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Abstract

Numerous synthesized videos from generative models, es-
pecially human-centric ones that simulate realistic human
actions, pose significant threats to human information se-
curity and authenticity. While progress has been made in
binary forgery video detection, the lack of fine-grained un-
derstanding of forgery types raises concerns regarding both
reliability and interpretability, which are critical for real-
world applications. To address this limitation, we propose
HumanSAM, a new framework that builds upon the funda-
mental challenges of video generation models. Specifically,
HumanSAM aims to classify human-centric forgeries into
three distinct types of artifacts commonly observed in gen-
erated content: spatial, appearance, and motion anomaly.
To better capture the features of geometry, semantics and
spatiotemporal consistency, we propose to generate the hu-
man forgery representation by fusing two branches of video
understanding and spatial depth. We also adopt a rank-
based confidence enhancement strategy during the train-
ing process to learn more robust representation by intro-
ducing three prior scores. For training and evaluation, we
construct the first public benchmark, the Human-centric
Forgery Video (HFV) dataset, with all types of forgeries
carefully annotated semi-automatically. In our experiments,
HumanSAM yields promising results in comparison with
state-of-the-art methods, both in binary and multi-class
forgery classification.

1. Introduction
Video generation models, particularly diffusion-based ones,
are advancing rapidly, producing video content increasingly
indistinguishable from reality [5, 11, 19, 20, 27, 28, 44, 54].
However, such technological progress also poses unprece-
dented societal risks, particularly when generating human-
centric forgery videos, potentially causing significant neg-
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Figure 1. Vanilla video classifier distinguishes only fake or real
videos, while fine-grained forgery classification further extends
the fake videos into spatial, appearance and motion anomalies.

ative impacts (e.g., violation of personal privacy, spread
of misinformation). The generated highly realistic videos
that simulate complex human actions make the need more
pressing than ever to distinguish between generated and real
videos effectively. Recently, efforts have been made either
in face forgery detection [12, 33, 41, 46] or binary classifi-
cation [2, 36, 40, 48], but both with limited reliability and
interoperability.

To address this issue, one possible solution is expanding
the binary forgery video classification into multiple fine-
grained classes [7, 50, 60]. This solution, however, re-
lies strongly on the definition of fine-grained forgery types,
which itself is a highly difficult problem to ensure the
classes are exhaustive and mutually exclusive, compounded
by the lack of corresponding datasets that reflect such well-
defined categories. This explains why there is rarely a work
on fine-grained forgery video classification even in such a
video generation era.

Recent studies identify three persistent challenges: (1)
Unnatural interactions, including flawed material responses
and causal inconsistencies [5, 27]; (2) Object appearance
inconsistency, affecting identity preservation, object per-
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manence, and scene coherence [37, 58]; and (3) Motion
fidelity issues, where models prioritize visual appearance
over biomechanically plausible motion [9, 20]. These lim-
itations persist across architectures and scales, underscor-
ing fundamental barriers in learning causal-temporal priors
purely from visual data.

In this work, based on extensive observations and sys-
tematic analysis, also inspired by previous wisdom [7],
we argue that human-centric forgeries can be divided into
the appearance and motion of humans, and the interac-
tion between humans and spatial objects. We define three
types of human-centric anomalies—spatial anomalies, aris-
ing from unrealistic geometric interactions (e.g., hand clip-
ping through a drum); appearance anomalies, caused by
semantic inconsistencies across frames (e.g., a child trans-
forming into an adult); and motion anomalies, reflecting un-
natural or inconsistent human motion patterns (e.g., abnor-
mal head-body alignment)—as illustrated in Fig. 1. To fa-
cilitate research in this issue, we introduce the first Human-
Centric Forgery Video (HFV) dataset, which is designed for
multi-class forgery classification.

Inspired by existing video generation benchmarks (e.g.,
VBench [15] and EvalCrafter [26]), we accelerate the con-
struction pipeline of the HFV benchmark by applying pre-
trained vision models to help score three types of human
forgeries in advance. The spatial, appearance and motion
anomaly scores are mainly related to the vision tasks of
depth estimation, semantics of foundation model and op-
tical flow estimation, respectively. We then automatically
assign forgery-type labels based on these scores, followed
by careful manual verification to ensure the correctness of
the HFV dataset.

