
Clean Code In Practice: Challenges and Opportunities
Dapeng Yan∗, Wenjie Yang†, Kui Liu‡, Zhiming Liu§, Zhikuang Cai∗,

∗College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
{dapeng.yan, whczk}@njupt.edu.cn

†School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
TS23170054A31@cumt.edu.cn

‡Huawei Technologies Co., Ltd., Hangzhou, China
brucekuiliu@gmail.com

§School of Software Engineering, Southwest University, Chongqing, China
zhimingliu88@swu.edu.cn

Abstract—Reliability prediction is crucial for ensur-
ing the safety and security of software systems, espe-
cially in the context of industry practices. While vari-
ous metrics and measurements are employed to assess
software reliability, the complexity of modern systems
necessitates a deeper understanding of how these met-
rics interact with security and safety concerns. This
paper explores the interplay between software relia-
bility, safety, and security, offering a comprehensive
analysis of key metrics and measurement techniques
used in the industry for reliability prediction. We iden-
tify critical threats to software reliability and provide
a threat estimation framework that incorporates both
safety and security aspects. Our findings suggest that
integrating reliability metrics with safety and security
considerations can enhance the robustness of software
systems. Furthermore, we propose a set of actionable
guidelines for practitioners to improve their reliability
prediction models while simultaneously addressing the
security and safety challenges of contemporary software
applications.

Index Terms—clean code, code quality, code review

I. Introduction
“Even bad code can function. However, if code is not

clean, it can bring a development organization to its
knees” [1]. Clean code is generally accepted as code that
can be easily understood by developers other than its orig-
inal author(s). Understandability in this context encom-
passes readability, testability, changeability, extensibility,
and code maintainability. Therefore, writing clean code
has become a crucial skill for every developer to master [2].

A substantial body of work in the literature discusses
the concept of clean code and the conventions for writing
it. Robert C. Martin believes that writing clean code re-
quires a disciplined use of various small techniques applied
through a painstakingly acquired sense of ”cleanliness,”
and he thinks that the key is ”code sense.” He presents
a revolutionary paradigm in the book “Clean Code: A
Handbook of Agile Software Craftsmanship” [1] with the
understanding of the best agile practice of clean code from
16 aspects (e.g., meaningful names, functions, and com-
ments), which is popularly recommended in the literature
and industry. In this book, Robert C. Martin reports the
understanding of clean code from some well-known pro-

gramming language experts whom he interviewed before
writing the book. This includes the opinion of Bjarne
Stroustrup that ”elegant code” is about readability and
efficiency. The idea of Dave Thomas is that clean code is
associated with readability, tests (code without tests is not
clean), and sizes (smaller is better).

Industry practitioners also present their understanding
and practice of clean code. For example, technical experts
from Google considered that clean code should possess
seven characteristics: consistent, non-duplicative, efficient
and scalable, simple and direct, maintainable, optimized
for the reader, and leave an explicit trace for the reader [3].
Microsoft researchers consider that the intrinsic charac-
teristics of clean code should include comprehensibility,
correctness, consistency, advancement, safety, and secu-
rity [4].

In this paper, we present our empirical study on the
state of clean code in the industry and the challenges
faced by developers. To the best of our knowledge, this
is the first systematic study that explores the current
state and issues surrounding clean code. We begin by
investigating the extent to which industry code is clean,
analyzing code from Apache, Google, and Microsoft across
four aspects: function sizes, file size, code line length, and
naming conventions. These analyses aim to provide refer-
ence metrics for clean code practices in the community.
Then, we distribute questionnaires to gather developers’
opinions and suggestions on implementing clean code in
practice. The main contributions of this work include:

• The referable and measurable metrics, with four aspects
(i.e., function size, file size, code line lengths, and nam-
ing convention), for clean code can be extracted from
industry code, providing potential baselines for clean
code practice.

• After analyzing responses from online questionnaires,
we find that developers’ complaints mainly focus on
the one-size-fits-all mandatory policy of practicing clean
code and the incorrect role of automated tools played in
clean code practice.

ar
X

iv
:2

50
7.

