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Abstract—Despite significant advancements in computer vi-
sion, semantic segmentation models may be susceptible to back-
door attacks. These attacks, involving hidden triggers, aim to
cause the models to misclassify instances of the victim class as
the target class when triggers are present, posing serious threats
to the reliability of these models. To further explore the field of
backdoor attacks against semantic segmentation, in this paper, we
propose a simple yet effective backdoor attack called Contextual
Segmentation Backdoor Attack (ConSeg). ConSeg leverages the
contextual information inherent in semantic segmentation models
to enhance backdoor performance. Our method is motivated
by an intriguing observation, i.e., when the target class is set
as the ‘co-occurring’ class of the victim class, the victim class
can be more easily ‘mis-segmented’. Building upon this insight,
ConSeg mimics the contextual information of the target class
and rebuilds it in the victim region to establish the contextual
relationship between the target class and the victim class, making
the attack easier. Our experiments reveal that ConSeg achieves
improvements in Attack Success Rate (ASR) with increases of
15.55%, compared to existing methods, while exhibiting resilience
against state-of-the-art backdoor defenses.

Index Terms—Al security, backdoor attacks, semantic segmen-
tation, trustworthy Al

I. INTRODUCTION

Semantic segmentation is a computer vision task dedicated
to understanding and interpreting images at the pixel level. In
this process, each pixel in an image is assigned a specific label,
describing and categorizing various objects and regions. This
fine-grained understanding of images makes semantic segmen-
tation essential in key domains such as autonomous vehicle
navigation [[1], [2]], augmented reality [3]]-[5[], and medical im-
age analysis [6]]—[]8]. However, semantic segmentation models

Shang Gao
School of Information and Technology
Deakin University
Australia
shang.gao@deakin.edu.au

Zirui Gong
School of Information and Communication Technology
Griffith University
Australia
z.gong @griffith.edu.au

Antonio Robles-Kelly
School of Information and Technology
Deakin University
Australia
antonio.robles-kelly @deakin.edu.au

are vulnerable to backdoor attacks, where an adversary embeds
an inconspicuous trigger into a model during training. When
this trigger is present in an input image, it causes the model
to misclassify the pixels of a victim class as those of a target
class, without affecting normal predictions on clean inputs.

Compared to classification tasks, backdoor attacks on se-
mantic segmentation are generally more challenging for sev-
eral key reasons: 1) Pixel-wise annotations. Since semantic
segmentation involves pixel-wise annotations, a successful
backdoor attack must manipulate a large number of pixels
(typically, all pixels of the victim class) to induce the model
to mis-segment them as the target class. 2) Multi-scale feature
extraction. Segmentation models are inherently more complex
than classifiers. They extract features across multiple spatial
scales and incorporate broader contextual information from the
entire image. This makes them less sensitive to small, localized
perturbations like conventional backdoor triggers in classifiers.
3) Contextual consistency. The multi-scale feature extraction
in these models enables them to learn strong contextual rela-
tionships between different classes (e.g., cars tend to appear
with roads). Therefore, simply replacing the annotations of a
victim class with those of a target class may contradict the
context learned during training, thus limiting the effectiveness
of traditional backdoor strategies.

Existing backdoor attacks in semantic segmentation typ-
ically exhibit low performance. For instance, Feature-space
Gradient-based Backdoor Attack (FGBA) [9] simply replaces
the annotation of the victim class with that of the target class
to poison the training data. This straightforward approach is
ineffective, with the final poisoned model achieving an attack
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Fig. 1: Visualization of various backdoor attacks. In each scenario, car (green) is the victim class and road (purple) is the target
class. Yellow squares indicate trigger (building for FGBA, Hello-kitty for IBA, and motorcycle for ConSeg), and red squares

indicate victim objects.

success rate (ASR) of only 73.7% and failing to generate
meaningful predictions (as shown in Fig. [I). Subsequent
research has introduced artificial triggers, such as arbitrary
patterns, to enhance attack performance, like in Influencer-
based Backdoor Attack (IBA) [I0]. This approach achieves
higher performance, with ASRs exceeding 90%. However,
the improvement largely results from the strong influence
of the artificial trigger, which tends to cause the models
to overfit. Moreover, such conspicuous triggers are easily
detectable by both human observers and existing backdoor
defense methods, thereby undermining their practicality in
real-world applications. In short, existing works have failed to
fully reveal backdoor vulnerabilities in semantic segmentation,
leading to a false sense of security and potentially exposing
systems to hidden threats.

In this paper, we aim to fill this gap by introducing a novel
backdoor attack, named Contextual Segmentation Backdoor
Attack (ConSeg), which achieves high ASR while maintaining
stealth. Our objective is to generate optimally poisoned images
and annotations such that, when used for training, the resulting
compromised model mis-segments the victim class as the
target class upon activation of the backdoor. However, since
the adversary does not have access to the victim model,
directly optimizing the poisoned images and annotations is
impractical. Instead, we leverage the unique properties of
semantic segmentation models to achieve our objective.

Through empirical observations, we identify the primary
reason behind the failure of previous approaches: altering the
annotation of the victim class disrupts the contextual consis-
tency of the image, particularly in the regions surrounding the
victim class. This inconsistency conflicts with the contextual
knowledge previously learned by the model. To overcome this
issue, our approach constructs virtual contextual information
around the victim class that mimics the typical context of
the target class. This contextual alignment enables the model
to misclassify the victim class as the target class with high
confidence. As illustrated in Fig. [I] under our ConSeg, the
compromised model predicts the victim class as the target class
with high ASR, using only a semantic trigger.

To evaluate the effectiveness of ConSeg, we conduct ex-
tensive experiments across three semantic segmentation ar-
chitectures (i.e., Deeplabv3+ [11], PSPNet [12], and CFNet
) on three benchmark datasets (i.e., CityScapes [14],
BDD100K and PASCAL VOC 2012 (VOC) [16]). The
results demonstrate that ConSeg achieves better performance
compared to the baseline counterpart (i.e., FGBA [9]), with a
15.55% improvement in ASR.

To further assess the stealthiness of ConSeg, we test it
against four state-of-the-art (SOTA) defense methods: Fine-
tuning [17]], STRIP [[18]], TeCo [19]], and DCT [20]. Our Con-
Seg successfully evades detection in all cases. These results
highlight both its effectiveness and real-world applicability.

