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Empowering [oT Firmware Secure Update with
Customization Rights

Weihao Chen, Yansong Gao, Boyu Kuang, Jin B. Hong, Yuqing Zhang, and Anmin Fu

Abstract—Firmware updates remain the primary line of
defence for IoT devices. However, the update channel itself
has become a well-established attack vector. Existing defences
predominantly focus on securing monolithic firmware images,
leaving module-level customisation—a rising demand among
users—largely unprotected and insufficiently explored.

To bridge this gap, we conduct a pilot study on the update
workflows of 200 Linux-based IoT devices across 23 vendors. OQur
analysis uncovers five previously undocumented vulnerabilities
stemming from customisation practices. A broader investigation
of update-related CVEs from 2020 to 2024 further reveals that
over half originate from customisation-induced issues. These
findings highlight a critical yet underexamined reality: as cus-
tomisation increases, so does the attack surface—yet current
defences fail to keep pace. We thus present IMUP (Integrity-
Centric Modular Update Platform), the first framework to jointly
address the two key challenges identified in our pilot study:
(C1) constructing a trustworthy cross-module integrity chain,
and (C2) scaling update performance under mass customisation.
IMUP integrates three core techniques: (i) per-module chameleon
hashing to enable verifiable integrity across customised firmware
compositions, (ii) server-side proof-of-work offloading to preserve
the lightweight nature of IoT devices, and (iii) server-side caching
to reuse previously generated module combinations, significantly
reducing the need to rebuild customised images from scratch.

Security analysis demonstrates that even under extreme con-
ditions—where up to 95% of secret keys are exposed—forging a
valid image still incurs a computational cost over 300x greater
than that of the legitimate server. Extensive experiments on
heterogeneous IoT devices and a server cluster validate IMUP’s
efficiency: for a single wave of 30,000 customised update requests,
server-side generation time is reduced by 2.9x, and device
downtime is reduced by 5.9, compared to the package-manager
baseline. All code, datasets, and reproduction scripts are available
at https://github.com/Integrity-Centric.

Index Terms—IoT security, Update, User Customization

I. INTRODUCTION

IRMWARE updates for Internet-of-Things (IoT) devices
enhance security through vulnerability patching and im-
prove user experience by introducing new features [[1]. How-
ever, modern IoT devices increasingly encompass a wide range
of features, and each user or device may require only a
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subset of features. For instance, a smart camera might need
motion detection without cloud-based recognition, whereas a
router could benefit from VPN support without ad-blocking.
This requires the customization of IoT firmware updates to
selectively update only the necessary functionalities or fea-
tures. However, we note that there does not exist a widely
acknowledged definition of the IoT firmware update cus-
tomization. Drawing on Mahurkar et al.’s concept of software
customization [2l], we define Customization Rights as the ca-
pability to selectively update only the necessary IoT firmware
modules—rather than applying a monolithic image—within
an authorized and integrity-preserving process. This notion
emphasizes controlled flexibility: users can tailor updates to
specific functional requirements, while the system maintains
a trustworthy update boundary. Such customized firmware
updates present a unique challenge, as the system must enforce
per-module authentication and maintain cross-module integrity
(e.g., if an update image is injected with an untrusted func-
tional module or misses a required dependency module, the
entire update should be rendered invalid)—a significantly more
complex task than verifying a single monolithic firmware.
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Fig. 1. Firmware update vulnerabilities by customisation (2020-2024)

From Monolithic Update to Module Customization. Al-
though firmware updates are widely considered a key method
for mitigating vulnerabilities, real-world cases repeatedly ex-
pose the high risks within the update chain itself. For example,
ASUS ShadowHammer abused a valid certificate to distribute
tampered firmware [3[]; the CrowdStrike—-Microsoft incident
caused global outages due to improper update handling [4]];
and Wu et al. (USENIX Security 2024) systematically revealed
multiple scenarios in which signed patches could still be
manipulated [5]. The OWASP IoT Top 10 also lists “inse-
cure update mechanism” as one of the top five threats to
embedded devices [6]. However, most of these works assume
that firmware is released as a monolithic package and verified
in a single step, ignoring the increasingly common practice
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of module-level customisation: manufacturers or users may
replace individual function modules, inject scripts, or over-
write configurations. These actions fragment the verification
boundary and expand the attack surface, yet their scale and
evolution have not been systematically quantified. Based on
this gap, we raise two early research questions:

e RQ1: To what extent does module-level firmware cus-
tomisation expand the attack surface of IoT devices?

Pilot Study Overview. To address RQ1, we conducted an
empirical investigation involving over 200 devices across 23
vendors, complemented by reverse engineering to construct
a unified threat model (Section [[II-B). We systematically
reviewed each vendor’s customisation support strategy and
identified three core attack surface touchpoints introduced
by modular update mechanisms. Through real-device testing,
we discovered five previously unknown O-day vulnerabilities
(CVE-1 to CVE-5), which informed our characterization of
Layer-2 (L2) and Layer-3 (L.3) customisation-induced vulner-
abilities. Leveraging these characteristics as labels, we per-
formed an automated classification of all update-related CVEs
disclosed from 2020 to 2024. Our analysis reveals that fraction
of module-level (L3) vulnerabilities have surged nearly 5x
over five years (Figure [T). These findings collectively demon-
strate that: (i) customisation significantly enlarges the firmware
update attack surface, and (ii) its security implications are
rapidly escalating yet remain insufficiently addressed.

Lack of Existing Solution. While some vendors advertise
“customization features,” their incomplete solutions often shift
the burden—and associated risks—of customisation onto end
users [[7], thereby expanding the attack surface while neglect-
ing legitimate demands for flexibility. Our pilot study affirms
that over 50% of update-related CVEs reported between 2020
and 2024 originate from these customisation interfaces, un-
derscoring the urgency of the problem. Although hardware
roots of trust and digital signatures are effective at securing
monolithic firmware images [8], they offer no support for
partial, module-level updates.

Device-Side Baselines. Existing firmware update mechanisms
predominantly follow one of two baselines: Monolithic Re-
build. Any modification from end-devices triggers a full image
rebuild and re-signing, incurring high build, bandwidth, and
device downtime costs. Package Manager (e.g., Opkg).
Allows incremental installation but lacks robust isolation and
a global integrity chain, exposing the system to threats such as
dependency confusion and rollback attacks. Neither approach
adequately balances strong security guarantees with the flexi-
bility required for scalable customisation.

Server-Side Optimisations. Extensive work on firmware dis-
tribution has explored incremental updates, differential patch-
ing, and repository-based installs to cut bandwidth [9], [10].
However, these optimisations still assume a single, vendor-
defined image. Once end users are free to mix and match
modules, the search space of valid images grows exponentially.
A single critical patch can therefore fan out into thousands of
distinct requests, multiplying certificate checks and I/O on the
server.

Together, the lack of cross-module integrity guarantees and
diverse customization requests render two challenges:

¢ C1 (Security): How can we construct a trustworthy cross-
module integrity chain without negating user customization?

o C2 (Scalability): How can resource-constrained IoT devices
and large-scale servers sustain the computational and storage
overhead induced by massive user-driven customization?

Our Solution. We propose IMUP, a firmware update mech-
anism that reconciles security, efficiency, and customisa-
tion—three goals that existing solutions struggle to achieve
simultaneously. Unlike prior approaches, IMUP embeds user-
defined customisation directly into its trusted computing
base. To enforce per-module integrity (C1), IMUP employs
a chameleon hash with weak collision resistance, enabling
verifiable integrity while supporting customisable components.
Heavyweight cryptographic operations—such as collision gen-
eration and validation—are offloaded to a resource-rich server
via Proof-of-Work offloading, allowing constrained devices
to perform only lightweight tag verification. To address per-
formance bottlenecks (C2), IMUP features a modular update
pipeline where clients retrieve only the required components.
On the server side, previously built module combinations
are cached and reused across requests, significantly reducing
rebuild and signing costs. Our contributions are threefold.

e« We conduct the first large-scale analysis of customisation
practices across 200 devices from 23 vendors, uncovering
five unknown CVEs. Our findings expose systemic risks
induced by customisation-enabled firmware updates.

o« We present the first framework that integrates module-
level chameleon hashing with proof-of-work offloading and
server-side cache reuse to jointly ensure update integrity and
scalable performance.

o Evaluations on real-world devices and a server show that
IMUP reduces firmware generation latency by 2.92x and
device downtime by 5.93x compared to a package-manager
baseline. Even under 95% key exposure, forging a valid im-
age remains 300x expensive for an attacker than legitimate
server-side updates—ensuring resilient disaster recovery.

