
Transcript Franking for Encrypted Messaging

Armin Namavari and Thomas Ristenpart

Cornell Tech

Abstract. Message franking is an indispensable abuse mitigation tool
for end-to-end encrypted (E2EE) messaging platforms. With it, users
who receive harmful content can securely report that content to plat-
form moderators. However, while real-world deployments of reporting
require the disclosure of multiple messages, existing treatments of mes-
sage franking only consider the report of a single message. As a result,
there is a gap between the security goals achieved by constructions and
those needed in practice.
Our work introduces transcript franking, a new type of protocol that
allows reporting subsets of conversations such that moderators can cryp-
tographically verify message causality and contents. We define syntax,
semantics, and security for transcript franking in two-party and group
messaging. We then present efficient constructions for transcript frank-
ing and prove their security. Looking toward deployment considerations,
we provide detailed discussion of how real-world messaging systems can
incorporate our protocols.

1 Introduction

End-to-end encrypted (E2EE) messaging is used by billions of people through
platforms like Whatsapp, Signal, and iMessage [37]. As a result, users enjoy
strong security and privacy protections even in the face of messaging platform
compromise by malicious insiders, remote attackers, or government overreach.
Abuse, hate, and harassment, however, are not prevented or mitigated by en-
cryption, and encrypted messaging platforms are used to spread misinformation,
incitements of violence, and illegal content [22]. As a result, a rapidly growing
body of work has sought to provide trust and safety features for encrypted mes-
saging, without diminishing its privacy benefits [31].

One important line of work targets secure reporting of abusive messages
(see [31]). When users receive harmful content, they can report it to the platform,
which can in turn take appropriate action against the user that sent the prob-
lematic content. Such user-driven reporting features are widespread on plaintext
platforms and play an instrumental role in content moderation across a wide
range of abuse types [28]. In encrypted messaging, however, the platform cannot
trivially verify that a report corresponds to a transmitted message.

Facebook’s message franking feature [1] was the first to target cryptograph-
ically verifiable abuse reports. Message franking targets not compromising the
confidentiality of unreported messages, and preventing attacks that undermine

1

ar
X

iv
:2

50
7.

19
39

1v
1

 [
cs

.C
R

]
 2

5
Ju

l 2
02

5

https://arxiv.org/abs/2507.19391v1

Alice Bob

Correct Order

(m4) How could you
say that?

(m3) I knew you were
going to kill it!

(m2) I’m so sad, my
goldfish just died!

(m1) My stand-up set
went great last night!

Alice Bob

Reported Order

(m4) How could you
say that?

(m3) I knew you were
going to kill it!

(m2) I’m so sad, my
goldfish just died!

(m1) My stand-up set
went great last night!

Fig. 1. An example conversation in which message ordering impacts interpretation. A
report of this conversation should confirm for moderators the causal ordering.

the trustworthiness of reporting: users should not be able to report messages
that were not sent, nor be able to send messages that cannot be reported. These
security properties were first formalized in [15] as receiver binding and sender
binding, respectively. While Facebook’s first design had a sender binding vul-
nerability [12], we now have message franking protocols with strong assurance
in their security [12, 15, 16]. Subsequent work extended to provide asymmet-
ric message franking schemes (AMFs) [17, 33] for two-party sender-anonymous
messaging, group AMFs [18], franking for two-party channels [16], and message
franking that allows only revealing parts of messages [21].

All those treatments of message franking only support reporting individual
messages. In practice, however, moderators typically need visibility into more of a
conversation to make judgements, and indeed existing abuse reporting workflows
do report surrounding messages when one is reported [3, 15]. Recent work [36]
reports that users would find it useful to have more agency in specifying what
portions of their private conversations are disclosed to moderators, which is not
something current approaches offer.

Despite this, to date, there has been no attempt to show how to provide cryp-
tographically verifiable reporting of multi-message conversations. Near-at-hand
approaches, including those used in practice, do not provide a satisfying level of
security. Consider reporting with message franking: each individual message can
be verified along with a platform timestamp of when it was sent. But a mali-
cious client can simply undetectably omit messages from a report. For example
consider the conversation between Alice and Bob shown in Figure 1. If Alice
reports the conversation with omission of m1 it blocks moderators from inter-
preting Bob’s message m3 as replying to m1 rather than mocking Alice’s loss. A
more subtle issue is that even high-precision timestamps do not establish strict
causal ordering [19]. Let m < m′ represent that m was received before m′ was
sent. Returning to the figure, it could be that m2 < m3, or it could be that m3

was sent before Bob received m2. The result in the latter case would be Bob’s
view of the conversation being different from Alice’s.

2

The problem of conversation ordering and moderation has been known to
practitioners since at least 2014 [24], but only recently has there been a first
effort to address it by Chen and Fischlin [11]. They propose a message franking
protocol, MFChcFB, in which clients report observed message ordering via frank-
ing metadata alongside content. While their approach provides a novel augmen-
tation of message franking with causality, they stop short of providing a fleshed
out solution for multi-message franking. Their security modeling considers re-
porting individual received messages. Meanwhile, allowing reporters to disclose
sent messages is crucial to multi-message reporting with full context. One could
consider a natural extension of MFChcFB in which the report function is invoked
for each message and both parties are involved in disclosing each other’s mes-
sages. This, however, is susceptible to denial of service as the abusive party can
simply refuse to cooperate and go offline, withholding crucial context.

Moreover, MFChcFB is susceptible to integrity attacks. Since causality data is
client-generated, malicious clients can provide incorrect information about mes-
sage ordering. Consider the example conversation in Figure 1. We demonstrate
an attack in which Bob makes Alice observe the view on the left while making it
so that Alice can only report the view on the right. Bob simply sends m3 after
having received m2 but attaches causality metadata to m3 indicating he has seen
only m1. Hence, Bob can force Alice to observe an upsetting message ordering
while making seem as if it were due to the network reordering messages.

Our contributions. We suggest a new approach that we call transcript frank-
ing. This cryptographic protocol goal allows users to report some or all of two-
party or group conversations with stronger security guarantees about message
ordering and omissions. We define the syntax and semantics of a transcript
franking scheme and provide formal security definitions. We go on to detail tran-
script franking schemes for both the two-party and group messaging settings; our
schemes are practical to deploy and avoid issues like those above, clarifying in
a single report all relevant information about the messages reported, including
causal ordering. To do so, our schemes deviate from Chen-Fischlin’s approach of
using client-provided causality metadata, instead taking advantage of the fact
that the platform can establish causal ordering over ciphertexts and check that
reports are consistent with it. We prove that our new schemes meet our new
security goals under standard assumptions.

We treat both two-party (direct) and group messaging settings; we explain
further each, starting with the former.

Two-party transcript franking. We start with the two-party case, where
only two clients are involved in a conversation (sometimes called direct mes-
saging). Our goal is to enable either participant in the encrypted conversation
to report all or part of the conversation to the platform. Our starting point is
symmetric message franking (SMF) [15, 16], in which the clients encrypt mes-
sages using committing authenticated encryption with associated data (AEAD)
and the platform MACs (portions of) the resulting ciphertexts to produce a re-
porting tag. To report a message, the ciphertext, secret encryption key, and the
reporting tag are all sent to the provider.

3

In this setting where we rely on fast symmetric primitives, the veracity of a
ciphertext can only be checked by those who have access to the secret keys—
before reporting, just the two clients. Prior work on SMFs took this to mean
that one cannot support reporting a sent message, since the reporter could be
unreliable. But if we want to allow reporting more of a conversation, we must
support this. Intuitively, our approach will be to leverage acknowledgements of
received ciphertexts to register their validity for their use in reporting.

To do so, we first enrich the architectural model to surface how the provider
manages sending and receiving events separately. This more accurately captures
the asynchronous nature of messaging. Formally, the platform is represented by a
pair of algorithms TagSend and TagRecv. We allow the platform to maintain per-
conversation state; we also give a way to outsource this state securely to clients. A
client sends a message by running an algorithm Snd and submitting the resulting
ciphertext to the platform by calling TagSend. To receive a message, a recipient
client runs an algorithm Rcv on it, and if it accepts the message, indicates so to
the server, which then calls TagRecv. The latter readies a cryptographic reception
acknowledgement for both the sender and the receiver.

A set of messages can be reported by submitting their ciphertexts, their cor-
responding secret keys, and platform-provided reporting tags. The moderator
can process them via an algorithm Judge that verifies them, and produces a
causal graph providing the moderator with: (1) a partial ordering over all mes-
sages that implies a total ordering over messages sent in either direction; and
(2) indication of gaps—unreported messages sent between reported messages.

We require that transcript franking schemes provide confidentiality and in-
tegrity of messages that aren’t reported in the face of a malicious provider. More
complex is the security of reporting, in which the platform is trusted, but clients
are not. Here we formalize two security goals for transcript franking schemes,
which can be viewed as strengthening SMF sender and receiver binding. Coming
up with definitions that capture transcripts, rather than individual messages,
proved challenging. For example, any given conversation can now give rise to all
sorts of possible reports: the entire conversation or any subset of that conversa-
tion, including possibly just a single message.

Our first definition is transcript reportability. Here the security game tasks
an adversary controlling one client with interacting with the provider and some
other honest client. The adversary attempts to generate a message transcript
such that the honest client cannot successfully report some adversarially-chosen
subset of messages. In the case where only a single message is reported, this
coincides with sender binding, but it goes much beyond since it requires that
any subset of the conversation be reportable, including messages sent by the
reporter.

The second main security notion is transcript integrity. Intuitively we want to
not only ensure that no maliciously generated report can frame someone as hav-
ing sent something when they have not, but, moreover, ensure that the reported
transcript does not lie about ordering or omissions. Perhaps counterintuitively,
we increase the adversarial power over prior treatments of receiver binding by

4

allowing the adversary to control both clients in a conversation to arbitrarily
deviate from the protocol. The adversary has oracles to send ciphertexts to the
platform and register having received them. The game keeps track of a ground
truth graph of message transmission. This matches the view of the platform in
terms of sending and receiving event orderings for each transmitted ciphertext.
Then, the adversary’s goal is to come up with either a report that generates a
causality graph inconsistent with the ground truth graph, or two reports that
are inconsistent with each other. We define consistency relative to our causality
graph abstraction.

The quad-counter construction. We now turn to constructions. We want to
ensure practicality, using fast cryptographic mechanisms and avoiding unrealistic
storage constraints. The main underlying idea is to have the platform carefully
attest to the observed causal order of ciphertexts. Since we allow stateful plat-
forms, we could of course just store a log of all sending and reception events that
occurred, with their corresponding ciphertexts. But this would be prohibitively
expensive in terms of storage. Instead, we can use MAC’d counters of events.
Namely, for each party we have a pair of counters, a sending counter incremented
each time that party sends a ciphertext, and a reception counter incremented
each time a ciphertext is registered as received. The platform generates a cryp-
tographic acknowledgement for each send and receive event: a tuple including
the party identifiers, the type of event (send or receive), a binding commitment
to the ciphertext, and the current counters, together with a MAC over the tuple
using a platform-held secret key. Cryptographic acknowledgements are shared
with both parties. The platform need only retain the four counters, hence the
name of this protocol as the quad-counter construction (QCC).

A reporter can choose any subset of messages, and submits the identity of the
sender, the message itself, the cryptographic commitment to the message, and
both the sending and reception cryptographic acknowledgements. The platform
can then verify each tuple, and construct a causality graph that indicates the
precise causality order of the reported messages plus how many send and receive
events were omitted from the report.

We show that, under standard assumptions on the MAC and commitment
scheme, we achieve transcript integrity.

Extensions. The quad-counter construction readily extends to work in group
messaging settings, by having a sending and reception counter for each party (for
a total of 2n counters where n is the number of participants). The cryptographic
acknowledgements are otherwise similar to the two-party case. We formalize this
setting, showing how our definitions and results handle it securely.

One potential downside of the quad-counter construction and its generaliza-
tion, as compared to in-use (but insecure) approaches like timestamps, is that
the platform must now keep per-conversation state. While this state is tiny, it
would be better to avoid, due to it complicating large-scale deployments where
one would prefer to have platform servers stateless and able to load balance
any message event across any server without having to synchronize state. We
describe an extension to our approach which outsources the state to the clients,

5

at the cost of slightly extra data being sent to the platform, and relying on hon-
est users to report replay of cryptographic acknowledgements. See Section 7 for
details.

2 Preliminaries

2.1 General Notation and Primitives

Let Z∗ denote the non-negative integers {0, 1, . . .}. To indicate the range of
elements {0, 1, . . . , N−1}, we use the shorthand [N]. The symbol λ ∈ Z∗ denotes
the security parameter. For an adversaryA in a gameG, we use Pr[G(A)⇒ x] to
denote the probability that the G outputs x when run with adversary A. With a
tuple, we refer to its elements via 0-indexed positions or names. For instance, c.x
or c[0] refer to the first element of the tuple c = (x, y, z). Multiple indexing is also
allowed: c.(x, z) extracts the first and third elements of the tuple, while c[1 : 2]
extracts the last two elements (for ranges, both the start and end indices are
inclusive). We indicate structs as sets of variables, e.g., s← {x, y, z}. When s is
in scope, we allow accessing x directly in order to simplify notation. The notation
d ← D(x) indicates obtaining the output d from a deterministic algorithm D,
when fed input x. For a randomized algorithm R, we write r←$ R(x) to denote
obtaining the output r from the input x. We utilize the terms algorithm, routine,
and procedure interchangeably.