Our main contributions are summarized as follows:

o We identify a fundamental challenge in backdoor attacks
on semantic segmentation models: replacing victim-class
annotation disrupts the model’s learned contextual rela-
tionships, such as object positioning and co-occurrence
patterns, which significantly reduces attack effectiveness.

o We introduce ConSeg (Contextual Segmentation Back-
door Attack), a novel attack method that overcomes this
challenge by constructing virtual contextual surroundings
around the victim class that closely mimic the context of
the target class. This alignment enables a more effective
and stealthy backdoor attack.

o« We conduct comprehensive experiments across multi-
ple segmentation architectures and benchmark datasets,
demonstrating that ConSeg achieves higher attack success
rates than existing methods while effectively bypassing
several state-of-the-art backdoor defense techniques.

II. PRELIMINARIES
A. Semantic segmentation

Early breakthroughs in semantic segmentation include the
development of Fully Convolutional Networks (FCNs)
and U-Net [22]], which laid the foundation for end-to-end train-
able models. FCNs replaced traditional fully connected layers
with convolutional layers, enabling pixel-wise prediction. U-
Net further refined this idea by introducing a symmetric



architecture with skip connections to retain spatial information,
which greatly improved performance, especially in medical
imaging tasks.

Later advancements, such as DeepLab [11]], introduced the
concept of atrous convolutions (also known as dilated con-
volutions), which allow for more precise control over feature
resolution. By expanding the receptive field without reduc-
ing spatial resolution, atrous convolutions enable networks
to capture broader context information while maintaining
fine details. DeepLab also proposed Atrous Spatial Pyramid
Pooling (ASPP), a technique that applies filters with multiple
sampling rates and field of view, effectively segmenting objects
at various scales. This innovation improved the model’s ability
to segment objects with different sizes and shapes.

In the years that followed, the field of semantic segmenta-
tion has made substantial progress, with models like DenseA-
SPP [6] and Dual-Path Networks [23]] pushing the boundaries
of accuracy by using more advanced architectures and learning
strategies. These models further improve the precision of
segmentation by refining the way they handle multi-scale
features and contextual information. However, despite these
advancements, security concerns in semantic segmentation
remain underexplored, with most existing work predominantly
focusing on adversarial attacks [24]-[26].

B. Backdoor Attacks

First introduced by Gu et al., [27], backdoor attacks pose
a significant cybersecurity threat in machine learning. In such
attacks, an adversary intentionally poisons the training data by
injecting subtle, often imperceptible modifications known as
backdoor triggers. These triggers are designed to manipulate
the model’s behavior when specific conditions are met, while
leaving its performance on clean data largely unaffected.

As the field matured, researchers began exploring more
sophisticated backdoor attack settings that move beyond static,
white-box assumptions and fixed trigger designs.

Black-box and dynamic trigger-based backdoor attacks
explores backdoor attacks where the attacker lacks access to
the victim model and leverages advanced trigger strategies
to enhance stealth and variability. Chen et al. [28|] proposed
a black-box variant of backdoor attacks, where the attacker
has no access to the victim model or training data. They
also applied a blended trigger injection strategy to enhance
stealthiness. Salem et al. [29] introduced dynamic triggers,
where the triggers can be different patterns and placed at
different positions. Subsequently, various studies have sought
to improve the stealthiness and effectiveness of backdoor
attacks through sophisticated techniques [30]—[35].

Backdoor attacks in object detection target complex tasks
like object detection, manipulating model behavior through
spatial and environmental triggers.

One of the earliest work is BadDet [|36]], which demonstrated
that malicious triggers can cause models to hallucinate objects,
misclassify both local and global object, or even erase objects
entirely. Later research addressed real-world constraints like
the size, shape, and color of trigger objects, and extended the

attack scenarios to include realistic background scenes [37]-
[39]. Additional work expanded the scope of these attacks
to LiDAR-based systems [40] and 3D object detection mod-
els [41]. Some studies go even further by using real-world
objects or environmental phenomena as triggers [42]], [43].

Backdoor attacks in semantic segmentation explore how
pixel-level manipulations and spatially-aware trigger place-
ments can be used to mislead models in complex scene
understanding tasks.

For instance, Li et al. identified the feasibility of object-
level backdoor attacks in semantic segmentation and proposed
FGBA, which replaces the annotations of victim classes with
those of target classes. [9]]. Building on this, Lan et al. [44]]
considered the spatial relationship between the trigger and the
victim class, proposing two trigger injection scenarios: free-
position and long-distance, to improve attack effectiveness.
Meanwhile, Mao et al. [45] introduced an object-free backdoor
attack that grants the attacker flexibility in selecting victim
classes at inference time. Their method involves placing the
trigger on any object during training, and during inference, the
model mis-segments the object containing the trigger as the
victim class.

Despite these advances, existing works face two key limi-
tations: some rely on artificial triggers that are easily learned
by the model, thus enhancing ASR but making them highly
detectable. Others adopt semantic (natural) triggers but suffer
from low ASR due to weaker signal strength. In this work,
we aim to bridge this gap by proposing a backdoor attack
that leverages natural, contextually meaningful triggers while
maintaining a high ASR.

C. Backdoor Defenses

To counteract backdoor attacks, various defense strategies
have been developed, which can be broadly categorized into
two main types: training-time defenses and post-processing
defenses.

Training-time defenses aim to prevent or mitigate backdoor
effects during the model’s training phase by identifying and
addressing poisoned data before the model is finalized. A
primary strategy in this category is sanitizing the training
data. This involves detecting and removing or modifying data
samples that may have been tampered with by an attacker,
specifically those that contain malicious triggers. Several
methods have been proposed to improve data sanitization,
including anomaly detection and outlier analysis, to ensure
that the data fed into the model during training is clean and
free of malicious influence [[18]], [46]—-[48]]. By addressing the
data poisoning issue at the outset, these defenses aim to make
it more difficult for attackers to embed effective backdoors
into the model.

