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Abstract—Private Information Retrieval (PIR) schemes allow
clients to retrieve files from a database without disclosing the
requested file’s identity to the server. In the pursuit of post-
quantum security, most recent PIR schemes rely on hard lattice
problems. In contrast, the so called CB-cPIR scheme stands out as
a pioneering effort to base PIR schemes on hard problems in cod-
ing theory, thereby contributing significantly to the diversification
of security foundations. However, our research reveals a critical
vulnerability in CB-cPIR, substantially diminishing its security
levels. Moreover, a comparative analysis with state-of-the-art PIR
schemes shows that CB-cPIR’s advantages are reduced, making it
less competitive in terms of the communication cost. Nevertheless,
our findings highlight the importance of continued research into
code-based PIR schemes, as they have the potential to provide a
valuable alternative to lattice-based approaches.

I. INTRODUCTION

Private Information Retrieval (PIR) schemes, as introduced
in [1] and [2], enable a client to request a particular file
from a database without disclosing the identity of the
requested file to the server. A straightforward solution is
for the user to download the entire database. Although this
approach preserves the user’s interest, it is clearly impractical
for large databases. However, as demonstrated in [1], it
represents the only possibility for information-theoretically
secure PIR in the single-server scenario. As an alternative
for single-server scenarios, various computationally secure
PIR (cPIR) schemes based on computational hard problems
have emerged, providing a trade-off between security and
communication cost.

In the context of post-quantum cryptography, it is essential
not only to consider problems that are presumed to be
computationally hard on classical computers but also to
develop cryptographic protocols that can withstand attacks
from potential quantum computers. To address this challenge,
one viable approach is to construct PIR schemes based on
lattice problems, which are widely regarded as being resistant
to quantum attacks. While many current PIR schemes rely
on lattice problems, such as the Learning With Errors (LWE)
problem or its ring variant (see [3], [4] or [5]), code-based
cryptography presents a promising alternative to lattice-based
schemes, thereby providing a valuable diversification of
cryptographic primitives.

One approach, which defines a PIR scheme based on hard
problems in coding theory, was proposed in [6]. However,
an efficient attack on this scheme was presented in [7]. In
this paper, we study the code-based computationally secure
CB-cPIR scheme described in [8] and [9], which is an
adapted version of the original construction [6] designed to
be resistant to the attack in [7]. In [8] and [9], the authors
present their CB-cPIR scheme, which they thoroughly analyze
for its security and compare to the state-of-the-art schemes
SimplePIR [3] and XPIR [5]. Their evaluation suggests
that the modified scheme offers improved communication
and computational costs, leading them to conclude that it
represents a significant step towards practical and scalable
real-world PIR. Moreover, the scheme contributes to the
diversification of cryptographic primitives underlying PIR
schemes, which is essential for ensuring the long-term
security and resilience of cryptographic systems.

In this paper, we present a critical attack against the CB-
cPIR scheme, which significantly undermines the security
levels claimed in [9] for the proposed parameters. Our attack,
thoroughly analyzed in Section VI, exhibits a lower complexity
than the best-known attacks prior to our work. To validate
our analysis, we not only provide theoretical results but also
implemented the attack, demonstrating its feasibility and effec-
tiveness in compromising the security of the CB-cPIR scheme.
While adapting the parameters can mitigate this vulnerability,
our analysis in Section 5 reveals that the resulting rates of
the CB-cPIR scheme are no longer favorable against those
of XPIR. In contrast, the comparison with SimplePIR yields a
more nuanced result, with the choice between the two schemes
depending on the specific requirements and constraints of
the particular underlying use case. Our findings correct the
prevailing view on CB-cPIR’s position within the landscape
of computational PIR schemes. Despite this, the value of a
code-based cPIR scheme remains high, and the importance of
diversifying cryptographic primitives cannot be overstated.

II. PRELIMINARIES

Let q be a prime or a power of a prime. Denote the finite
field of order q by Fq , and its extension field of degree s by
Fqs . We denote F×

q = Fq \ {0}, the set of nonzero elements
in Fq . If Γ = {γ1, . . . , γs} is a basis of Fqs over Fq , then
denote by V = ⟨γ1, . . . , γv⟩ for 1 ≤ v ≤ s the v-dimensional
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Fq-linear subspace of Fqs spanned by γ1, . . . , γv . Let ΨV
Γ (x)

denote the projection of x ∈ Fqs onto V with respect to the
basis Γ.

