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Abstract—The augmentation of Internet of Things (IoT) de-
vices transformed both automation and connectivity but revealed
major security vulnerabilities in networks. We address these
challenges by designing a robust intrusion detection system (IDS)
to detect complex attacks by learning patterns from the NF-
ToN-IoT-v2 dataset. Intrusion detection has a realistic testbed
through the dataset’s rich and high-dimensional features. We
combine distributed preprocessing to manage the dataset size
with Fast Gradient Sign Method (FGSM) adversarial attacks to
mimic actual attack scenarios and XGBoost model adversarial
training for improved system robustness. Our system achieves
95.3% accuracy on clean data and 94.5% accuracy on adversarial
data to show its effectiveness against complex threats. Adversarial
training demonstrates its potential to strengthen IDS against
evolving cyber threats and sets the foundation for future studies.
Real-time IoT environments represent a future deployment op-
portunity for these systems while extensions to detect emerging
threats and zero-day vulnerabilities would enhance their utility.

Index Terms—IoT Security, Adversarial Attacks, NF-ToN-IoT-
v2, XGBoost, Intrusion Detection Systems, FGSM.

I. INTRODUCTION

The application of the Internet of Things (IoT) has rev-
olutionized industries such as healthcare, agriculture, smart
homes, transportation, and smart cities by enabling intercon-
nected devices to communicate and collaborate seamlessly.
This advancement has improved operational efficiency and
facilitated data-driven decision-making. However, the rapid in-
crease in IoT devices has introduced significant security chal-
lenges. The heterogeneous nature of IoT devices, coupled with
their limited computational resources and dynamic deployment
environments, makes them highly susceptible to cyber threats.
Attack vectors such as Distributed Denial-of-Service (DDoS)
attacks, ransomware, injection attacks, and cross-site scripting
(XSS) can compromise data integrity, disrupt critical services,
and result in financial and reputational damages [1], [2].

To address these challenges, robust Intrusion Detection
Systems (IDS) have become an indispensable component of
IoT network security. However, traditional IDS solutions often
fail to meet the unique demands of IoT environments, which
require systems to detect diverse and evolving attack patterns
while maintaining computational efficiency. Machine learning-
based IDS have gained prominence for their ability to learn
complex patterns from network traffic data and adapt to new
attack types [3], [4]. Despite their advantages, these systems
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remain vulnerable to adversarial attacks, where malicious
perturbations in the input data can lead to misclassification [5],
[6].

This study focuses on developing a robust IDS by leverag-
ing the NF-ToN-IoT-v2 dataset, a comprehensive and high-
dimensional dataset specifically designed for IoT network
intrusion detection [1]. The proposed IDS employs the XG-
Boost machine learning algorithm, known for its scalabil-
ity, computational efficiency, and superior performance in
handling structured data [7]. To enhance resilience against
adversarial attacks, the study integrates adversarial training
into the model, ensuring improved robustness in detecting
sophisticated intrusions.

Key contributions of this work include the implementation
of scalable preprocessing techniques using distributed comput-
ing to handle the large and complex NF-ToN-IoT-v2 dataset
efficiently [8]. The resilience of the IDS is evaluated using
adversarial examples generated through the Fast Gradient Sign
Method (FGSM), which simulate real-world attack scenarios
and expose potential vulnerabilities [5]. To mitigate these
vulnerabilities, adversarial training is incorporated into the
XGBoost model, enabling it to detect intrusions effectively
even in the presence of adversarial perturbations. Extensive
experiments demonstrate the model’s effectiveness, achieving
a classification accuracy of 95.3% on clean test data and
94.5% on adversarial examples. These results underscore the
robustness and reliability of the proposed IDS in detecting a
wide range of attack types.

Since Section II examines relevant work in IoT intrusion
detection and adversarial training, the remainder of the study is
divided into various chapters. The NF-ToN-IoT-v2 dataset and
preparation methods are described in depth in Section III. The
methodology, including the use of training and adversarial at-
tacks, is explained in Section I'V. The results of the experiment
and an assessment of the suggested methodology are presented
in Section V. The work is finally concluded in Section VI,
which also offers ideas for future research possibilities.