19
72

1v
1

 [
cs

.S
E

]
 2

6
Ju

l 2
02

5

https://arxiv.org/abs/2507.19721v1

II. Empirical Study
This empirical study is conducted with two aspects to

answer the following research questions:
• RQ-1. Is it possible to carry out the potential

referable baselines from the industry to evaluate
clean code for developers? It would be better to
have referable baselines to provide potential guidelines
for clean code development. To that end, we investigate
the current state of clean code from four perspectives:
function sizes, file sizes, code line lengths, and naming
conventions.

• RQ-2. What kinds of challenges are faced by
developers in the process of proceeding with clean
code? For this RQ, we propose inquiring into the devel-
opers’ opinions on clean code who are engaged in devel-
oping clean code in the industry with questionnaires.

A. Study Design
To answer the research questions, we conducted two

separate studies, the related designs of which are presented
below.

1) Subject Selection for RQ-1: For RQ-1, we con-
sider selecting the representative data. In the literature,
open-source code from Apache, Google, and Microsoft has
been widely studied as a subject for various tasks [5, 6].
Additionally, Google and Microsoft make an effort to
adhere to clean code practices. Therefore, we select the
top 10 most popular (highest number of stars) open-source
projects for each of the five widely used programming
languages (i.e., C/C++, Java, JavaScript, and Python)
from GitHub, as maintained by Apache, Google, and
Microsoft, respectively. The details of our analyzed data
are shown in Table I.
TABLE I: The statistics of functions and lines of selected
subjects (only source files).

Language Apache Google Microsoft
Functions LOCs # Functions LOCs # Functions LOCs

C 152,044 4,603,941 13,971 377,860 646,260 16,827,882
C++ 91,033 1,656,318 26,635 587,748 43,884 740,669
Java 342,549 6,061,173 169,785 1,538,751 60,108 808,659
JavaScript 6,424 276,320 36,508 964,648 10,049 1,297,325
Python 42,841 893,470 44,987 621,461 14,838 305,680
Total 634,891 13,491,222 291,886 4,090,468 775,139 19,980,215

2) Questionnaires for RQ-2: For RQ-2, we deliver
online questionnaires to collect opinions from program-
mers on clean code, and the related methods are illustrated
below.

Protocol. Our questionnaires are delivered on
Credamo, which is a one-stop smart research online
platform that can support the accurate push of
questionnaires about the following two questions:

1) What kinds of problems on clean code practice
are faced by developers?

2) Are there any suggestions from developers for
the practice of clean code? (It is an optional
question.)

Participant Selection. In this study, we select the
participants for questionnaires with four criteria: ① who

have participated in answering questionnaires at least
50 times, ② whose credit score (i.e., the metric used in
Credamo to measure the quality of user answers) is higher
than or equal to 80, ③ whose adoption rate of historical
answers is not lower than 70%, and ④ who has at least
10-year experience on software development.

Valid Responses. We pushed our questionnaires to 700
developers through the platform. At the end of April 20,
2025, we received 537 responses. Invalid answers, such as
“ I do not know”, were excluded. Eventually, 460 valid
results with a valid rate of 85.7% are collected.

Categories of Responses. As outlined in the “Pro-
tocol,” our questionnaire addresses two aspects: problems
and suggestions. For the problems, we use the Open Card
Sorting method to categorize valid responses, which fol-
lows three steps: ① Response Analysis: We first organize
the valid responses into a table, listing each response sepa-
rately. Three authors independently analyze the responses
and categorize them based on thematic similarities, with
themes emerging from the responses themselves, rather
than predefined categories [7]. ② Agreement Exami-
nation: To assess the consistency among annotators, we
calculate the Fleiss Kappa score [8]. The Kappa value of
0.77 indicates substantial agreement among the annota-
tors. ③ Disagreement Discussion: In case of discrep-
ancies, the annotators discuss and reach a consensus on
the classification. To minimize bias in theme sorting, we
reviewed and agreed on a final set of 5 main categories
and 18 subcategories (cf. Section III-B). This classification
method is also applied to the suggestions from the second
aspect of the questionnaire. The annotators then finalize
the classifications through agreement.

