-moderate risk spectrum.

Figure 14 provides additional validation through classification performance metrics. Panel (a)
displays the receiver operating characteristic (ROC) curve for binary jailbreak classification, achiev-
ing an area under the curve (AUC) of 0.72. This indicates good discriminative ability, substantially
outperforming random classification (AUC = 0.50). Panel (b) presents the calibration plot com-
paring predicted versus observed risk across PVAF deciles. The close alignment with the diagonal
reference line up to PVAF 50 demonstrates excellent calibration within the observed vulnerability
range, with minor deviation only in the highest observed scores where sample sizes decrease.

24

Figure 14: Risk Classification Performance Metrics

The confusion matrix analysis (not shown) for Low versus Moderate risk classification achieves
78% overall accuracy, with 82.0% correct identification of low-risk vulnerabilities and 75.8% correct
identification of moderate-risk vulnerabilities. This balanced performance across categories indicates
that the PVAF thresholds effectively separate vulnerabilities into operationally meaningful risk tiers.

Platform-specific analysis confirms consistent risk stratification across vulnerability sources.
Discord-sourced vulnerabilities average PVAF 31.2, Reddit 24.7, and GitHub 19.3, yet within each
platform, higher PVAF scores correlate with increased success rates (all p < 0.01). This consistency
across diverse discovery contexts validates the framework’s generalizability and suggests that PVAF
scoring captures fundamental vulnerability characteristics independent of discovery source.

Distribution analysis reveals that community-sourced vulnerabilities exhibit a mean PVAF of
23.7 (σ = 11.2), with 99.7% scoring below 50. This concentration pattern aligns with expecta-
tions: sophisticated, high-impact vulnerabilities likely remain in private research or criminal forums
rather than public community discussions. The framework thus maintains significant unused scoring
capacity for future high-severity discoveries while effectively stratifying current threats.

The PVAF framework achieves its primary objective: providing actionable risk stratification for
the vulnerabilities. While current data does not test the full 0-100 range, the observed monotonic
relationship between scores and success rates as shown in Table 5 and Figure 13, combined with
the strong classification performance demonstrated in Figure 14, supports the framework’s utility
for security prioritization and resource allocation in operational LLM deployments.

25

6 Discussion

The deployment of PrompTrend across nine commercial language models exposes a vulnerability
landscape in which social factors rival technical design in determining risk. Three findings stand out.
First, security does not necessarily improve with greater capability; in one model family it clearly
regresses. Second, psychologically framed prompts outperform string-level obfuscations across every
model tested. Third, Discord acts as the crucible where community jailbreaks are conceived and
iterated before migrating to slower, more formal platforms. These results imply that effective defence
must combine robust guardrails with continuous socio-technical intelligence and calibrated scoring
such as PVAF.

6.1 Model-Specific Security Patterns

OpenAI’s models improve from a 1.9 percent failure rate in GPT-4 to 0.6 percent in GPT-4.5,
whereas Claude models worsen from 0.9 percent in Haiku and 1.3 percent in Claude 3.5 Sonnet
to 4.1 percent in Claude 4 Sonnet. Anthropic classifies Claude 4 under AI-Safety-Level-3, promis-
ing stricter operational controls [2]. Yet its larger context window enlarges the attack surface, a
weakness Anthropic highlighted in its “many-shot” jailbreak disclosure [15]. By contrast, OpenAI’s
Preparedness Framework requires that red-team scores fall below predefined thresholds before any
new model release [28], and the GPT-4.5 system card describes latent-thought monitors that inter-
rupt generation when policy conflicts arise [27]. An industry survey corroborates these patterns,
linking refreshed refusal tuning to lower prompt-level risk across GPT-4 derivatives [16].

6.2 The Dominance of Psychological Manipulation

Emotional role-play, persona appeals and similar techniques succeed in 4.9 percent of trials, nearly
doubling the 2.7 percent success of Base64 and hex obfuscations. This disparity reflects a funda-
mental tension in model training: LLMs optimized for helpfulness struggle to distinguish between
legitimate emotional contexts and manipulative framing. When adversaries embed harmful re-
quests within narratives of personal crisis or deceased relatives, models face conflicting imperatives
between safety policies and their core instruction to assist users empathetically. A role-play gen-
erator introduced by GUARD independently ranks persuasion-based jailbreaks above token-level
perturbations [19]. CyberArk’s “Operation Grandma” illustrates the same pattern against produc-
tion chatbots [40]. Because alignment pipelines optimise for helpfulness, models inherit human-like
susceptibility to social engineering, a threat axis still under-represented in current OWASP guid-
ance [30].