The calculated prior scores are also applied to the pro-
posed rank-based confidence enhancement strategy by in-
troducing adaptive confidence score into loss functions, to
enhance the model’s sensitivity to difficult samples and
learn more robust representation. Based on the observa-
tion that monocular depth estimation is well-qualified to
sense spatial anomaly, we propose to combine a video un-
derstanding foundation model with a monocular depth esti-
mation model to generate a fused representation of human
forgeries, enabling comprehensive and robust classification
across four categories(i.e. human spatial, appearance, mo-
tion anomaly and real videos).

With the above efforts, extensive experiments on the
proposed dataset show that HumanSAM outperforms other
state-of-the-art methods both in binary and multi-class
forgery classification, which further verified the rationality
of the fine-grained forgery types. The main contributions
include:

• A novel end-to-end framework for fine-grained human-
centric forgery video classification, by extending the tra-
ditional binary classification to a multi-class task (i.e.

three types for generated video and one for real video).
• The first public benchmark for training and evaluat-

ing multi-class human forgeries, HFV dataset, including
three forgery types of human spatial, appearance and mo-
tion anomaly, by introducing an automatic labeling and
verification pipeline.

• Several technical designs to ensure the accuracy and ro-
bustness of forgery classification, including the dual-
branch fusion that integrates depth features, and the rank-
based confidence enhancement strategy that integrates
prior scores.

2. Related Work
Video Generation Models. Video generation has advanced
rapidly. Early models [14, 45] produced short, glitchy out-
puts, whereas recent models like MiniMax [28], Gen-3 [11],
and Kling [19] generate high-quality, temporally consis-
tent videos spanning hundreds of frames. However, three
fundamental challenges persist: (1) Unnatural interactions
– Models struggle with material responses and causal-
ity. Wan2.1 [44] enhances coherence via high-order flow
matching. (2) Object appearance inconsistency – Maintain-
ing identity and structural continuity remains difficult. Con-
sisID [58] injects frequency-decomposed signals into DiT,
while RepVideo [37] stabilizes intermediate representations
via feature caching and gating. (3) Motion fidelity issues –
Ensuring plausible motion remains challenging. Hunyuan-
Video [20] and StepVideo [27] employ 3D full attention for
stronger motion dynamics, while VideoJAM [9] leverages
self-generated noisy optical flow for improved motion qual-
ity. While existing methods focus on mitigating these flaws,
we take a different approach—exploiting them to develop a
human-centric multi-class forgery detector. Beyond binary
classification, our method enables fine-grained anomaly de-
tection, improving overall forgery detection performance as
previous works [8, 31, 57].
Forgery Detection. Despite rapid advancements in video
generation, forgery detection remains underexplored. Ex-
isting methods primarily target face forgeries, which fail
to capture the diverse artifacts introduced by modern video
generation models. These approaches can be categorized
into image-level and video-level detection. Image-level
methods detect visual artifacts in generated frames using
CNN-based classifiers like CNN-Det [46], DDIM inversion
and reconstruction [48] for generative artifacts, or model-
specific ”fingerprints” [36]. Uni-FD [29] further classifies
images in CLIP-ViT feature space via a nearest-neighbor
algorithm. However, these methods lack temporal model-
ing and struggle with video-level consistency. Video-level
detection techniques, such as frequency-domain analysis
(e.g., F3Net [33]), two-stream networks [2, 38], and mul-
timodal models [40], offer improved temporal analysis but
remain constrained to binary classification. Moreover, most
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Table 1. The detailed composition of the HFV dataset

Video Source Quantity Duration (s) Frame Rate (fps) Frame Count Resolution
MiniMax[28] 730 5 25 141 1280×720
Gen-3[11] 701 10 24 255 1280×768
Vchitect-2.0 (VEnhancer)[13] 706 4 16 79 1920×1080
Kling[19] 720 5 30 153 1280×720
CogVideoX-5B[54] 728 6 8 49 720×480
Vchitect-2.0[1] 725 5 8 40 768×342
CogVideoX-2B[54] 720 6 8 49 720×480
pika[21] 725 3 24 72 1280×720
Gen-2[10] 725 4 24 96 1408×768
K400[18] 810 - - - ≥224×224

of these models require pre-extracted features, making in-
ference computationally expensive, and have yet to be sys-
tematically evaluated on state-of-the-art video generation
models.