For a matrix A ∈ Fm×n
q , denote by A[i:j,:] the submatrix

of A consisting of rows i to j, and by A[:,i:j] the submatrix
consisting of columns i to j. Following the usual convention,
we define the Kronecker product of

A = (ai,j)i=1,...,m,
j=1,...,n

∈ Fm×n
q

and B ∈ Fv×w
q as

A⊗B =

a1,1B . . . a1,nB
...

...
am,1B . . . am,nB

 ∈ Fmv×nw
q .

A linear code C ⊆ Fn
q of length n and dimension k is a

k-dimensional linear subspace of Fn
q , denoted by C = [n, k]q .

Every linear code C can be represented by a generator matrix
G ∈ Fk×n

q of rank k. Any set of k linearly independent
columns of G forms an information set of the code.

III. THE ORIGINAL PIR SCHEME

As a counterpart to existing lattice-based PIR schemes, a
code-based scheme was proposed in [6]. Although the scheme
was shown to be vulnerable in [7], we outline it here due to
the close similarity between the original construction and its
later modification.

Let v, s, n, and k be scheme parameters satisfying v < s
and n < k, and define δ = (s − v)(n − k). Suppose the
database consists of m files. Each file Xi is represented as
a matrix Xi ∈ FL×δ

q , where L is chosen sufficiently large
to accommodate all files. Consequently, the entire database is
represented as X ∈ FL×mδ

q , as illustrated in Figure 1.

X = X1 X2 Xm. . . L

δ

Fig. 1. Database construction with m files Xi, i = 1, . . . ,m.

Query generation: To request file Xi0 for some i0 ∈
{1, . . . ,m}, the user performs the following steps:

• Select a random [n, k]qs -linear code C.
• Construct a matrix D ∈ Fmδ×n

qs , where each row is a
codeword from C. Randomly choose an information set
I ⊂ {1, . . . , n} with |I| = k.

• Choose a random basis Γ = {γ1, γ2, . . . , γs} of Fqs over
Fq . Let V = ⟨γ1, . . . , γv⟩ be the Fq-linear, v-dimensional
subspace of Fqs spanned by the first v basis vectors, and
let W = ⟨γv+1, . . . , γs⟩.

• Randomly choose Ẽ ∈ V mδ×(n−k) and extend it to a
matrix E ∈ V mδ×n by inserting zero-columns at the
positions of the information set I .

• Randomly choose ∆̃ ∈ W δ×(n−k) with full row-rank
over Fq , i.e., rkFq (∆̃) = δ, and extend ∆̃ to ∆ ∈ W δ×n

by inserting zero-columns at the positions of the infor-
mation set I .

The final request is computed as

Q = D + E + ei0 ⊗∆,

where ei0 ∈ Fm×1
qs is the i0-th unit vector. A graphical

representation of the query generation is shown in Figure 2.

Q = D E ei0 ⊗∆

∆

+ +

n

mδ

Fig. 2. Query construction in the original code-based PIR scheme [6].

Answer: Upon receiving Q ∈ Fmδ×n
qs , the server computes

the response as

R = X ·Q ∈ FL×n
qs ,

and returns the matrix R to the client.

File extraction: To recover the desired file Xi0 , the user
examines the j-th row of R, denoted as Rj for j = 1, . . . , L.
The j-th row of R is given by

Rj = X[j,:] ·Q

=

m∑
l=1

X[j,(l−1)δ+1:lδ]Q[(l−1)δ+1:lδ,:]

=

m∑
l=1

X l
[j,:]Q[(l−1)δ+1:lδ,:],

using a decomposition of Q into blocks of length δ such that
the files X1, . . . , Xm can be considered separately. Inserting
the construction of Q yields

Rj =

m∑
l=1

X l
[j,:](D[(l−1)δ+1:lδ,:] + E[(l−1)δ+1:lδ,:]+

(ei0 ⊗∆)[(l−1)δ+1:lδ,:]).