II. RELATED WORK
A. Security-Oriented Approaches

A substantial body of research focuses on ensuring the
integrity and authenticity of firmware during updates. These
approaches commonly employ cryptographic primitives for
signing and verification, or leverage trusted execution envi-
ronments to enforce authenticity. For example, Xie et al. [11]]
propose a lightweight authenticated key agreement scheme
suitable for resource-constrained IoT devices, while Yu et
al. [12] develop EDASVIC for dynamic integrity checks in
industrial cloud platforms. Blockchain-based solutions have
also been explored, as in Hu er al. [13], which employs
immutable ledgers and batch verification to secure over-the-air
updates.

While these mechanisms provide strong protection against
tampering and unauthorized updates, they uniformly assume
a monolithic firmware image, where integrity is enforced



globally via a single signature or hash. Such designs do
not consider modular update workflows and therefore fail to
address cross-module dependency risks introduced by cus-
tomization.

B. Efficiency-Focused Solutions

To mitigate bandwidth and energy overheads during large-
scale deployments, researchers have investigated mechanisms
that optimize data transfer and reduce computational costs.
Incremental and differential update techniques, such as those
proposed by Arakadakis et al. [9], reduce update size by trans-
mitting only changed segments. Liu ef al. [10] improve energy
efficiency by introducing lightweight flash write operations for
energy-harvesting devices. Network-level optimizations, like
the CoAP-based two-phase dissemination in Park et al. [14],
aim to accelerate distribution in resource-constrained envi-
ronments. Blockchain-based methods [[13], [15] have further
integrated batch verification and distributed trust to reduce
centralized bottlenecks.

Although these techniques significantly improve scalability
and responsiveness, they largely ignore integrity challenges
under modular customization. Their efficiency models pre-
suppose that the update is a single, fixed image, leaving the
verification of interdependent modules unexplored.

C. Customization-Oriented Frameworks

Recent efforts have begun to explore flexible update frame-
works tailored for IoT devices. UpKit [16], for instance,
provides an open-source, portable mechanism for firmware
updates, enabling lightweight integration of modular com-
ponents. Similarly, SecuCode [17] addresses secure wireless
dissemination for highly constrained devices, allowing selec-
tive code deployment in dynamic environments. These works
demonstrate the feasibility and utility of customized updates,
where functionality can be adapted without a full image
rewrite.

However, existing frameworks prioritize flexibility over in-
tegrity. They generally lack mechanisms to enforce chained
verification across modules, making them susceptible to roll-
back attacks, dependency manipulation, and malicious module
injection. As such, they inadvertently introduce new attack
vectors by decoupling update logic from global integrity
assurance.

D. Existing Limitations and Challenges

While prior research has addressed specific aspects of
firmware update security, efficiency, and flexibility, none pro-
vides a unified solution that balances these dimensions under
large-scale customization. Our analysis reveals three critical
gaps:

(1) Assumption of Monolithic Firmware: Security mecha-
nisms [11]], [12]], [13]] rely on global signatures for entire
images, which fail when firmware is decomposed into
independently updatable modules.

(2) Lack of Cross-Module Integrity: Efficiency-driven ap-
proaches [9], [LO], [14]], [13]], [15] optimize resource con-
sumption but ignore integrity dependencies introduced by

modular customization, making it possible for attackers
to reorder or inject modules.

(3) Customization Without Safety Guarantees: Frame-
works such as UpKit [16] and SecuCode [17]] prioritize
functional flexibility but omit chained verification across
modules, exposing vulnerabilities like rollback attacks,
dependency manipulation, and malicious injection.

These limitations underscore the need for an integrity-
centric solution that supports granular customization without
sacrificing security or scalability—motivating the design of
IMUP presented in Section

E. Comparison of Related Works

To position IMUP within the context of existing research,
we compare prior works across six evaluation dimensions
that collectively capture update security, performance, and
flexibility. These include:

« Update Security: Whether the scheme enforces cryp-
tographic integrity and authenticity checks on firmware
images.

« Update Efficiency: Indicates mechanisms to reduce up-
date size or verification overhead, such as incremental
transfer or batch verification.

« Wireless Update: Denotes support for over-the-air (OTA)
update delivery.

o Server Cost: Reflects computational overhead on the
update server; a low-cost design minimizes dependency
on centralized verification or heavy cryptographic opera-
tions.

« Config-Level Customization (L2): Ability to modify
configuration parameters (e.g., network scripts) without
rebuilding the entire image.

o Module-Level Customization (L3): Ability to add or
remove functional modules during an update while pre-
serving integrity guarantees.

TABLE 1
COMPARISON BETWEEN RELATED WORKS

Scheme Update Update Wireless  Server  Config-Level ~ Module-Level
Security  Efficiency ~ Update Cost (L2) (L3)
IncUpd[9] X v X X X
LFW(10] x v x x x x
TP-FOTA[14 X v v v X b 4
BatchAuth[18 v v X X X b 4
UpKit[16] x v v v v X
SecuCode[[17 v (4 v b 4 X v
IMUP (Ours) (4 v v v 4 v

Table [l summarizes how representative schemes align with
these criteria. Notably, IMUP is the only approach that satisfies
both L2 and L3 customization while maintaining cross-module
integrity and efficiency.

III. PiLOoT STUDY

Existing studies have yet to clearly demonstrate the secu-
rity threats introduced by customisation in the IoT firmware
update process. To bridge this gap, we begin by systemat-
ically reviewing and comparing the customisation practices
of major firmware platforms, uncovering several previously



undocumented security issues. Building on the shared charac-
teristics of these issues, we further label and classify all public
update-related vulnerabilities reported from 2020 to 2024. This
analysis enables us to quantify the evolution of customisation-
induced risks over the past five years.

A. Customization Overview

Device customization has become a key factor in ensur-
ing the efficient operation of IoT devices across diverse
and dynamic settings [19]. Mehdipour er al. [19] highlight
that the diversity of device functionalities, dynamic network
topologies, and evolving security threats demand customiza-
tion requirements that standard solutions cannot adequately
address. Additionally, Sousa ef al. [20], [21] emphasize that
customization allows IoT devices to achieve higher security
and more efficient communication tailored to specific oper-
ational environments. User customization has also emerged
as a critical factor influencing the choice of IoT devices
[22]. Personalization is vital for improving user satisfaction
and experience [23], [24], as it enables devices to adapt to
individual preferences and requirements.

TABLE II
SUMMARY OF PARTIAL FIRMWARE MANUFACTURERS’ UPDATE
STRATEGIES (FULL SUMMARY AVAILABLE ON GITHUB)

Classification | IoT Vendor Key Protections Update Package
Frequency Manager
Open Rollback: No
Source OpenWrt Auto: No Monthly opkg
q . Rollback: Yes
Commercial Cisco Auto: Yes Monthly No
TP-Link Rollback: Yes 3-6 months No
Auto: Yes

To assess whether current firmware updates adequately
address customization needs, we conducted an empirical inves-
tigation into manufacturers’ customization practices and ana-
lyzed the update management strategies of leading firmware
providers. In the IoT ecosystem, firmware providers are pri-
marily categorized into open-source and commercial vendors.
Open-source providers, such as OpenWrt and Arduino, offer
firmware that the community can freely use and modify. In
contrast, commercial providers supply proprietary firmware
developed and maintained by device manufacturers or spe-
cialized vendors.

To systematically assess these manufacturers’ firmware up-
date practices, we have reviewed official documentation, prod-
uct manuals, technical support websites, and publicly available
technical reports. We establish four key indicators for evalu-
ation: prevention of firmware rollback, support for automatic
updates, update frequency, and the package manager utilized.
These indicators effectively capture the diverse strategies and
measures employed by manufacturers during the firmware
upgrade process. For this study, we collected information on
200 IoT device and an analysis of firmware update strategies
among mainstream manufacturers reveals stark differences
between open-source and commercial firmware providers. The
key findings on representative vendors are summarized in

IDetailed at https://github.com/Integrity-Centric/IMUP_Firmware_DataSet

Table [[I} while the complete table of all analyzed vendors is
available in GitHub.

1) Open-source projects such as OpenWrt emphasize flexi-
bility and extensive user customization, allowing users to
modify firmware functionalities to meet specific needs.
However, these projects typically do not support auto-
matic updates or firmware rollback protection, resulting
in vulnerabilities within their security measures and in-
sufficient security assurances.