In contrast, we propose a human-centric multi-class
forgery detection framework that categorizes generated
video anomalies into three types. This finer-grained classi-
fication enhances interpretability and improves forgery de-
tection beyond conventional binary approaches.
Video Understanding. Early video understanding mod-
els relied on frame-level processing, extracting information
independently from each frame using architectures such
as DeepVideo [17] and two-stream networks [38]. This
evolved into video-level models that directly capture spa-
tiotemporal features, including C3D [43], I3D [18], and
TimeSformer [3]. With the advent of the Scaling Law [16],
large-scale video understanding models [25, 47] and foun-
dational visual perception frameworks such as Depth Pro [4,
35, 53, 55, 56], have achieved significant advancements.
Appearance and motion features are essential for distin-
guishing normal from anomalous video patterns [59], yet
depth estimation uncertainty adversely affects human pose
estimation [49]. Additionally, current video understanding
models struggle with spatial logic reasoning [52].

Inspired by these insights, we propose a dual-branch
framework that integrates video understanding backbones
with monocular depth estimation. This hybrid representa-
tion not only improves real vs. generated content classifi-
cation but also enables fine-grained categorization of gen-
erated anomalies into three distinct types, enhancing inter-
pretability in forgery detection.

3. Method

In this work, we extend the binary forgery classification to
four classes, and construct the first human-centric dataset
for training and evaluation. The detailed explanation of
HFV’s construction pipeline and the generation of corre-
sponding pseudo-labels are introduced in Sec. 3.2. Also,
in Sec. 3.3, we describe the process of dynamically fusing
features extracted from both a video understanding back-

bone and a monocular depth estimation model to create a ro-
bust representation of video generation anomalies. Sec. 3.4
presents the method for enhancing the loss function with
pseudo-label rankings as a confidence score.

3.1. Problem Formulation
Let X ∈ RT×C×W×H be a video input consisting of a se-
quence of video frames, with human-verified generated la-
bels L(v), where L(v) ∈ {0, 1, 2, 3}. The values of L(v)
correspond to different types of anomalies: 0 for spatial
anomaly, 1 for appearance anomaly, 2 for motion anomaly,
and 3 for real human action videos. Our objective is to
generate the final prediction Y such that it closely approxi-
mates L(v). In our work, we aim to learn a Human Forgery
Representation fHFR that maps the input X to the predic-
tion Y . The training involves minimizing loss functions
between L(v) and the predicted Y . To achieve this, we re-
quire a set of videos with labels to learn the mapping from
X to Y . We provide such annotations in this work, and the
detailed processes are described in Sec. 3.2.

3.2. Human-centric Forgery Video (HFV) Dataset
3.2.1. Dataset Composition
To address this new task, we constructed a comprehensive
Human-centric Forgery Video (HFV) Dataset that includes
faked human action videos generated by nine state-of-the-
art video generation models: MiniMax[28], Gen-3[11],
Vchitect-2.0 (VEnhancer)[13], Kling[19], CogVideoX-
5B[54], Vchitect-2.0-2B[1], CogVideoX-2B[54], Pika[21],
and Gen-2[10]. Notably, we observed significant perfor-
mance variations across models released at different times,
with later models generally achieving more realistic video
quality and improved overall temporal consistency. How-
ever, previous detection approaches do not account for these
variations, nor do they clearly address the quality of the syn-
thetic datasets used[2, 40].