However, ei0⊗∆ is zero in all rows except for the i0-th block,
such that

Rj = Xi0
[j,:]∆︸ ︷︷ ︸

zero at positions in I

+

m∑
l=1

X l
[j,:]D[(l−1)δ+1:lδ,:]︸ ︷︷ ︸

=:Aj

+

m∑
l=1

X l
[j,:]E[(l−1)δ+1:lδ,:]︸ ︷︷ ︸

zero at positions in I

. (1)

It is worth noting that since the rows of D are codewords, Aj

itself is a codeword. Since the other two terms have support
only outside the information set I , the client can readily
recover Aj from Rj . By subtracting the codeword from the
row of the answer, we obtain

Rj −Aj = Xi0
[j,:]∆︸ ︷︷ ︸

∈W 1×n

+

m∑
l=1

X l
[j,:]E[(l−1)δ+1:lδ,:]︸ ︷︷ ︸

∈V 1×n

.

Applying the projection ΨW
Γ to Rj − Aj results in Xi0

[j,:]∆,
where ∆ is a full row-rank matrix. Consequently, the client
can recover Xi0

[j,:]. Repeating this process for all rows Rj

with j = 1, . . . , L, the entire file Xi0 is recovered.

The authors presented various parameter sets. The field
order q takes values in {16, 32, 64}, while the extension degree
s is consistently set to s = 32. The subspace dimension v
varies between v = 16 and v = 31, and the code parameters
n and k are always given as n = 100 and k = 50.

IV. THE SUBQUERY ATTACK

In [7], Bordage and Lavazelle introduced an attack on the
scheme that breaks it for all reasonable parameter choices,
provided the database is not too small. They observed that
the Fq-rank of D + E is significantly smaller than the rank
of the full query matrix Q = D + E + ei0 ⊗∆ and utilized
this observation to develop an efficient attack. Informally,
the attack proceeds by iteratively removing individual blocks
of size δ from Q and observing the resulting deviation in rank.

More formally, let Q[j] denote the submatrix of Q obtained
by deleting rows [jδ + 1 : (j + 1)δ]. The authors of [7]
demonstrated that, for j = i0, removing the only ∆-dependent
component in Q, results in rkFq

(Q[i0]) ≤ sn− δ. In contrast,
for j ̸= i0, it is highly unlikely that the Fq-rank of Q[j] for
j ̸= i0 is this small. In fact, according to [7, Proposition 2],
the probability is at most

P (rkFq (Q[j]) ≤ sn− δ) ≤
[
sn− δ

sn− 2δ

]
q

q−δ2(m−1),

where
[
a
b

]
q

represents the q-binomial coefficient [10] for
a ≥ b. Therefore, by examining the ranks of the submatrices
Q[1], . . . , Q[m], the index of interest i0 can be identified with
high probability. As a result, the authors were able to break

the scheme within minutes on a standard computer for all
parameter sets proposed in [6].

To observe differences in rank, it is required that

(m− 1)δ ≥ n,

ensuring that the number of rows in Q[j] exceeds the number
of columns. This implies a necessary condition on m, namely
m ≥ n

δ +1. Increasing m beyond this threshold improves the
probability of successfully distinguishing the ranks.

V. THE REPAIR

In 2024, Verma and Hollanti proposed a modified version
for this PIR scheme (see [8] and its full version [9]), which
remains structurally close to the the original construction
but is designed to resist the subquery attack described
in the previous section. The central idea of their work is
to distribute ∆ across all blocks of Q, while introducing
a small perturbation in block i0 to conceal the index of interest.

The revised protocol, called CB-cPIR, operates in the
following manner. Consider again the scenario in which
a user seeks to retrieve a single file Xi0 from the server
without revealing any information regarding the requested
file. The database is constituted as described in Section III.
The parameters q, s, v, as well as n and k, are scheme
parameters that retain their previously defined meanings.

Query generation:
• Sample uniformly at random a vector β ∈ (F×

q )
m and let

c = ei0 + β, where ei0 ∈ Fm
qs is the i0-th unit vector.

• Choose a linear code C with an information set I and
define subspace V and W as in the original scheme to
construct matrices D, E and ∆.

• As a first part of the query, let Q = D + E + c⊗∆.
• Choose another linear code Cβ with an information set

Iβ and define subspaces Vβ and Wβ to generate matrices
Dβ , Eβ and ∆β according to the same procedure.

• Set Qβ = Dβ + Eβ + β ⊗∆β .
The user sends Q and Qβ to the server. An illustration of the
query generation in the modified scheme is shown in Figure 3.

It is important to note that the vector c contains at least
(m− 1) non-zero entries. More specifically, c can be chosen
to have no zero entries, ensuring that the Kronecker product
c ⊗ ∆ affects every block of Q. However, the introduction
of c incurs additional cost: an additional matrix Qβ must be
computed and transmitted, which subsequently affects the
overall PIR rate.