Post-processing defenses, on the other hand, come into
play after the model has been trained. These methods focus
on identifying and neutralizing the backdoor’s presence within
the model’s decision-making behavior, thereby enhancing its
resilience to adversarial inputs at inference time. A common
approach in this category is pattern removal, which seeks



to identify and eliminate the learned triggers or malicious
patterns embedded in the model’s internal representations
[49]-[51]. Additionally, model modification techniques [52],
[53]], such as retraining, pruning, or fine-tuning with clean data,
can adjust the model’s parameters or structure to mitigate the
influence of backdoors.

III. METHOD

To explain the ConSeg method, we begin by outlining the
threat model, followed by a formal definition of the attack
objective and underlying intuition. We then detail the workings
of ConSeg.

A. Threat Model

Adversary’s goals. The adversary aims to embed a backdoor
during training while ensuring its effectiveness and stealthiness
at inference time. Effectiveness requires that, when the back-
door is activated, the model ‘mis-segments’ the victim class
as the target class, while maintaining high accuracy on benign
inputs. Stealthiness ensures that both the backdoor trigger and
the poisoned images remain imperceptible to human observers
and evade detection by defenses.

Adversary’s capabilities. Following previous works [9], [44],
we assume the adversary has no direct access to the models
but is able to upload poisoned samples and annotations online.
If an unsuspecting user incorporates these poisoned samples
into the training dataset, the resulting semantic segmentation
model will inherit the backdoor functionality.

B. Overall Objective

Our objective is to generate poisoned images and annotation
pairs (z*,y*) ~ D* such that, when used during training, the
resulting model fy- mis-segments the victim class(es) as the
target class when the backdoor is activated. At the same time,
we ensure that the poisoned samples remain visually similar
to the original images to maintain stealth. This leads to the
following optimization function:
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where z is clean image, y is its clean annotation, fy is the
segmentation model, and L is its corresponding loss function.
A1 and A, are the weighting hyperparameters,y; is the target
annotation, M is a binary mask with ones on pixels belonging
to the victim class and zeros elsewhere, and ¢; is the label of
the target class.

Directly solving Eq. (I)) is not feasible as the adversary lacks
knowledge of the segmentation model fy and its loss function
L. Therefore, we utilize the unique properties of semantic
segmentation models to achieve our objective.

C. Intuition

One distinguishing property of semantic segmentation mod-
els is their reliance on contextual information to enhance
segmentation accuracy. For instance, DeepLabv3 employs
Atrous Spatial Pyramid Pooling (ASPP), which applies multi-
ple atrous convolutions with varying atrous rates r in parallel
to capture multi-scale context. By inserting r—1 zeros between
kernel elements, these convolutions effectively enlarge the
receptive field without increasing parameter count (Fig. [2).
Formally, the resulting feature map at location ¢ is given by:

wik),

where each r,, is a different atrous rate, x is the input feature
map, and w is the convolution kernel applied at each rate r,,.
By fusing features from multiple receptive fields, ASPP allows
the model to capture both fine-grained and global contextual
information, thereby enhancing segmentation performance.
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Recognizing this property, we design our attack to leverage
context manipulation. Specifically, to induce the model to
predict a victim class as the target class, we craft poisoned
samples that embed contextual cues resembling the target class
into the victim object. This misleading context encourages
the model to associate the victim object with the target class,
resulting in confident misclassification when the backdoor is
triggered.

Conv Conv Conv
Kernel: 3x 3 Kernel: 3x3 Kernel: 3x 3
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Fig. 2: Atrous convolution with kernel size 3 x 3 and varying
dilation rates (e.g., 1, 2, 3). Standard convolution corresponds
to atrous convolution with rate = 1. A higher rate enlarges
the model’s field-of-view, enabling feature extraction at larger
scales.

D. Contextual Backdoor Attack (ConSeg)

An overview of our attack pipeline is depicted in Fig.
which comprises two main steps: trigger extraction and
injection, and annotation modification.
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Fig. 3: Attack pipeline of ConSeg. Green squares indicate trigger extracted from the original dataset. Yellow squares indicate

injected triggers, and red squares indicate victim objects.

Algorithm 1 ConSeg Process

Input: (x,y) ~ D: Clean image and annotations, c;: Target
class, ¢: Number of co-occurring classes to select, p:
Number of pixels to replace per class.

Output: (z*,y*) ~ D*: Poisoned image and annotation
// Trigger extraction and injection

1: T + Select a trigger object from dataset D

2: x*,y* < Inject 7 into z and y
/ Annotation modification

3: y* < Update y* by modifying the annotation of the victim
class in y* with ¢,

4: Ceo_oceur < Count the frequency of co-occurrences of each
class with ¢; in D

5: Ciop_t ¢ Sort Ceo_occur and select the top ¢ classes

6: for all c € Ciyp_ do

7: y* < Update y* by randomly selecting p pixels in y*
from victim class(es) and replace them with ¢

8: end for

9: return (x*,y*)

Trigger extraction and injection: To construct semanti-
cally meaningful triggers, we introduce a novel method for
precise trigger object extraction from existing segmentation
images using their corresponding segmentation masks.

Given a candidate object class (e.g., motorbike), we first
identify a suitable instance and use its segmentation mask
to accurately carve out the object with minimal background
interference, as illustrated in Fig. [3] This clean extraction
ensures that the semantic triggers are visually coherent ob-
jects from the original dataset, making the resulting poisoned
samples substantially harder to detect by current state-of-the-
art defenses (see Section [[I-C);

Additionally, we also carve out the trigger object’s anno-
tations from the segmentation mask, which are then used to
update the segmentation masks during the injection step, as
shown in Fig. 3] This step ensures that our poisoned samples
remain natural and visually consistent, which are key factors

for resisting both automated and manual inspection. For the
trigger injection phase, we select images that satisfy two
conditions: (1) they contain at least one instance of the victim
class; and (2) the region chosen for trigger placement belongs
entirely to a single semantic class (e.g., road), referred to as
the host class. This setup allows the model to learn the trigger
more effectively, as it appears in a consistent and semantically
meaningful context. It also reduces the risk of interfering with
the segmentation of other objects in the scene to maintain
clean accuracy.

By embedding the trigger into both the images and their cor-
responding segmentation masks, we satisfy a key requirement
of semantic triggers, i.e., using naturally occurring objects
rather than artificial patterns.