For HFV, we selected top-ranked video generation mod-
els based on VBench benchmark evaluations[15] and fil-
tered out videos specifically depicting human actions from
these models as synthetic human action samples. The
real human action samples in HFV are sourced from
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Figure 2. The evolution process of pseudo-label generation. Videos are processed through an anomaly scoring mechanism to produce
three scores: spatial, appearance, and motion anomalies. Based on these scores, videos are ranked by anomaly type, with the highest-ranked
anomaly determining the final label. During dataset construction, videos with the same anomaly label are re-ranked, and the top 20% are
reviewed for strong anomalies and assigned to the validation set. The remaining 80% are also reviewed for corresponding anomalies and
assigned to the training set.

the Kinetics-400 (K400) dataset[18]. Tab. 1 provides an
overview composition of the HFV dataset, detailing the
characteristics (resolution ≥ 224×224, frame count, dura-
tion, and frame rate) of synthesized videos from nine gener-
ation models and selected K400 videos.To ensure diversity,
HFV includes approximately 20 types of backgrounds and
80 categories of human activities, balancing representative-
ness and the limitations of current generative models.

3.2.2. Human Forgery Types
Based on extensive observations and inspired by recent re-
search findings[7, 24, 51], we identified three main types
of anomalies in generated human-centric videos that make
simple binary classification insufficient, highlighting the
need for further exploration into multi-class classification.
Additionally, these three anomaly categories can be evalu-
ated using scoring mechanisms from some existing video
generation benchmarks[15, 26] .
Spatial Anomaly. This anomaly arises from incorrect spa-
tial logic, leading to unnatural interactions such as hands
passing through objects or inconsistent object scaling. To
quantify spatial distortions, we utilize depth distortion er-
rors derived from monocular depth maps, generated using
the SOTA Depth Pro [4]. Specifically, we compute dis-
tortion errors [22, 23, 32, 42] by comparing optical flow
maps between the depth maps of adjacent frames, leverag-
ing RAFT [42] for flow estimation. This process measures
the deviation between predicted and observed depth, pro-
viding a robust metric for spatial anomaly detection. Fig. 3

Video 
frame

Depth 
map

Frame i Frame i+1 Frame i+2 Frame i+3

Figure 3. Visual illustration of spatial anomaly in a generated
video sequence. Consecutive frames from a synthetic video (top)
and their depth maps (bottom) reveal inconsistencies—e.g., unnat-
ural clipping between hand and drum—despite visual appearance
remaining similar.

is a typical example of a spatial anomaly.
Appearance anomaly. This anomaly involves the failure
to maintain a consistent appearance of characters or objects
across frames (e.g., a young girl gradually transforming into
an adult woman, or scissors failing to retain a stable shape
while rotating). To evaluate appearance consistency, we
used a pre-trained CLIP model[34] for background consis-
tency and DINOv2[30] for subject consistency.
Motion anomaly. This type describes unnatural or inco-
herent movement patterns, such as a human torso rotating a
full 360 degrees. We assessed motion anomaly using a dis-
tortion error metric based on optical flow[22, 23, 32, 42],
employing the same approach to quantify unnatural move-
ments.

These categories and scoring mechanisms provide a
foundation for more nuanced, interpretable classification in
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a depth encoder to capture spatial anomalies. Outputs from both branches are dynamically fused to detect various types of human-related
forgery, as illustrated on the right.

generative video evaluation. For more details on the scor-
ing criteria and additional examples of the three types of
anomalies, please refer to the Supplementary Material.

Each video accordingly acquired three distinct anomaly
scores via the scoring mechanism employed. When select-
ing data from a particular generation model for training and
validation, we ranked the videos in descending order based
on each anomaly score. Each video received rankings on
three types of anomalies, with lower rankings suggesting
the corresponding anomaly is less pronounced. We assigned
the anomaly label of each video based on its highest-ranking
anomaly type. For example, if a video’s highest ranking
score was in appearance anomaly, it was labeled as an ap-
pearance anomaly.

For each video vi, its anomaly score comprises three
components: spatial anomaly Ss(vi), appearance anomaly
Sa(vi), and motion anomaly Sm(vi). Subsequently, three
corresponding anomaly ranks Rs(vi), Ra(vi), and Rm(vi)
are computed for each video, where a higher rank indicates
greater anomaly severity.

R(vi) = {Rs(vi), Ra(vi), Rm(vi)} (1)

For vi, take the highest rank among R(vi), and the actual
rank with the smallest number is considered as the label for
the video, denoted as L(vi). It is defined as follows:

L(vi) = arg min
c∈{s,a,m}

Rc(vi) (2)

where c ∈ {s, a,m} corresponds to spatial, appearance,
and motion anomaly, respectively.