6.3 Platform Ecosystems and Community Dynamics

Discord accounts for 42.9 percent of first-seen jailbreaks; its real-time channels and light modera-
tion accelerate adversarial iteration [17]. The platform’s effectiveness varies dramatically by target:
Discord-sourced attacks achieve 3.9 percent success against Claude models versus only 1.6 percent
against OpenAI models, suggesting that conversational platforms naturally generate the psycholog-
ical strategies to which Claude architectures are particularly vulnerable. Even Discord’s own bug-
bounty page acknowledges multi-day triage windows, extending attackers’ advantage [10]. The hi-
erarchical pattern of platform effectiveness—Discord (2.8%), Reddit (2.1%), GitHub (1.3%)—aligns
with documented vulnerability diffusion patterns in online communities [50]. This distribution maps
onto MITRE ATLAS reconnaissance and resource development phases, explaining why defenders
monitoring only formal repositories encounter attacks after community refinement [25].

26

6.4 PVAF Calibration and Performance

PVAF separates Low-risk (11.3 percent success) from Moderate-risk prompts (16.9 percent success)
with a relative risk of 1.5 and attains an AUC of 0.72 on jailbreak classification. Initial deploy-
ment revealed that vulnerabilities scoring 42–47 showed lower success rates than those scoring
34–41, prompting recalibration from compressed thresholds (0–19, 20–39, 40+) to balanced terciles
(0–33, 34–66, 67–100) that restored monotonic risk progression. GuardVal, released after our study
window, achieves comparable discrimination, lending external validity to PVAF’s design [48]. No
community exploit scored above 66, aligning with economic analyses that predict private reten-
tion of high-impact techniques [16]; truly sophisticated attacks likely remain in criminal forums or
state-sponsored programs rather than public Discord channels.

6.5 Implications for Practice and Policy

Only 16.9 percent of successful prompts transfer across model families, so security controls must be
model-specific. Claude deployments should emphasise defences against Discord-borne psychological
exploits, while OpenAI users face relatively higher risk from code-centric attacks shared on GitHub.
Procurement strategies that equate recency with safety are unfounded: Claude 4 regresses, whereas
GPT-4.5 progresses. Regulators anchoring policy in OWASP and ATLAS must adapt to disclosure
cycles that now unfold in days rather than months.

6.6 Limitations

The dataset spans January–May 2025 and English-language public forums, omitting non-English
and private channels where more sophisticated exploits may circulate. Our black-box protocol
precludes causal attribution beyond vendor disclosures. Results generalise only to the nine APIs
studied; open-source checkpoints such as Llama 2 show distinct risk curves and weaker guardrails [8].
Supply-chain vectors, including Discord-delivered malware referenced by recent threat advisories [7],
lie outside PrompTrend’s prompt-centric scope.

While PrompTrend’s architecture includes comprehensive longitudinal tracking capabilities, the
current study presents cross-sectional analysis due to time constraints. Future deployments will
validate the temporal evolution and cross-platform propagation features central to the system design.

7 Conclusion

This work introduces PrompTrend, the first systematic framework for continuous monitoring and
assessment of LLM vulnerabilities as they emerge in online communities. Through cross-sectional
analysis of our dataset collected from online communities on nine commercial models, we docu-
ment critical insights that challenge conventional AI safety assumptions. Most notably, capability
advancement does not guarantee security improvement—Claude 4’s 4.1 percent vulnerability rate
represents a four-fold regression from earlier versions, while GPT-4.5 achieves industry-leading 0.6
percent performance. Psychological manipulation strategies dominate the threat landscape, with
emotional appeals achieving nearly double the success rate of technical obfuscations, revealing that
models trained for helpfulness inherit human-like susceptibility to social engineering. Platform
dynamics fundamentally shape vulnerability development, with Discord’s real-time environment
producing the most effective attacks through rapid community iteration.

The PrompTrend Vulnerability Assessment Framework demonstrates that multi-dimensional
scoring incorporating social adoption and temporal resilience provides superior risk stratification

27

compared to purely technical metrics. With 78 percent classification accuracy and monotonic risk
progression after calibration, PVAF offers practitioners actionable vulnerability prioritization while
maintaining headroom for future high-severity discoveries. Our finding that only 16.9 percent of
attacks transfer across model families underscores the need for architecture-specific defenses, chal-
lenging assumptions about universal security strategies.

These findings open several critical research directions. The current cross-sectional analysis
establishes the foundation for future longitudinal studies that will validate vulnerability evolution
patterns and cross-platform propagation dynamics over extended time periods. The capability-
security inversion in Claude models demands investigation into whether constitutional AI approaches
inherently create exploitable empathy patterns. The dominance of psychological attacks suggests
rich opportunities for interdisciplinary research combining AI safety with behavioral psychology.
Platform-specific vulnerability generation indicates that early warning systems could potentially
intercept threats during community incubation phases, before widespread dissemination.