Answer: Following the methodology of the original
scheme, the server computes the product R = X · Q.
Additionally, it computes the product Rβ = X · Qβ and
transmits both matrices to the client.



Q = D E c⊗∆

c1∆

cm∆

+ +

n

mδ

Fig. 3. Construction of Q as part of the query in the repaired scheme as
described in [8].

File extraction: As in the original scheme, the client selects
a row Rj of R, where j ∈ {1, . . . , L}, from the matrix R.
Using the definition of Aj in (1), the client computes and
removes the codeword component in R as

Rj −Aj =

m∑
l=1

X l
[j,:]E[(l−1)δ+1:lδ,:]︸ ︷︷ ︸

∈V 1×n

+X[j,:](c⊗∆)︸ ︷︷ ︸
∈W 1×n

.

Unlike the original setting, the ∆-dependent part of the
response now involves the entire database, rather than being
limited to the file Xi0 . To isolate the desired contribution,
the client projects the resulting vector onto the subspace W ,
obtaining X[j,:](c ⊗∆). Owing to the full row-rank property
of ∆, the client constructs

X[j,:](c⊗ Iδ×δ) = X[j,:]((ei0 + β)⊗ Iδ×δ).

Proceeding in a similar manner with Qβ , the client observes
X[j,:](β ⊗ Iδ×δ). Subtracting both terms, the client is capable
of reconstructing Xi0

[j,:]. Repeating this process for all rows
ultimately yields the desired file.

The authors of [8] and [9] further proposes a modification
to enhance the rate of the scheme. This modification allows for
f files to be requested simultaneously using the same vector
β, thereby enabling the client to store Rβ at the client’s side
in the first query. Subsequent queries no longer require the
transmission of Qβ , thereby improving the overall rate. As
stated in [8, Theorem 2], with Xi0 ∈ FL×δ

q , Q,Qβ ∈ Fmδ×n
qs

as well as R,Rβ ∈ FL×n
qs , the PIR rate is given by

RCB-cPIR =
fLδ log2(q)

(f + 1)(mδn+ Ln) log2(q
s)
.

In scenarios where multiple files are requested concurrently,
the weight of c can be reduced by the number of files
requested. This reduction in weight has the potential to
introduce a vulnerability, particularly for large values of
f . However, it has been countered by the authors that the

TABLE I
PROPOSED PARAMETERS AND RESULTING APPROXIMATIVE RATE IN THE

CASE L ≫ mδ AND f = 1 FOR THE MODIFIED PIR SCHEME IN [9].

q s v n k RCB-cPIR

32 32 31 100 50 1/128
32 32 30 100 50 1/64
216 12 10 100 50 1/24
232 − 5 6 4 120 60 1/12
232 5 3 100 50 1/10
261 − 1 6 2 100 50 1/6

construction of c can always be performed in such a manner
that it possesses a sufficiently high weight, thereby rendering
this attack infeasible.

A thorough analysis of various attacks, including informa-
tion set decoding, subspace attack, original subquery attack,
and an advanced variant, was conducted in [9]. This led to the
proposal of parameters with corresponding rates and security
levels, which are summarized in Table I and Table II. Note
that the displayed rate is approximated for the scenario where
L ≫ mδ and f = 1, resulting in RCB-cPIR ≈ δ

2ns . Furthermore,
an iterative version of the scheme was introduced, which
reorders the database into a square or hypercube structure,
inspired by [2], to optimize communication costs. This ap-
proach is particularly effective when dealing with small file
sizes in large databases. In comparison to the recent lattice-
based protocols SimplePIR [3] and XPIR [5], the authors claim
lower communication and computational costs.

VI. AN ATTACK ON THE REPAIR

We will now demonstrate how to compromise the revised
scheme. To achieve this, we will divide the matrix Q into
blocks consisting of δ rows each as

Q =

Q1

...
Qm

 =

D1

...
Dm

+

E1

...
Em

+

 c1∆
...

cm∆

 ,

where

ci =

{
βi if i ̸= i0

1 + βi0 if i = i0.
(2)

The attack will be carried out in two consecutive steps.