II. RELATED WORK

A. IoT Intrusion Detection

Intrusion detection systems (IDS) have emerged as a critical
component of IoT network security due to the increasing fre-
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quency and complexity of cyberattacks targeting IoT devices.
The NF-ToN-IoT dataset has established itself as a benchmark
for evaluating machine learning-based IDS by providing a rich
and diverse representation of IoT network traffic [1].

Sarhan et al. [1] introduced the NF-ToN-IoT dataset, which
improved upon its predecessor, the ToN-IoT dataset, by pre-
senting features in NetFlow format. This format facilitates
efficient feature extraction and evaluation for network intrusion
detection tasks, particularly for complex attacks such as DDoS
and ransomware. The dataset has since become a cornerstone
for benchmarking machine learning models in the IoT domain.

Further advancing the dataset’s utility, Sarhan et al. [2]
conducted a detailed feature analysis to identify critical at-
tributes that contribute significantly to intrusion detection.
Their work optimized feature selection, which not only im-
proved model accuracy but also reduced computational over-
head, a key consideration for IoT environments. Raskovalov
et al. [6] addressed inconsistencies in attack labels and feature
representations within the dataset, proposing a standardized
feature set that enhances its applicability for advanced models
such as Graph Neural Networks (GNNs). These rectifications
have significantly expanded the dataset’s usability for modern
machine learning approaches.

Zhang et al. [3] applied GNNs to the NF-ToN-IoT dataset,
demonstrating the effectiveness of graph-based methods for
capturing complex relationships between network events.
Their results highlighted the superior performance of GNNs
in multi-class classification tasks, paving the way for incor-
porating graph-based techniques into IDS. Despite these ad-
vancements, limited attention has been given to the robustness
of IDS against adversarial attacks.

Despite these advancements, limited attention has been
given to the robustness of IDS against adversarial attacks.
Additionally, while most studies focus on supervised learning-
based intrusion detection, there is growing interest in unsuper-
vised anomaly detection methods that can operate effectively
with limited labeled data. For instance, Ghajari et al. [9]
proposed a hybrid unsupervised anomaly detection framework
that integrates distance and local density measures to en-
hance early detection capabilities in data-scarce environments.
Although originally applied to pandemic case identification,
such hybrid approaches offer valuable insights for designing
scalable and resilient IDS for IoT networks, where early
detection of novel threats and zero-day attacks remains a
critical challenge.

B. Adversarial Robustness

Adversarial attacks pose a significant challenge to machine
learning-based IDS by introducing subtle perturbations to in-
put data, which can lead to misclassification [5]. Among these,
the Fast Gradient Sign Method (FGSM) has been widely stud-
ied for its ability to generate adversarial examples efficiently
and expose vulnerabilities in model decision boundaries.

AlJamal et al. [4] investigated the impact of adversarial
attacks on IoT networks, focusing on detecting XSS attacks.
They employed adversarial training and achieved a detection

accuracy of 99.89% on the NF-ToN-IoT-v2 dataset, showcas-
ing the potential of this defense mechanism in improving IDS
robustness. Other studies have demonstrated that adversarially
trained models are better equipped to handle perturbed inputs,
although this often comes at the cost of slightly reduced
accuracy on clean data [10].

Raskovalov et al. [6] explored the implications of adversar-
ial robustness for GNN-based IDS, proposing a standardized
feature set for mitigating adversarial vulnerabilities. Their
findings underscore the importance of adapting datasets and
models to better withstand adversarial scenarios, particularly
in the context of IoT security.

Building upon these foundational works, our research in-
tegrates FGSM-based adversarial attacks with XGBoost to
evaluate and enhance the robustness of IDS against a broader
spectrum of IoT-specific threats. Unlike prior studies that
primarily focus on binary classification tasks, our approach
addresses multi-class classification challenges.