III. Study Results

0

3

6

9

12

C C++ Java JavaScriptPython

C
yc

lo
m

at
ic

 c
om

pl
ex

ity

0

10

20

30

40

50

C C++ Java JavaScriptPython

LO

C
s

in
 e

ac
h

fu
nc

tio
n

0

2

4

6

C C++ Java JavaScript Python

A

rg
um

en
ts

 in
 e

ac
h

fu
nc

tio
n

Apache
Google
Microsoft

Fig. 1: Distribution of function sizes.
In this section, we investigate clean code practices

by analyzing function sizes, file sizes, code line lengths,
and naming conventions in 150 open-source projects from
Apache, Google, and Microsoft. We then discuss the chal-
lenges that developers face in clean code practice.
A. RQ-1: Measurable Baselines of Clean Code

In this study, we investigate the current situation of
program code developed by Apache, Google, and Microsoft
from four aspects: function size, file size, line length, and
naming convention, to provide measurable indicators for
clean code development. Function sizes include cyclomatic
complexity [9] and lines of code (LOCs) in each function,
while file sizes are presented with lines of code in each
source file. The code line length presents the number of
code tokens in each line. Naming conventions are evaluated
by checking whether variable, function, and class names
adhere to “CamelCase” and “snake case” formats.

TABLE II: Recommended code line lengths, LOCs and
cyclomatic complexity of functions.

Google C C++ Java JavaScript Python
code line lengths 80 80 100 80 80

LOCs of functions 40 - - - 40
Cyclomatic Complexity

1 - 10 Simple procedure, little risk
11 - 20 More complex, moderate risk
21 - 50 Complex, high risk
> 50 Untestable code, very high risk

Uncle Bob mentioned that the function should be small,
and the name should be meaningful when writing clean
code [1]. As shown in Table II, Google recommends
limiting code line length to 80 characters for C, C++,
JavaScript, and Python, and 100 characters for Java code
lines. In McCabe’s presentation ’Software Quality Metrics
to Identify Risk’ [10], he interpreted cyclomatic complexity
with four categories. If the cyclomatic complexity of a
function belongs to the range of 1 to 10, it indicates a
simple procedure with little risk.

1) Function Sizes: Figure 1 illustrates the distribution
of function sizes in terms of the cyclomatic complexity,
LOCs of functions, and the number of function arguments.
Overall, most functions satisfy the small function criterion
of clean code, of which cyclomatic complexities are limited
within 5, LOCs of functions are within 40, and the number
of function arguments is limited to 6. The median and
mean values of related metrics are much lower, [1, 2] and
[2, 3] for the cyclomatic complexities, [3, 10] and [6, 19]
for LOCs of functions, and [0, 2] and [1, 3] for number of
function arguments, for each language, respectively.

Function sizes of one language present similar distribu-
tions. For the C language functions from Apache, Google,
and Microsoft, their cyclomatic complexities are mainly
distributed in the intervals of [1, 6], [1, 11], and [1, 6],
respectively. Moreover, their LOCs are mainly distributed
in the intervals of [1, 41], [1, 45], and [1, 32]. The number
of function arguments is distributed in the same range of
[0, 6]. Similar value intervals for related metrics indicate
that functions written in the same language exhibit similar
distributions in their sizes, despite being from different
companies.

To sum up, most program functions are developed
within a small range, which is consistent with the small-
function principle of clean code that is practiced by
the three companies themselves and recommended by
professional experts [1]. Their corresponding values can
provide measurable and reproducible baselines. However,
such baselines should be measured with concrete references
for different languages.