Step 1: Constructing an Auxiliary Matrix
The first step is an auxiliary step that will enable us
to distinguish between blocks with and without a ∆-
dependent part later on. To this end, we construct a matrix
A ∈ F(ns−δ+1)×n

qs with a similar structure to Q, but with
low rank. Assume that the number of files m in the database
fulfills m > ns− δ. Then A consists of the first row of each
of the matrices Q1, . . . , Qns−δ+1 as displayed in Figure 4.
Observe that A shares a similar structure with Q, as each
row comprises a codeword from the linear code plus an error
term from V in the columns outside the information set.



However, unlike Q, every row of A features the same vector
from ∆, albeit scaled by different factors from Fq . Hence,
following the same arguments as in [7, Corollary 3.2], we
have rkFq

(A) ≤ ns− δ + 1.

D E c⊗∆

c1∆

cm∆

+ +

A

Fig. 4. Visualization of the fist step within the attack: Construction of the
auxiliary matrix A.

Step 2: Identify the index of interest
We now proceed to analyze each block Q1, . . . , Qm

individually with the objective of reconstructing the index
of interest i0. Let J = {1, . . . ,m} be the set of indices that
are candidates for the index of interest. We randomly select
two indices i, j ∈ J and apply the following procedure to
determine whether one of these indices coincides with i0.

Step 2.1: Identify α ∈ Fq with

αci + cj = 0. (3)

To this end, consider the matrix

Di,j = Di,j(α2, . . . , αδ) =


α2Q

i
[2,:] +Qj

[2,:]

...
αδQ

i
[δ,:] +Qj

[δ,:]


for different values α2, . . . , αδ ∈ Fq . Note that if the equation

αkci + cj = 0

holds in Fq for some k ∈ {2, . . . , δ}, then the k-th row
of Di,j will not have a ∆-dependent component. However,
we cannot determine this solely by analyzing the rank of
Di,j , as the matrix has only (δ − 1) rows, which would
dictate its rank regardless of the presence of a ∆-dependent
component. Instead, we can verify whether condition (3)
holds for one αk, k ∈ {2, . . . , δ}, by leveraging the following
observation. If a row of Di,j does not have a ∆-dependent
component, then appending this row to A will not increase
the rank of A. On the other hand, if the row does have
a ∆-dependent component, then appending it to A will
increase the rank by one. We can efficiently test all values of
α2, . . . , αδ simultaneously by simply appending Di,j to A.
If the resulting matrix has rank rkFq

(A) + δ − 1, then none
of the tested values satisfy condition (3). Conversely, if the
rank is less than rkFq (A) + δ− 1, then, given that ∆ has full

rank by definition, there is one α ∈ {α2, . . . , αδ} fulfilling (3).

In the worst-case scenario, we need to calculate the rank
of an Fns×ns

q matrix ⌈ q
δ−1⌉ times to identify the tuple

(α2, . . . , αδ) that contains the correct value of α. To pinpoint
this value from the tuple, we can employ a binary-search-like
algorithm, as introduced in [11] for an attack on a different
PIR scheme. Specifically, we can append only the first half of
the rows of Di,j to A and check whether the rank increases
by the number of rows added. If it does not, the correct value
of α is contained in the first half; otherwise, it is contained
in the second half. Consequently, we can eliminate half
of the possible values of α with a single rank calculation.
By iteratively applying this procedure, we can identify the
sought-after value of α from the right tuple in at most log(δ)
rank calculations.

Step 2.2: Check if i0 ∈ {i, j}
Determining the value of α ∈ Fq with

0 = αci + cj =


αβi + βj if i0 ̸= i and i0 ̸= j

αβi + 1 + βi0 if i0 = j

α(1 + βi0) + βj if i0 = i

does not directly yield ci or cj . Nevertheless, the relation
between ci and cj can be utilized to verify whether the index
of interest is equal to i or j. To achieve this, we repeat Step 1
with Qβ instead of Q and obtain a matrix Aβ ∈ F(ns−δ+1)×n

qs

with rkFq
(Aβ) = ns − δ + 1. Subsequently, we append the

vector

αQi
β [2,:]

−Qj
β [2,:]

to Aβ . If the rank of the resulting matrix increases by one,
then it follows that

αβi + βj ̸= 0,

which implies i0 ∈ {i, j}. In this case, repeat Step 2 with the
same value of i but a different value of j to check if i0 = i
or i0 = j. Conversely, if the rank does not increase, then
αβi + βj = 0, which implies that i0 ̸= i and i0 ̸= j. We can
thus exclude these indices from consideration and repeat the
procedure using the smaller index set J \ {i, j}.
It is worth noting that each block can be analyzed indepen-
dently, rendering the attack highly parallelizable.