Bidirectional channels. To model two-party communication, we make use of
a bidirectional channel abstraction, borrowing syntax from [11]. A bidirectional
channel Ch consists of three procedures Ch = (Init,Snd,Rcv), defined over a key
space K, a message space M, a party space {0, 1}, a ciphertext space C, and
a state space S. The variable P and the labels {0, 1} are used to indicate the
two parties. Let the notation P̄ be shorthand for 1− P . We elaborate on these
procedures below.

• st ← Init(P, k) generates initial channel state st ∈ S for party P ∈ {0, 1}
with key k ∈ K.

• st ′, c←$ Snd(P, st ,m) produces a ciphertext c ∈ C from party P ∈ {0, 1} for
plaintext m ∈M and client state st , yielding updated state st ′.

• st ′,m, i ← Rcv(P, st , c) decrypts a ciphertext c ∈ C, received by the party
P ∈ {0, 1}, to plaintext m ∈M along with a sending index i ∈ Z∗.

Correctness of a channel requires that all honestly sent messages can be
successfully received with the correct sending index. For security, we expect
standard confidentiality and integrity properties. See [11] for more details.

Message authentication code. A message authentication code (MAC) con-
sists of the algorithms MAC = (KGen,Tag,Verify) defined over a key space K,
a message space M, and a tag space T . The key generation procedure KGen
outputs a random key k ∈ K. The procedure Tag(k,m) outputs a tag t ∈ T for
a message m ∈ M. To verify a tag t on a message m, one runs the procedure
Verify(k,m, t), which outputs b ∈ {0, 1}. An output of 1 indicates a valid tag

6

on the message while an output of 0 indicates an invalid tag. For a MAC to be
considered secure, it has to satisfy existential unforgeability under a chosen mes-
sage attack (EUF-CMA). This means that, when given oracle access to Tag(k, ·)
and Verify(k, ·, ·), for k←$ KGen(), an adversary A has a negligible probability
of producing (m, t), where m is not previously queried to Tag, that passes the
verification check. We denote this probability as the advantage Adveuf-cma

MAC (A).
Commitment scheme. A commitment scheme CS consists of a pair of al-
gorithms (Com,VerC) defined over a message space M, a key space K, and
a commitment space Q. The randomized algorithm Com(m) outputs a pair
(k, c) ∈ K × Q, where c is the commitment and k is a key that allows open-
ing the commitment to the original message m ∈ M. In terms of security, a
commitment scheme is often required to be hiding and binding. To satisfy the
hiding property, the commitment c must reveal nothing about the message m.
We formalize this via a real-or-random notion that requires that no efficient
adversary can distinguish a commitment from a random bit-string of the same
length. The binding property requires that an adversary A has a negligible prob-
ability in producing a tuple (m, k,m′, k′, c), where m ̸= m′, VerC(m, k, c) = 1,
and VerC(m′, k′, c) = 1.

Message franking. User-driven reporting for end-to-end encrypted messaging
is captured by message franking [1, 12, 15]. For now, we focus our attention on
two-party conversations between users. For the sake of notational simplicity,
we elide associated metadata that clients or the server may associate with the
message (e.g., timestamps). In accordance with our usage of messaging channels,
we draw on message franking channels [16]. We opt for the syntax used in Chen
and Fischlin’s work [11]. The procedure Rcv(P, st , c) outputs st ′,m, kf , i, where
kf is a key opening the commitment c.cf , which is stored as part of the ciphertext
c. There is also a server tagging procedure SrvTag(stS , P, cf), which outputs a
tag t on a franking commitment cf , which corresponds to a ciphertext sent by
party P . A reporting procedure Rprt(stS , P,m, kf , cf , t) verifies for the server
that t is a server tag on cf , which opens to a message m.

2.2 Causality Graphs

In order to model message transmission in a way that accounts for asynchronous
networks, we use causality graphs. We define our causality graph object here,
which draws heavily on the graph formalism used in [11]. A causality graph G
modeling two-party messaging is a directed bipartite graph consisting of two
disjoint sets of vertices V0 and V1 and an edge set E. An edge is a pair of
vertices (v1, v2) where v1 ∈ VP and v2 ∈ VP̄ for some P ∈ {0, 1}. We write
V = V0 ∪ V1 to refer to the full set of vertices within the graph. Each vertex
v ∈ V contains four pieces of data: an action type t ∈ {S,R}, a sending counter
cs, a reception counter cr , and a message m ∈ M. Indeed, these four pieces of
data are sufficient to uniquely identify a vertex within a single conversation. We
can therefore define a vertex space V as the direct product {S,R}×Z∗×Z∗×M,
and the edge space E as V × V. The action type t indicates whether the vertex

7

corresponds to a sending (S) event or a reception (R) event. For any message sent
from P to P̄ , there is an edge from a sending vertex in P to a receiving vertex
in P̄ . We define the sub-graph relation as follows: for two graphs G1 = (V1, E1)
and G2 = (V2, E2), we write G1 ⊆ G2 if V1 ⊆ V2 and E1 ⊆ E2. We will also allow
causality graphs that do not contain messages, which will become useful for our
security definitions. Let G be a causality graph; we denote the message-excluded
version of G as G̃ = ({v[0 : 2] | v ∈ G.V }, {(v1[0 : 2], v2[0 : 2]) | (v1, v2) ∈ G.E}).

a1 b1
m1

a2 b2
m2

a3 b3
m3

a4 b4
m4

a1 b1
m1

a2

b3

m
2 b2

a3

m3

a4 b4
m4

Fig. 2. Examples of causality graphs. Let the a nodes correspond to Alice and the b
nodes correspond to Bob. The left graph corresponds to a situation in which both Alice
and Bob view the left ordering from Figure 1. The right graph leads to Alice viewing
the left ordering and Bob viewing the right ordering from the same figure.

The counters cs and cr are monotonically increasing counters over sending
and reception event respectively for each party P ∈ {0, 1}. The addition of a
sending event to VP increments the sending counter for VP while the addition of
a reception event increments the reception counter. Consider a sending vertex
v ∈ VP . We have that v.t = S, there are v.cs − 1 sending events that precede v
and v.cr reception events that precede v. The nodes in VP are totally ordered
by the lexicographic ordering over v given by (v.cs, v.cr). For a message m′ sent
from P to P̄ , there are vertices vs ∈ VP and vr ∈ VP̄ , where vs.t = S, vr.t = R,
vs.m = vr.m = m′, and (vs, vr) ∈ E.

Now that we have introduced the semantics of the data contained within
the graph, we define graph operations associated with sending and receiving
messages, and how they modify the data contained within the graph.

Graph initialization. An empty graph G consists of empty vertex sets V0 and
V1 along with an empty edge set E. Each vertex set VP has an associated send
counter cs and reception counter cr . We use the notation VP .cs and VP .cr to
refer to these counters for party P . Initially, VP .cs = VP .cr = 0 for P ∈ {0, 1}.
The counters will be treated as auxiliary state as opposed to part of the graph.
We use the symbol ε to denote the empty graph.

Addition of send operation. We use the notation G ← G + (S, P,m) to
denote the addition of a sending operation for message m′ from party P . First,

8

we increment VP .cs (VP .cs ← VP .cs + 1), then create a new vertex v with
v.t = S, v.cs = VP .cs, v.cr = VP .cr , and v.m = m′. Finally, we add v to VP .
When updating a non-message-inclusive graph, we simply write G← G+(S, P).

Addition of reception operation. The addition of a reception for the message
with sending index i from party P̄ is denoted by G ← G + (R, P, i). Note that
this operation enforces that such a message with sending index i exists in G.VP̄ .
First, we increment VP .cr , then create a new vertex v with v.t = R, v.cs = VP .cs,
v.cr = VP .cr , v.m = vs.m, where vs ∈ VP̄ , vs.t = S, vs.cs = i (by construction,
there is only one such vertex). We add v to VP and add (vs, v) to E.

Graph validity and consistency. A causality graph G is valid if there exists
a sequence of send and reception operations that lead to its construction from
an empty graph. A sub-graph G′ is valid if there exists a valid graph G such that
G′ ⊆ G. Two graphs G and G′ are consistent if there exists a valid graph G∗

such that G ⊆ G∗ and G′ ⊆ G∗. We write G ≈ G′ to indicate that G and G′ are
consistent, and we use G ̸≈ G′ to indicate that they are inconsistent. Notions of
validity and consistency will be important in our security definitions.

Partial ordering over events. As we mentioned before, there is a total or-
dering over the events within V0 and V1. For v1, v2 ∈ VP , we have that v1 < v2
if v1.cs ≤ v2.cs, v1.cr ≤ v2.cr , and (v1.cs, v1.cr) ̸= (v2.cs, v2.cr). The causal-
ity partial ordering v1 ≤ v2 for v1, v2 ∈ V is defined as the transitive closure
of these individual total orders along with the edge relation (i.e., v′1 ≤E v′2 if
(v′1, v

′
2) ∈ E). Observe that this is an ordering over the sending and reception of

messages as opposed to an ordering of the messages themselves.

Contiguity and gaps. When a moderator views a sub-graph of a full con-
versation, it will be useful to understand which events are contiguous (in the
sense that no other events can be ordered between them) and which events have
gaps. This makes clear where there might be missing context, which can later
be provided by either party if requested. The inclusion of sending and reception
counters within the graph provides rich information that allows interpretation
of the contiguity of events. Consider two vertices v, v′ ∈ VP where v < v′. If we
have that max(v′.cs − v.cs, v′.cr − v.cr) = 1, then by construction there can
be no v′′ ∈ VP such that v < v′′ < v′, so v and v′ are contiguous with one
another, among the vertices in VP . Taking into consideration the edges in E, we
can ascertain whether any nodes in VP̄ can be ordered between them. If we have
that (v′.cs − v.cs, v′.cr − v.cr) = (a, b) for v, v′ ∈ VP , we know that there are
a send events and b reception events that occurred after v, including v′. In this
way, these counters provide rich interpretability of gaps within sub-graphs.

3 Two-Party Transcript Franking

Prior work on message franking has focused on reporting single messages that
were received by the reporting user. Often, single messages do not contain suf-
ficient context for understanding online harassment. Hence, we aim to extend
message franking to enable reporting sequences of messages. We propose a new

9

cryptographic primitive we call transcript franking that captures this goal. In
addition to providing integrity over the contents of messages contained within a
sequence, a transcript franking scheme must have cryptographic assurance over
the ordering and contiguity of messages reported within a sequence. Due to the
inherent asynchrony of messaging, honest users may observe differing but valid
views of the message order. We aim for users and platform moderators to be
able to see the view of the transcript from the perspective of each party as well
the causal dependencies between messages.

Limitations of current approaches. The original Facebook white-paper that
introduced message franking suggests including server timestamps within the
data tagged by the server [1]. As prior work points out, this is insufficient for
capturing causal dependencies between messages since it does not directly re-
flect client-side views and capture message concurrency [11]. Furthermore, times-
tamps do not assure integrity over the contiguity of reported messages within a
conversation. Recent work suggests incorporating causality metadata into mes-
sage franking channels, however since this metadata is client-generated, it can
deviate from the actual ordering of sending and reception events that clients ex-
perience [11]. As we explain in the introduction, this leads to attacks in which a
malicious party can force the other party to view an upsetting message sequence
while only being able to report a plausibly benign one.

A further limitation is that all prior treatments of message franking allow re-
porters to disclose only messages they have received from the other party. From
a motivational standpoint, this seems reasonable since the goal of reporting is
to demonstrate that an abusive party, presumably the non-reporting party, sent
harmful content. However, when reporting multiple messages within a conversa-
tion, a reporter may have to include their own sent messages to provide sufficient
context. In Figure 1, for instance, Alice should be able to show her message that
precedes the message Bob sends in order for the moderator to evaluate whether
it is abusive. The obvious solution of a reporter disclosing their own sent mes-
sages is insufficient since the corresponding ciphertexts may be malformed for
the other party, and existing treatments of message franking provide no way for
recipients to indicate this to the service provider. An alternative would be to
involve both parties in the reporting process. Yet this can lead to a denial of
service attack in which the accused party refuses to participate. Even with an
honest accused party, requiring both parties to be online is an unfavorable limi-
tation. Hence, we must devise a reporting protocol that is not contingent upon
the participation of the non-reporting party. Note that such a protocol may still
allow the non-reporting party to continue to disclose more context if they decide
to do so.

Our suggested platform model. In line with the model used by the messaging
layer security (MLS) standard [5], we conceptualize the platform as providing
a delivery service (DS) for message transmission and an authentication service
(AS) for managing user identities. Additionally, we consider a platform-managed
moderation service (MS) for accepting user reports and taking action against
abusive user accounts. Clients issue a Send request with a payload containing

10

the message ciphertext to the DS. To receive messages, a client issues a Recv

request, to which the server responds with outstanding message ciphertexts.
In a real platform, clients may be identified via usernames or phone numbers.
Our transcript franking abstraction, on the other hand, simply identifies parties
within a conversation via the numeric labels {0, 1} for direct messaging.