2) In contrast, commercial firmware providers like Cisco,
TP-Link, and Huawei prioritize enhancing device man-
agement efficiency through automation and robust secu-
rity mechanisms. These vendors generally support auto-
matic updates and firmware rollback protection, imple-
ment stringent version management, and maintain fre-
quent update cycles to bolster device security.

In summary, the analysis of firmware update strategies
shows that while open-source firmware projects prioritize user
customization and flexibility, they often lack robust secu-
rity features like automatic updates and rollback protection,
which limits their widespread adoption. On the other hand,
commercial firmware providers offer more automated, secure
update mechanisms. Nevertheless, they sacrifice customization
to obtain stronger automation, highlighting that widespread
adoption of extensive firmware customization remains limited.

B. Unified Threat Model for Updates
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Fig. 2. Offline vs. OTA update paths and two customisation-specific risk
points:(D L2 (config-level tampering); (2) L3 (module-level forging).

IoT Device

Update modes. * Offline (risk (D): users sideload configuration
files or scripts that bypass signing. * OTA (risk (2)): vendor-
signed image accepts extra modules whose cross-module in-
tegrity is unchecked.

Adversary. We assume remote attackers capable of MITM and
binary tampering; physical attacks are out of scope (details in

Appx [A).

C. Identified Categories of Customization Vulnerabilities

During our testing of the firmware update chains from
23 vendors and over 200 devices, we discovered five pre-
viously unknown 0-day vulnerabilities (referred to as CVE-
1 to CVE-ﬂ)). For completeness, we keep a baseline class
L1—vulnerabilities that reside entirely inside the update pro-
cess itself (e.g., a stored XSS in the web-based updater that
never touches the image) and do not alter the core image

2For anonymity purposes, we do not use the real CVE number here.
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boundary. Based on how customisation operations cross the
image boundary, the five 0-days fall into two customization-
dependent classes: L2 (configuration-level) and L3 (module-
level).

CVE-1 — L2: Configuration-Level Customisation Vulnera-
bility. A popular IP camera offers a feature for custom scripts.
However, in its firmware update package, the script file is
treated only as data and is not verified as strictly as the core
image. An attacker can insert malicious code into the script
filename. If a user downloads and applies this unverified file
during an offline update, the device may be compromised.
The common feature of L2 vulnerabilities is that the main
firmware image remains unchanged, and the risk comes
from weak verification of auxiliary files such as scripts, or
rollback markers.

CVE-5 — L3: Module-Level Customisation Vulnerability
A certain vendor’s router is designed to support firmware cus-
tomization. However, its update process is vulnerable to a stack
overflow attack. Although the official firmware package does
not trigger this issue, an attacker can exploit the customization
feature by modifying the length field in the firmware header.
This allows a malicious firmware to bypass the integrity check
and take control of the device. This case highlights the security
risks caused by weak verification in customization-friendly
systems. L3 vulnerabilities are characterized by adding or
replacing binary components, which expands the attack
surface to include the module loader, dependency resolution,
and cross-module integrity chains.

D. Quantify Customisation CVEs in Firmware Updates

Data Source and Method. We used the NVD v2 API [25]
to extract all CVE records related to “update” from 2020
to 2024. By using multiple queries with keywords such
as “firmware update”, and applying a 120-day rolling
window to avoid API rate limits, we obtained 14,389 can-
didate CVEs. Each CVE description was processed using
the L1/L.2/L.3 regular expression classifiers proposed in the
previous section.

Figure[T] shows the overall distribution of the three vul-
nerability types from 2020 to 2024. Starting from 2022,
L2 vulnerabilities account for 50.5%, L3 for 5.8%, and the
remaining 43.7% are L1, which only involve the update
process itself. In other words, since 2022, more than half
of all update-related vulnerabilities are strongly related to
customisation, highlighting its impact on the integrity chain.
L3 vulnerabilities have grown the fastest: the number of
module-level issues increased from only 32 in 2020 to 335
in 2024—an increase of nearly 857% over five years.

E. Key Finding

Customization is a critical factor in enhancing the func-
tionality, adaptability, and user satisfaction of IoT devices,
particularly in diverse and dynamic environments, such as
security cameras with privacy modes or sensors operating
in fluctuating network conditions. However, our pilot inves-
tigation reveals that the current level of customization is
insufficient, with limited support from manufacturers and a

lack of standardized practices. This gap not only restricts user
flexibility but also introduces significant security challenges,
as customization expands the attack surface and facilitates
adversary exploitation.

Further quantitative analysis shows that the risks from
module-level customisation (L3) are rising rapidly and
have long been overlooked. Our statistics on all firmware
update-related CVEs from 2020 to 2024 show that vulnera-
bilities involving the addition or replacement of binary com-
ponents in firmware have increased nearly 5x over five years.
At the same time, existing industry solutions still follow the
traditional “one-time signing of full images” model. They fail
to build module-level integrity chains for third-party plugins,
optional feature packages, or Stock Keeping Unit variants,
resulting in growing blind spots in verification.

Based on the key findings of our pilot study, the rest of
this work provides a unique perspective and solution on the
interplay between customization and security, aiming to offer
more robust and adaptable firmware update strategies.

IV. PRELIMINARY
A. Chameleon Hash

The Chameleon Hash Function (Cy,g,) is a cryptographic
primitive that supports trapdoor-enabled collision generation,
originally introduced by Krawczyk et al. [26]. In contrast to
traditional hash functions, which are strictly collision-resistant,
Chameleon Hash allows an authorized party with a trapdoor
key to generate collisions in a controlled manner.

In this work, we adopt the identity-based Chameleon Hash
construction proposed by Chen et al. [27], which enhances
key management by preventing trapdoor key exposure. This
construction plays a critical role in our update mechanism: it
enables legitimate firmware providers to modify update con-
tent—such as customized data—without changing the overall
digest, thereby achieving efficient customization with integrity
guarantees. The Chameleon Hash is defined as:

Chash(m7 7") - Chash(m/a ’l”/),

where m # m/, and the collision-resistance property is
selectively bypassed using a trapdoor function.

The value ' required to produce a collision with a new
message m’ is computed by the collision-finding algorithm:

r" = Cec(m,m/,r),

where sk is the secret trapdoor key.

In our scheme, each pair {m,r} and {m/,r'} forms a
valid collision under the same digest. This property allows
controlled content rewriting in firmware updates while pre-
venting unauthorized manipulation, as only parties holding the
trapdoor can generate such collisions.

B. Proof of Work (PoW)

PoW is a cryptographic mechanism originally proposed by
Dwork and Naor [28]] to introduce computational costs that
mitigate abuse and prevent Denial-of-Service (DoS) attacks.
IMUP leverages PoW to create computational asymmetry:
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resource-rich servers can efficiently solve PoW challenges, but

adversaries attempting to forge firmware must incur significant

computational expenses, thereby increasing their attack cost.
We formally define the PoW generation process as:

PoW(T, m, Dpow) — (SolutionNonce, Bpash ),

where: T' denotes the task structure (in IMUP, this involves
repeated Chameleon Hash computations), m is the input mes-
sage (e.g., customized metadata digest), Dp,w is the difficulty
threshold, SolutionNonce is the computed nonce satisfying
the difficulty, B, is the resulting hash value that meets the
required threshold.

In our design, the task 7" involves repeatedly computing the
Chameleon Hash over m with different nonce candidates until
the resulting hash satisfies the difficulty constraint Dpow.

The corresponding PoW verification process is defined as:

Verify(SolutionNonce, m, Dp,w) — Bool,

where Bool € {0,1}. The verifier recomputes the hash from
(m, SolutionNonce) and checks whether it satisfies the spec-
ified difficulty. A result of 1 indicates successful verification;
otherwise, failed.

This mechanism enhances the integrity of firmware updates
by ensuring that only parties capable of performing sufficient
computational work can generate valid proofs, while minimiz-
ing the burden on resource-constrained IoT devices.