Lemma 1. The above algorithms reconstructs the index of
interest in O(⌈ q

δ−1⌉) steps.

Proof. The algorithm entails computing the Fq-rank of at most
m
2 (⌈

q
δ−1⌉+log(δ)+1) matrices, each of size at most ns×ns.

This computation requires a total of m
2 (⌈

q
δ−1⌉ + log(δ) +

1)(ns)3 operations over Fq . Consequently, the algorithm’s
time complexity is O

(
⌈ q
δ−1⌉

)
.

The proposed attack significantly compromises the security
guarantees claimed in [9]. Specifically, for the recommended
parameters of the CB-cPIR scheme, the computational



complexity of our attack is presented in Table II. Note that
the attack complexity is evaluated under the assumption that
only one file is requested simultaneously. If, however, β is
reused multiple times, the attack complexity per file decreases
further.

TABLE II
ATTACK COMPLEXITY FOR THE PARAMETERS PROPOSED IN [9] IN

COMPARISON TO THE BEST-KNOWN ATTACKS FROM [9] AS SECURITY
LEVEL.

q s v n k δ
Security Attack

level complexity

32 32 31 100 50 50 2113 21

32 32 30 100 50 100 2113 21

216 12 10 100 50 100 2113 29

232 − 5 6 4 120 60 120 2128 225

232 5 3 100 50 100 296 225

261 − 1 6 2 100 50 200 2113 253

Remark 1. Our attack is predicated on the assumption that
the database exceeds a certain size, specifically m > ns− δ.
With the given parameters, this translates to a database size of
400 to 3150, a range that is consistent with modern database
scales. However, if the database is comprised of fewer files,
the attack can be adapted to accommodate smaller sizes. To
achieve this, rather than extracting solely the first row from
each block Q1, . . . , Qm to construct A, multiple rows can be
utilized. By selecting p < δ rows from each block to form A,
the resulting matrix will comprise pm rows, thereby relaxing
the requirement to mp > ns − δ. As a consequence, the
rank of A will be bounded by ns − δ + p, allowing for the
simultaneous evaluation of δ− p values. That way, our attack
is applicable to databases of size at least (δ− 1)m > ns− δ,
which, for the proposed parameters, translates to a minimum
of approximately 10 files in most cases. This threshold is
remarkably low, rendering the attack viable for virtually all
realistic database scenarios.

We successfully implemented the attack utilizing SageMath
[12] on a standard laptop (Intel Core i7-1370P, 1,9 GHz,
16GB RAM). Notably, for the initial two parameter sets where
q = 32, the attack executed in a matter of seconds. However,
as the value of q increases, the time complexity of our attack
grows in accordance with Lemma 1. This highlights a limita-
tion of our attack, as larger values of q may render the attack
impractical due to the increased computational requirements.
Nevertheless, our results demonstrate the effectiveness of the
attack for smaller values of q, and further optimization may
be possible to improve performance for larger values.

VII. COMPARISON WITH LATTICE-BASED SCHEMES

One natural approach to prevent our attack is to increase
the field size order q. However, to avoid providing any
information, the ratio q

δ must align with the desired security
level. While increasing q enhances security against our
attack, it also significantly raises computational costs for both

the server and the client, as operations in larger fields are
generally more resource-intensive. Additionally, the scheme
achieves higher rates when L ≫ mδ. As a consequence, if q
is already large, the files Xi ∈ FL×δ

q become quite substantial
for reasonable rates.

In accordance with the methodology outlined in [9], we aim
to conduct a comparative analysis of the communication rate
of the CB-cPIR protocol with only one file being requested,
incorporating the adjusted security framework, against estab-
lished PIR schemes such as XPIR [5] and SimplePIR [3]. This
comparison serves to contextualize CB-cPIR within the current
landscape of state-of-the-art PIR protocols. The rate for the
XPIR scheme is defined by

RXPIR(F ) =
F

msc + F sc
cp

,

where sp and sc denote the sizes (in bits) of the plaintext
and ciphertext, respectively, and F represents the bitsize of
a single database file. For the XPIR scheme, we employ the
parameters (n, log(q)) = (1024, 60), which provide a security
level of 97 bits. As specified in [9], the corresponding values
of sc = 128.000 and sp = 20000 for these parameters are
utilized in the calculation. For a fair comparison, we evaluate
the CB-cPIR rate using the parameters q = 2104, s = 6,
v = 4, n = 100, and k = 50, which are chosen to ensure
a comparable security level, taking into account all known
attacks. We consider the classical CB-cPIR rate