Our model assumes a client receives a notification that indicates when the
DS has successfully received their message and another notification when the
recipient client device has successfully received the message. These two events
correspond to the first and second checkmarks shown in widely used messaging
platforms such as Whatsapp and Signal [2,4]. Messages may still be dropped or
reordered, but we will concern ourselves with reporting only messages that were
successfully received. We remark that this differs slightly from traditional plat-
form models for message franking, in which the platform simply tags a message
once it is sent and shares this tag with just the recipient. It turns out this model
will be crucial to achieving our transcript franking security goals.

Transcript franking syntax and semantics. We draw heavily on [11] as
inspiration for our syntax and will later provide a comprehensive comparison
between their approach to incorporating causality into message franking and
our notion of transcript franking. A transcript franking scheme is a tuple of
algorithms TF = (SrvInit, Init,Snd,Rcv,TagSend,TagRecv, Judge), defined over a
server state space SS , a client state space SC , a key space K, a message space
M, a commitment space Q, a franking key space Kf , a message-sent tag space
TS , and a reception tag space TR. We detail each algorithm below. Input and
output variables names are unique, and we indicate the “type” (the set of possible
values) and description of a variable only the first time it is introduced in order
to reduce verbosity. In general, st will refer to client or server state the before the
invocation of a routine, while st ′ refers to the updated state after the invocation.

• stS ←$ SrvInit() outputs an initial server state stS ∈ SS .
• st ←$ Init(P, k) outputs initial client state st ∈ SC for party P ∈ {0, 1} and

a secret shared channel key k ∈ K.
• st ′, c←$ Snd(P, st ,m) is a client procedure that produces a ciphertext c ∈ C

and updated client state st ′ ∈ SC for party P , with original client state
st ∈ SC , corresponding to an input message m ∈ M. The ciphertext c
contains a franking tag cf ∈ Q, which is a commitment to m, and a sending
index i ∈ Z∗.

• st ′S , ts ← TagSend(stS , P, cf) is a server procedure that produces a tag ts ∈
TS for a message sending event, where P is the sending party, and cf is the
franking tag for the message.

• stS , tr ← TagRecv(stS , P, cf) is a server procedure that produces a tag
tr ∈ TR for a message reception event by receiving party P . This proce-
dure is invoked only when the receiving client indicates that the message
was successfully received and valid.

• st ′,m, kf , i ← Rcv(P, st , c) is a client procedure that processes a received
ciphertext c ∈ C and decrypts it to a message m ∈ M ∪ {⊥} with sending

11

index i ∈ Z∗ and a franking key kf ∈ Kf . The message m is ⊥ if and only if
decryption fails.

• G ← Judge(stS , ρ) takes as input the server state stS as well as a client-
provided report ρ ∈ {({0, 1} × M × Kf × Q × TS × TR)}, which is a set
of tuples of the form (P,m, kf , cf , ts, tr). This procedure verifies the report
and, if the report is valid, produces a causality graph G ∈ (V × E) ∪ {⊥}
for the messages contained within the report. If the reporting information is
invalid, the procedure outputs ⊥. Note, we enforce here that only messages
that have been sent and received can be reported.

To illustrate the semantics of a transcript franking scheme, we provide a brief
example of how these procedures are invoked. At initialization time, the server
runs SrvInit to produce an initial state. When two clients initiate a conversation,
both clients run Init(P, k) over a shared key k to obtain initial client states. When
client P sends a message m, it obtains c from the output of Snd(P, st ,m). The
ciphertext c is sent to a platform server, which then invokes TagSend(stS , P, cf)
to produce a tag ts, which is returned to P . Eventually, P̄ contacts the server to
retrieve outstanding messages. Upon doing so, the server transmits the ciphertext
c, along with ts, to P̄ , which decrypts it by invoking Rcv. Upon indicating valid
reception to the platform, the server runs TagRecv to produce tr, which is sent to
both P and P̄ . When party P wishes to report a set of messages, they compile
(P,m, kf , cf , ts, tr) for each message in ρ. The moderator then runs Judge to
produce a causality graph G.

Correctness. Informally, correctness requires that all honestly generated and
tagged messages can be successfully received and that any sub-graph of the full
causality graph can be reported. We make this precise with the game shown in
Figure 3, and define the correctness advantage of an adversary A as

AdvcorrTF (A) = Pr[Gcorr
TF (A) = 1] .

Formally, a transcript franking scheme TF achieves correctness if AdvcorrTF (A) = 0
for all adversaries A.
Tagging reception events.We discuss in detail what it means for the platform
to tag a successful reception event. Recall that our goal is to enable reporters
to include their own sent messages within a report without interaction from
the other party. The reception tag serves as a way to achieve this goal, acting
as an acknowledgement from the other party that the reported message was
received. However, in order for this acknowledgement to be meaningful, we must
carefully consider at which point the platform generates the reception tag. One
option is to generate the tag once the recipient sends a message to the service
provider indicating that their verification check passed, meaning the franking
tag corresponds to the received plaintext. This would require two round-trips,
the first for to retrieve the message, and the second to explicitly tell the server
that it was well-formed.

Another option is to do this in one round trip: immediately tag the reception
event and send the reception tag along with the ciphertext. If the ciphertext

12

Gcorr
TF (A):

kSrv ←$K, stA, kCh←$A(), win← 0

stS ←$ SrvInit(kSrv)

st0←$ Init(0, kCh), st1←$ Init(1, kCh)

Rt,Rr,R ← {}, {}, {}
AO(stA, kCh)

return win

O.SendTag(P,m):

(stP , c)←$ Snd(P, stP ,m)

stS , ts ← TagSend(stS , P, c.cf)

G← G + (S, P,m)

Add (P, c, ts) to Rt

return c, ts

O.RecvTag(P, c, ts):

Assert (P̄ , c.cf , ts) ∈ Rt

Assert (P, c, ts) ̸∈ R
Add (P, c, ts) to R
stP ,m, kf , i← Rcv(P, stP , c)

if m ̸= ⊥ then

stS , tr ← TagRecv(stS , P, cf)

G← G + (R, P, c.i)

Add (P,m, kf , cf , ts, tr) to Rr

else

win← 1

return m, kf , ts, tr

O.Rep(ρ):

Assert |ρ| > 0

G′ = Judge(stS , ρ)

if ρ ⊆ Rr ∧ ((G′ = ⊥) ∨ (G′ ̸⊆ G)):

win← 1

Fig. 3. The security game for transcript franking correctness.

is malformed, the recipient can issue a complaint to the service provider, nul-
lifying the reception tag in question. Therefore, two round trips are made only
if the ciphertext is malformed. An implementation may also enforce a reason-
able time window within which to make such a complaint. We discuss receiver
acknowledgement further in Section 7.

Comparison to Chen-Fischlin. Observe that our formalism, unlike that of
[11] includes two server-side tagging procedures as opposed to one. This makes
possible acknowledgement of message receipt by the platform and message de-
livery to the recipient client device. As a result, the server, as opposed to client
devices, becomes the authority on message ordering, leading to additional secu-
rity benefits as we discuss next. Instead of having a single Init procedure shared
by the client and server, we specify SrvInit, and Init. The syntax and semantics of
the message franking channel in Chen-Fischlin does not enable parties to report
their own sent messages while our formalism does. While Chen and Fischlin fo-
cus on two-party channels, we show how to enable transcript franking for group
channels in Section 6. We provide a more in-depth comparison in Appendix A.

4 Security Definitions for Two-Party Transcript Franking

In this section, we introduce security notions for transcript franking. Our setting
requires that the platform is the same entity that handles moderation reports.
Recall that we defined the transcript franking syntax and semantics in Section 3.
Our security definitions formalize notions of confidentiality and accountability

13

for the reporting process. Accountability consists of two properties, reportability
and transcript integrity, which we further explain in the remainder of the section.

Threat model, informally. As the platform is trusted for handling user re-
ports, we trust it to serve as source of ground truth for the ordering of messages.
This does not mean that we trust the platform with the contents of messages or
that we assume a malicious platform will not attempt to maul ciphertexts. We
do not explicitly model the public key infrastructure used to authenticate users,
though we note that solutions such as key transparency [10,20,23,26,32] enable
PKIs without placing full trust in the service provider.

Transcript reportability. When a client accepts a message as valid, it should
be the case that this message can be successfully reported to the moderator as
well. Transcript reportability, which is formally specified by a security game in
Figure 4, is a security property we define that captures this goal. The adversaryA
attempts to craft a report, containing messages accepted by an honest recipient,
that does not verify for the moderator. We define the reportability advantage of
an adversary A for a transcript franking scheme TF as follows:

Advtr-repTF (A) = Pr[Gtr-rep
TF (A) = 1] .

Transcript integrity. To model malicious reporters that attempt to trick mod-
erators into accepting incorrect causality graphs, we define a security notion
called transcript integrity, which is captured by the game in Figure 5. The
adversary A controls both parties and has access to three oracles: SendTag,
RecvTag and Rep. A ground truth causality graph G is maintained by the
game and updated by SendTag and RecvTag. The adversary wins if it can
produce two valid reports, where at least one is not a sub-graph of the ground
truth causality graph, or where the generated sub-graphs are inconsistent.

To elaborate, we recall some definitions regarding causality graphs that were
given in Section 2. First, recall that G̃ refers to the graph with message labels
removed, allowing us to compare with the ground-truth causality graph G main-
tained by the game. Second, two causal sub-graphs are consistent if there exists
a valid causality graph G′ of which they are both sub-graphs. This final consis-
tency condition means that there is a unique ground truth causality graph from
which sub-graphs can be reported. We view this as a natural lifting of the receiver
binding notion proposed in [15] to the multi-message setting. The advantage of
an adversary A in the transcript integrity game is defined as follows:

Advtr-intTF (A) = Pr[Gtr-int
TF (A) = 1] .

Confidentiality. In order for a transcript franking scheme to achieve confiden-
tiality, the reporting process must not reveal any information about unreported
messages. Of course, the underlying messaging channel itself must provide con-
fidentiality as well. We formalize this property in a security game in Figure 6,
inspired by the real-or-random multi-opening confidentiality notion proposed
in [15]. Our definition uses the function clen : M → Z∗, which outputs the

14

Gtr-rep
TF (A):

kSrv ←$K
stA, kCh←$A()

win← 0; R ← {}
stS ←$ SrvInit(kSrv)

st0←$ Init(0, kCh)

st1←$ Init(1, kCh)

G,Rt,Rr ← ε, {}, {}
AO(stA, kCh)

return win

O.RecvTag(P, c, ts):

Assert (P̄ , c.cf , ts) ∈ Rt

Assert (P, c, ts) ̸∈ R
Add (P, c, ts) to R
stP ,m, kf , i← Rcv(P, stP , c)

if m ̸= ⊥ then

stS , tr ←$ TagRecv(stS , P, cf)

Add (P,m, kf , cf , ts, tr) to Rr

G← G + (R, P, c.i)

return m, kf , ts, tr

O.Send(P,m):

(stP , c)←$ Snd(P, stP ,m)

return c

O.TagSend(P, cf):

G← G + (S, P)

stS , ts←$ TagSend(stS , P, cf)

Add (P, cf , ts) to Rt

return ts

O.Rep(ρ):

Assert |ρ| > 0

G′ ← Judge(stS , ρ)

if G′ ̸⊆ G ∧ ρ ⊆ Rr:

win← 1

Fig. 4. The security game for transcript reportability.

Gtr-int
TF (A):

kSrv ←$K; win← 0

stA, kCh←$A()

stS ←$ SrvInit(kSrv)

st0←$ Init(0, kCh)

st1←$ Init(1, kCh)

G,Rt,R ← ε, {}, {}
AO(stA, kCh)

return win

O.SendTag(P, c):

G← G + (S, P)

stS , ts ← TagSend(stS , P, c.cf)

Add (P, c, ts) to Rt

return ts

O.RecvTag(P, c, ts):

Assert (P̄ , c, ts) ∈ Rt

Assert (P, c, ts) ̸∈ R
Add (P, c, ts) to R
stS , tr ← TagRecv(stS , P, c.cf)

G← G + (R, P, c.i)

return tr

O.Rep(ρ1, ρ2):

Assert |ρ1| > 0 and |ρ2| > 0

G1 ← Judge(stS , ρ1)

G2 ← Judge(stS , ρ2)

if G1 ̸= ⊥ ∧G2 ̸= ⊥ ∧
((G̃1 ̸⊆ G) ∨ (G̃2 ̸⊆ G)

∨ (G1 ̸≈ G2)):

win← 1

Fig. 5. The security game for transcript integrity.

length of a ciphertext for plaintext m. The ROR-advantage against the confi-
dentiality of a transcript franking scheme TF for an adversary A is:

AdvconfTF (A) = |Pr[Gconf
TF,0(A)]− Pr[Gconf

TF,1(A)]| .