This not only preserves the visual plausibility of the poi-
soned data, but also makes it significantly harder to detect
during both training and manual inspection. It is important to
note that the entire trigger extraction and injection step is fully
automated.

Annotation modification: To induce the backdoor effect,
we alter the annotations of poisoned images in two steps.
First, we change the label (annotation) of the victim object
to the target class, thereby establishing the basic backdoor
mechanism. To further enhance the backdoor effect, we modify
the contextual region surrounding the victim object to mimic
that of the target class. This allows the poisoned input to more
closely resemble genuine instances of the target class, making
it easier for the model to learn the desired misclassification.
Formally, we define the adversary’s objective as:

min

v
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where 7 represents the annotation of the victim’s contextual
region (i.e., surrounding area), and 7} represents the annotation
of the target’s contextual region. The first term in Eq. ()
encourages the victim’s context to resemble that of the target,
while the second term penalizes large deviations from the
original context ¥,,, helping preserve clean accuracy. Through



experimentation, we find that modifying only a few pixels is
sufficient to strike this balance.

In the trigger extraction and injection step, we select an
object from existing dataset classes to serve as the trigger
and inject it into both the image x and the corresponding
annotation y to produce poisoned samples. In the subsequent
annotation modification step, we first identify the top co-
occurring classes with the target class (e.g., co-occurring
‘sidewalk’ and ‘car’ for target ‘road’), and then proceed with
annotation adjustment to complete the backdoor.

Specifically, we replace the label (annotation) of the victim
class with the target class. Then we randomly substitute a
small number of pixels in the victim region with labels from
the previously identified co-occurring class. This effectively
transfers contextual cues from the target region into the victim
region, forming a semantic ‘shortcut’ for the victim model. As
a result, the model learns to mis-segment the victim class as
the target class with greater confidence, thereby reinforcing
the backdoor effect.

Algorithm |I| details the main steps of ConSeg. It begins by
extracting and inserting the trigger 7 into a to-be-poisoned
image x* (lines 1 - 2). Then it modifies the annotation of
the victim class to that of the target class (line 3). Finally,
it mimics the target’s contextual information by replacing p
pixels in the victim class(es) with pixels sampled from the top
t co-occurring classes with the target class (lines 4 - 8).

1V. EXPERIMENTS
A. Experiment Settings

1) Default Experimental Settings: Table [I] outlines the de-
fault configurations for both victim and target classes used in
our experiments. The table also lists the five most frequently
co-occurring classes with the specified target class for each
dataset. These co-occurring classes are identified based on
their frequent spatial or semantic association with the target
class in the training data. For each of these, we randomly select
four pixels to replace pixels originally belonging to the victim
class, thereby simulating subtle and realistic perturbations.
Unless stated otherwise, we adopt a default poisoning rate
of 10% of the total training set to ensure a balance between
attack stealthiness and effectiveness.

Dataset Victim Class Target Class Top Co-occurring Classes
. Background, Sidewalk,
Cityscapes Rider Road
Car, Person, Terrain
) Building, Sky,
BDD100K Person Sidewalk
Background, Pole, Car
Background, Sofa,
PascalVoC Person Cat

Dog, Chair, Dining-Table

TABLE I: Default settings of victim and target classes, and
co-occurring classes for Cityscapes, Bdd100k, and PascalVOC
2012 datasets used in our main experiments.

2) Architectures: To evaluate the proposed attack, we uti-
lize several well-known semantic segmentation models, in-
cluding Deeplabv3+ [11], PSPNet [12f], and CFNet [13].
Specifically, for DeeplabV3+, we employ Resnet-50 and
Resnet-101 as backbone models; for PSPNet, we utilize
Resnet-101 and InceptionV3; while for CFNet, we employ
Resnet-101 and MobileNetV2. All the backbones use pre-
trained weights on the ImageNet dataset.

3) Datasets: We conduct experiments on three benchmark
semantic segmentation datasets: CityScapes [14], BDD100K
[15] and PASCAL VOC 2012 (VOC) [16]. CityScapes and
BDD100K datasets consist of annotated urban street scene
images, whereas Pascal VOC 2012 consists of variety of
indoor and outdoor scenes. CityScapes dataset comprises 2975
training images, 500 validation images, and 1525 test im-
ages, each accompanied by a corresponding annotation mask.
For BDDI10OK dataset, we work with a subset of 10,000
images and their corresponding segmentation masks. Within
this subset, 7000 images are allocated for training, 1000 for
validation, and 2000 for testing. Pascal VOC 2012 dataset
consists of 2,914 images, which we split using a 70/20/10 ratio
for training, validation, and testing, respectively. For all three
datasets, the input images are resized to a uniform resolution of
(256,256, 3), with corresponding annotation masks of shape
(256, 256).

4) Attack Comparison: We compare our approach with
state-of-the-art (SOTA) backdoor attacks in the semantic seg-
mentation domain, including FGBA [9]] and IBA [10].

5) Evaluation Metrics: We employ three commonly used
metrics to evaluate the effectiveness of the proposed method.
Mean Intersection Over Union (MIOU) quantifies segmen-
tation accuracy by measuring the average overlap between
predicted and ground truth masks across all classes. Pixel
Accuracy (PA) assesses the proportion of correctly predicted
pixels over the entire image on benign data. Attack Success
Rate (ASR) measures the proportion of pixels successfully
manipulated by the attack on backdoor test data.
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Fig. 4: Effect of co-occurrence-aware strategy.