RCB-cPIR(F ) =
F

2ns(mδ log2(q) +
F
δ )

,

where F = Lδ log2(q) is the size of a single file in bits, as
well as the proposed modification using a squared database
with rate

RCB-cPIR, squared(F ) =
F

2ns
√
m(log2(q)δ +

F
δ )

(compare [9, section 3.6.1]). The communication rates for a
fixed number of m = 1, 000 files in the database, expressed as
functions of the file size F (in bits), are illustrated in Figure
5. This figure, as well as the subsequent figure for comparison
with SimplePIR, differs from those in [9]. This discrepancy
is not solely due to the adjusted security level, but also
because the formula presented in the original paper’s figure
appears to deviate from the correct expression as detailed
in the text for varying file sizes in bits. Consistent with
theoretical expectations, the CB-cPIR protocol employing a
squared database demonstrates superior efficiency compared
to its original counterpart for smaller file sizes. Conversely,
for larger file sizes, the original CB-cPIR scheme exhibits
enhanced performance. Notably, neither variant of CB-cPIR
achieves a rate comparable to that of XPIR.

Similarly, we can compare the CB-cPIR scheme to Sim-
plePIR. In the SimplePIR protocol, the user is required to
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Fig. 5. Comparison of the XPIR rate for (n, log(q)) = (1024, 60) with the
rate of a comparable CB-cPIR scheme (q = 2104, s = 6, v = 4, n = 100,
and k = 50) using the original database as well as a squared version on a
double-logarithmic scale. The total number of files is fixed to m = 1, 000.

download a one-time hint, which can be reused across multiple
queries. Assuming the cost of downloading the hint is amor-
tized over t queries, the rate of SimplePIR can be expressed
as:

RSimplePIR(F ) =
F log2(p)

(nFt−1
√
m+ (F + log2(p))

√
m) log2(q)

,

where F represents the file size in bits, and (q, p, n)
are the scheme parameters. For our analysis, we select
(q, p, n) = (232, 495, 1024), which provides a security level
of 128 bits. To achieve a comparable security level for the
CB-cPIR scheme, we choose q = 2135, s = 6, v = 4,
n = 120, and k = 60.

The resulting rates for varying file sizes, with a fixed total
number of files m = 1, 000, are illustrated in Figure 6. The
case t = ∞ serves as a theoretical upper bound, representing
the idealized scenario where the cost of downloading the
hint is ignored. This limiting case provides a benchmark for
the optimal performance of SimplePIR, allowing for a direct
comparison with the CB-cPIR scheme. Notably, for large file
sizes, the CB-cPIR scheme may be preferred over SimplePIR.
However, for smaller file sizes, the choice between the two
schemes depends on how frequently the hint is reused in
SimplePIR, and thus how much the cost of downloading the
hint is spread across multiple queries.

VIII. CONCLUSION

This paper reveals a vulnerability in the CB-cPIR scheme,
demonstrating that the original parameters proposed in [9] no
longer align with the promised security levels. While adjusting
the parameters can restore the desired security level, our
analysis shows that the scheme’s performance is no longer
competitive with state-of-the-art schemes like XPIR. However,
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Fig. 6. Comparison of the SimplePIR rate for (q, p, n) = (232, 495, 1024)
with a comparable CB-cPIR scheme rate (q = 2104, s = 6, v = 4, n = 120,
and k = 60) using the original database as well as a squared version on a
double-logarithmic scale. The total number of files is fixed to m = 1, 000.

in certain scenarios, CB-cPIR may still offer advantages over
SimplePIR, depending on the specific use case and parame-
ter choices. Our findings highlight the need for a thorough
reevaluation of the CB-cPIR scheme’s design and parameters
to ensure its security and performance meet the expected stan-
dards. The importance of this work extends beyond the specific
scheme, as it underscores the need for reliable and secure
PIR schemes based on coding theory. In a landscape where
most PIR schemes rely on lattice-based cryptography, coding
theory-based schemes like CB-cPIR offer a vital alternative.
The existence of diverse and robust PIR schemes is crucial for
ensuring the long-term security and resilience of cryptographic
systems.
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