5 Our Construction

The key idea of our construction is to report platform-tagged acknowledgements
of message sending and reception. These acknowledgements contain counters,
maintained as part of the server state, that allow the moderator to reliably
reconstruct a portion of the causality graph corresponding to the platform’s
view of message transmission. Since our construction uses four counters per

15

Gconf
TF,b(A):

kSrv ←$KS ; kCh←$KC

stA←$A(), Y ← {}
stS ←$ SrvInit(kSrv)

st0←$ Init(0, kCh), st1←$ Init(1, kCh)

b̂← AO(stA)

return b̂

O.Send(P,m):

(stP , c)←$ Snd(P, stP ,m)

Y ← Y ∪ {c}
return c

O.Recv(P, c, ts):

Assert c ∈ Y
stP ,m, kf , i← Rcv(P, stP , c)

return m, kf

O.ChalSend(P,m):

(stP , c0)←$ Snd(P, stP ,m)

c1←$ {0, 1}clen(m)

return cb

Fig. 6. The security game for transcript franking confidentiality.

conversation, we call it the quad-counter construction (QCC). We present the
pseudocode specification of our construction in Figure 7, which specifies how
the service provider handles state for a single conversation between two parties.
Parallelizing this for multiple conversations can be done in a straightforward
manner, as we further discuss in Section 7.

Client logic. The client procedures Init, Snd, and Rcv comprise a secure mes-
saging channel with reportable franking tags cf , committing to plaintext content
m, with the opening kf . Indeed, these three procedures form a message franking
channel [11,16].

Server logic. Upon server initialization, sending and reception counters for each
party are initialized to 0 and the server samples a MAC key. When a party P
sends a message, the server increments the send counter for P and tags the send
event. Similarly, it increments the reception counter for P when P successfully
receives a message, and then produces a tag for this event. In the pseudocode, the
symbols S andR are labels that denote sending and reception events respectively.

Reporting. To report a set of messages, a client compiles the message contents
m, the franking key kf , the franking tag cf , the send tag TagSend, and the re-
ception tag tr for each message. The client then forwards this information to
the platform within a single report object ρ. The platform verifies the commit-
ments for each message along with its own MAC tags. Then, it uses the indexes
within the tags to construct and order the vertices for the sub-graph, and it adds
edges between vertices that correspond to the same message. A moderator can
interpret the contiguity of vertices as explained in Section 2.

Security proofs. We now demonstrate the security of our transcript franking
construction, TF. We begin by proving transcript integrity. The following lemma
will be helpful for our proof.

Lemma 1. Let G1 and G2 be two valid two-party causality sub-graphs. Suppose
G̃1 ≈ G̃2 but G1 ̸≈ G2. Then there must be v1 ∈ G1.V and v2 ∈ G2.V such that
v1[0 : 2] = v2[0 : 2] but v1.m ̸= v1.m.

16

SrvInit():

kmac←$K; cs0, cr0, cs1, cr1 ← (0, 0, 0, 0)

return {kmac, cs0, cr0, cs1, cr1}

Init(P, k):

return Ch.Init(P, k)

Snd(P, st,m):

(kf , cf)← Com(m)

(st.stCh, ce)←$ Ch.Snd(P, st.stCh, (m, kf))

return st, (ce, cf)

TagSend(stS , P, cf):

csP ← csP +1, ack← (S, P, P̄ , cf , csP , crP)

ts ← (ack,Tag(kmac, ack))

return stS , ts

TagRecv(stS , P, cf):

crP ← crP +1, ack← (R, P̄ , P, cf , csP , crP)

tr ← (ack,Tag(kmac, ack))

return stS , tr

Rcv(P, st, c, ts, tr):

(st.stCh,m, kf , i)← Ch.Rcv(P, stCh, c)

if m = ⊥ ∨ VerC(m, kf , c.cf) = 0:

return ⊥
return st,m, kf , i

Judge(stS , ρ):

Initialize empty graph G

For (P,m, kf , cf , ts, tr) in ρ

b← Ver(kmac, ts.ack, ts.tag) ∧
Ver(kmac, tr.ack, tr.tag)∧
VerC(m, kf , c.cf) ∧ ts[0] = S ∧
tr[0] = R ∧ ts.cf = tr.cf

if b = 0:

return ⊥
csP , crP = ts.ack.(cs, cr)

csP̄ , cr P̄ = tr.ack.(cs, cr)

vs = (S, csP , crP ,m)

vr = (R, csP̄ , cr P̄ ,m)

Add vs to G.VP , add vr to G.VP̄

Add (vs, vr) to G.E

return G

Fig. 7. Pseudocode for our two-party transcript franking construction.

Proof. Assume for the sake of contradiction that for all v1 ∈ G1.V and v2 ∈
G2.V , that if v1[0 : 2] = v2[0 : 2], then v1.m = v2.m. Since G̃1 ≈ G̃2, there

exists some valid causality graph G such that G̃1, G̃2 ⊆ G. This means that
there exists a sequence of send and receive operations that constructs G. We
can use the same sequence of operations to generate a valid message-inclusive
graph G∗, such that G1, G2 ⊆ G∗, contradicting the assumption that G1 ̸≈ G2.
In each send operation, we simply include the message corresponding to the
vertex v ∈ G1.V ∪ G2.V , if the counters for that send operation correspond to
a vertex in the union of the two vertex sets. By our initial assumption a unique
such vertex exists. For all other send operations, we can include an arbitrary
message, the empty string for instance. This completes the proof. ⊓⊔

Theorem 1. Let TF be the transcript franking scheme given in Figure 7. Let
A be a transcript integrity adversary against TF. Then we give an EUF-CMA
adversary B and V-Bind adversary C such that

Advtr-intTF (A) ≤ Adveuf-cma
MAC (B) + Advv-bindCS (C) .

Adversaries B and C run in time that of A plus a small overhead.

Proof. We proceed via a sequence of game hops with Game G0 equivalent to
Gtr-int

TF , defined in Figure 5. To aid with future game definitions, we provide some
additional bookkeeping, initializing an empty set R′ at the start of the game.
Game G0 adds (S, P, P̄ , c.cf , G.(csP , crP)) to R′ before the return statement

17

of SendTag. Similarly, it adds (R, P̄ , P, c.cf , G.(csP , crP)) to R′ before the
return statement of RecvTag.

The adversary A can only win if it is able to produce ρ1, ρ2 such that G̃1 ̸⊆ G
or G̃2 ̸⊆ G or G1 ̸≈ G2, where G1 ← Judge(stS , ρ1), G2 ← Judge(stS , ρ2), and G
is the ground truth graph maintained by the game. From (ρ1, ρ2), we will show
that we can break either the unforgeability of the MAC or the binding property
of the commitment.

We consider two cases: (1) the adversary wins with G̃1 or G̃2 not a sub-

graph of G or (2) the adversary wins with G1 ̸≈ G2, but G̃1, G̃2 ⊆ G. The first
case will allow us to reduce to the EUF-CMA security of the MAC while the
second allows us to reduce to the binding security of the commitment. Each case
will correspond to a distinct failure event. Let G1 be the same as G0, except
we abort and output 0, right before setting the win flag, if A produces a valid
(ρ1, ρ2) in case (1). We denote the event that this abort occurs as F1. Let G2

be the same as G1 except we abort and output 0 at the same location if A
produces a valid (ρ1, ρ2) in case (2). We denote the event that this abort occurs
as F2. Note that |Pr[G0(A)⇒ 1]−Pr[G1(A)⇒ 1]| ≤ Pr[F1] and |Pr[G1(A)⇒
1] − Pr[G2(A) ⇒ 1]| ≤ Pr[F2]. Furthermore, Pr[G2(A) ⇒ 1] = 0, so we have
Advtr-int(A) = Pr[G0(A)⇒ 1] ≤ Pr[F1] + Pr[F2].

We now demonstrate an adversary B where Adveuf-cma(B) = Pr[F1]. The
adversary B perfectly simulates G0 to A, while routing Tag and Verify calls to
its challenger oracles. If F1 occurs, then we have that G̃i ̸⊆ G for some i ∈ {1, 2}.
For r an element of ρ, define f(r) = {r.ts.ack, r.tr.ack}. Observe that G̃i ̸⊆ G
implies there is some r∗ = (P ∗,m∗, k∗f , c

∗
f , t
∗
s, t
∗
r) ∈ ρi, such that f(r∗) ̸⊆ R′.

To see why this is, observe that the construction mirrors the updates of
the causality graph perfectly. Put formally, if

⋃
r′∈ρ f(r

′) ⊆ R′ and G′ ←
Judge(ρ), then G̃′ ⊆ G. We have that G.(csP , crP , cs P̄ , cr P̄) = (0, 0, 0, 0) and the
server counters (csP , crP , cs P̄ , cr P̄) = (0, 0, 0, 0) at the start of the game. When
SendTag is called, we increment G.csP and stS .csP . Similarly, when RecvTag
is invoked, we increment G.crP and stS .crP . A simple proof by induction on the
number of oracle calls shows that G.(csP , crP) = stS .(csP , crP) for P ∈ {0, 1}
by the end of each call to SendTag and RecvTag. This means that v ∈ G̃′.V
implies v ∈ G.V and e ∈ G̃′.E implies e ∈ G.E.

If F1 occurs, then we retrieve the r∗ = (P ∗,m∗, k∗f , c
∗
f , t
∗
s, t
∗
r) in question, and

observe that Verify(kmac, t
∗
s.ack, t

∗
s.tag) = 1 and Verify(kmac, t

∗
r .ack, t

∗
r .tag) = 1,

because the output of Judge is not ⊥. We must have that at least one of t∗r .ack
or t∗s.ack was not queried to the MAC challenger oracle, otherwise both would
be in R′. Let t∗ denote this tag. We output (t∗.ack, t∗.tag) as a forgery.

Now, we construct adversary C where Advv-bindCS (C) = Pr[F2]. If F2 occurs,

we have that the adversary A was able to trigger G1 ̸≈ G2 while G̃1, G̃2 ⊆ G.
By Lemma 1 there exists v1 ∈ G1 and v2 ∈ G2 such that v1[0 : 2] = v2[0 : 2] but

v1.m ̸= v2.m. Note that there must also be a single cf and k
(1)
f , k

(2)
f such that

VerC(v1.m, k
(1)
f , cf) = 1 and VerC(v2.m, k

(2)
f , cf) = 1. This breaks the binding

18

property of the commitment, and so C outputs (v1.m, k
(1)
f , v2.m, k

(2)
f , cf) to win

with probability Pr[F2]. This completes the proof. ⊓⊔

We now show that our scheme also achieves perfect reportability.

Theorem 2. For all adversaries A, we have Advtr-repTF (A) = 0.

Proof. Observe that the check that an honest recipient performs in Rcv, namely,
that VerC(m, kf , c.cf) = 0, is replicated in Judge. The only way Judge can return
⊥ is if this check fails, if any of the MAC checks fail, or if the input ρ is malformed.
Since we are dealing with an honest reporter, this cannot be the case, so Judge
must always return a non-⊥ value. ⊓⊔

Our scheme achieves correctness via the correctness of the underlying channel
Ch, the correctness of the MAC scheme (Tag,Verify), the correctness of the com-
mitment scheme (Com,VerC), and the fact that the counters in our construction
perfectly mirror those of the ground truth graph (see the proof of Theorem 1).
Observe that our construction boils down to a commit-then-encrypt scheme,
which was proven secure for the multi-opening real-or-random confidentiality
notion in [15], hence we omit the proof of confidentiality here.

6 Multi-party Transcript Franking

Up to this point, our constructions have considered transcript franking in the
two-party direct messaging context. We now discuss how our approach general-
izes to an arbitrary number of parties. A group consists of a set of N parties
{0, . . . , N−1}. The goal of a group transcript franking construction is to be able
to reconstruct a causality graph like that shown in Figure 8. Note that, unlike the
two-party setting, one send event can correspond to multiple reception events, as
there are now multiple recipients. Each edge corresponds to a single copy of the
broadcast message. We build on the multi-party channel communication graph
formalism proposed in [25], adapting it to our causality graph abstraction.

Causality graphs for group messaging. For N -party communication, a
causality graph is an N -partite graph G = (V,E), where V =

⋃
i∈[N] Vi. All

vertex sets Vi for i ∈ [N] are disjoint. The edge set E consists of pairs (v, v′)
where v ∈ Vi and v′ ∈ Vj , where i, j ∈ [N] and i ̸= j. The vertex space, as
before, is {S,R} × Z∗ × Z∗ ×M. The notation and updates for adding a send
event is the same as the two party version. For adding a reception event to party
PR from party PS , we write G ← G + (R, PS , PR, c.i), incrementing the recep-
tion counter for PR before adding the vertex. We then add an edge between
the sending vertex and the new reception vertex, as before. The partial ordering
over events is given by the transitive closure over the total orders for each vertex
set and the edge relation. The total order within each vertex set is given by the
lexicographic ordering over v.(cs, cr) for v ∈ VP . Event contiguity and gaps can
be interpreted similarly as the two-party case, as described in Section 2.

Group messaging channels. A group messaging channel Ch is defined as the
tuple Ch = (Init,Snd,Rcv). The main difference here is that instead of P ∈ {0, 1},

19

a1

b1

m
1

c1

m1

b2

a2

m2

c2

m
2

c3

a3

m3

b3
m3

Fig. 8. Example of group causality graph

we have that P ∈ [N], and our reception procedure accepts the identity of the
sending party PS associated with the ciphertext c.