C. Notations

The notations used in the rest of the paper, following that
in [27]], are described below. In general, bold characters are
used to denote vectors; for instance, a Chameleon Hash digest
vector is represented as CDigest. Calligraphic font is used
to denote sets; for example, a set of such digest vectors is
represented as CDigest, where CDigest € CDigest.

e The Crypto Module (CModule) is a fundamental crypto-
graphic component of IMUP, and its generation algorithm
is detailed in Section [V-B1l

o The Functional Module (FModule) is the core component
that facilitates the customization of the solution. It is pack-
aged as an extension for loading functional expansions and
patch updates by the manufacturer, and during the update
phase, it is selectively utilized by the user.

o The verification chain, denoted as Verify(H,C), con-
sists of two distinct components. The first component,
H = (h1,hs,...,hy,), represents an ordered sequence of
Chameleon Hash information, where each h; corresponds
to a specific Chameleon Hash output, and the order of these
elements is strictly preserved. The second component, C,
is a unique cryptographic commitment that serves as the
anchor of the chain, ensuring the integrity and consistency
of the associated Chameleon Hash information. Together,
H and C form the verification chain, encapsulating the
essential elements required for the verification process.

V. IMUP DESIGN

Aligned with the commonly used two-party update
model[29], [30], IMUP models a server and a fleet of IoT
devices. Figure[3]illustrates its three working phases: P1 main-
tenance, P2 distribution, and P3 verification.

e P] Maintenance: Server-side engineers patch vulnerabilities
or add features, then invoke IMUP.Package to wrap the mod-
ified code into a signed functional module FModule.

e P2 Distribution: Upon a customisation request, the server
searches its cache for a matching firmware; otherwise it
assembles the requested module set on demand and signs the
result.

e P3 Verification: Each device—during either offline or OTA
update—verifies the received image with Verify(H, C'). Only
images that pass are installed; failures are discarded immedi-
ately.

The remote-only adversary assumed in §3 applies to all
three phases; physical attacks remain out of scope.

A. Maintenance Phase

During maintenance, engineers patch vulnerabilities or add
features and then invoke IMUP.Package to build a self-
contained functional module FModule. Each module bun-
dles the patched code plus a manifest that describes installation
steps and dependencies. IMUP.Package handles scripts and
binary objects separately to speed up dependency resolution.

B. Distribution Phase

As shown in Fig. ] this phase runs four server-side stages:
S1 key-module build, S2 initialisation, S3 security checkpoint,
and S4 version iteration.



eS1. IMUP packages each task into a code module
CModule. A firmware image is an ordered tuple of modules;
only an identical order passes verification. Because the same
module may appear in many sequences, the builder reuses
CModules across versions.

o S2. The first signed image loaded onto every device yields
a trusted pair Verify(H, C), stored locally for later checks.
©S3-S4. An S3 build commits to a fresh C' while keeping
the hash chain H of the previous checkpoint; S4 produces
intermediate customised variants that share this verified base-
line. Any two images between the same S3 checkpoints are
therefore security-equivalent and can be swapped at will.
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Fig. 4. (S1) Key Material Construction, (S2) Firmware Initialization Phase,
(S3) Security Version Update Phase, and (S4) Version Iteration Phase collec-
tively belong to the Distribution Phase, while (S5) Devices Verification is part
of the Verification Phase.

1) Key-Material Construction (SI): Stage S1 builds N
code-module templates (CModule) and records their digests
C for later reuse (Alg. [I).() Each CModule contains:

e PStr and PParam: random padding;

« a PoW nonce meeting difficulty Dpow;

o a chameleon digest for integrity.

The builder repeats this procedure N times to obtain
C Module, which feeds the next stage.

2) Firmware-Initialisation (S2): At S2 the server assembles
the first trusted image for each device.
e(®)Select L + 1 blocks from CModule; L become functional
modules and one becomes the commitment block.

e(3Replace each PStr with the corresponding FModule;
update each PParam to a fresh collision parameter r so that
every chameleon digest remains valid.

e(v)After the final block, aggregate the L digests into Blockyg,
and compute the commitment.

The resulting verification chain V = (H,C) is stored on
the device and acts as the immutable root for all subsequent
updates.

3) Security Version Update stage: This stage (summarized
in S3 in Figure ) replicates the first four steps of the Firmware
Initialization stage and provides the generated firmware with a
new verification chain. Beyond the replicated steps, this stage
requires the generation of proof of commitment, which is used
to verify the prior information commitment. The core concept
is that the firmware will enable the device to prove its ability
to find a set of hash collisions. These collisions must satisfy
the commitment conditions for any given information. This
can only be achieved by an entity possessing the trapdoor of
the Chameleon Hash function. We only describe the additional
step as below.

In (5, firstly, the information from the previous version
will be loaded, which includes the functional module digest
Block,, and the commitment. Then, the new version block
information m and the proof P will be calculated, such that

Chash (Blockingo, commitment) = Cpaen(m, P).

It is noteworthy that for each uniquely generated firmware,
corresponding to the same commitment, the proof P will be
completely different.

4) Version lIterations stage: This stage (summarized in
S4 in Figure M) represents the practical implementation of
IMUP, balancing efficiency under customization constraints.
Typically, when a user sends a customization request to the
server, this process is initiated. During this process, a sequence
of H will be generated, identical to that in the Verification
chain. This implies that updated firmware under the same
Verification chain can be substituted and reused. Since users
can autonomously load and discard functional modules from
an update package based on their needs, the server can flexibly
select the number of functionalities to include in a single
firmware, depending on the number of modules. This increases
the likelihood of reusing generated firmware. For instance, if
User; requests modules a, b, ¢, and Usery requests a, c, d,
and there exists an update firmware package containing both
of these subsets, then the firmware package can be reused.
This approach effectively reduces the server’s load under high
request conditions.

Step (6 loads the firmware of the same version as the Veri-
fication chain into the server’s memory. This step (7) is similar
to the Security Version Update stage, the collision parameter r
of the previous block will be replaced in the current firmware
to maintain the integrity of the entire firmware. (8) According
to the customization request, the required FModule will be
replaced in the firmware. (9) This process will repeat until each
module satisfies the legal requirements of the Chameleon Hash
function. Specifically, each unique firmware will generate a
unique commitment, which will be stored along with the
firmware.



Algorithm 1 Crypto Module Generation
Require: Number of Modules N, Proof of Work Difficulty
Dypow
Ensure: CryptoM odule
1: CryptoModule < ()
2: fori=1to N do
3: PStr, PParam < Padding(32)
h < Chash(PStr, PParam)
SolutionNonce, Bhysh <— PoW (T, h, Dpow)
CryptoModule « m||r||SolutionNonce||h
CryptoM odule.update(CryptoModule)
8: end for
9: return CryptoM odule

Nk

C. Verification Phase

The firmware verification phase is performed on the IoT
device to validate all incoming firmware chains. When the
device receives a new firmware chain, the verification chain
will be verified. Upon successful verification, the device
will select the appropriate FModule for updating. This phase
consists of steps @ to @, (see in Figure [4)

The initial device setup must be performed in a trusted
environment because this step initializes the verification chain
without verification (e.g., when the firmware is first produced
at the factory). The device’s update interface continuously
waits for incoming firmware updates. Verification is divided
into two modes: Functional and Security, with each update
firmware entering only one branch.

() @ @ represent the Functional verification. First, the
device checks whether the sequence and values of H in
the verification chain of the pending firmware update match.
Only if they match exactly will the version verification pass.
Next, each block is verified for legality, including whether
the Chameleon Digest matches and whether the Proof of
Work meets the requirements. The Proof of Work module can
effectively increase the attacker’s cost, reducing the device’s
attack value. When all verifications pass, the device accepts
the firmware update.

represents the Security verification. For conve-
nience, let the original verification chain be denoted as
Vore = (Hpre, Cpre), and the updated firmware as Vypa =
(Hupa, Cupa). If the firmware passes the verification, it sat-
isfies:

Chash (Hprea Opre) = Chash (HUpd7 C(Upd)

When the verification passes and each block is completely
valid, the device will update the verification chain and accept
the updated firmware.

D. Practical Security Mapping

To demonstrate how IMUP addresses real-world vulnerabili-
ties, we map the representative flaws identified in Section
to their corresponding mitigation phases in our design. Ta-
ble summarizes this mapping, highlighting IMUP’s capa-
bility to enforce integrity and security under both L2 and L3
customization scenarios.