2) File Sizes: Figure 2 shows the distribution of file
sizes in terms of LOCs of source code files. The three
companies with five programming languages normally
encapsulate all the source code within 600 code lines
(the third quartile). Examining the box sizes, the source
code files of the C language present a significantly wider
range of file sizes than those of the other four languages.

0

500

1000

1500

C C++ Java JavaScript Python

LO

C
s

in
 e

ac
h

so
ur

ce
 fi

le Apache
Google
Microsoft

Fig. 2: File sizes

It might be a consequence that
C is a procedure-oriented pro-
gramming language. Overall,
file sizes present a similar dis-
tribution to function sizes.

With these statistics, we can
also conclude that most code files are encapsulated within
a small range of code lines, which is consistent with the
concise code criterion of clean code practice. Their related
values can provide measurable and referable baselines for
participants who are working on developing code files
for clean code practices. However, such baselines should
also be appropriately varied for the specific programming
language.

0

50

100

C C++ Java JavaScript Python

To

ke
ns

 o
f e

ac
h

lin
e

in
 s

ou
rc

e
fil

es Apache Google Microsoft

Fig. 3: Code line
lengths

3) Code Line Lengths: Over-
all, as shown in Figure 3, most
code lines of source code are
normally coded with 1 (e.g.,
“{”) to ∼100 characters. This
suggests that developers tend
to write concise code, with each
line containing a small number
of characters.

In conclusion, most code line lengths are developed
within a narrow range, which is consistent with the clean
code conventions that the three companies adhere to.
Their related values can provide measurable and referable
baselines for practicing clean code at the granularity of a
code line.

4) Outlier Distributions: According to the distributions
mentioned above, we note that the sizes of some code
lines, functions, and files are out of the related normal
size ranges. We further look into these outliers. Except
for setting thresholds based on the previous distributions,
we also refer to the corresponding sizes recommended
by companies for their clean code implementations. The
statistics of outliers that are out of the corresponding sizes
(i.e., thresholds, the upper whisker values of the related
data) are presented in Table III.

We observe that the upper whisker value (36) is close
to the function size (40) recommended by Google for
its Java clean code. The upper whisker values of other
cases are also close to this recommended function size
or even are much lower than it. Google also lists the
recommended code line lengths, and the related values
are lower than the related upper whisker values. However,
ratios of outliers do not change so high (cf. the “Code
line lengths” row in Table III) when comparing the two
different thresholds. These results further suggest that
most developers are willing to practice clean code in their
development, adhering to concise criteria.

The outliers of code line lengths present much lower
ratios than the function sizes and file sizes. For example,
the outliers of code lines in code files developed by Google
using the C language occupy only 0.22% and 0.02% ratios,
respectively, which are significantly lower than the ratios

TABLE III: Thresholds and the ratio of outliers for cyclomatic complexities, LOCs, number of arguments of functions
and files, and code line lengths.

Language C C++ Java JavaScript Python
Company Apache Google Microsoft Apache Google Microsoft Apache Google Microsoft Apache Google Microsoft Apache Google Microsoft
Cyclomatic complexity 6 11 6 3 6 3 3 1 3 6 6 6 6 3 6
Ratio of outliers (%) 12.10 9.25 10.44 15.85 9.87 13.09 10.06 17.00 11.10 11.32 7.66 8.85 8.89 7.96 11.02
LOCs of functions 41 45 32 33 36 (40) 24 20 14 20 20 21 25 40 30 42
Ratio of outliers (%) 8.99 9.03 8.52 8.70 8.35(6.93) 10.06 9.33 7.27 6.93 7.92 8.75 7.40 7.67 7.01 7.46
Function Arguments 6 6 6 5 5 5 2 2 2 3.5 5 3 6 3 6
Ratio of outliers (%) 2.01 3.58 1.41 2.44 1.77 2.44 8.21 5.35 7.13 8.70 0.67 11.85 5.43 11.31 4.92
LOCs of source code files 781 831 1332 775 546 561 280 388 232 519 425 206 434 527 439
Ratio of outliers (%) 11.26 7.03 8.90 8.57 11.12 10.42 9.55 10.72 9.18 9.91 8.03 10.26 10.21 9.38 6.74
Ratio of outliers (%) 11.46 12.23 11.23 9.37 11.59 11.79 - - - - - - - - -
Code line lengths 98 105 (100) 88 102 111 (80) 116 117 106 (100) 117 106 106 (80) 129 93 96 (80) 97
Ratio of outliers (%) 0.61 0.22(0.28) 0.35 0.15 0.04(0.55) 1.65 0.53 0.03(0.05) 0.65 1.52 2.52(4.74) 4.28 0.89 0.20(0.66) 2.42
Ratio of outliers (%) 0.18 0.02 0.06 0.98 0.71 2.65 - - - - - - - - -