• st ←$ Init(P, k) outputs initial client state st ∈ SC for a new channel for
Party P ∈ [N] and a key k ∈ K.

• st ′, c←$ Snd(P, st ,m) is a client procedure that produces a ciphertext c ∈ C
corresponding to an input message m ∈ M, and an updated client state
st ′ ∈ SC .

• st ′,m, i ← Rcv(PR, st , PS , c) is a client procedure that processes a received
ciphertext c from party PS ∈ [N] to party PS ∈ [N] (where PS ̸= PR) and
decrypts it to a message m ∈ M ∪ {⊥} with sending index i ∈ Z∗. The
message m can be ⊥ if decryption fails.

Group transcript franking syntax and semantics. The Init, Snd, and Rcv
procedures inherit the syntactic changes discussed above, and our TagRecv pro-
cedure accepts an additional argument for the sending party PS ∈ [N]. This
additional argument is required in the group case since a client can receive a
message from more than one party. We inherit notational conventions from Sec-
tion 4.

• stS ←$ SrvInit(N) outputs initial server state stS ∈ SS for an N -party group.
• st ←$ Init(P, k) outputs initial client state st ∈ SC for a new channel for

Party P ∈ [N] and a key k ∈ K.
• st ′, c←$ Snd(P, st ,m) is a client procedure that produces a ciphertext c ∈ C

corresponding to an input message m ∈ M, and an updated client state
st ′ ∈ SC .

• st ′S , ts ← TagSend(stS , PS , cf) is a server procedure that produces a tag
ts ∈ TS for a message sending event, where PS ∈ [N] is the sending party,
cf ∈ Q is the franking tag for the message, and st ′S ∈ SS is the updated
server state.

20

Gtr-rep
TF,N (A):

kSrv ←$K
stA, kCh←$A()

win← 0; R ← {}
stS ←$ SrvInit(kSrv)

For i ∈ [N]

sti←$ Init(i, kCh)

Rt,Rr ← {}, {}
AO(stA, kCh)

return win

O.RecvTag(PR, PS , c, ts):

Assert (PS , c.cf , ts) ∈ Rt

Assert (P, c, ts) ̸∈ R
Add (P, c, ts) to R
stP ,m, kf , i← Rcv(P, stP , c)

if m ̸= ⊥ then

stS , tr ←$ TagRecv(stS , PR, PS , cf)

Add (PS , PR,m, kf , cf , ts, tr)

to Rr

return m, kf , ts, tr

O.TagSend(P, cf):

stS , ts ← TagSend(stS , P, cf)

Add (P, cf , ts) to Rt

return ts

O.Rep(ρ):

Assert |ρ| > 0

G′ = Judge(stS , ρ)

if G′ = ⊥ ∧ ρ ⊆ Rr:

win← 1

Fig. 9. The security game for transcript reportability for N -party messaging.

• stS , tr ← TagRecv(stS , PS , PR, cf) is a server procedure that produces a tag
tr ∈ TR for a message reception event by receiving party PR ∈ [N] for
a message sent by party PS ∈ [N]. This procedure is invoked only when
the receiving client indicates that the message was successfully received and
valid.

• st ′,m, kf , i ← Rcv(PR, st , PS , c) is a client procedure that processes a re-
ceived ciphertext c ∈ C and decrypts it to a message m ∈ M ∪ {⊥} and a
franking key kf ∈ Kf . The message m can be ⊥ if decryption fails.

• G← Judge(stS , ρ) takes as input the server state stS ∈ SS as well as a client-
provided report ρ, which is a set of tuples of the form (PS , PR,m, kf , cf , ts, tr).
This procedure verifies the report and, if the report is valid, produces a
causality graph G ∈ (V × E) ∪ {⊥} for the messages contained within the
report. If the reporting information is invalid, the procedure outputs ⊥.

Security definitions. Our security notions in the group setting are a natu-
ral extension of those for the two-party setting. The main difference is that N
parties are initialized and any of these parties can send and receive messages
within the same channel. Correctness and confidentiality definitions generalize
in a straightforward manner, hence we omit full descriptions of them for brevity.
We present our group transcript reportability definition in Figure 9 and our
group transcript integrity definition in Figure 10. To denote the advantage of an
adversary A in the N -party reportability game, we write Advtr-repTF,N (A). Similarly,

Advtr-intTF,N (A) is the advantage of A in the N -party transcript integrity game.

Our construction. The group messaging transcript franking construction gen-
eralizes naturally from the two-party version. We provide a pseudocode specifi-
cation of our group transcript franking protocol in Figure 11. Counter updates
happen nearly identically in TagSend and TagRecv, except now N pairs of coun-
ters are maintained, one for each party.

Security analysis. The security analysis of our group construction closely mir-
rors that of the two-party construction. As with the two-party construction, our
group construction achieves perfect reportability because the Rcv procedure per-

21

Gtr-int
TF,N (A):

kSrv ←$K; win← 0

stA, kCh←$A()

stS ←$ SrvInit(kSrv)

For i ∈ [N]

sti←$ Init(i, kCh)

G,Rt,R ← ε, {}, {}
AO(stA, kCh)

return win

O.SendTag(P,m, c, kf):

G← G + (S, P,m)

stS , ts ← TagSend(stS , P, c.cf)

Add (P, c, ts) to Rt

return ts

O.RecvTag(PR, PS , c, ts):

Assert (P̄ , c, ts) ∈ Rt

Assert (P, c, ts) ̸∈ R
Add (P, c, ts) to R
stS , tr ← TagRecv(stS , PR, PS , c.cf)

G← G + (R, PS , PR, c.i)

return tr

O.Rep(ρ1, ρ2):

Assert |ρ1| > 0 and |ρ2| > 0

G1 ← Judge(stS , ρ1)

G2 ← Judge(stS , ρ2)

if G1 ̸= ⊥ ∧G2 ̸= ⊥ ∧
((G1 ̸⊆ G) ∨ (G2 ̸⊆ G)

∨ (G1 ̸≈ G2)):

win← 1

Fig. 10. The security game for group transcript integrity for N -party messaging.

forms the same commitment checks as the Judge procedure. Below, we prove the
transcript integrity of our scheme.

Theorem 3. Let TF be the group transcript franking scheme given in Figure 11.
Let A be an N -party group transcript integrity adversary against TF. Then we
give an EUF-CMA adversary B and V-Bind adversary C such that

Advtr-intTF,N (A) ≤ Adveuf-cma
MAC (B) + Advv-bindCS (C) .

Adversaries B and C run in time that of A plus a small overhead.

Proof. We proceed as with the proof of the two-party construction. The games
G0, G1, and G2 are defined as before, with a similar security argument. Here,
we highlight notable differences in the group case. The additional bookkeep-
ing R′ is initialized to {}, as before, at the start of the game. Game G0 adds
(S, PS , PR, c.cf , G.(csP , crP)) to R′ before the return statement of SendTag.
Similarly, it adds (R,PS , c.cf , G.(csP , crP)) to R′ before the return statement
of RecvTag. The failure events F1 and F2 are defined as in the proof of Theo-
rem 1.

We now demonstrate an adversary B where Adveuf-cma(B) = Pr[F1]. The
adversary B perfectly simulates G0 to A, while routing Tag and Verify calls to
its challenger oracles. If F1 occurs, then we have that G̃i ̸⊆ G for some i ∈ {1, 2}.
For r an element of ρ, define f(r) = {r.ts.ack, r.tr.ack}. Observe that G̃i ̸⊆ G
implies there is some r∗ = (P ∗S , P

∗
R,m

∗, k∗f , c
∗
f , t
∗
s, t
∗
r) ∈ ρi, such that f(r∗) ̸⊆ R′.

This results from the fact that
⋃

r′∈ρ f(r
′) ⊆ R′ and G′ ← Judge(ρ) implies

G̃′ ⊆ G. We have that G.(csP , crP) = (0, 0) for P ∈ [N] and the server counters
stS .(csP , crP) = (0, 0) for P ∈ [N] at the start of the game. When SendTag is
called, we increment G.csP and stS .csP . Similarly, when RecvTag is invoked,
we increment G.crP and stS .crP . This means that v ∈ G̃′.V implies v ∈ G.V

22

SrvInit(N):

kmac←$K
For i ∈ [N] do csi, cri ← 0, 0

return {kmac} ∪ {csi, cri}i∈[N]

Init(P, k):

return Ch.Init(P, k)

Snd(P, st,m):

(kf , cf)← Com(m)

(st.stCh, ce)←$ Ch.Snd(P, st.stCh, (m, kf))

return st, (ce, cf)

TagSend(stS , P, cf):

csP ← csP + 1, ack← (S, P, cf , csP , crP)

ts ← (ack,Tag(kmac, ack))

return stS , ts

TagRecv(stS , PR, PS , cf):

crPR
← crPR

+ 1

ack← (R,PS , PR, cf , csPR
, crPR

)

tr ← (ack,Tag(kmac, ack))

return stS , tr

Rcv(PR, st, PS , c):

(st.stCh,m, kf , i)← Ch.Rcv(PR, stCh, PS , c)

if m = ⊥ ∨ VerC(m, kf , c.cf) = 0:

return ⊥
return st,m, kf , i

Judge(stS , ρ):

Initialize empty graph G

For (PS , PR,m, kf , cf , ts, tr) in ρ:

b← Ver(kmac, ts.ack, ts.tag) ∧
Ver(kmac, tr.ack, tr.tag)∧
VerC(m, kf , c.cf) ∧
ts[0] = S ∧ tr[0] = R∧
ts.cf = tr.cf

if b = 0:

return ⊥
csP , crP = ts.ack.(cs, cr)

csPR
, crPR

= tr.ack.(cs, cr)

vs = (S, csP , crP ,m)

vr = (R, csPR
, crPR

,m)

if vs ̸∈ G.VP

Add vs to G.VP

Add vr to G.VPR
, add (vs, vr) to G.E

return G

Fig. 11. Pseudocode for our N -party transcript franking construction.

and e ∈ G̃′.E implies e ∈ G.E. This allows us to produce a forgery as shown in
the proof for the two-party case.

Now, we construct adversary C where Advv-bindCS (C) = Pr[F2]. If F2 occurs,

we have that the adversary A was able to trigger G1 ̸≈ G2 while G̃1, G̃2 ⊆ G.
It is straightforward to see that the group version of Lemma 1 holds, so there
exists v1 ∈ G1 and v2 ∈ G2 such that v1[0 : 2] = v2[0 : 2] but v1.m ̸= v2.m. We
proceed as in the proof of Theorem 1 to produce a binding violation. ⊓⊔

7 Discussion and Extensions

Composing causality preservation with transcript franking. Our work is
primarily concerned with how malicious parties can interfere with the reporting
process. Causality preservation as proposed in [11] aims to model how parties in
a messaging channel can obtain consistent causality graphs in the presence of a
malicious service provider. Indeed, transcript franking can be instantiated with
a channel that achieves strong causality preservation to reap these benefits.

Reports with redacted messages. We remark that our construction allows
clients to report transmission patterns of messages, via causality sub-graphs,
without having to disclose every message within the causality sub-graph. Doing
so simply requires omitting the opening key kf for the messages that a client

23

wishes to redact within a report. In Chen and Fischlin’s construction of a mes-
sage franking channel with causality, this would not be possible as the causality
metadata is committed to alongside the plaintext message [11].

Malicious clients refusing acknowledgement. In our protocol, clients indi-
cate reception of a well-formed ciphertext to the server before a reception event
tag is created. Malicious clients may refuse to make this acknowledgement to
the server, preventing the sender of that message from being able to report it.
We can mitigate this via notifying senders of message delivery and recipient val-
idation separately, thereby flagging malicious behavior in-band. Upon detecting
this behavior, a client may refuse to further communicate with the misbehaving
client, but we do not yet support cryptographically reporting this misbehavior.

To explain in more detail, when P sends a message to P̄ , there are three key
events in the course of message transmission: (1) the reception of the message
sent from P by the platform server, (2) the reception of the message by P̄ , and
(3) platform reception of a valid message acknowledgement from P̄ .

If P̄ is malicious, it could refuse to indicate the validity of the message,
omitting step (3) as described above. When (an honest) P notices that only
events (1) and (2) occurred for a particular message, while P̄ continues to send
and acknowledge subsequent messages, it knows that P̄ is acting in an aberrant
manner and will halt interactions with P̄ (tear down the conversation and alert
the user). So detection of deviation is built into our protocol. But our protocol
does not enable P to cryptographically prove to a moderator that P̄ misbehaved
in the way described above. A messaging system might trust client software to
report such misbehavior, but cryptographically secure reporting of this class of
misbehavior is an open question.

The above issue is analogous to an honest client receiving a message with
a malformed franking tag in the standard single-message franking setting. Here
the recipient should drop the message, but cannot cryptographically prove to
the moderator that the sender sent a malformed ciphertext.