TABLE III
MAPPING OF VULNERABILITIES TO IMUP MITIGATION PHASES

Vulnerability ~ Level  Description IMUP Mitigation Step(s)
CVE-1 L2 Config script injection [N
CVE-2, 3 L2 Rollback marker bypass @, ®
CVE-4 L3 Extra module injection [ONONO)
CVE-5 L3 Stack overflow via header tampering ®,®

The steps in Table mitigate the listed vulnerabilities
by binding all updates to a verifiable integrity structure
maintained across customization and version changes. For L2
vulnerabilities such as configuration script injection (CVE-1),
steps (2) and (8) ensure that any inserted script must be incorpo-
rated into a valid chameleon hash commitment; unauthorized
modifications invalidate the commitment and are rejected. For
rollback-related flaws (CVE-2 and CVE-3), steps @) and (5
restrict version changes to those anchored in manufacturer-
approved checkpoints, preventing attackers from reverting to
unverified or vulnerable firmware. For L3 issues such as
extra module injection (CVE-4) and header tampering (CVE-
5), steps (), ), and (9) enforce strict digest ordering and
full-chain verification, so any unauthorized module addition
or header manipulation leads to immediate failure. Together,
these measures ensure that firmware remains integrity-assured
under both functional customization and iterative updates.

VI. SECURITY ANALYSIS

IMUP resists image forgery and rollback under the adver-
sary model (III-BJ)); proofs are provided in Appendix

VII. EXPERIMENT

Our experiments on IMUP aim to answer the following
Evaluation Questions (EQs):

1) EQ1: Can firmware updates remain secure under the
constraints of customization rights?

2) EQ2: Can IoT devices efficiently implement functional-
ities under the constraints of customization rights?

3) EQ3: Can servers operate at low cost under the con-
straints of customization rights?

For EQ1 of assessing whether the IMUP scheme can
ensure the security of firmware updates when customization
rights are allocated, we perform security testing focused on
the PoW component. By simulating attacker efforts to forge
firmware updates at various security levels, we measure the
computational time and resources required to compromise the
system. This experiment aims to determine if the increased
attack cost introduced by the PoW mechanism effectively
deters potential attackers, thereby guaranteeing the security
of updates (Section [VII-B).

For EQ2, we evaluate the efficiency and adaptability of
the IMUP scheme on IoT devices with different hardware
capabilities. Functional tests are conducted by applying the
IMUP scheme to repair various types of vulnerabilities on
devices ranging from basic to high-performance. We measure
metrics such as verification time and system call overhead
to assess whether the IMUP scheme enables IoT devices



to efficiently implement required functionalities without im-
posing significant computational burdens, thus verifying its
operational efficiency under customization constraints (Section
VIL-C).

For EQ3 of examining whether servers can operate stably
and cost-effectively when managing firmware updates with
customization rights, we design scalability and customiza-
tion experiments. We simulate high-throughput interactions
between the server and users, assessing performance metrics
like total processing time, hit rate (the rate of firmware to
satisfy different requests), number of generated firmware, and
storage consumption under large-scale concurrent requests. By
comparing the IMUP scheme with OpenWrt’s update strategy,
including its package manager, we aim to verify its ability
to maintain server operations cheaply. We chose this strategy
because it is renowned for its customization capabilities,
making it an ideal benchmark for assessing our scheme under
extensive customization demands (Section [VII-DJ.

A. Hardware and Software

We evaluate IMUP using a testbed with a server, multiple
IoT devices, and a unified software setup. Details are provided
in Appendix [E]

B. Attack Overhead

We adopt a non-cooperative game theory model [31],
[32] to formally analyze the attack overhead of attackers.
The participants in the model include the Attacker and the
Manufacturer (Defender). The Attacker derives their benefits
from forging firmware, while the Defender, as the legitimate
firmware publisher, is responsible for maintaining the sys-
tem’s integrity and security. The Defender’s strategy involves
adjusting the Proof-of-Work difficulty parameter Dpow and
the key size to maximize system security. Conversely, the
Attacker’s strategy involves brute-force enumeration to search
for possible solutions within the key space.

Within this framework, we design experiments to measure
the cost Ac required for an Attacker to successfully carry
out an attack under different Dp,w and key size settings.
As both Dpyw and the key size increase, the Attacker’s
cost grows exponentially, thereby reducing the profitability
of forging attacks. Additionally, the IMUP mechanism shifts
the computational burden to resource-rich server-side envi-
ronments, ensuring that the verification cost on IoT devices
(IoT,.) does not increase significantly, while the defender’s
cost (D.) remains manageable. Generally, the computational
overhead between the server and the attacker is asymmetry by
unique IMUP design when generating and forging firmware,
respectively.

1) Experimental Setup: We follow the partial randomness
leakage assumption from [33]], attacker can recover a certain
percentage of the encryption key, denoted as the forged key
K, where p represents the percentage of the key exposed.
The remaining bytes must be recovered through brute-force
enumeration. The attacker employs the encryption function
Encrypt, (m) to attempt to generate legitimate firmware that
can pass the device’s verification process. Since legitimate

firmware must satisfy the Proof-of-Work difficulty parameter
Dpow, each forgery trial increases the computational cost
of the attack. Furthermore, considering that computational
capabilities limit the Proof-of-Work’s computational power,
we assume that the attacker possesses a computational power
that is 1000 times that of the defender.

In our experiments, we test the impact of different Dpyw
strategies on the attacking cost with a key size of 1024 bits.
Additionally, we evaluate the impact of varying key sizes on
the Attacker’s attack cost under a fixed Dpow = 8 strategy.
Furthermore, we assess the performance of each strategy on a
400MHz IoT device to show that security parameters of key
size and PoW have almost no overhead increase to it, ensuring
the practicality of the IMUP design.

2) Results and Analysis: Table [[V] presents the attack
cost with varying Proof-of-Work difficulty parameters (Dpow)
under a fixed key size of 1024 bits. Dp,w refers to the difficulty
coefficient of Proof-of-Work, where a higher value signifies
greater computational effort required to complete the PoW
task.

Results without PoW. When Dp,w = 0, the attack cost to
forge firmware updates is extremely low. In the case of K754,
it only takes 35.79 minutes to successfully forge the firmware.
This indicates that without the PoW module, an Attacker can
quickly generate forged firmware with minimal computational
effort when a portion of the key is exposed, posing significant
security risks.

Results with PoW. As the PoW difficulty level Dpw in-
creases, the attacker cost escalates substantially. For example,
at Dpow = b, the forgery time ranges from 1.73 seconds
(Kg959) to 8.39 days (Kog7594). When Dpow increases to 8,
the cost grows exponentially, ranging from 18.49 minutes
to 14.75 years, even though the attacker possesses 1000
times the computational power of the defender. However, the
defense cost remains low at only 9 minutes to the server.
This asymmetric computational overhead design effectively
prevents the forgery attack. Even when a vast majority of key
bits are exposed, the system still provides sufficient security
time for the defender to respond and mitigate losses.

Table [V] explores the attack cost Ac with varying key sizes
under a fixed Dpo,w = 8. The results demonstrate that as the
key size increases from 1024 bits to 3072 bits, the attack cost
rises significantly. Specifically, for a 1024-bit key, the cost
reaches 168.33 days, whereas for a 2048-bit key, it exceeds
20 years. For a 3072-bit key, the attack cost remains above 20
years across all measured parameters. This substantial increase
underscores the robustness of the system against attacks, even
in scenarios involving catastrophic key leakage.

Another prominent finding is that the computational over-
head on IoT devices (I0T.) remains largely unaffected across
different Dpow and key sizes. For instance, in Table ToTy,
shows minimal fluctuations, staying within approximately 6.37
to 6.73 seconds regardless of Dpoyw. Similarly, in Table
IoT,. remains consistent, further validating that the IMUP
mechanism effectively offloads the computational burden to
server-side. This ensures that IoT devices maintain their oper-
ational efficiency without compromising security.



TABLE IV
ATTACKER COST TRENDS WITH VARYING Dpow UNDER A 1024-BIT KEY SIZE

D, ToTye Ko99.0% Kog.59% Ko8.0% Ky7159 Koy7.09%
Dpow =0 <lms 6.37 sec 2.05 ms 65.54 ms 2.10 sec 1.12 min 35.79 min
Dpow = 5 0.84 sec 6.47 sec 1.73 sec 55.31 sec 29.50 min 15.73 hrs 8.39 days
Dpow = 6 9.31 sec 6.49 sec 19.07 sec 10.17 min 5.42 hrs 2.89 days 92.56 days
Dpow = 2.8 min 6.61 sec 5.73 min 3.06 hrs 1.63 days 52.20 days 4.57 years
Dpow = 9.03 min 6.73 sec 18.49 min 9.86 hrs 5.26 days 168.33 days 14.75 years

TABLE V
ATTACKER COST TRENDS WITH VARYING KEY SIZES UNDER Dpow = 7

De ToTy, K909 K359 Ko3.0% Ky159 K97.0%
1024-bits 9.03 min 6.61 sec 5.73 min 3.06 hrs 1.63 days 52.20 days 4.57 years
2048-bits 9.94 min 7.94 sec 1.63 days 4.57 years >20 years >20 years >20 years
3072-bits 10.35 min 8.17 sec 4.57 years >20 years >20 years >20 years >20 years

C. Overhead on IoT Device

To evaluate the efficiency and applicability of our IMUP
scheme across a wide range of IoT devices with diverse
hardware capabilities, we measure both the execution time of
firmware patching and the number of system calls invoked
during the update process. As a baseline, we adopt the widely
used OPKG package manager due to its extensive support for
customization [34], [35].