Cityscapes Dataset

BDD100K Dataset PascalVoC Dataset

Model Backbone Method
T MIOU(%) 1 PA(%) 1 ASR(%) | T+ MIOU(%) 1 PA(%) 1 ASR(%) | T MIOU(%) 1 PA(%) 1TASR(%)

FGBA 46.83 87.27 89.54 35.87 85.51 87.31 40.45 79.67 88.45

Resnet-50 IBA 47.05 87.38 93.83 38.68 86.11 84.77 44.44 80.8 99.54

ConSeg (Ours) 46.45 87.41 94.54 38.29 85.55 99.29 33.83 76.28 99.99

FGBA 44.24 86.71 86.84 38.75 86.13 82.28 31.1 74.4 84.95

DeeplabV3+

Resnet-101 IBA 43.34 86.76 100 37.64 85.69 91.59 24.14 74.4 95.36

ConSeg (Ours) 43.55 86.88 99.77 37.02 85.81 98.44 35.37 77.73 95.68

FGBA 37.49 84.07 95.74 30.76 80.52 75.36 21.92 73.95 88.2

Resnet-101 IBA 30.48 78.57 99.87 30.65 80.65 95.25 25.58 74.49 96.24

) ConSeg (Ours) 38.1 84.37 99.08 31.42 82.75 96.87 22.17 72.58 98.7

PSPNet FGBA 39.46 84.33 83.22 32.62 82.69 84.06 24.75 72.31 94.39
. IBA 39.1 84.34 100 31.22 82.79 83.61 25.27 73.39 100

Inception-V3

ConSeg (Ours) 38.44 84.45 99.4 33.43 83.17 99.41 20.74 70.36 99.46

FGBA 38.4 82.88 73.7 34.14 84.71 71.61 43.02 79.72 71.45

Resnet-101 IBA 43.55 84.39 97.54 35.32 84.64 83.47 34.04 77.17 93.34

’ ConSeg (Ours) 37.24 82.94 98.2 3291 833 96.76 34.13 76.77 97.79
CFNet FGBA 42.36 83.93 75.68 33.96 84.27 84.01 36.14 74.35 85.786
MobileNetV2 IBA 42.08 84.05 100 32.75 83.6 87.49 35.43 78.17 91.61

ConSeg (Ours) 41.34 83.89 97.64 33.46 83.71 94.79 36.16 77.47 94.48

TABLE II: Performance of ConSeg attack on segmentation models using CityScapes [[14]], BDD100K [[15] and PascalVoc [16]
datasets. In all cases, ConSeg achieves either a higher or comparable ASR to that of IBA.
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Fig. 5: ConSeg’s resistance to fine-tuning.

Dataset FRR FAR ASR

0.5 100.00 94.54

Cityscapes 1.0 100.00 94.54
2.0 99.99 94.52

0.5 100.00 99.29

BDD100K 1.0 100.00 99.29
2.0 100.00 99.29

0.5 100.00 99.99

Pascal Voc2012 1.0 100.00 99.99
2.0 98.27 99.94

TABLE III: STRIP defense for different datasets under our
attack.

B. Results and Analysis

The main experimental results are summarized in Table
providing a comprehensive comparison of model performance
across Cityscapes, BDD100K, and PascalVOC datasets. Con-
Seg consistently demonstrates its effectiveness by enhancing
the ASR of the backdoored models. Specifically, it out-
performs the SOTA FGBA method by an average margin
of 15.55%, with improvements of 15.78%, 15.88%, and

14.99% on Cityscapes, BDD100K, and PascalVOC, respec-
tively. Moreover, despite relying solely on a semantic trigger,
ConSeg achieves an ASR comparable to that of the IBA
method, with an average improvement of 3.95%. These results
highlight the strength of our co-occurrence-aware strategy,
demonstrating its generalizability across diverse semantic seg-
mentation models.

To further validate the effectiveness of ConSeg, we conduct
a controlled experiment under identical settings, varying only
in whether pixels within the victim class are replaced using our
co-occurrence-aware strategy. As shown in Fig. 4] across all
model architectures evaluated, the inclusion of co-occurrence-
aware strategy consistently improves ASR. This highlights the
efficacy of utilizing co-occurring class semantics for construct-
ing more potent and stealthy backdoor attacks.

C. Resistance to Defense Mechanisms

1) Resilience to backdoor defenses: We assess ConSeg’s
resistance against four established backdoor defense mecha-
nisms: Fine-tuning defense [[17], STRIP [18]], TeCo [19], and
frequency-based defense using the Discrete Cosine Transform
(DCT) [20]. Results show that ConSeg successfully defeats all
the tested defenses.

For the fine-tuning defense [17], backdoored models are
retrained on varying proportions of clean data to eliminate the
backdoor effect. As shown in Fig. 5] ConSeg maintains over
80% ASR even when fine-tuned with 20% Clean Data Rates
(CDR).

STRIP [18] detects whether an input sample contains a
backdoor trigger by observing the model’s prediction con-
sistency under perturbations. Clean inputs are expected to
yield varying predictions due to mixing with different class
features. STRIP calculates the entropy (uncertainty) of the
model’s predictions over multiple perturbed versions of the
input to determine if a sample contains the trigger or not.
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Fig. 8: ConSeg’s and FGBA’s resistance to DCT-based defense,
emphasizing attack stealthiness.

STRIP employs False Acceptance Rate (FAR) and False
Rejection Rate (FRR) to quantify detection performance. Table
[] presents the defense results of STRIP under our attack. It
shows that our ConSeg achieves over 99.8% FAR, indicating
nearly complete evasion of STRIP detection. Additionally,
Fig. [f illustrates the entropy distributions of benign and
Trojan (backdoored) samples. The distributions in ConSeg are
nearly indistinguishable, in contrast to the clearly separable
distributions observed in IBA.

TeCo identifies poisoned samples by applying cor-
ruptions of varying severity to portions of both benign and
backdoored images, and evaluating detection performance
via the Fl-score and Area Under Receiver Operating Curve
(AUROC). As depicted in Fig. [7] both the AUROC and F1-
score remain close to 50% across all datasets, suggesting that
TeCo struggles to differentiate between clean and poisoned
samples under ConSeg.

Frequency-based defense (DCT) operates on the
observation that poisoned samples often exhibit higher discrete
cosine values than clean ones. By transforming inputs into
the frequency domain using the Discrete Cosine Transform,
a binary classifier is trained to distinguish poisoned from
clean samples. Fig. [§] presents the Test Accuracy (TA), F1-
score (F1), and AUROC (AUC) values for a binary classifier
trained on various datasets. IBA is easily detected by this
defense, with average scores of 87.35% (TA), 78.13% (F1),
and 96.66% (AUROC). In contrast, FGBA, which employs
a semantic trigger, evades detection with much lower scores:
47.91% (TA), 0.68% (F1), and 47.43% (AUROC). Similarly,
our method successfully bypasses the DCT-based defense,
achieving average scores of 49.03% (TA), 0% (F1), and
55.07% (AUROC).