One might wonder if the key-committing aspect of the encryption scheme can
come to the rescue here: if a ciphertext can be decrypted only under one key, then
the sender needs to simply reveal the key in order to show the ciphertext is well-
formed. In messaging protocols, these keys are often intended for one-time use
and revealing them does not compromise forward-secrecy or post compromise
security. The issue is that there is no straightforward way to prove that the
recipient should have been able to derive a particular key from the ratcheting
protocol. Hence, proving that a message is decryptable is not sufficient to show
that the recipient should have been able to decrypt it. Designing protocols that
allow for proving such statements is an interesting future direction.

Deployment considerations. Our definitions consider single conversations,
however our constructions can be parallelized in a straightforward manner for
multiple conversations. Indeed, the same server MAC key can be used, and as [1]
suggests, periodically rotated. Tags will additionally have to include conversation
specific identifiers in order to ensure that messages cannot be falsely reported
across conversations. This would amount to appending the identifier cid to ack

24

before tagging it in TagSend and TagRecv. Instead of using numerical indices to
identify parties, one might use unique user identifiers. This is especially impor-
tant for groups as membership can change over time, hence so can the mapping
between party indexes and user identities within a group. Presenting causality
information in a user-friendly way to messaging parties and content moderators
is an open question, which was also raised in [11]. Concretely, both the MAC
and the commitment scheme can be instantiated with HMAC-SHA-256 [7]. A
drawback of our proposed construction is that the server must maintain coun-
ters for each party in each channel. At scale, keeping track of this state can be
prohibitive. In the remainder of this section, we describe a modification of our
scheme that mitigates this issue.

Outsourced-storage transcript franking. We now propose mechanisms for
allowing clients to store the counters while the server verifies how it is updated. In
our no-server-storage solution, clients send these counters in the associated data
of their messages. We present a solution for two-party transcript franking with
outsourced storage in the remainder of this section. In Appendix B, we provide a
security analysis of this solution and outline its generalization to group transcript
franking. We present pseudocode for our outsourced construction in Figure 12,
highlighting the procedures that differ from the server-storage version.

Formally, an outsourced two-party transcript franking scheme is a tuple of
algorithms OTF = (SrvInit, Init,Snd,Rcv,TagSend,TagRecv, Judge, JudgeReplay),
defined over a server state space SS , a client state space SC , a key space K, a
message spaceM, a commitment space Q, a franking key space Kf , an initial-
ization tag space TI , a message-sent tag space TS , and a reception tag space TR.
We detail these algorithms below:

• stS , t
(0)
0 , t

(1)
0 ←$ SrvInit() outputs an initial server state stS ∈ SS , along with

initialization tags t(0), t(1) ∈ TI for each party.
• st ←$ Init(P, k) is defined as in Section 4.
• st ′, c←$ Snd(P, st ,m) is defined as in Section 4.
• st ′S , ts ← TagSend(stS , P, cf , t) is a server procedure that produces a tag

ts ∈ TS for a message sending event, where P is the sending party, cf is the
franking tag, and t ∈ TS ∪ TR ∪ TI is the last tag issued for P .

• stS , tr ← TagRecv(stS , P, cf , t) is a server procedure that produces a tag
tr ∈ TR for a message reception event by receiving party P . As with TagSend,
t ∈ TS ∪ TR ∪ TI is the last tag issued for P .

• st ′,m, kf , i← Rcv(P, st , c) is defined as in Section 4.
• G← Judge(stS , ρ) is defined as in Section 4.
• P ← JudgeReplay(stS , t, t

′) is a server procedure that takes as input two tags
t, t′ ∈ TS ∪ TR ∪ TI . It outputs a party P ∈ {0, 1} if it determines that the
tags constitute a replay attempt by P , or ⊥ if no replay attempt is detected.

Preventing fast-forwards. When sending a message, a client increments its
send counter and appends to the causality data a server tag for the previous
counter. This prevents the client from incrementing the counter too far into

25

SrvInit():

kmac←$K; cs0, cr0, cs1, cr1 ← (0, 0, 0, 0)

For P ∈ {0, 1}
t
(P)
0 .ack = (Init, P,⊥, 0, 0)
t
(P)
0 .tag = Tag(kmac, t

(P)
0 .ack)

return {kmac, cs0, cr0, cs1, cr1}, t(0)0 , t
(1)
0

TagSend(stS , P, cf , t):

if Π(t) ̸= P ∨ Verify(kmac, t.ack, t.tag) = 0:

return stS ,⊥
(csP , crP)← t.ack.(cs, cr)

csP ← csP + 1, ack← (S, P, P̄ , cf , csP , crP)

ts ← (ack,Tag(kmac, ack))

return stS , ts

TagRecv(stS , P, cf , t):

if Π(t) ̸= P ∨ Verify(kmac, t.ack, t.tag) = 0:

return stS ,⊥
(csP , crP)← t.ack.(cs, cr)

crP ← crP + 1, ack← (R, P̄ , P, cf , csP , crP)

tr ← (ack,Tag(kmac, ack))

return stS , tr

JudgeReplay(stS , t, t′):

if Π(t) ̸= Π(t′) then return ⊥
b← (Verify(kmac, t.ack, t.tag) = 1) ∧

(Verify(kmac, t
′.ack, t′.tag) = 1) ∧

((t.ack.cs + t.ack.cr) =

(t′.ack.cs + t′.ack.cr))

if b = 1 then return Π(t)

else return ⊥

Fig. 12. Pseudocode for our two-party transcript franking construction with out-
sourced storage. Let Π(t) be the sending party if t is a sending tag and the receiving
party if t is a reception tag. The routines Init, Snd, Rcv, and Judge remain unchanged
relative to the pseudocode given in Figure 7.

the future, resulting in what we term a fast-forward attack. Doing so would
require the client to forge a MAC, since it would have to produce a valid server
tag on a message the server had not tagged before. Syntactically, this means
we modify TagRecv and TagSend to take in an additional input t, the latest
tag issued by the server to party P . At the initialization of a conversation,

the server provides each party P with a special starting tag t
(P)
0 , which are

additional outputs from SrvInit, where t
(P)
0 .ack = (Init, P,⊥, 0, 0). We write

TagSend(stS , P, cf , t) and TagRecv(stS , P, cf , t). In our modified construction,
the server first checks that t is a valid tag and obtains the initial values of the
counters as (csP , crP) ← t.ack.(cs, cr) instead of retrieving them from its own
storage, for both TagSend and TagRecv. If the check on t fails, TagRecv and
TagSend output ⊥.

Preventing replays. If a client attempts to send a message with a repeated
past counter, an honest recipient can report the repeated counters to the server
as proof of sender misbehavior. Such a report provides resistance against rollback
attacks for counters. For message reception tags, we follow the same exact ap-
proach as it applies to receive counters. We add a new procedure to the construc-
tion: P ← JudgeReplay(stS , t, t

′), where P is the party that attempted the replay.
If the provided tags do not constitute proof of a replay, then the output is ⊥. In
our modified construction, the server returns P if (Verify(kmac, t.ack, t.tag) = 1),
(Verify(kmac, t

′.ack, t′.tag) = 1), ((t.ack.cs + t.ack.cr) = (t′.ack.cs + t′.ack.cr)),
and (t.ack ̸= t′.ack), where P is the sending party within a send acknowledge-
ment or the receiving party of a reception acknowledgement – if these are not
the same between t and t′, then we output ⊥. To submit a false replay report

26

framing an honest party would require a client to forge a MAC. We term the
submission of a false replay a replay framing attack, for which we provide a
game-based definition in Appendix B.

Replay reportability. In addition to ensuring that honest clients cannot be
falsely framed for attempting a replay, we must guarantee that actual replays
by malicious clients are reportable. For a party P that has been issued a server
tag t ∈ TS ∪ TR ∪ TI , that then generates t′ and t′′ by invoking TagRecv and/or
TagSend with the same t given as the previous tag, JudgeReplay(stS , t

′, t′′) must
output P . This holds for the construction in Figure 12 by the checks performed
in JudgeReplay.

8 Related Work

Message franking.Message franking has been studied in various settings. Sym-
metric message franking provides a reporting solution when the platform houses
the moderation endpoint for receiving reports, and when sender and recipient
identities are known [1,12,15,16]. Our own work is situated within this setting.
Asymmetric message franking (AMF) generalizes to metadata private platforms
and allows for third-party moderation [17,33]. Recent work has also generalized
AMFs to group messaging [18]. There are also proposed reporting mechanisms
built from secret sharing [13]. All of these works consider message franking at
the single-message level.

Causality in cryptographic protocols. Prior work has investigated incorpo-
rating causality in cryptographic channels [14,25]. Notably, recent work by Chen
and Fischlin has introduced stronger causality notions and shown how to com-
bine them with message franking protocols [11]. However, as we have discussed,
their message franking formalism does not meet our goals for transcript franking,
due to its reliance on client-reported causality information and the inability for
reporters to disclose their own sent messages. See Appendix A for more details.
The distributed systems literature has long considered the problem of ordering
events over communication networks via devising notions of logical time [19] and
distributed snapshots [9].

Cryptographic Abuse Mitigation. In addition to enabling user-driven re-
porting, other cryptographic solutions have been proposed for targeting abuse
in encrypted messaging. For messaging platforms that allow forwarding con-
tent, message trace-back is a cryptographic primitive that allows a platform
to determine the origin of harmful content [17, 27, 35]. Message franking con-
cerns user-driven content reporting. Recent work has also considered automated
reporting for messages that match a list of known harmful content [8]. Such
proposals have been met with strong criticism from privacy advocates. Follow-
on work has attempted to navigate the privacy vs. moderation trade-off through
added transparency and placing limitations on what content can be traced [6,30].
Another line of work explores how cryptography can be used to aid with user-
blocking [29,34].

27

9 Conclusion

Existing treatments of message franking only consider how reporters can disclose
individual messages that they receive. This is insufficient for including necessary
context within reports. Our work provides definitions and constructions for tran-
script franking, an extension of message franking protocols that allows reporting
sequences of messages with strong guarantees over message ordering and con-
tiguity. We generalize our results to multi-party messaging and show how to
securely outsource state to clients, allowing for more practical deployment. How
our techniques can be generalized to asymmetric message franking, in order to
be applicable to metadata-private and third-party moderation settings, remains
an interesting open problem.

28

References

1. Messenger secret conversations technical whitepaper
(2017), https://about.fb.com/wp-content/uploads/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf

2. How do i know if my message was delivered or read?
(2024), https://support.signal.org/hc/en-us/articles/

360007320751-How-do-I-know-if-my-message-was-delivered-or-read

3. How to block and report someone (2024), https://faq.whatsapp.com/

1142481766359885/?helpref=hc_fnav&cms_platform=web

4. How to check read receipts (2024), https://faq.whatsapp.com/

665923838265756/?helpref=uf_share

5. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon, K.:
The messaging layer security (mls) protocol (2024), https://datatracker.ietf.
org/doc/rfc9420/

6. Bartusek, J., Garg, S., Jain, A., Policharla, G.V.: End-to-end secure messaging
with traceability only for illegal content. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology – EUROCRYPT 2023. pp. 35–66. Springer Nature Switzerland, Cham
(2023)

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) Advances in Cryptology — CRYPTO ’96. pp. 1–15.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

8. Bhowmick, A., Boneh, D., Myers, S., Talwar, K., Tarbe, K.: The apple psi
system (2021), https://www.apple.com/child-safety/pdf/Apple_PSI_System_

Security_Protocol_and_Analysis.pdf

9. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (Feb 1985). https:
//doi.org/10.1145/214451.214456, https://doi.org/10.1145/214451.214456

10. Chen, B., Dodis, Y., Ghosh, E., Goldin, E., Kesavan, B., Marcedone, A., Mou,
M.E.: Rotatable zero knowledge sets. In: Agrawal, S., Lin, D. (eds.) Advances in
Cryptology – ASIACRYPT 2022. pp. 547–580. Springer Nature Switzerland, Cham
(2022)

11. Chen, S., Fischlin, M.: Integrating causality in messaging channels. In: Joye, M.,
Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. pp. 251–282.
Springer Nature Switzerland, Cham (2024)

12. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.) Ad-
vances in Cryptology – CRYPTO 2018. pp. 155–186. Springer International Pub-
lishing, Cham (2018)

13. Eskandarian, S.: Abuse reporting for Metadata-Hiding communication based on
secret sharing. In: 33rd USENIX Security Symposium (USENIX Security 24).
pp. 3205–3221. USENIX Association, Philadelphia, PA (Aug 2024), https://www.
usenix.org/conference/usenixsecurity24/presentation/eskandarian

14. Eugster, P., Marson, G.A., Poettering, B.: A cryptographic look at multi-party
channels. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF).
pp. 31–45 (2018). https://doi.org/10.1109/CSF.2018.00010

15. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology – CRYPTO
2017. pp. 66–97. Springer International Publishing, Cham (2017)