OPKG is a general-purpose solution for installing and
managing software components, enabling users to customize
device functionalities through an open repository system.
Despite its strengths, it is not designed to address IMUP’s
core challenges—particularly the seamless integration of user-
friendly customization with vendor-side security. Under the
OPKG model, each device independently fetches updates from
external repositories, increasing computational overhead and
complicating maintenance.

IMUP simplifies customization for both users and vendors
by modularizing firmware and ensuring integrity through cryp-
tographic mechanisms. This reduces risks and complexities in
decentralized updates, easing the user burden and enabling
vendors to maintain secure, consistent firmware at scale.

1) Experimental Setup: The parameters of the IMUP
scheme are set to L = 7, Dpow = 5, and the cryptographic
keys employed have a 2048-bit key size. We plan to conduct
two categories of experiments: Functionality Update and
Vulnerability Fix. The specific implementation details are
provided in Appendix [{

2) Results and Analysis: Figure [5 presents a comparative
analysis of update operations across three IoT devices with
different computation resources (CPU frequencies ranging
from AR933 (400,MHz) and MT7620N/A (680,MHz) to
MT7621A/N (880,MHz). We evaluate two update paradigms:
OPKG-based (OPU for functional updates, OPF for security
fixes) and IMUP-based (IMU for functional updates, IMF for
security fixes). The metrics considered include execution time
during loading, verification, and installation stages, as well as
the associated system call counts.

Reduced Overhead on Low-Resource Devices. On the
AR933 IoT device (400,MHz), the baseline OPU approach

costs 21.24 s for loading and 20.16 ms for installation,
whereas our IMU shortens these durations to 3.16 s and
19.62 s, respectively—an 85% improvement in the loading
stage. This acceleration is primarily achieved by offloading
complex dependency resolution and remote component fetch-
ing to the server side, eliminating the need for frequent on-
device lookups. As a result, the loading phase’s system calls
decreased from over 9 million under OPU to about 31,849
under our IMU. A similar trend holds for security patching:
OPF’s loading time decreases from 2.34 s to 1.51 s under our
IMF. These results demonstrate IMUP’s superior efficacy in al-
leviating computational and networking overhead, particularly
for IoT devices with limited processing capabilities.
Consistent Gains with Increasing Computation Resource.
As computation resources increase e.g., CPU frequency in-
creases, both OPKG and IMUP approaches improve their
performance. However, IMUP consistently maintains a sub-
stantial advantage. For instance, at 880,MHz (MT7621A/N),
IMUP loading times for functional updates (IMU) and security
patches (IMF) still outperform OPU and OPF by wide margins.
IMU reduces loading from 18.98 s (OPU) to 2.51 s, and IMF
cuts it from 1.89 s (OPF) to 1.01 s. This trend demonstrates
that IMUP’s efficiency is feasible at the low end of hardware
capabilities and scales effectively as IoT device performance
improves.

D. Server Stability and Cost Efficiency

To examine whether servers can operate at low cost under
the constraints of customization rights (RQ3), we conduct
large-scale performance evaluations focusing on four quan-
tifiable metrics:

« Total Time: The cumulative time required by the server
to retrieve existing firmware images and generate new
ones.

« Hit rate: The percentage of requests fulfilled using
pre-existing images in the server cache, reflecting the
server’s ability to leverage previously generated firmware.
Formally,

Number of Reused

Hit rate = x 100%

Total Number of Requests
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Fig. 5. The time consumption and system call distributions of OPKG and IMUP for functionality updates (OPU, IMU) and security fixes (OPF, IMF) across

different CPU frequencies.

TABLE VI
SUMMARY OF SERVER PERFORMANCE UNDER LARGE-SCALE REQUESTS (DETAILED RESULTS ARE IN APPENDIX)

Modules Requests Scheme Type Total Time (s) Hit Rate (%) Number of Firmware Storage (GB)
Number Times
Monolithic Rebuild 282,313.12 1.77 9,823 356.85
200 10,000 Package Manager 332.13 N/A N/A N/A
IMUP L =7 230.88 0.64 3,608 7.11
Monolithic Rebuild 576,066.80 0.3 19,940 724.38
20,000 Package Manager 667.70 N/A N/A N/A
IMUP L =7 318.65 75.39 4,923 9.69
Monolithic Rebuild 926,320.50 0.07 29,978 1,089.04
30,000 Package Manager 1,014.21 N/A N/A N/A
IMUP L =7 357.55 81.88 5,437 10.71
2,000 30,000 Monolithic Rebuild 816,001.46 0.06 29,981 1,089.15
Package Manager 1,175.53 N/A N/A N/A
IMUP L =7 1,080.89 45.71 16,286 32.06
4,000 30,000 Monolithic Rebuild 712,770.42 0.07 29,978 1,089.04
Package Manager 1,137.92 N/A N/A N/A
IMUP L =7 389.70 45.13 16,460 32.40

o Number of Generated Firmware: The total count of
distinct firmware images produced and stored by the
server, indicating how effectively redundant image builds
are avoided.

« Storage Consumption: The total storage space occupied
by all retained firmware images, serving as an indicator
of ongoing operational costs.

We evaluate these metrics under varying workload in-
tensities by issuing 10,000, 20,000, and 30,000 concurrent
image build requests. Following the modularity documented
by OpenWrt as of August 2024 [36], we vary the number
of modular firmware packages available on the server (200,
2,000, and 4,000) to represent different levels of functional
diversity. A request generator, based on module popularity
and allowing duplicate requests, is employed to reflect the
dynamics observed in real-world scenarios. For each incoming
request, the server either retrieves an existing cached image or
compiles a new one, depending on the availability of a suitable
pre-generated image.

In addition, we explore how adjustments to chain lengths

(L), security parameters (Dpow), and cryptographic key sizes
(e.g., 2048-bit keys) influence on these metrics (Appendix
D). Through these comprehensive evaluations, we demonstrate
that it is possible for servers to maintain minimum processing
times, high hit rates, and low storage consumption when han-
dling large-scale, customization-intensive request workloads.

1) Experimental Setup: We consider two baseline update
strategies for comparison, aligning with the analysis method-
ology presented in Ebbers er al.’s study [8]].

1) Monolithic Rebuild Strategy: Upon receiving a user
request, the server searches for an existing firmware
image. If no pre-compiled image is available, the server
recompiles the entire kernel. This strategy incurs high
time and memory costs due to complete recompilation.

2) Package Manager Strategy: IoT devices send cus-
tomized requests to a server, which then returns the
corresponding packages. Upon receiving each package,
the IoT devices verify it and resolve relevant depen-
dencies, recursively requesting any missing dependencies
from the server until the update process is complete. We



refer to this entire sequence of interactions as a single
“request.” To more accurately assess server performance,
the processing time on the IoT devices is excluded from
our measurements. Since the image of this strategy is not
reusable, we do not consider metrics such as hit rate and
storage size.

2) Throughput Analysis: Table [V]] presents the server per-
formance evaluation under large-scale requests, comparing the
Monolithic Rebuild, Package Manager, and IMUP (L = 7)
schemes across varying numbers of modules and request
volumes.

The results indicate that the IMUP scheme consistently
exhibits lower server-side costs compared to the Monolithic
Rebuild and Package Manager strategies. This efficiency is
attributable to the rational allocation of customization rights
between users and manufacturers, which effectively increases
the firmware hit rate. By allowing manufacturers to generate
and store a wider range of firmware variants, the likeli-
hood that a requested firmware already exists on the server
increases, reducing the need for time-consuming on-the-fly
generation.

Although the hit rate decreases slightly as the number
of modules increases, it remains above 40% even at higher
module counts. This demonstrates the scalability of the IMUP
scheme in handling large-scale firmware requests while main-
taining efficient server performance. In practical applications,
more popular components and modules are requested more
frequently, leading to higher hit rates than those observed
in the experimental setup. The popularity of certain modules
means that they are likely to be cached on the server, further
enhancing the efficiency of the IMUP scheme in real-world
scenarios. For example, when the number of modules is 200
and the number of requests is 20,000, the IMUP scheme
achieves a hit rate of 75.39%, significantly higher than the
Monolithic Rebuild strategy’s hit rate of only 0.30%. This
high hit rate contributes to the IMUP scheme’s lower total
processing time and reduced storage requirements.