∗(#) - numbers in the parentheses are the sizes (i.e., thresholds) recommended by the related company for clean code implementation.

of outliers (9.25%, 9.03%, 7.03%, and 12.23%) for the
corresponding function and file sizes. Code lines are much
simpler than functions and files, so it is easier to write
clean code lines than clean code functions and files. It thus
raises a challenge for clean code practice.

Google provides six baselines (i.e., thresholds presented
in parentheses of Table III) for LOCs of C++ functions
and code line lengths of the five languages. Their related
outliers present lower ratios than related functions and
code line lengths from Apache and Microsoft. When base-
lines are not provided for cyclomatic complexity, file sizes,
and function sizes of C, C++, JavaScript, and Python,
the outlier ratios from Google are typically higher than
those of the other two companies. For example, the LOCs
of C functions in Google present a higher outlier ratio
than those in Apache and Microsoft. It indicates that clear
baselines can guide developers to better code practices.

Apache, Google, and Microsoft have achieved
benchmark-level clean code with concise criteria. Their
developers are prone to write clean code, and their code
could be cleaner if measurable baselines are provided.
Nevertheless, large functions, files, and lengthy code lines
still exist in their code repositories, which can affect the
readability and maintainability of programs. Refactoring
huge code fragments into concise code is also a challenge
for them.

5) Naming Conventions: In this study, we further inves-
tigate the implementation status of naming conventions
among these companies. To this end, we first construct
pattern-matching regular expressions based on the gram-
mar of each language to extract class names, function
names, and variable names. Since C and JavaScript have
no concept of classes, we consider analyzing the nam-
ing conventions of their filenames. In the end, we col-
lected a total of 180,555 class names, 1,663,515 function
names and 3,044,319 variable names for this investigation.
Then, we use “CamelCase” and “snake case” (i.e.,
under score) naming formats to check whether these
names satisfy these two conventions that are widely rec-
ommended in the community [11]. If a name cannot be
matched to both formats, it is identified as an irregular
name.

Table IV illustrates the distributions of irregular class,
function, and variable names, All three companies face the
problem of irregular names. The ratios of irregular class

names in Java and JavaScript code developed by Microsoft
are much higher than in other cases. For function names,
Apache and Google share the same issue with the high
number of irregular function names in C and C++ code.
In contrast, Microsoft presents a similar issue for C++
and JavaScript code. For irregular variable names, Java
code in Microsoft presents a much higher ratio than others.
Nevertheless, there are a large number of irregular variable
names in the Apache code of Java, JavaScript, and C, as
well as in the Google code of Java, Python, and JavaScript,
and the Microsoft code of Python and C.
TABLE IV: Distributions of irregular class, function, and
variable names.