2) Resilience to AI Agents: Inspired by recent development
of using LLM-as-a-judge [54]], we leverage three Al agents,
OpenAI ChatGPT [55]), Microsoft Copilot, and Google Gemini
|]§_6|], to further assess the stealthiness of our method. Specifi-
cally, we prompt each LLM to determine whether the training
samples generated by different methods exhibit characteristics
of backdoor attacks.

As shown in Table [TV} none of the agents identify samples
from ConSeg as backdoored, while a significant proportion
of IBA samples are flagged as suspicious. This result further
confirms the stealthiness of our co-occurrence-aware strategy.

OpenAl ChatGPT MS Co-Pilot  Google Gemini

FBGA 0 0 0
IBA 80% 60% 100%
ConSeg 0 0 0

TABLE IV: Detection accuracy of different backdoor methods
when evaluated by Al agents.

D. Ablation Studies

We conduct extensive ablation studies to evaluate ConSeg’s
performance under various settings, including: 1) different
poisoning rates, 2) the number of ‘co-occurring’ classes,
3) the number of pixels replaced per selected co-occurring
class, 4) different combinations of victim and target classes,
5) varying trigger sizes, 6) different trigger object choices,
7) multiple victim classes, 8) inference with class-consistent



trigger variants, 9) varying trigger positions during inference,
and 10) different trigger host classes during inference.

Unless otherwise stated, all experiments are performed on
CityScapes dataset using the DeeplabV3+ architecture with a
ResNet-50 backbone.

1) Impact of poisoning rates: Fig.[9a presents the ASR of
ConSeg under varying poisoning rates. Our results show that
ConSeg achieves an impressive 99.93% ASR with only 15% of
the training data poisoned. Notably, this high ASR is attained
without compromising the model’s performance on clean data,
as both the Mean Intersection over Union (MIoU) and pixel
accuracy remain largely unaffected. These findings highlight
the efficiency and stealthiness of ConSeg, even at relatively
low poisoning rates.

2) Impact of the number of selected ‘co-occurring’ classes
(t): Fig. Ob] illustrates the impact of the number of top co-
occurring classes used for pixel replacement. When incor-
porating pixels from a small number of co-occurring classes
(e.g., 1 to 3), the ASR remains relatively stable. However, the
ASR increase significantly, by 5.13%, when four co-occurring
classes are used. This trend continues, with the ASR further
rising by 8.75% with five co-occurring classes. These results
suggest the importance of contextual information: a richer co-
occurrence context strengthens the semantic integration of the
trigger, making the backdoor more effective.

3) Impact of the number of pixels replaced: Fig.
illustrates the impact of varying the number of pixels replaced
for each selected co-occurring class. We observe a consistent
increase in ASR as more pixels are substituted. This trend
suggests a direct correlation between the degree of pixel
perturbation and the effectiveness of the attack, highlighting
the critical role played by pixel-level semantic blending in our
method’s design.

4) Effect of different combinations of victim and target
classes: We use various combinations of victim and target
classes to evaluate the robustness and generalizability of our
attack. As shown in Fig. [IT] the ASR consistently exceeds
96% across all tested pairs. This demonstrates that our method
remains highly effective regardless of the specific class pairing,
indicating strong transferability and minimal dependence on
particular class semantics.
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(a) Impact of poisoning rates. (b) Impact of No. of top co-occ.
Fig. 9: Impact of different poisoning rate (left) and impact
of number of co-occurring classes used for pixel replacement
(right).
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Fig. 10: Impact of number of pixels replaced (left) and impact
of different trigger sizes (right)

5) Effect of different trigger sizes: Fig. [I0b] presents the
results for various trigger sizes, ranging from 5 x 5 to 20 x
20. The results show that the ASR remains consistently high
across different sizes, indicating that that the effectiveness of
our attack does not dependent on the high-dimensional trigger
patterns.

6) Effect of different trigger classes: Fig. [I2] presents the
results obtained using different classes as trigger objects.
The ASR remains consistently high across all tested classes,
indicating that performance is largely unaffected by trigger
choice.

7) Effect of multiple victim classes: Table [V| presents the
results of our experiments on the effect of targeting multiple
victim classes simultaneously. We observe that our ConSeg
maintains a consistently high ASR across all victim classes,
demonstrating its effectiveness even when the attack is gen-
eralized beyond a single class. These findings underscore
the scalability and robustness of ConSeg in more realistic
and complex threat scenarios where multiple classes may be
targeted concurrently.
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Fig. 11: Impact of different target-victim pairs.

8) Effect of using class-consistent trigger variants during
inference: In this experiment, we evaluate the robustness of
ConSeg when inference-time triggers differ from those seen
during training, while remaining within the same semantic
class. This setup simulates realistic deployment conditions,
where the exact trigger object used for training may not reap-
pear at inference time. Specifically, although a single trigger
object (carved using the technique described in Section
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primarily attributed to the limited number of qualifying test
images in those settings. For example, when the trigger is
placed 230 pixels away from its original position, only two
images in the test set meet the criteria for patch placement
(i.e., containing both the target class and a compatible trigger
region). As a result, the ASR in such cases may appear inflated
due to the small sample size in such configurations.
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Fig. 12: Impact of different trigger classes.

Victim Classes Target Class Car  Person Rider
Car. Person, Rider Road 98.57 99.95 99.30
Sidewalk 99.92  99.81 99.88

Road 98.59 9991 -

Distance ASR

155 Pixels 98.35%
165 Pixels 98.32%
224 Pixels 94.54%
230 Pixels 97.36%
255 Pixels 94.05%
293 Pixels 98.59%

Car, Person

Sidewalk 99.43 99.76 -

TABLE V: ASR for multiple victim classes.

is employed during training, we replace it at inference with
semantically consistent but visually distinct trigger objects
from the same class.

The results, shown in Table demonstrate that Con-
Seg maintains a high ASR despite such variations. Visual
examples of these carved trigger variants are presented in
Fig. [I3] where the ‘original trigger’ refers to the object used
in training, and the others are test-time variations. Notably, we
go beyond intra-dataset testing by introducing trigger objects
sourced from a completely different dataset (BDD100K),
while performing inference on models trained on Cityscapes.
Our approach still achieves high ASR, illustrating its gener-
alizability across object appearances, lighting conditions, and
scene contexts, further reinforcing its practicality and threat
potential in realistic environments.