Overall, the IMUP scheme’s ability to maintain a high
firmware hit rate, even as the number of modules increases,
results in lower server processing times and storage consump-
tion. This makes it a cost-effective solution for firmware dis-
tribution across deployments requiring different combinations
of modules and varying update granularities.

VIII. CONCLUSION

We present the first comprehensive study of firmware cus-
tomization under strict security and efficiency demands. In
addressing our research questions—ensuring robust security
while supporting modular user updates—we propose IMUP.
By combining a Chameleon Hash function with proof-of-
work, IMUP shifts cryptographic overhead to powerful servers,
dramatically raising the cost of firmware forgery. Its modular
design meets user customization needs and simplifies version
control. Evaluations on diverse IoT devices confirm IMUP’s
effectiveness in balancing security and performance for next-
generation firmware updates.
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APPENDIX
A. Threat-Model Details

Through our investigation, we note that users primarily
obtain update components through two methods: Offline and
Over-The-Air (OTA) Update, as shown in Figure 2] These
update methods form the core of our unified threat model, out-
lining potential adversarial actions and vulnerabilities within
the IoT update ecosystem.

Offline Update. This mode is commonly used for cus-
tomization. Users typically search for suitable customized
update configurations and firmware on community forums or
official websites. After downloading the relevant firmware,
they manually load it onto their IoT devices. This process
relies on the user’s technical expertise and security awareness.
In general, offline updates do not occur automatically, even
when the current firmware version may be subject to security
vulnerabilities.

OTA Update. It is the predominant update solution offered
by commercial firmware providers. When manufacturers sync
firmware to servers, IoT devices download and update the
designated firmware at appropriate intervals. This fully auto-
mated update process reduces user involvement and enhances
user experience. However, it also means that users and devices
cannot customize functionalities based on the current operating
environment, significantly diminishing both user experience
and device performance.

Adversary Model. We assume that adversaries possess ad-
vanced technical skills—including proficiency in reverse-
engineering firmware updates and binary code—which enables
them to extract complete firmware images, log files, and in-
ternal details (e.g., memory layouts, update verification logic,
and embedded symmetric keys) from targeted IoT devices.
Motivated by financial gain [37], [38], political objectives,
or competitive sabotage, these adversaries employ techniques
such as man-in-the-middle (MITM) attacks and exploitation
of weak signature verification to intercept and tamper with
firmware updates.
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Although adversaries may have substantial computational
resources, their capabilities are constrained by factors such
as network latency, legal limitations, and restricted physical
access. We assume that the vendor’s signing infrastructure is
secure and that IoT devices implement a secure boot process.
Aligned with [39], [40], physical and side-channel attacks are
out of scope. These attack vectors require expensive laboratory
equipment, prolonged physical access to the device, and fine-
grained manipulation capabilities, which are not practical
for scalable or remote attacks. As demonstrated by Wu et
al. [5]], update vulnerabilities can be remotely exploited with-
out requiring device teardown or advanced hardware probing.
Therefore, we focus on adversaries capable of launching
remote, scalable threats—such as firmware tampering and
protocol-level manipulation—which are both more prevalent
and feasible in real-world IoT deployment environments. Fur-
thermore, physical protection mechanisms, such as tamper-
resistant packaging or secure enclaves, are often employed as
complementary defenses at the hardware level [41]], while our
study aims to strengthen the integrity and resilience of the
firmware update pipeline at the software and system level.

B. Security Analysis

We now analyze the security of IMUP based on the scheme
described in Section [V] and provide relevant security proofs
using the attacker’s capabilities and objectives as described in
the threat model of Section[[II-B] Aligned with [42], [43], [44],
[45], we do not take Side Channel Attacks (SCAs) into account
for the following reasons. First, attackers cannot directly
access the victim’s device, making traditional SCAs [46], [47]],
[48] that rely on physical phenomena (such as timing delays,
power consumption, electromagnetic leaks, etc.) infeasible in
this scenario. Second, the core trapdoor information is used
only on the server side, and we assume the server environment
is secure and resistant to remote SCAs. Even if attackers
obtain a copy of the device, they can only extract information
through SCAs. However, within our defined threat model
and assumptions, all information except for the trapdoor data
stored on the server is public. Therefore, SCAs are excluded
from our consideration.

Theorem A.l. If the selected chameleon hash function pos-
sesses properties like forgery resistance and collision resis-
tance, then the scheme is a secure firmware defense mecha-
nism.

Proof. The IoT device accepts the firmware only if the verifi-
cation algorithm outputs bit 1. The attacker attempts to tamper
with the firmware to inject malicious data into the IoT device.

Tampering: Suppose there exists a polynomial-time
Tamper algorithm that takes a tampered firmware chain
FakeFirmW are as input and outputs a firmware that passes
the verification algorithm, denoted as:

FirmWare <— Tamper(CModule, FakeFirmWare)

At this stage, the attacker successfully forges the firmware.
The Tamper algorithm must recalculate the hash value of
the tampered parts and assign new random parameters R to

maintain chain integrity. Specifically, the Tamper algorithm
must find a pair of chameleon hash values in polynomial time
that satisfy the following equation:

Chash(CModule, 1) = Cp,5n (FakeFirmWare, R)

Because the underlying chameleon hash function possesses
weak collision resistance, no algorithm can find a pair of
chameleon hash collisions in polynomial time. Thus, the
scheme is tamper-resistant.

Forgery: Suppose there exists a polynomial-time Forgery
algorithm that takes a commitment value as input and outputs
firmware that passes the verification algorithm but cannot be
used normally, denoted as:

FirmWare < Forgery(Random, C')

At this stage, the attacker successfully forges the firmware.
This forged firmware damages the IoT device firmware, dis-
rupting the device’s normal operation. The Forgery algorithm
must generate an output that passes the HVerify algorithm
based on the commitment value, denoted as:

b =1« HVerify(C)

Specifically, the Forgery algorithm must find a pair of
chameleon hash values in polynomial time that satisfy the
following equation:

Chash (FirmWare, 1) = Gy, (FakeFirmWare, C')

Since the underlying chameleon hash function has weak
collision resistance, there is no algorithm within polynomial
time that can find a pair of chameleon hash collisions with-
out knowing the trapdoor. Therefore, the scheme is forgery-
resistant. O

C. IMUP Generation Cost

For the IMUP scheme, we introduce several unique metrics
to characterize its distinctive features:

« Preparation Time (s): The time required to generate the
cryptographic modules that meet the scheme’s require-
ments.

o First Processing Time (s): The time from the start of
the preparation phase to the complete generation of the
initial functional firmware image.

« Subsequent Processing Time (s): The time needed to
generate additional firmware images after the first image
has been successfully created.

o Search Time (s): The average time spent searching for
usable firmware among the already generated images.

Table presents the efficiency evaluation of firmware
generation for the Monolithic Rebuild, Package Manager and
IMUP schemes. In this section, the IMUP scheme uses a
1024-bit key size and is evaluated under two different security
parameters (Dpow = 5 and Dpow = 6).