C C++ Java JavaScript Python
irregular
class
names

Apache 0.21% 2.96% 0.07% 0 2.59%
Google 0.19% 0 0.68% 3.04% 3.41%

Microsoft 0.4% 1.11% 17.73% 9.75% 1.96%
irregular
function
names

Apache 15.9% 14.92% 0.1% 0.22% 3.53%
Google 15.57% 13.25% 0.52% 6.81% 4.72%

Microsoft 5.23% 16.78% 5.74% 21.76% 0.49%
irregular
variable
names

Apache 0.61% 2.56% 2.76% 1.25% 2.64%
Google 1.53% 0.74% 2.51% 1.15% 3%

Microsoft 0.29% 2.15% 9.85% 0.28% 3.19%

B. RQ-2: Challenges and Opportunities Arisen From De-
velopers’ Clean Code Practices

We follow the method presented in Section II-A2 to
categorize the responses into main categories and their
corresponding subcategories. The detailed classifications
of the main categories are described below:
• Management category denotes the responses com-

plaining about the company’s proceeding plan on clean
code implementation and the overall management poli-
cies of practicing and validating clean code.

• Constraints category means the various constraints of
assessing to what extent the code is clean (e.g., the size
of a function should be less than 50 LOCs).

• Tool category represents complaints from respondents
that are related to tools used in clean code practice.

• Committer category refers to responses discussing
clean code things concerning code change commits and
merge requests.

• Test category represents the test discussed in responses.
1) Complaints From Developers: Table V presents the

distribution of the five main categories. Most responses
are concentrated in the two categories of management and
tool, which account for 84% (=54% + 30%) of all valid
responses. It indicates that most developers are concerned

70
178

1
2
3
7

1
32

4
1
1

6
14

4
17

8
89

22

Cultural construction
Mandatory policy

Permission
Process

Unit test
Functionality

False negatives
False positives

Efficiency

M

Committer

Constrains

Management

Test

Tool

Lengths of variables
Good/bad comments

Dependencies of third-party libraries
Naming conventions

The number of function parameters
 Function sizes
Magic number

Log tasks
Rules for checking clean code

Fig. 4: Distribution of sub-
categories.

TABLE V: Distribution
of main categories.

Main Type Count Proportion
Management 248 53.91%
Tool 136 29.57%
Convention 52 11.30%
Committer 20 4.35%
Test 4 0.87%
Total 460

about the overall actionable execution strategy and the
tools that assist developers.

Figure 4 reveals the distribution of sub-categories of
developers’ complaints. For the Management category,
it includes 70 and 178 responses on cultural construction
(the cultivation and atmosphere of learning and developing
clean code for its implementation) and mandatory policy
(the overall policy of implementing and validating clean
code), respectively. The mandatory policy presents the
highest number of developers’ complaints, as many are
unhappy with the one-size-fits-all and strict policies for
validating clean code. For example, their companies set
mandatory baselines on the function size of 50 code lines,
which is an impossible task for them when they work on
specific, difficult programming tasks. Additionally, writing
clean code is directly tied to developers’ key performance
indicators (KPI), causing them to feel huge pressure and to
regard clean code as a forced task driven by performance
metrics rather than as an inspiring art.

In the Constraints category, developers complain most
about the strict 50-line function rule; despite its simplicity,
it is the most challenging to implement in practice. They
ask why the threshold cannot be higher or adjusted for
different programming languages. Three potential reasons
underlie this antipathy: ① mandatory constraints without
guidance, so that even a one- or two-line overrun triggers
penalties; ② the enormous effort required to simplify
already-optimized functions; and ③ the delay in delivery
caused by extensive refactoring.

Developers complain about the naming conventions of
clean code: ① it is hard to come up with different function
names with a limited number of characters to distinguish
similar functions in large projects. ② It is inevitable to
invoke APIs with “unclean” names from the third-party
libraries because these packages could be legacy programs
or developed by other teams or companies. However, the
clean code checking tools cannot distinguish the invoked
APIs and developer-coined names, which leads to inaccu-
rate assessments of unclean code.

Committer contains two sub-categories: permission
and process, which refer to the power (who can act) and
workflow (what is the complete procedure) of reviewing
commits, respectively. In some software product devel-
opment teams, when their software products are being
delivered, reviewing code change commits is a highly
controlled process. Respondents complain that committers
do not have sufficient permission to review commits, which
prevents developers from promptly assessing the quality of

changed code. Developers also complain that the commit
reviewing process even requires approval from the chair-
man of the software product (the waiting time for such
approval is always long), which complicates the tasks that
can be handled in a simple and fast way.