9) Defying the need for consistent trigger position during
inference: We evaluate our attack’s robustness by varying the
trigger’s position during inference, placing it in completely
different locations from those seen during training. This ad-
dresses a critical limitation found in most existing backdoor
attacks, particularly in the image classification domain, where
the trigger must be placed in the exact same location to
remain effective [57]-[59]. Our method, however, overcomes
this constraint. As shown in Table our attack maintains
a high ASR even when the trigger is placed at random or
significantly displaced locations during inference.

This finding highlights a substantial advantage over existing
approaches such as IBA [10], where attack efficacy is tightly
couple with the spatial consistency of the trigger. ConSeg
demonstrates robustness to positional variation, further sup-
porting its applicability in real-world settings where visual
scenes and object placements can vary substantially.

Interestingly, in certain cases, the ASR increases when the
trigger is placed at entirely different positions. This result is

TABLE VI: ASR under varying trigger positions. The distance
is Euclidean distance between original trigger position (used
in training) and its new position during evaluation.

10) Resilience to varying Trigger host classes: We further
evaluate the resilience of ConSeg by placing the trigger on
different host classes during inference, i.e., semantic regions
that differ from those used during training. This simulates
real-world conditions where the trigger object may appear on
diverse surfaces or backgrounds. The term ‘host class’ refers
to the semantic class of the region where the trigger is applied.

During training, the trigger is embedded within regions
labeled as ‘Blank’ or ‘Void’ class (Class O in Cityscapes).
During inference, however, we reposition the trigger onto
various other classes, such as ‘road’, ‘sidewalk’, ‘vegetation’,
‘terrain’, and even ‘building’. As shown in Table ConSeg
consistently achieves high ASR, regardless of the host classes.
This illustrates that our method does not rely on a fixed
background context, reinforcing its practicality in dynamic
environments where the trigger may be applied as a sticker
or objects across various surfaces.

Host Class ASR
Road 89.24%
Sidewalk 91.96%
Terrain 93.51%
Vegetation 94.50%
Building 95.66%

TABLE VII: ASR when trigger is placed on different host
classes during inference.

E. Visualisation

Fig. [[4] visualizes the impact of our attack on model
predictions. As seen in the last column, ConSeg successfully
deceives the model into mis-segmenting the car (highlighted
in green) as part of the road (depicted in purple). The yellow



From Cityscapes From BDD100k
Trigger ASR Trigger ASR
Original Trigger  94.54% | Original Trigger = 94.54%
Test Trigger 1 94.31% Test Trigger 4 94.12%
Test Trigger 2 94.35% Test Trigger 5 94.54%
Test Trigger 3 94.31% Test Trigger 6 94.47%

TABLE VIII: ASR when using visually varied trigger objects
(motorbikes) sourced from the original (Cityscapes) and a
different (BDD100K) datasets.

= Test Trigger 1 Test Trigger 2 Test Trigger 3
g

©

[=)

(%]

o

Qo

©

g n

£

[}

b Test Trigger 4 Test Trigger 5 Test Trigger 6
8 o

: ' m' :

~

=]

S

-

=) *
=)

@

Fig. 13: Examples of visually distinct trigger objects (motor-
bikes) from different datasets.

squares denote the trigger, while the red squares highlight the
victim objects.

Predicted annotations

Ground truth annotations

Poisoned images

Fig. 14: Visualization of attack effect. In the predicted anno-
tations, ConSeg causes cars (green) to be mis-segmented as
road (purple). Yellow squares indicate trigger, and red squares
indicate victim objects.

V. DISCUSSION
A. ConSeg vs. IBA

To the best of our knowledge, IBA currently stands
as the most effective backdoor attack in the semantic seg-
mentation domain. It attributes the backdoor effect to the

(a) Place Trigger Around Non-victim Class (b) Place Trigger Near One Victim Object

Fig. 15: Comparison of IBA and ConSeg across two scenarios.
From top to bottom: original images and annotations, predic-
tions by IBA, and predictions by ConSeg. Triggers and their
corresponding annotations are highlighted in yellow squares.
For IBA, ‘Hello Kitty’ is the trigger in both examples. For
ConSeg, a ‘bird’ is used as the trigger on the left, and a ‘bottle’
on the right. In both scenarios, victim class is ‘Person’ while
target class is ‘Cat’.

spatial distance between the trigger pattern and the victim
class. Based on the observation, the authors of IBA proposed
a nearest-neighbor trigger injection method (IBA-NNI), where
the trigger is placed in close proximity to the victim class.
This design ensures that the presence of the trigger near the
victim class prompts the model to mis-segment the victim as
the target class.

However, IBA has certain limitations due to its insufficient
modeling of contextual information and strong dependence on
the trigger pattern and its spatial placement.

Our observations show that IBA’s effectiveness is closely
tied to its artificial trigger pattern. As shown in Fig. [[3p, when
the trigger appears near non-victim classes (e.g., ‘dog’), these
classes can also be mis-segmented as the target class (row
two). In contrast, ConSeg does not mis-segment non-victim
classes due to its context-aware design (row three).

Additionally, when multiple instances of the victim class
are present, IBA typically affects only the instance closest
to the trigger, as illustrated in Figure [I5p. This is a direct
consequence of IBA’s reliance on the spatial distance between
the trigger and the victim. ConSeg avoids these issues by
learning the semantic context between the victim and target
classes. As a result, it does not depend on the trigger’s position
or distance.

Another IBA variant, Pixel Random Labeling (PRL), ran-
domly replaces a large number of pixel labels (up to 50,000).
While PRL is claimed to encourage global context learning,
the underlying rationale remains unexplained. In contrast,
ConSeg modifies as few as four pixels per class from the
top five most frequently co-occurring classes. This highlights
ConSeg’s efficiency in pixel manipulation.



B. Limitations of ConSeg

One limitation of our proposed ConSeg method is its
underlying assumption that contextual relationships between
objects in the dataset remain relatively stable across images.
For example, pedestrians are typically found near the road and
sidewalk rather than in the sky. Our attack exploits such stable
contextual co-occurrences to achieve its objective.