C. Summary of Related Work

The existing literature underscores the NF-ToN-IoT
dataset’s pivotal role in advancing IoT security research. While
substantial progress has been made in optimizing feature
selection [2], leveraging modern architectures like GNNs [3],
and addressing adversarial vulnerabilities [4], challenges per-
sist in ensuring robust model performance under adversarial
conditions. Our work bridges this gap by integrating adver-
sarial training into traditional IDS methodologies, offering a
comprehensive solution for enhancing IDS resilience in IoT
networks.

III. DATASET AND PREPROCESSING
A. NF-ToN-IoT-v2 Dataset

The NF-ToN-IoT-v2 dataset [11] has been specifically de-
signed to support research into intrusion detection in IoT
networks and is directly prepared for that purpose. It is based
on the NF-ToN-IoT dataset [1], with more precise labeling and
additional features, which makes it appropriate for multi-class
classification tasks. It has more than 13 million records and
includes a large range of network traffic activities with both
normal and abnormal traffic, including types of attack such
as benign, backdoor, DDoS, dos, injection, MITM, password,
ransomware, scanning, and XSS.

Key features 1 of the dataset includes network attributes
(e.g., source and destination IP addresses, ports, and pro-
tocols), traffic statistics (e.g., packet counts, payload sizes,
and flow durations), and anomaly labels that classify network
traffic into specific types of malicious and benign behaviors.
These features provide a realistic representation of IoT net-
work traffic, enabling robust model evaluation [2], [6].

The combination of high-dimensional numerical and cat-
egorical features makes the NF-ToN-IoT-v2 dataset a robust
benchmark for evaluating intrusion detection systems (IDS).
Its design facilitates scalability and adaptability, addressing
the evolving threat landscape in IoT environments [3] 1.
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Fig. 1: Top 10 important features

B. Distributed Preprocessing

The significant scale and complexity of the NF-ToN-IoT-
v2 dataset required a scalable and efficient preprocessing
pipeline. To address this, we utilized Dask, a distributed
computing framework, which is well-suited for handling large-
scale datasets in parallel environments [12]. Dask allowed us
to perform preprocessing tasks efficiently, reducing computa-
tional overhead and ensuring the integrity of the data.

Key preprocessing steps included:

1. Handling Missing Values: Numerical features with miss-
ing values were imputed using their mean, while categorical
features were assigned placeholders. This approach ensured
data completeness without introducing bias [13].

2. Data Normalization: Numerical features were normal-
ized using min-max scaling to standardize the dataset. During
training, normalization stopped characteristics with higher
magnitudes from unduly affecting the model. [14].

3. Label Encoding: Attack labels, initially represented
as strings (e.g., “ransomware,” "XSS”), were converted into
numerical classes using label encoding. This transformation
ensured compatibility with machine learning algorithms, par-
ticularly for multi-class classification tasks [15].

By implementing these preprocessing steps in a distributed
manner, we achieved significant efficiency gains, allowing us
to prepare the dataset for subsequent training and evaluation
without sacrificing quality.

C. Dataset Splitting

To enable effective training and evaluation, the preprocessed
dataset was divided into training and testing subsets using a
70-30 split. This split resulted in approximately 9.1 million
records for training and 3.9 million for testing, ensuring that
the model had access to a diverse set of patterns for learning
while retaining a robust test set for evaluation.

The large training set enabled the model to generalize
across different attack patterns, while the substantial test set
provided a comprehensive platform for assessing the model’s
performance under realistic conditions. This approach aligns
with best practices in machine learning for handling large-
scale datasets [16].

The use of Dask for distributed preprocessing further en-
hanced scalability, reducing computation time and enabling
real-time adjustments to the data pipeline. This preprocessing
framework ensures that the dataset retains its diversity and

integrity, making it suitable for advanced machine learning
and adversarial training experiments.

IV. METHODOLOGY

This section outlines the methods employed to develop a
robust Intrusion Detection System (IDS) using the NF-ToN-
IoT-v2 dataset. The methodology encompasses the implemen-
tation of the XGBoost model, adversarial attacks using the
Fast Gradient Sign Method (FGSM), and adversarial training
to enhance the model’s resilience.