Results show that the IMUP scheme significantly outper-
forms the Monolithic Rebuild strategy and is also superior to
Package Manager in terms of processing time and memory
usage. Although the initial generation time of IMUP is slower



TABLE VII
PERFORMANCE EVALUATION OF MONOLITHIC REBUILD, PACKAGE MANAGER, AND IMUP SCHEMES 1024-BIT KEY SIZE)

Metric Monolithic Rebuild Package Manager (L = 7I,MDIiOPW = 5) (L = 7I’MDI1J):)W — 6)
Preparation Time (s) N/A N/A 8.83 195.47

First Processing Time (s) 157.56 2.01 8.89 195.52
Subsequent Processing Time (s) N/A 1.96 0.06 0.05
Memory Usage (MB) 342.37 48.60 20.24 30.44

Avg. Time (5 Images, s) 157.56 1.97 1.81 39.14

Avg. Time (110 Images, s) N/A 1.96 0.14 1.83

TABLE VIII

IMUP CONFIGURATIONS (Dpow = 5) UNDER HIGH-VOLUME REQUESTS FOR L = 6, L = 7, AND L = 8 (1024-BIT KEY SIZE)

Requests 10,000 20,000 30,000

Scheme L=38 L=7 L=6 L=38 L=7 L=6 L=238 L=1 L=6
Search Time (s) 3.94 4.13 4.71 8.45 9.67 11.99 12.29 14.62 18.96
Average Processing Time (ms) 0.07 0.06 0.05 0.07 0.06 0.05 0.07 0.06 0.05

Average Search Time (ms) 0.39 0.41 0.47 0.42 0.48 0.60 0.41 0.49 0.63

Hit Rate (%) 67.83 63.92 59.90 79.73 75.39 70.45 85.14 81.88 77.32
Number of Generated Firmware 3217 3,608 4,010 4055 4,923 5911 4460 5,437 6,805
Storage (GB) 7.24 7.11 6.77 9.13 9.69 9.98 10.04 10.71 11.49

TABLE IX

COMPARISON OF SERVER PERFORMANCE UNDER LARGE-SCALE REQUESTS FOR DIFFERENT MODULE NUMBERS AND SCHEMES

Modules Requests Scheme Type Total Hit Rate (%) Number of Firmware Storage (GB)
Number Times Processing
Time (s)
Monolithic Rebuild 282,313.12 1.77 9,823 356.85
200 10,000 Package Manager 332.13 N/A N/A N/A
IMUP L =7 230.88 0.64 3,608 7.11
Monolithic Rebuild 576,066.80 0.3 19,940 724.38
20,000 Package Manager 667.70 N/A N/A N/A
IMUP L =7 318.65 75.39 4,923 9.69
Monolithic Rebuild 926,320.50 0.07 29,978 1,089.04
30,000 Package Manager 1,014.21 N/A N/A N/A
IMUP L =7 357.55 81.88 5,437 10.71
Monolithic Rebuild 264,132.78 0.44 9,956 361.68
2,000 10,000 Package Manager 353.05 N/A N/A N/A
IMUP L =7 355.97 43.98 5,602 11.03
Monolithic Rebuild 635,164.40 0.1 19,980 725.84
20,000 Package Manager 803.16 N/A N/A N/A
IMUP L =7 706.57 45.12 10,977 21.61
Monolithic Rebuild 816,001.46 0.06 29,981 1,089.15
30,000 Package Manager 1,175.53 N/A N/A N/A
IMUP L =7 1,080.89 45.71 16,286 32.06
Monolithic Rebuild 260,604.29 1.77 9,823 356.85
4,000 10,000 Package Manager 389.80 N/A N/A N/A
IMUP L =7 368.64 42.08 5,792 11.41
Monolithic Rebuild 633,892.80 0.3 19,940 724.38
20,000 Package Manager 792.38 N/A N/A N/A
IMUP L =7 714.49 44.66 11,068 21.79
Monolithic Rebuild 712,770.42 0.07 29,978 1,089.04
30,000 Package Manager 1,137.92 N/A N/A N/A
IMUP L =7 389.70 45.13 16,460 32.40




than that of the Package Manager strategy due to the genera-
tion of cryptographic modules and the PoW computation, the
IMUP configurations surpass the Package Manager in resource
consumption after generating as few as 5 firmware images.
Specifically, the IMUP scheme with Dp,w = 5 achieves a
lower average processing time per image compared to the
Package Manager when generating 5 images, and both IMUP
configurations significantly outperform the Package Manager
after generating 110 images. This indicates that the IMUP
scheme becomes more efficient and resource-effective than the
Package Manager strategy as the number of firmware images
scales up, highlighting its suitability for large-scale firmwares.

D. IMUP Configuration Analysis

Table benchmarks IMUP with chain lengths L €
{6,7,8} under a fixed PoW difficulty (Dp,w=>5) and a 1024-
bit key. Besides storage, hit rate, and the number of generated
images, we track **server-side “search time”—the time to
locate a matching image in the cluster.**

Findings. (1) A longer chain raises the hit rate, so fewer new
images are built and search time drops. (2) Publishers can tune
L to match their module count and request volume, balancing
reuse against storage. Overall, high hit rates and short search
times show that IMUP scales well for large customisation
bursts while keeping operational cost low; its tunable L and
security level let vendors optimise for their own environments.

E. Hardware and Software

The server was equipped with an AMD Ryzen 7 4800HS
processor (2.90 GHz) with Radeon Graphics, 16 GB of RAM,
and a 512 GB SSD, running Ubuntu 20.04 LTS. This server
acted as the firmware publisher, responsible for generating and
distributing firmware updates.

The IoT devices selected for testing represented a range
of hardware capabilities commonly found in the field[49].
We utilized three router models: (1) Atheros AR9330 with
a MIPS 24Kc CPU at 400 MHz and 32 MB RAM (basic
performance), (2) MT7620N/A with a MIPS24KEc CPU at
580 MHz and 128 MB RAM (standard performance), and
(3) MT7621A/N featuring a MIPS1004Kc dual-core CPU
at 880 MHz and 256 MB RAM (high performance). These
devices operated as firmware recipients, allowing us to assess
the IMUP scheme’s efficiency and scalability across different
hardware configurations.

For the software configuration, all IoT devices ran the
OpenWrt 19.07 operating system[S0]. The server environment
included the OpenWrt build system and utilized tools such
as IMUPackage for modular firmware packaging and custom
scripts for generating and verifying firmware packages. The
Opkg package manager was employed for baseline compar-
isons. Devices were connected via a secure, isolated local area
network to ensure controlled testing conditions.

F. Functionality Update & Vulnerability Fix Details
We selected five key functionalities as test subjects:
(A) Network load balancing

(B) Traffic control

(C) VPN configuration

(D) File sharing services

(E) Ad blocking and content filtering

These collectively encompass critical aspects of security, ef-
ficiency, and user experience. Users send update requests to
the server to initiate the update process, upon which the server
generates and returns firmware update packages containing the
selected functionalities. Once the packages are received, the
devices execute the corresponding functionality updates.

1) Vulnerability Fix: For the vulnerability fix experiments,
four known security vulnerabilities were selected: CVE-2019-
19945, CVE-2021-28961, CVE-2023-24181 and CVE-2023-
24182. The server generates update packages containing the
respective vulnerability patches and transmits them to the
target devices. After receiving these patches, the devices apply
them, completing the vulnerability remediation process.

G. Server Stability and Cost Efficiency

Table provides a comprehensive comparison of server
performance under large-scale requests for different module
numbers and schemes. The table illustrates the impact of
varying request volumes (10,000, 20,000, and 30,000) and
module numbers (200, 2,000, and 4,000) on server processing
time, firmware hit rates, number of generated firmware, and
storage consumption.

For Modules Number = 200, the data covers all three request
levels, showcasing how the IMUP scheme significantly im-
proves server efficiency, reducing processing time and storage
requirements compared to Monolithic Rebuild and Package
Manager strategies.

For Modules Number = 2,000 and 4,000, the table focuses
on the largest request volume (30,000), demonstrating the
scalability of IMUP in handling more complex and diverse
customization scenarios while maintaining lower computa-
tional costs and higher hit rates than alternative schemes.

The detailed results highlight the superiority of the IMUP
framework in balancing efficiency and flexibility for large-
scale firmware update processes.



	Introduction
	Related Work
	Security-Oriented Approaches
	Efficiency-Focused Solutions
	Customization-Oriented Frameworks
	Existing Limitations and Challenges
	Comparison of Related Works

	Pilot Study
	Customization Overview
	Unified Threat Model for Updates
	Identified Categories of Customization Vulnerabilities
	Quantify Customisation CVEs in Firmware Updates
	Key Finding

	Preliminary
	Chameleon Hash
	Proof of Work (PoW)
	Notations

	IMUP Design
	Maintenance Phase
	Distribution Phase
	Key-Material Construction (S1)
	Firmware-Initialisation (S2)
	Security Version Update stage
	Version Iterations stage

	Verification Phase
	Practical Security Mapping

	Security Analysis
	Experiment
	Hardware and Software
	Attack Overhead
	Experimental Setup
	Results and Analysis

	Overhead on IoT Device
	Experimental Setup
	Results and Analysis

	Server Stability and Cost Efficiency
	Experimental Setup
	Throughput Analysis


	Conclusion
	References
	Appendix
	Threat-Model Details
	Security Analysis
	IMUP Generation Cost
	IMUP Configuration Analysis
	Hardware and Software
	Functionality Update & Vulnerability Fix Details
	Vulnerability Fix

	Server Stability and Cost Efficiency