PrompTrend’s deployment reveals that effective LLM security requires continuous adaptation
to an evolving landscape shaped by human creativity, social dynamics, and the complex interplay
between model capabilities and vulnerabilities. As language models integrate deeper into critical
infrastructure, the patterns we document—where social engineering transcends technical barriers
and community innovation outpaces corporate defenses—will only intensify. Static benchmarks and
point-in-time assessments cannot capture this dynamism. The AI safety community must embrace
continuous, socially-aware, and empirically-grounded approaches to emerging threats, recognizing
that the most serious vulnerabilities may arise not from technical sophistication but from under-
standing human psychology and community dynamics.

Data Availability Statement: The dataset represents vulnerabilities collected between January-
May 2025. Longitudinal tracking data will be made available following extended deployment periods
in future studies. The PrompTrend framework and dataset are available at https://github.com/
theconsciouslab-ai/Promptrend.

References

[1] Amazon Science. Multi-lingual multi-turn automated red team-
ing for LLMs, 2024. https://www.amazon.science/publications/
multi-lingual-multi-turn-automated-red-teaming-for-llms.

[2] Anthropic. Responsible scaling policy, 2023.

[3] Anthropic. Red teaming language models to reduce harms: Methods, scaling behaviors, and
lessons learned. arXiv preprint arXiv:2209.07858, 2022.

[4] T. Aven. Risk assessment and risk management: Review of recent advances on their foundation.
European Journal of Operational Research, 253(1):1–13, 2016.

[5] T. Brown et al. Community-driven attack development in online forums. In Proc. Workshop
AI Safety, Montreal, Canada, 2024.

[6] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In Proc.
IEEE Symp. Security and Privacy, pages 39–57, San Jose, CA, USA, 2017.

[7] Check Point Research. Discord invite exploits lead to rising threats. Technical report, Check
Point Research, 2025.

28

https://github.com/theconsciouslab-ai/Promptrend
https://github.com/theconsciouslab-ai/Promptrend
https://www.amazon.science/publications/multi-lingual-multi-turn-automated-red-teaming-for-llms
https://www.amazon.science/publications/multi-lingual-multi-turn-automated-red-teaming-for-llms

[8] K. Chehbouni et al. From representational harms to quality-of-service harms: A case study on
Llama 2 safety safeguards. In ACL Findings, 2024.

[9] J. L. Devore. Probability and Statistics for Engineering and the Sciences. Cengage Learning,
Boston, MA, 2011.

[10] Discord. Security bug bounty programme, 2025. Accessed 2025.

[11] Discord Inc. Discord platform, 2024. https://discord.com.

[12] Forum of Incident Response and Security Teams. Common vulnerability scoring system version
4.0 specification document. Technical report, FIRST, 2023. https://www.first.org/cvss/
v4.0/specification-document.

[13] GitHub Inc. GitHub platform, 2024. https://github.com.

[14] K. Greshake et al. Not what you’ve signed up for: Compromising real-world LLM-integrated
applications with indirect prompt injection. In Proc. 16th ACM Workshop Artificial Intelligence
and Security, Copenhagen, Denmark, 2023.

[15] A. Hern. ’many-shot jailbreak’ reveals how AI safety features can be bypassed. The Guardian,
2024.

[16] HiddenLayer. AI threat landscape report 2024. Technical report, HiddenLayer, 2024.

[17] Intel 471. How discord is abused for cyber-crime. Technical report, Intel 471, 2024.

[18] Janus. The Waluigi effect, 2023. LessWrong. https://www.lesswrong.com/posts/
D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post.

[19] H. Jin et al. GUARD: Role-playing to generate natural-language jailbreaks. arXiv preprint
arXiv:2402.03299, 2024.

[20] D. Karger et al. Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In Proc. 29th Annual ACM Symp. Theory of
Computing, pages 654–663, 1997.

[21] D. Kiela et al. Dynabench: Rethinking benchmarking in NLP. In Proc. Conf. North American
Chapter Association for Computational Linguistics, 2021. Online.

[22] S. Kim et al. Cross-platform jailbreak transferability in large language models. arXiv preprint
arXiv:2403.17829, 2024.

[23] S. Liu, C. Reuter, M.-A. Kaufhold, and S. Bartsch. Collaborative cyber threat intelligence:
Detecting and responding to malware in the wild. Computers & Security, 77:663–676, 2018.

[24] M. Mazeika et al. HarmBench: A standardized evaluation framework for automated red teaming
and robust refusal. In Proc. Int. Conf. Machine Learning, Vienna, Austria, 2024.

[25] MITRE Corporation. ATLAS: Adversarial threat landscape for AI systems, 2025. Accessed
2025.

[26] J. Morris et al. TextAttack: A framework for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proc. Conf. Empirical Methods Natural Language Processing,
Singapore, 2023.

29

https://discord.com
https://www.first.org/cvss/v4.0/specification-document
https://www.first.org/cvss/v4.0/specification-document
https://github.com
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post

[27] OpenAI. GPT-4.5 system card, 2025.