A. XGBoost Model

XGBoost, an advanced gradient-boosting algorithm, was
chosen for its superior performance on large-scale, high-
dimensional datasets [7]. The model’s ability to handle missing
values, regularization techniques to prevent overfitting, and
efficient parallel processing capabilities make it particularly
suited for the NF-ToN-IoT-v2 dataset [17].

The model was configured with the following hyperparam-
eters:

o Objective: Multi-class classification to predict multiple

types of network attacks.

o Evaluation Metric: Logarithmic loss (log-loss) for
multi-class classification, which measures the accuracy
of probabilistic predictions.

e Tree Depth: A maximum depth of 5 to balance model
complexity and prevent overfitting.

« Learning Rate: Set to 0.1, enabling the model to con-
verge steadily while maintaining accuracy.

The computational efficiency of XGBoost was further
enhanced by employing GPU acceleration through the
tree_method="gpu_hist" option. GPU-based parallel
processing significantly reduced the training time, allowing for
faster experimentation and iterative model optimization [18].

B. FGSM Adversarial Attack

The Fast Gradient Sign Method (FGSM) is a widely used
technique to evaluate model robustness by generating adver-
sarial examples [19]. These examples are crafted by introduc-
ing small perturbations to input data, designed to maximize
the model’s prediction loss. The adversarial examples were
generated using the following formula:

Xadv:X+€'Sign(VXJ(67X7y)) (1

where:

o X represents the original input data.

e ¢ is the perturbation magnitude, controlling the severity

of the attack.

o VxJ(0,X,y) is the gradient of the loss function J with

respect to the input X, computed at model parameters 6.

« sign(-) denotes the element-wise sign function.

FGSM was applied to the clean test data from the NF-ToN-
IoT-v2 dataset to simulate real-world adversarial attack scenar-
i0s. These perturbations exposed vulnerabilities in the model’s
decision boundaries, providing insights into its susceptibility
to adversarial threats [20].
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Fig. 3: Confusion Matrix for Clean Data.

C. Adversarial Training

Adversarial training enhances model robustness by incor-
porating adversarial examples into the training process [21].
This technique equips the model to classify both clean and
adversarially perturbed inputs effectively, mitigating its sus-
ceptibility to adversarial attacks.

The training process involved the following steps:

e The clean training data (Xy,i,) and its corresponding
labels (Yuain) Were used as the baseline dataset.

o Adversarial examples (X,4y) were generated from the
clean training data using FGSM, with the same labels
(Yaav) as the original data.

e The clean and adversarial datasets were combined to

TABLE I: MODEL EVALUATION ON CLEAN TEST DATA

Metric Value
Accuracy | 0.9544357504190176
F1 Score | 0.9537497710407197

create a comprehensive training set:

Xcombined = {Xtraim Xadv}a Ycombined = {ytraim yadv}-

This augmented training dataset enabled the model to learn
robust representations, reducing its vulnerability to adversarial
attacks.

D. Evaluation Metrics

The effectiveness of the IDS was evaluated using standard
classification metrics, including accuracy, Fl-score, and con-
fusion matrices [22]. These metrics provided detailed insights
into the model’s performance on clean and adversarial data, as
well as its ability to classify various types of network attacks
accurately. Additionally, classification reports highlighted the
model’s performance for each attack class, ensuring a com-
prehensive evaluation of its strengths and weaknesses.

E. Scalability and Practical Considerations

The combination of distributed preprocessing with Dask
and GPU-accelerated training ensured that the proposed IDS
is scalable and feasible for real-world IoT environments.
Scalability is critical for handling the high throughput of IoT
network traffic, while practical considerations, such as compu-
tational efficiency and adaptability, make the system suitable
for deployment in dynamic and evolving IoT networks [23].

By integrating XGBoost, adversarial attacks, and adversarial
training, this methodology provides a comprehensive frame-
work for building robust IDS capable of addressing the unique
security challenges of IoT networks.