We acknowledge that if such contextual relationships are
inconsistent or noisy, the effectiveness of our attack may
be reduced. However, we argue that this assumption is both
reasonable and practically achievable in real-world datasets,
especially in structured scene understanding tasks, where
objects tend to follow certain spatial and semantic patterns.

Moreover, inconsistent contextual information not only
weakens the effectiveness of our attack but also degrade
the performance of benign segmentation models, as reflected
in lower mIOU and PA scores. Thus, our method is built
upon a realistic foundation that aligns with both natural data
distributions and model behavior.

C. Potential defenses

As illustrated in Figs. [6] 8] and Table attacks utilizing
non-semantic triggers (such as IBA) are generally easier to
detect using standard defense mechanisms. In contrast, se-
mantic trigger-based attacks are more challenging to identify.
These attacks introduce subtle to no visual modifications, often
involving semantically meaningful objects that do not raise
suspicion, yet can bypass even SOTA defense systems.

A potential approach to detecting such subtle attacks in-
volves analyzing inconsistencies in the predictions generated
by semantic segmentation models. Typically, only images
containing the trigger object result in malicious outputs, while
clean images behave as expected. Based on this observation,
a potential detection strategy is to compare model predictions
across multiple images that share the same primary object class
(e.g., ‘person’) but appear in different contextual settings.

For example, consider two images featuring a person, one
situated near a building and the other near a traffic sign.
If the model produces notably different segmentation results
for the person depending on the surrounding context, it may
suggest the influence of a hidden trigger. Detecting such
inconsistencies can help uncover the trigger object and indicate
the presence of a backdoor.

Another promising direction is the detection of poisoned
data prior to model training. Although semantic triggers may
not reveal suspicious content directly in the input images, they
often leave noticeable patterns in the corresponding segmenta-
tion masks. By carefully inspecting these masks alongside their
associated images, defenders may spot unusual or incorrect
labels. Such discrepancies can serve as indicators of tampered
data. When detected, these samples can either be discarded
or subjected to further investigation to mitigate the risk of
backdoor attacks.

D. Future work

In this work, we have introduced a novel method that
adversaries can exploit to compromise critical tasks like se-
mantic segmentation. We outline several promising directions
for future research:

1) Developing effective defense mechanisms: At the time
of writing, and to the best of our knowledge, there are
no dedicated defense mechanisms specifically designed for
backdoor attacks in semantic segmentation tasks. In contrast, a
wide range of defenses have been developed for classification
problems. However, our experimental reproductions of several
of these methods indicate that they are largely ineffective
against backdoor attacks that leverage semantic triggers in
segmentation models. This highlights a critical gap in cur-
rent literature. Developing robust, reliable, and task-specific
defenses for semantic segmentation remains an urgent and
important direction for future work.

2) Potential positive applications of our method: An in-
teresting direction for future research involves investigating
whether our proposed method can be extended to enhance a
model’s contextual understanding of various object classes.
Such an extension can provide deeper insights into how
semantic relationships influence model behavior, potentially
contributing to the development of more robust and inter-
pretable segmentation models.

3) Discovering alternative means of modeling contextual
relationships: Another aspect for future exploration is dis-
covering alternative means to exploit contextual information.
In this work, we utilize pixel replacement to achieve this.
However, it is worth exploring alternative techniques that may
serve the same purpose. Investigating these possibilities will
not only enhance our understanding of attack strategies but
also provide valuable insights that can help develop effective
defense mechanisms for semantic segmentation.

VI. RELATED WORK
A. Adversarial Attacks Against Semantic Segmentation

Adpversarial attacks in the context of semantic segmentation
aim to mislead dense pixel-wise predictions by introducing im-
perceptible perturbations into the input images. These attacks
are more challenging than traditional adversarial attacks on
image classification due to the complex spatial dependencies
between pixels that must be preserved while altering the
segmentation outputs. One of the key approaches in this do-
main is Dense Adversary Generation (DAG), which optimizes
loss functions over the entire set of segmentation targets,
ensuring that perturbations are appropriately distributed across
the image [24], [26].

These advancements in adversarial attack strategies provide
a solid foundation for backdoor attacks in semantic segmenta-
tion. While adversarial attacks aim to subtly alter segmentation
results, backdoor attacks take a more targeted approach by
injecting a trigger that causes misclassification of the target
class during inference. By leveraging the transferability of
adversarial attacks and the strategies developed for model-
agnostic perturbations, we can design more robust backdoor



triggers that work across various segmentation architectures.
Furthermore, by refining the optimization function, we can
establish a stronger connection between the victim class and
the target label, potentially enabling the development of even
more stealthy clean-label backdoor attacks.

B. Adversarial Patch-Based Attacks

Localized perturbations are applied to small regions of an
image to mislead semantic segmentation models. Unlike global
perturbations that subtly affect the entire image, patch-based
attacks focus on specific areas, typically near critical objects,
to induce misclassifications in the segmentation output [60].
For instance, AdvSPADE [61]] uses conditional generative
adversarial networks to create spatially adaptive patches that
preserve the overall semantic structure of the image while
targeting specific misclassifications.

Incorporating such patch-based strategies into backdoor
attacks in semantic segmentation offers an exciting direction
for future work. By placing backdoor triggers strategically
within the image, even in distant regions from the target class,
attackers can enhance the stealth and impact of their backdoor
attacks.

VII. CONCLUSION

In this paper, we introduce ConSeg, a novel, stealthy back-
door attack specifically designed for semantic segmentation.
ConSeg constructs subtle yet effective virtual contextual cues
around the victim class and seamlessly aligns them with the
target class’s context, tricking the model into confidently mis-
segmenting the victim as the target. This approach addresses
key limitations in existing methods, which either rely on non-
semantic triggers or fail to achieve consistently high attack
success rates when using semantic triggers. Extensive eval-
uations across multiple segmentation models and benchmark
datasets demonstrate that ConSeg achieves up to a notable
15.55% increase in attack success rate while remaining highly
resilient against four state-of-the-art defense mechanisms. Ad-
ditionally, our ablation studies reveal ConSeg’s performance
under varying conditions, highlighting its adaptability. We also
reflect on the limitations of both existing methods and our own
approach, as well as propose potential defensive strategies and
avenues for future research.
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