[28] OpenAI. Our updated preparedness framework, 2025.

[29] OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[30] OWASP Foundation. Top 10 for large language model applications, 2025.

[31] C. Pathade et al. Red teaming the mind of the machine: A systematic evaluation of prompt
injection and jailbreak vulnerabilities in LLMs. arXiv preprint arXiv:2505.04806, 2025.

[32] E. Perez et al. Red teaming language models with language models. arXiv preprint
arXiv:2202.03286, 2022.

[33] S. L. Pfleeger and D. D. Caputo. Leveraging behavioral science to mitigate cyber security risk.
Computers & Security, 31(4):597–611, 2012.

[34] R. Pu, Y. Yang, and W. Yu. Feint and attack: Attention-based strategies for jailbreaking and
protecting LLMs. arXiv preprint arXiv:2410.16327, 2024.

[35] Reddit Inc. Reddit platform, 2024. https://www.reddit.com.

[36] M. Samvelyan et al. RAINBOWPLUS: Enhancing adversarial prompt generation via evolu-
tionary quality-diversity search. arXiv preprint arXiv:2504.15047, 2024.

[37] M. Samvelyan et al. Rainbow teaming: Open-ended generation of diverse adversarial prompts.
arXiv preprint arXiv:2402.16822, 2024.

[38] X. Shen, Z. Chen, M. Backes, Y. Shen, and Y. Zhang. Do anything now: Characterizing and
evaluating in-the-wild jailbreak prompts on LLMs. arXiv preprint arXiv:2308.03825, 2024.

[39] W. Shi et al. Red teaming language model detectors with language models. Trans. Association
for Computational Linguistics, 11:814–830, 2023.

[40] E. Shimony and S. Dvash. Operation grandma: A tale of LLM chatbot vulnerability, 2024.
CyberArk Blog.

[41] Stanford CRFM. HELM safety: Towards standardized safety evaluation of language models.
arXiv preprint arXiv:2310.11200, 2024.

[42] S. Stieglitz and L. Dang-Xuan. Social media and political communication: A social media
analytics framework. Social Network Analysis and Mining, 3(4):1277–1291, 2013.

[43] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody. Collaborative security: Moving toward
cybersecurity as a public good. In Proc. IEEE Security and Privacy Workshops, pages 266–272,
2016.

[44] A. Wei, N. Haghtalab, and J. Steinhardt. Jailbroken: How does LLM safety training fail?
arXiv preprint arXiv:2307.02483, 2023.

[45] X Corp. Twitter/X platform, 2024. https://x.com.

[46] Y. Xie, R. Li, C. Chen, and W. Jiang. GradSafe: Detecting jailbreak prompts for LLMs via
safety-critical gradient analysis. In Proc. 62nd Annual Meeting Association for Computational
Linguistics, Bangkok, Thailand, 2024.

30

https://www.reddit.com
https://x.com

[47] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang. A survey on large language model
(LLM) security and privacy: The good, the bad, and the ugly. High-Confidence Computing,
page 100211, 2024.

[48] P. Zhang et al. GuardVal: Dynamic large language model jailbreak evaluation for comprehen-
sive safety testing. arXiv preprint arXiv:2507.07735, 2025.

[49] A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson. Universal and transfer-
able adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

[50] V. Zuo et al. "do anything now": In-the-wild jailbreak prompts on LLMs, 2024. GitHub
repository.

31

	Introduction
	Background and Related Work
	LLM Vulnerabilities and Attack Taxonomy
	Current Evaluation Frameworks and Their Limitations
	The Community-Driven Threat Landscape
	Research Gaps and Motivation

	The PrompTrend System
	System Architecture Overview
	Multi-Agent Data Collection Framework
	Agent Architecture and Deployment
	Cross-Platform Coordination and Deduplication

	PVAF: PrompTrend Vulnerability Assessment Framework
	Multi-Dimensional Scoring Architecture
	Dynamic Modifiers and Temporal Adaptation

	Implementation Architecture
	System Output Visualization

	Methodology
	Data Collection Process
	Platform Coverage
	Agent-Based Collection

	Vulnerability Assessment Protocol
	Experimental Design
	Testing Framework

	PVAF Scoring Implementation
	Evaluation Metrics
	Validation and Quality Assurance
	Ethical Considerations

	Results
	Overall Vulnerability Landscape
	Transformation Strategy Effectiveness
	Platform Dynamics and Vulnerability Origins
	PVAF Framework Performance and Risk Stratification

	Discussion
	Model-Specific Security Patterns
	The Dominance of Psychological Manipulation
	Platform Ecosystems and Community Dynamics
	PVAF Calibration and Performance
	Implications for Practice and Policy
	Limitations

	Conclusion