V. RESULTS

This section evaluates the performance of the adversari-
ally trained model on clean and adversarial data, provides
an analysis of confusion matrices, and compares its results
with baseline models. The findings highlight the proposed
methodology’s ability to enhance intrusion detection system
(IDS) robustness and accuracy in IoT networks.

A. Performance on Clean and Adversarial Data

The model’s performance was assessed using accuracy and
F1-score, providing insights into its ability to handle both clean
and perturbed inputs. On clean test data, the adversarially
trained model achieved an accuracy of 95.3% and an F1-
score of 95.2%, demonstrating its effectiveness in classifying
diverse traffic types under normal conditions. For adversarially
perturbed data, generated using the FGSM method, the model
achieved an accuracy of 94.5% and an Fl-score of 94.5%.
These results underscore the model’s resilience to adversarial
attacks and its capacity to generalize effectively across differ-
ent input conditions [19], [21].



TABLE II: CLASSIFICATION RESULTS ON CLEAN DATA

Class Precision | Recall | Fl-score | Support
Benign 0.98 0.98 0.98 1080385
backdoor 1.00 1.00 1.00 4878
ddos 0.96 0.97 0.97 523977
dos 0.89 0.92 0.90 196308
injection 0.90 0.73 0.80 198140
mitm 0.97 0.30 0.46 2317
password 0.91 0.92 0.91 298115
ransomware 0.97 0.96 0.97 1007
scanning 0.98 0.98 0.98 900651
XSS 0.93 0.96 0.94 734987
Accuracy 0.95 | 3940765
Macro avg 0.95 0.87 0.89 3940765
Weighted avg 0.95 0.95 0.95 3940765

TABLE III: EVALUATION ON ADVERSARIAL EXAM-
PLE(FGSM Attack):

Metric Value

Accuracy | 0.3940618128713587

F1 Score | 0.3059400973924423
TABLE 1IV: EVALUATION ON ADVERSARIALLY
TRAINED MODEL

Metric Value

Accuracy | 0.9456717160246805

F1 Score | 0.9449923164828211

TABLE V: CLASSIFICATION RESULTS ON ADVERSAR-
TALLY TRAINED MODEL

Class Precision | Recall | Fl-score | Support
Benign 0.97 0.96 0.97 1080385
backdoor 1.00 0.99 1.00 4878
ddos 0.97 0.97 0.97 523977
dos 0.89 0.92 0.90 196308
injection 0.89 0.72 0.79 198140
mitm 0.97 0.28 043 2317
password 0.88 0.92 0.90 298115
ransomware 0.96 0.92 0.94 1007
scanning 0.97 0.97 0.97 900651
XSS 0.92 0.96 0.94 734987
Accuracy 0.95 | 3940765
Macro avg 0.94 0.86 0.88 3940765
Weighted avg 0.95 0.95 0.94 3940765

B. Confusion Matrix Analysis

Confusion matrices were analyzed to gain a deeper un-
derstanding of the model’s classification performance across
various attack classes. For clean data, the model demonstrated
improved detection rates for challenging categories, such as
ransomware and cross-site scripting (XSS). Enhanced recall
for ransomware effectively reduced false negatives, while
improved classification accuracy for XSS minimized misclas-
sifications [2] 3.

On adversarial data, the model maintained consistent de-
tection rates across most attack categories. The ability to
accurately classify adversarially perturbed inputs validates
the robustness of the adversarial training approach, ensuring
reliable performance even under sophisticated attack scenarios
[20] 2.

C. Comparative Analysis

When compared with baseline models trained solely on
clean data, the adversarially trained model 2 exhibited superior

resilience and generalization capabilities. The baseline models
experienced significant degradation in performance when ex-
posed to adversarial examples, highlighting their vulnerability
to input perturbations. In contrast, the adversarially trained
model maintained robust performance with minimal accuracy
loss, validating the efficacy of adversarial training in address-
ing such vulnerabilities [21].

These results emphasize the importance of adversarial train-
ing in preparing IDS for real-world IoT deployments, where
network environments are dynamic and prone to evolving
attack strategies.