29

https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://support.signal.org/hc/en-us/articles/360007320751-How-do-I-know-if-my-message-was-delivered-or-read
https://support.signal.org/hc/en-us/articles/360007320751-How-do-I-know-if-my-message-was-delivered-or-read
https://faq.whatsapp.com/1142481766359885/?helpref=hc_fnav&cms_platform=web
https://faq.whatsapp.com/1142481766359885/?helpref=hc_fnav&cms_platform=web
https://faq.whatsapp.com/665923838265756/?helpref=uf_share
https://faq.whatsapp.com/665923838265756/?helpref=uf_share
https://datatracker.ietf.org/doc/rfc9420/
https://datatracker.ietf.org/doc/rfc9420/
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://www.usenix.org/conference/usenixsecurity24/presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity24/presentation/eskandarian
https://doi.org/10.1109/CSF.2018.00010
https://doi.org/10.1109/CSF.2018.00010

16. Huguenin-Dumittan, L., Leontiadis, I.: A message franking channel. In: Yu, Y.,
Yung, M. (eds.) Information Security and Cryptology. pp. 111–128. Springer In-
ternational Publishing, Cham (2021)

17. Issa, R., Alhaddad, N., Varia, M.: Hecate: Abuse reporting in secure messen-
gers with sealed sender. In: 31st USENIX Security Symposium (USENIX Secu-
rity 22). pp. 2335–2352. USENIX Association, Boston, MA (Aug 2022), https:
//www.usenix.org/conference/usenixsecurity22/presentation/issa

18. Lai, J., Zeng, G., Huang, Z., Yiu, S.M., Mu, X., Weng, J.: Asymmetric group mes-
sage franking: Definitions and constructions. In: Hazay, C., Stam, M. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2023. pp. 67–97. Springer Nature Switzer-
land, Cham (2023)

19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (jul 1978). https://doi.org/10.1145/359545.
359563, https://doi.org/10.1145/359545.359563

20. Len, J., Chase, M., Ghosh, E., Laine, K., Moreno, R.C.: OPTIKS: An optimized key
transparency system. In: 33rd USENIX Security Symposium (USENIX Security
24). pp. 4355–4372. USENIX Association, Philadelphia, PA (Aug 2024), https:
//www.usenix.org/conference/usenixsecurity24/presentation/len

21. Leontiadis, I., Vaudenay, S.: Private message franking with after opening privacy.
In: International Conference on Information and Communications Security. pp.
197–214. Springer (2023)

22. Machado, C., Kira, B., Narayanan, V., Kollanyi, B., Howard, P.: A study of mis-
information in whatsapp groups with a focus on the brazilian presidential elec-
tions. In: Companion Proceedings of The 2019 World Wide Web Conference. p.
1013–1019. WWW ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3308560.3316738, https://doi.org/10.
1145/3308560.3316738

23. Malvai, H., Kokoris-Kogias, L., Sonnino, A., Ghosh, E., Oztürk, E., Lewi, K.,
Lawlor, S.: Parakeet: Practical key transparency for end-to-end encrypted mes-
saging. Cryptology ePrint Archive, Paper 2023/081 (2023). https://doi.org/10.
14722/ndss.2023.24545, https://eprint.iacr.org/2023/081

24. Marlinspike, M.: Private group messaging (2014), https://signal.org/blog/

private-groups/

25. Marson, G.A.: Real-World Aspects of Secure Channels: Fragmentation, Causality,
and Forward Security. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt
(2017), http://tuprints.ulb.tu-darmstadt.de/6021/

26. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: Bringing key transparency to end users. In: 24th USENIX Security
Symposium (USENIX Security 15). pp. 383–398. USENIX Association, Washing-
ton, D.C. (Aug 2015), https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/melara

27. Peale, C., Eskandarian, S., Boneh, D.: Secure complaint-enabled source-tracking
for encrypted messaging. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. p. 1484–1506. CCS ’21, Association for
Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3460120.3484539, https://doi.org/10.1145/3460120.3484539

28. Pfefferkorn, R.: Content-oblivious trust and safety techniques: Results from a
survey of online service providers. Journal of Online Trust and Safety 1(2)
(Feb 2022). https://doi.org/10.54501/jots.v1i2.14, https://tsjournal.org/
index.php/jots/article/view/14

30

https://www.usenix.org/conference/usenixsecurity22/presentation/issa
https://www.usenix.org/conference/usenixsecurity22/presentation/issa
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://www.usenix.org/conference/usenixsecurity24/presentation/len
https://www.usenix.org/conference/usenixsecurity24/presentation/len
https://doi.org/10.1145/3308560.3316738
https://doi.org/10.1145/3308560.3316738
https://doi.org/10.1145/3308560.3316738
https://doi.org/10.1145/3308560.3316738
https://doi.org/10.14722/ndss.2023.24545
https://doi.org/10.14722/ndss.2023.24545
https://doi.org/10.14722/ndss.2023.24545
https://doi.org/10.14722/ndss.2023.24545
https://eprint.iacr.org/2023/081
https://signal.org/blog/private-groups/
https://signal.org/blog/private-groups/
http://tuprints.ulb.tu-darmstadt.de/6021/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://doi.org/10.1145/3460120.3484539
https://doi.org/10.1145/3460120.3484539
https://doi.org/10.1145/3460120.3484539
https://doi.org/10.1145/3460120.3484539
https://doi.org/10.1145/3460120.3484539
https://doi.org/10.54501/jots.v1i2.14
https://doi.org/10.54501/jots.v1i2.14
https://tsjournal.org/index.php/jots/article/view/14
https://tsjournal.org/index.php/jots/article/view/14

29. Rosenberg, M., Maller, M., Miers, I.: Snarkblock: Federated anonymous block-
listing from hidden common input aggregate proofs. In: 2022 IEEE Symposium
on Security and Privacy (SP). pp. 948–965 (2022). https://doi.org/10.1109/
SP46214.2022.9833656

30. Scheffler, S., Kulshrestha, A., Mayer, J.: Public verification for private hash match-
ing. In: 2023 IEEE Symposium on Security and Privacy (SP). pp. 253–273.
IEEE Computer Society, Los Alamitos, CA, USA (may 2023). https://doi.org/
10.1109/SP46215.2023.10179349, https://doi.ieeecomputersociety.org/10.

1109/SP46215.2023.10179349

31. Scheffler, S., Mayer, J.: SoK: Content Moderation for End-to-End Encryption.
Proceedings on Privacy Enhancing Technologies 2023(2), 403–429 (2023). https:
//doi.org/10.56553/popets-2023-0060

32. Tyagi, N., Fisch, B., Zitek, A., Bonneau, J., Tessaro, S.: Versa: Verifiable registries
with efficient client audits from rsa authenticated dictionaries. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
p. 2793–2807. CCS ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3548606.3560605, https://doi.org/10.
1145/3548606.3560605

33. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-
ing: Content moderation for metadata-private end-to-end encryption. In: Advances
in Cryptology – CRYPTO 2019: 39th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III. p.
222–250. Springer-Verlag, Berlin, Heidelberg (2019). https://doi.org/10.1007/
978-3-030-26954-8_8, https://doi.org/10.1007/978-3-030-26954-8_8

34. Tyagi, N., Len, J., Miers, I., Ristenpart, T.: Orca: Blocklisting in Sender-
Anonymous messaging. In: 31st USENIX Security Symposium (USENIX Secu-
rity 22). pp. 2299–2316. USENIX Association, Boston, MA (Aug 2022), https:
//www.usenix.org/conference/usenixsecurity22/presentation/tyagi

35. Tyagi, N., Miers, I., Ristenpart, T.: Traceback for end-to-end encrypted messaging.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 413–430. CCS ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3354243,
https://doi.org/10.1145/3319535.3354243

36. Wang, L., Wang, R., Williams-Ceci, S., Menda, S., Zhang, A.X.: ”is reporting
worth the sacrifice of revealing what i’ve sent?”: Privacy considerations when re-
porting on End-to-End encrypted platforms. In: Nineteenth Symposium on Us-
able Privacy and Security (SOUPS 2023). pp. 491–508. USENIX Association,
Anaheim, CA (Aug 2023), https://www.usenix.org/conference/soups2023/

presentation/wang

37. WhatsApp: Two billion users – connecting the world pri-
vately. WhatsApp Blog (2020), https://blog.whatsapp.com/

two-billion-users-connecting-the-world-privately

31

https://doi.org/10.1109/SP46214.2022.9833656
https://doi.org/10.1109/SP46214.2022.9833656
https://doi.org/10.1109/SP46214.2022.9833656
https://doi.org/10.1109/SP46214.2022.9833656
https://doi.org/10.1109/SP46215.2023.10179349
https://doi.org/10.1109/SP46215.2023.10179349
https://doi.org/10.1109/SP46215.2023.10179349
https://doi.org/10.1109/SP46215.2023.10179349
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179349
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179349
https://doi.org/10.56553/popets-2023-0060
https://doi.org/10.56553/popets-2023-0060
https://doi.org/10.56553/popets-2023-0060
https://doi.org/10.56553/popets-2023-0060
https://doi.org/10.1145/3548606.3560605
https://doi.org/10.1145/3548606.3560605
https://doi.org/10.1145/3548606.3560605
https://doi.org/10.1145/3548606.3560605
https://doi.org/10.1007/978-3-030-26954-8_8
https://doi.org/10.1007/978-3-030-26954-8_8
https://doi.org/10.1007/978-3-030-26954-8_8
https://doi.org/10.1007/978-3-030-26954-8_8
https://doi.org/10.1007/978-3-030-26954-8_8
https://www.usenix.org/conference/usenixsecurity22/presentation/tyagi
https://www.usenix.org/conference/usenixsecurity22/presentation/tyagi
https://doi.org/10.1145/3319535.3354243
https://doi.org/10.1145/3319535.3354243
https://doi.org/10.1145/3319535.3354243
https://www.usenix.org/conference/soups2023/presentation/wang
https://www.usenix.org/conference/soups2023/presentation/wang
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately

A Comparison with Causality Preservation

Recent work by Chen and Fischlin considers the problem of assuring order-
ing integrity for messages within cryptographic channels, as well as extending
this integrity to message franking [11]. They introduce a security notion called
causality preservation, which captures the ability for two parties to recover a
consistent causal dependency graph over the messages they exchange, even in
the presence of a malicious network provider. To achieve causality preservation,
clients self-report the order in which messages were sent and received via addi-
tional metadata. As a result, clients obtain a shared view of the partial ordering
in which messages were sent and received. This partial ordering is captured by
a causality graph, which we describe in Section 2. Our work additionally consid-
ers the problem of multi-message franking in the group setting while Chen and
Fischlin focus on two-party messaging.

Overview of MFC with causality preservation. The causality metadata
is incorporated into a message franking scheme, enabling reporting of this or-
der in addition to the contents of the messages. Such context is valuable as the
ordering and contiguity of messages sent within a conversation can heavily influ-
ence a moderator’s interpretation of the reported messages. To illustrate what
this metadata looks like, we briefly recall the causal message franking channel
MFChcFB presented in the Chen-Fischlin paper.

A sender attaches causal metadata consisting of a queue Q and an index
iR to each sent message. The queue Q contains the actions performed by the
sender that have not yet been acknowledged by the recipient. Messages can be
uniquely identified by their sending index and party. An index with a bar ī
indicates a received message with sending index i. Actions recorded in Q simply
consist of these indices. Once the recipient indicates the latest message it has
received, the sender removes all elements from Q up to and including the one
associated with that latest message. To communicate this, the index iR, sent
alongside Q, indicates the largest message index received by the sender from
the other party, and the value iS keeps track of the largest īR received from
the other party. Intuitively, the message with sending index īR, now confirmed
to have been received by the other party, contains all elements of Q up to and
including the sending action īR, allowing those actions to be safely removed from
Q. Despite the optimization that iS and iR enable, Q can grow arbitrarily large,
and the overall bandwidth can increase in a quadratic manner if messages are
not acknowledged. In single-message franking, a user reports only messages they
have received. In causality-preserving message franking, the same is true, except
these messages contain metadata about the order in which other messages have
been sent and received.

Reporting self-sent message contents. Recall that the message franking
channel formalism allows you to only report the messages and content received
from the other party. This poses an issue for transcript franking since we may
have to report messages sent by the reporter themselves. Currently, The Chen-
Fischlin construction does not have a solution to this problem. Their reporting

32

formalism only allows reporting messages received from the other party. One
workaround would be to require an interactive reporting process in which each
party reports the messages of the other party, filling out the causality graph. Of
course, this is less than desirable, especially in the case where an abusive party
refuses to participate. In our solution, we propose a way in which clients can
explicitly acknowledge reception of well-formed messages, thereby allowing the
senders of those messages to independently report them.

Misbehavior by malicious clients. Via Q, clients self-report orderings of
message sending and reception events. An issue here is that clients can self-
report arbitrary such orderings, even ones that do not align with how messages
were transmitted through the service provider. Figure 1 illustrates an example for
which arbitrary self-reported messages orderings can enable malicious behavior.

Beyond the ability to deviate from the actual interleaving of messages, a
malicious sender or reporter can lie about messages having been dropped or
delivered out of order. For these reasons, relying on client-reported orderings is
insufficient for reporting sequences of messages.

Attack on prior construction. The augmented Facebook message franking
channel construction presented in [11],MFChcFB, allows clients to report message
orders that do not align with the ground truth. We illustrate this via a simple
attack that mirrors the idea presented in Figure 1. In order to provide a fair
comparison, we first describe a natural lifting from the Chen-Fischlin notion
for message franking channels to our setting. To instantiate a Chen-Fischlin-
style message franking channel in our setting, we define a TagRecv function that
simply returns ⊥ for the tag. The Judge function is defined in the natural way,
by running Extr repeatedly for all messages involved in the report in order to
construct the full graph.