Testability is also a major concern. Developers struggle
to unit-test legacy code because essential information is
often missing, especially in older codebases. Mandatory
coverage targets then force them to write tests for the sake
of coverage rather than quality or efficiency, resulting in re-
dundant, overlapping tests that make the code “unclean.”
This challenge underscores the necessity for automated
test-generation tools for legacy systems and methods to
detect and eliminate test overlap, thereby improving both
test quality and efficiency.

We categorize the complaints about Tool into four
sub-categories: functionality, efficiency, false positives, and
false negatives related to other tools. From the responses
to the questionnaires, we note that some developers lever-
age code-checking tools to help them practice clean code
by identifying potential issues in the code. However, such
tools often report a high number of false positives, and
developers thus complain that they must expend consid-
erable effort in resolving these false positives. Even worse,
changing these false positives leads to more “unclean”
codes. Some developers consider that the tool was initially
developed to help developers write clean code. However,
their companies use the tool to assess whether their code
is clean or not. Overall, these findings reveal an urgent
need for more adaptive, context-aware clean-code policies
and tools that guide rather than mandate.

2) Suggestions From Developers: Although sugges-
tions are optional for respondents, there are still
44% (≈204/460) of them providing their suggestions on
clean code development. The corresponding distribution
is shown in Figure 5.

137
39

25
5

Management
Tool

Specification
Committer

Fig. 5: Distribution of suggestions in questionnaires.
For the Management category, the related suggestions

focus on improving the one-size-fits-all mandatory pol-
icy. Developers suggest that the clean code assessment
management should build a professional team to create
appropriate and actionable indicators for various clean
code practice scenarios. They state that companies ini-
tially take much time to establish clean code conventions
and benefit greatly later. They recommend that such
conventions should be involved in the cultural construction
of clean code as much as possible.

For the Tool category, the suggestions mainly discuss
what role the tool should play in clean code develop-
ment. Developers suggest that tools are used to assist
programmers with clean code practice, but not to assess

programmers’ code. Developers also confirm that they
indeed benefit from the automated tools for clean code and
suggest that the tools should be upgraded and optimized
according to the issues that occurred in clean code prac-
tice. The other suggestions related to the Constraints
and Committer are mainly about the flexible and guid-
ing baselines considering the clean code implementation,
but not the one-size-fits-all mandatory metrics, and the
actionable and convenient commit reviewing procedures.

In conclusion, these suggestions from developers also
imply that developers are willing to practice clean code
in their programming development tasks. Moreover, they
genuinely contribute their efforts to boost clean code
development. The challenges faced by developers arise in
various domains for enhancing clean code, including estab-
lishing actionable, referable, and measurable baselines for
clean code practices, as well as automated techniques to
assist programmers in developing clean code.

IV. Related Work
Code Quality. Clean code is a well-defined method

and standard for code quality [12]. Developers and users
have analyzed the quality of code from different aspects.
Tonella and Abebe define availability and performance
as external quality [13] because they are dynamic and
generally measured at runtime. Instead, internal quality,
such as maintainability, is more likely to reflect in the
static structure of the software [13] [14]. MARI and EILA,
another descriptive term group, defined evolution as the
internal quality and execution as the external quality [14].
Stamelos et al. [15] presented a result from an experimen-
tal case study that aims to understand the meaning of
structural quality and clarify the results of structural qual-
ity analysis of code delivered to open-source development.
Moreover, Allamanis et al. [16] proposed “Naturalize”, a
framework for learning the code library and recommending
modification suggestions to improve coding styles.

Code Convention. Martin provides numerous conven-
tions in his book [1] for writing clean code. However, Li
and Prasad believe that although developers understand
the importance of using code conventions, they often fail
to follow them when the development task needs to be
completed quickly [17]. SMIT et al. [18] disagree and
propose an indicator to analyze maintenance in different
fields, namely “agreement” indicators based on these cod-
ing agreed violations.