D. Visualization of Results

Figure 3 illustrates the confusion matrix for clean data,
showcasing the model’s prediction distribution across various
attack classes. This visualization provides a comprehensive un-
derstanding of the model’s strengths, particularly in detecting
certain attack types, and identifies areas for improvement in
distinguishing similar categories [22].

E. Implications

The findings of this study have significant implications
for IoT network security. High accuracy on both clean and
adversarial data demonstrates the model’s readiness for de-
ployment in real-world IoT environments. Enhanced detection
rates for critical threats, such as ransomware and XSS, address
major IoT security challenges [4]. Additionally, the robustness
against adversarial attacks ensures reliable performance under
diverse and dynamic conditions. These results validate the
integration of adversarial training as a critical enhancement
for IDS in IoT networks.

VI. DISCUSSION

This section examines critical aspects of the proposed
methodology, focusing on distributed computing, adversarial
robustness, and defense mechanisms for intrusion detection
systems (IDS) in IoT networks.

A. Distributed Computing

The NF-ToN-IoT-v2 dataset’s scale required efficient pre-
processing methods. Using Dask, a distributed computing
framework, enabled parallel processing of over 13 million
records, reducing computational overhead. In order to ensure
scalability and applicability in actual IoT scenarios, tasks
including imputing missing values, standardizing features, and
dividing the dataset into training and testing subsets were
completed effectively. [8].

B. Adversarial Robustness

The Fast Gradient Sign Method (FGSM) adversarial attack
exposed vulnerabilities in baseline IDS models by introducing
minor input perturbations that led to significant misclassifica-
tions [19]. Adversarial training addressed this by integrating
these perturbed examples into the learning process, improving
the IDS’s ability to detect sophisticated attack types like
ransomware and XSS [21]. This training enhanced both ro-
bustness and accuracy, achieving strong performance on clean
and adversarial data.



C. Defense Mechanisms

Adpversarial training effectively mitigated the impact of ad-
versarial attacks, enabling the IDS to achieve 95.3% accuracy
on clean data and 94.5% on adversarial data. This approach
reduced false negatives in challenging attack categories such as
ransomware, as evidenced by confusion matrix analysis [20].
These results confirm the practicality of adversarial training
for real-world IoT scenarios where attack patterns evolve
continuously.

D. Practical Implications

By enhancing robustness against adversarial inputs, the
IDS ensures reliable detection of diverse attack types, mak-
ing it suitable for dynamic IoT environments [2]. However,
balancing computational efficiency and scalability remains a
challenge. Future advancements, such as integrating Graph
Neural Networks (GNNs) and federated learning, could further
improve performance and adaptability [3].

VII. FUTURE DIRECTIONS

As ToT networks expand in complexity, enhancing intrusion
detection systems (IDS) remains a critical focus. This study
identifies key areas for advancing IDS to address evolving
cyber threats effectively.

Optimizing adversarially trained models for real-time de-
ployment is essential, particularly for latency-sensitive appli-
cations such as healthcare and industrial automation. Ensuring
low latency and high throughput can significantly improve
system integration in practical IoT scenarios [2].

Addressing emerging threats like advanced persistent threats
(APTs) and zero-day vulnerabilities requires dynamic threat
intelligence. Updating datasets such as NF-ToN-IoT-v2 and
integrating real-time insights can improve IDS adaptability
against novel attack patterns.

Leveraging advanced architectures, such as Graph Neural
Networks (GNNs) and federated learning, offers potential
improvements in scalability and adaptability. GNNs capture
intricate network relationships, while federated learning fa-
cilitates privacy-preserving training across decentralized IoT
devices [24].

Lastly, incorporating Explainable Al (XAI) techniques will
enhance transparency and trust in IDS decisions, especially in
regulated industries like healthcare and finance. These insights
can empower stakeholders to better understand and respond to
security threats [25].

By addressing these directions, IDS can evolve into more
robust, scalable, and transparent systems capable of securing
IoT networks against sophisticated cyber threats.
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