The adversary A chooses Party 0 as the malicious party (this is opposite of
the attack presented in Section 1, but it applies in the same manner) and issues
the following oracle calls. We specify the exact causal metadata that Party 0
embeds within the messages it sends to achieve this goal within each send call.

Sequence 1:
1. c1←$ SendTag(0,m1;Q = (), iR = −1)
2. RecvTag(1, c1)
3. c2←$ SendTag(1,m2;Q = (1̄), iR = 1)
4. RecvTag(0, c2)
5. c3←$ SendTag(0,m3;Q = (1), iR = −1)
6. RecvTag(1, c3)
7. c4←$ SendTag(0,m4;Q = (1, 2, 1̄), iR = 1)
8. RecvTag(1, c4)

The adversary A embeds causality metadata that suggests Party 0 having
observed the ordering (m1,m3,m2,m4). Meanwhile, Party 1 observes the order-
ing (m1,m2,m3,m4), which also aligns with what Party 0 should have observed
had it not deviated from the protocol. The ordering of SendTag and RecvTag
calls differs from the ordering specified in the Q sent along with m4. Below, we

33

show the causality metadata Party 0 would have attached had it followed the
protocol honestly:

Sequence 2:

1. c1←$ SendTag(0,m1;Q = (), iR = −1)
2. RecvTag(1, c1)

3. c2←$ SendTag(1,m2;Q = (1̄), iR = 1)

4. RecvTag(0, c2)

5. c3←$ SendTag(0,m3;Q = (1̄), iR = 1)

6. RecvTag(1, c3)

7. c4←$ SendTag(0,m4;Q = (1̄, 2), iR = 1)

8. RecvTag(1, c4)

As a result, the graph recovered from Extr differs from the graph maintained
by the security game. The adversary A can issue a report, from either party,
indicating the wrong causal ordering, winning with probability 1.

Impossibility result. The attack we just presented works because the server
has no way to tag reception events. Since the message franking channel presented
in [11] does not enable such tagging, it is impossible for any scheme within their
model to satisfy our transcript integrity security notion. Intuitively, any scheme
that doesn’t enable the server to certify when messages are received requires
the recipient party to self-report when reception events occur. In particular, the
attack we just presented generalizes to any scheme that does not enable the
server to tag reception events. Hence, we extend the message franking model to
allow the server to tag reception events, via that TagRecv procedure.

Theorem 4. Any message franking channel MFCh that does not tag message
reception events does not satisfy transcript integrity.

Proof. We consider Sequence 1 and Sequence 2 as defined above and note that
they provide a scenario in which the sending events occur in the same order, but
the reception events occur in a different order. Given that client input cannot
be trusted to report the ordering of reception events, the Judge routine needs
to somehow recover the causality graph given just information about the order
in which messages were sent, which it can record upon invocation of TagSend.
Since Sequences 1 and 2 have the same ordering of send operations ordering,
but correspond to different causality graphs due to the difference in reception
ordering, we see that it is impossible for Judge to distinguish between these two
scenarios in general. In the transcript integrity game, the adversary can randomly
choose to execute Sequence 1 or Sequence 2 with probability 1/2. For any fixed
Judge routine, the probability of outputting the correct causality graph is at
most 1/2. Hence, no scheme that fails to consider reception events can achieve
our notion of transcript integrity. ⊓⊔

34

Gcorr
TF (A):

kSrv ←$K, stA, kCh←$A(), win← 0

stS , t
(0)
0 , t

(1)
0 ←$ SrvInit(kSrv)

st0←$ Init(0, kCh), st1←$ Init(1, kCh)

t0, t1 ← t
(0)
0 , t

(1)
0

Rt,Rr ← {}, {}
AO(stA, kCh)

return win

O.SendTag(P,m):

(stP , c)←$ Snd(P, stP ,m)

stS , tP ←$ TagSend(stS , P, c.cf , tP)

G← G + (S, P,m)

Add (P, c, tP) to Rt

return c, tP

O.RecvTag(P, c, ts):

Assert (P̄ , c.c, ts) ∈ Rt

stP ,m, kf , i← Rcv(P, stP , c)

if m ̸= ⊥ then

stS , tP ←$ TagRecv(stS , P, cf , tP)

G← G + (R, P, c.i)

Add (P,m, kf , cf , ts, tr) to Rr

else

win← 1

return m, kf , ts, tP

O.Rep(ρ):

Assert |ρ| > 0 G′ = Judge(stS , ρ)

if ρ ⊆ Rr ∧ ((G′ = ⊥) ∨ (G′ ̸⊆ G)):

win← 1

Fig. 13. The security game for outsourced-storage transcript franking correctness.

B Security for Outsourced-storage Transcript Franking

In this section, we elaborate on the security analysis of our outsourced transcript
franking scheme, which we introduced in Section 7. Correctness for outsourced
transcript franking is captured by the game in Figure 13. We adapt the security
notions for server-side-storage transcript franking to the outsourced setting and
prove that our outsourced scheme achieves security.

Transcript integrity. In Figure 14, we present our transcript integrity defini-
tion for outsourced transcript franking. The goal of the adversary is the same as
in the non-outsourced transcript integrity game, except now the adversary must
submit valid server tags to generate new ones. Moreover, the adversary cannot
replay tags in a way that is undetected by JudgeReplay. The advantage of an
adversary A in the outsourced storage transcript integrity game is

Advo-tr-intTF (A) = Pr[Go-tr-int
TF (A) = 1] .

Replay framing. In Figure 15, we present a security game for replay framing.
Given two parties that honestly interact in the protocol, the adversary attempts
to generate a replay that is detected by JudgeReplay, in effect framing an honest
party for attempting to replay a server tag. The advantage of an adversary A in
the outsourced storage replay framing game is

Advo-frTF (A) = Pr[Go-fr
TF (A) = 1] .

Security proofs. We now provide proofs for the transcript integrity and re-
ply framing security of our outsourced storage transcript franking scheme. The
following theorems establish the security of our outsourced construction.

35

Go-tr-int
TF (A):

kSrv ←$K; win← 0

stA, kCh←$A()

stS , t
(0)
0 , t

(1)
0 ←$

SrvInit(kSrv)

st0←$ Init(0, kCh)

st1←$ Init(1, kCh)

G,Rr,R ← ε, {}, {}
AO(stA, kCh, t

(0)
0 , t

(1)
0)

return win

O.SendTag(P, c, t):

Assert for all t1, t2 ∈ R,

JudgeReplay(stS , t1, t2) = 0

stS , ts ← TagSend(stS , P, c.cf , t)

if ts = ⊥ then return ⊥
G← G + (S, P)

Add (P, c, ts) to Rt, add ts to R
return ts

O.RecvTag(P, c, ts, t):

Assert (P̄ , c, ts) ∈ Rt

Assert for all t1, t2 ∈ R,

JudgeReplay(stS , t1, t2) = 0

stS , tr ← TagRecv(stS , P, c.cf , t)

if tr = ⊥ then return ⊥
G← G + (R, P, c.i)

Add tr to R
return tr

O.Rep(ρ1, ρ2):

Assert |ρ1| > 0 and |ρ2| > 0

G1 ← Judge(stS , ρ1)

G2 ← Judge(stS , ρ2)

if G1 ̸= ⊥ ∧G2 ̸= ⊥ ∧
((G̃1 ̸⊆ G) ∨ (G̃2 ̸⊆ G)

∨ (G1 ̸≈ G2)):

win← 1

Fig. 14. The security game for outsourced-storage transcript integrity.

Go-fr
TF (A):

kSrv ←$K; win← 0

stA, kCh←$A()

stS , t
(0)
0 , t

(1)
0 ←$

SrvInit(kSrv)

st0←$ Init(0, kCh)

st1←$ Init(1, kCh)

t0, t1 ← t
(0)
0 , t

(1)
0

Rr,R,Rt ←
{}, {}, {}

AO(stA, kCh, t
(0)
0 , t

(1)
0)

return win

O.RecvTag(P, c, ts):

Assert (P̄ , c, ts) ∈ Rt

Assert c ̸∈ R
stS , tP ← TagRecv(stS , P, c.cf , tP)

if tP = ⊥ then return ⊥
Add c to R
return tP

O.SendTag(P, cf):

stS , tP ← TagSend(stS , P, c.cf , tP)

if tP = ⊥ then return ⊥
Add (P, c, tP) to Rt return tP

O.RepReplay(t, t′):

P ← JudgeReplay(stS , t, t′)

if P ̸= ⊥:
win← 1

Fig. 15. The security game for outsourced storage replay framing.

Theorem 5. Let TF be our outsourced-storage transcript franking scheme in
Figure 12. Let A be a transcript integrity adversary against TF. Then we give
EUF-CMA adversaries B and C, and a V-Bind adversary D, such that

Advo-tr-intTF (A) ≤ Adveuf-cma
MAC (B) + Adveuf-cma

MAC (C) + Advv-bindCS (D) .

Adversaries B, C, and D run in time that of A plus a small overhead.

Proof. We proceed via a sequence of game hops. Define G0 to be the same
as Go-tr-int

TF with the additional bookkeeping as defined in the proof of The-
orem 1. Let G1 be the same, except we abort if at any point G.(csP , crP) ̸=
stS .(csP , crP). Let F1 denote this event. We have |Pr[G0(A)⇒ 1]−Pr[G1(A)⇒
1]| ≤ Pr[F1], and we will construct B such that Adveuf-cma

MAC (B) = Pr[F1]. We have
that B simulates G0 to A while routing Tag and Verify calls to its challenger

36

oracles. Observe that the only way for F1 to occur is for A to produce a t∗ ̸∈ R,
which means that t∗ was never queried to the Tag oracle, hence B outputs it as
a forgery.

The rest of the proof proceeds similarly to the proof of Theorem 1. ⊓⊔

Theorem 6. Let TF be our outsourced-storage transcript franking scheme in
Figure 12. Let A be a replay framing adversary against TF. Then we give an
EUF-CMA adversary B such that

Advo-frTF (A) ≤ Adveuf-cma
MAC (B) .

Adversary B runs in time that of A plus a small overhead.

Proof. Our adversary B perfectly simulates Go-fr
TF to A while routing calls to Tag

and Verify to its own challenger oracles. For any two tags t1, t2 output by the Tag
oracle, we must have that JudgeReplay(stS , t1, t2) = ⊥, since these tags are the
output of the honest TagRecv and TagSend procedures. Therefore, if A wins, it
must have produced a pair (t, t′) where at least one of these tags was not output
by the Tag challenger oracle. Let t∗ be that tag. The adversary B outputs t∗ and
wins with the same probability that adversary A wins. ⊓⊔

Group outsourced transcript franking. The construction and analysis we
provide for outsourced two-party transcript franking generalizes naturally to the
N -party group messaging setting. We sketch the necessary modifications here. As
with the two-party outsourced setting, we have that SrvInit, in addition to stS ,

outputs a list of initial tags t
(0)
0 , . . . , t

(N−1)
0 . The server-side tagging procedures

TagSend and TagRecv accept an additional argument t for the previous tag issued
to a party. We include an additional procedure JudgeReplay(stS , t, t

′), which
outputs a party P if (t, t′) constitute a replay attack by P , or ⊥ otherwise. We
outline our outsourced group transcript franking construction in Figure 16.

37

SrvInit(N):

kmac←$K
For P ∈ [N]

t
(P)
0 .ack = (Init, P,⊥, 0, 0)
t
(P)
0 .tag = Tag(kmac, t

(P)
0 .ack)

csi, cri ← 0, 0

return {kmac} ∪ {csi, cri}i∈[N], {t
(i)
0 }i∈[N]

TagSend(stS , P, cf , t):

if Π(t) ̸= P ∨ Verify(kmac, t.ack, t.tag) = 0:

return stS ,⊥
(csP , crP)← t.ack.(cs, cr)

csP ← csP + 1, ack← (S, P, cf , csP , crP)

ts ← (ack,Tag(kmac, ack))

return stS , ts

TagRecv(stS , PR, PS , cf , t):

if Π(t) ̸= PR ∨ Verify(kmac, t.ack, t.tag) = 0:

return stS ,⊥
(csPR

, crPR
)← t.ack.(cs, cr)

crPR
← crPR

+ 1

ack← (R,PS , PR, cf , csPR
, crPR

)

tr ← (ack,Tag(kmac, ack))

return stS , tr

JudgeReplay(stS , t, t′):

if Π(t) ̸= Π(t′) then return ⊥
b← (Verify(kmac, t.ack, t.tag) = 1) ∧

(Verify(kmac, t
′.ack, t′.tag) = 1) ∧

((t.ack.cs + t.ack.cr) =

(t′.ack.cs + t′.ack.cr))

if b = 1 then return Π(t)

else return ⊥

Fig. 16. Pseudocode for our N -party transcript franking construction with outsourced
storage. Let Π(t) be the sending party if t is a sending tag and the receiving party if t
is a reception tag.

38

	Transcript Franking for Encrypted Messaging