Unlike these works, we are the first to investigate the
challenges and opportunities of clean code in practice. Our
empirical study on analyzing open-source projects from
Apache, Google, and Microsoft aims to investigate the
current state of clean code practices in the industry, pro-
viding results that can serve as referable and measurable
indicators for corresponding practitioners. The analysis
of our questionnaire further discusses the challenges of
clean code practice faced by developers and the potential
opportunities that arise from it.

V. Conclusion
Clean code has garnered considerable attention from

practitioners. In this work, we conducted an empirical
study on clean code to investigate its current application
status from four aspects using open-source projects from
Apache, Google, and Microsoft. We discussed the chal-
lenges faced by developers and the opportunities identified
after analyzing our questionnaire results. Although clean
code development has encountered various challenges,
there are still ways to address them, and developers are
willing to adopt clean code and are ready to welcome the
benefits that it brings.

References
[1] Robert C Martin. Clean code: a handbook of agile software crafts-

manship. Pearson Education, 2009.
[2] Yiğit Kemal Erinç. Clean code explained – a practical introduction

to clean coding for beginners. https://www.freecodecamp.org/news/
clean-coding-for-beginners/, Last Access: August 2022.

[3] Google. 10 tipis for clean code. https://techdevguide.withgoogle.
com/resources/topics/clean-code/, Last Access: August 2022.

[4] Microsoft. All in one code framework. https://learn.microsoft.com/
en-us/shows/onecode/, Last Access: August 2022.

[5] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and
Alberto Bacchelli. Modern code review: a case study at google. In
Proceedings of the 40th International Conference on Software En-
gineering: Software Engineering in Practice, pages 181–190, 2018.

[6] Premkumar Devanbu, Thomas Zimmermann, and Christian Bird.
Belief & evidence in empirical software engineering. In 2016
IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE), pages 108–119. IEEE, 2016.

[7] Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining
mental models: a study of developer work habits. In Proceedings of
the 28th international conference on Software engineering, pages
492–501, 2006.

[8] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android
applications. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 73–84, 2013.

[9] Thomas J McCabe Sr. Cyclomatic complexity. National Bureau of
Standards. special Publication. m99, 1976.

[10] Tom McCabe. Software quality metrics to identify risk. http://www.
mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt, Last
Access: August 2022.

[11] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Anil Koyuncu,
Kisub Kim, Taeyoung Kim, Suntae Kim, and Yves Le Traon. Learn-
ing to spot and refactor inconsistent method names. In Proceedings
of the 41st ACM/IEEE International Conference on Software En-
gineering, pages 1–12. IEEE, 2019.

[12] Paula Rachow, Sandra Schröder, and Matthias Riebisch. Miss-
ing clean code acceptance and support in practice-an empirical
study. In 2018 25th Australasian Software Engineering Conference
(ASWEC), pages 131–140. IEEE, 2018.

[13] Paolo Tonella and Surafel Lemma Abebe. Code quality from the
programmer’s perspective. In Proceedings of Science, XII Advanced
Computing and Analysis Techniques in Physics Research, Erice,
Italy, volume 5, page 153, 2008.

[14] Matinlassi Mari et al. The impact of maintainability on component-
based software systems. In Euromicro Conference, pages 25–25.
IEEE Computer Society, 2003.

[15] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Geor-
gios L Bleris. Code quality analysis in open source software devel-
opment. Information systems journal, 12(1):43–60, 2002.

[16] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sut-
ton. Learning natural coding conventions. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 281–293. ACM, 2014.

[17] Xiaosong Li and Christine Prasad. Effectively teaching coding
standards in programming. In Proceedings of the 6th conference
on Information technology education, pages 239–244, 2005.

[18] Michael Smit, Barry Gergel, H James Hoover, and Eleni Stroulia.
Maintainability and source code conventions: An analysis of open
source projects. University of Alberta, Department of Computing
Science, Tech. Rep. TR11, 6, 2011.