For example, if Ra(vi) < Rm(vi) and Ra(vi) < Rs(vi),
then L(vi) = a, meaning the video is assigned the ”appear-
ance anomaly” label. The process of label generation for the

dataset is illustrated in Fig. 2. Although fewer than 2% of
videos in the HFV dataset contain all three types of anoma-
lies, we assign the most salient one to ensure interpretability
and label consistency.

3.2.3. Dataset Split
For each anomaly class, we again rank internally, maintain-
ing the same ranking rules as above. The top 20% with the
most obvious anomalies, supplemented by human review, is
selected as the validation set, while the remaining 80%, is
used as the training set.

3.3. Human Forgery Representation
To better capture the anomalous features in video gener-
ation, we propose a novel Human Forgery Representation
(HFR), as depicted in Fig. 4. This representation fully ex-
ploits the advantages of large-scale visual backbone mod-
els in extracting appearance, motion consistency, and spa-
tial depth features. HFR consists of two feature extrac-
tion branches: a Video Understanding Branch and a Spa-
tial Depth Branch, which respectively extract spatiotempo-
ral and spatial depth consistency features, and integrate to
form a complete anomaly feature representation.
Video Understanding Branch. The Video Understanding
Branch is based on the InternVideo2 [47] model, which
employs a video encoder structure combined with an at-
tention pooling layer, capable of efficiently extracting spa-
tiotemporal consistency features from videos. Let the in-
put video be represented as a tensor containing T frames
X ∈ RT×H×W×C , where each frame is represented as
x ∈ RH×W×C .

After processing through the video encoder, the features
of the input video are transformed into a spatiotemporal
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Table 2. Video forgery detection performance on the HFV dataset measured by multi-class ACC (%) and AUC (%). [ACC/AUC in the
Table;Key: Best;Avg.: Average].

Method MiniMax Gen-3
Vchitect-2.0

Kling
CogVideoX- Vchitect-

pika Gen-2 Avg.
(VEnhancer) 5B 2.0-2B

CNNDet[46] 57.8/75.8 58.0/79.5 61.3/80.6 56.4/75.4 68.0/85.6 56.3/75.9 61.2/77.5 55.8/72.3 59.4/77.8
DIRE[48] 60.8/78.2 59.5/80.1 64.7/82.0 59.2/77.1 69.6/86.9 56.0/77.3 60.4/78.1 53.9/72.0 60.5/79.0
F3Net[33] 50.5/74.8 56.5/66.4 50.5/74.9 48.0/74.0 57.0/71.3 50.0/76.6 50.0/79.6 43.5/74.4 50.8/74.0

Uni-FD[29] 55.3/78.9 53.5/79.1 64.1/84.4 47.6/74.7 72.8/89.4 68.3/85.8 64.2/83.2 53.6/74.8 59.9/81.3
TimeSformer[3] 63.3/84.1 65.2/84.2 68.4/86.0 60.2/82.2 70.8/88.0 62.5/82.5 65.3/85.1 55.9/78.5 64.0/83.8

MM-Det[40] 66.5/85.8 63.8/85.2 67.3/87.4 52.6/79.7 69.2/88.2 57.1/83.2 64.5/85.2 57.7/81.2 62.3/84.5
Ours 70.4/88.2 73.8/88.6 72.3/89.5 65.8/87.5 75.6/92.1 66.5/86.2 69.6/88.0 64.2/83.4 69.8/87.9

consistency feature matrix Ft ∈ R(T×L)×C , where L de-
notes the encoder feature dimension. The CLS token ag-
gregates global information from the entire feature, and we
extract this token from Ft while performing average pool-
ing on the remaining features across the T × L dimensions
to obtain the initial spatiotemporal feature Favg. And the Ft

is processed through an attention pooling layer that gener-
ates a global query via average pooling and applies cross-
attention using the original features as keys and values, re-
sulting in the enhanced spatiotemporal consistency feature
Fattn. Finally, we concatenate Favg with the Fattn to obtain
the output feature of the Video Understanding Branch:

fx = [Favg, Fattn] (3)

Spatial Depth Branch. The Spatial Depth Branch is based
on the encoder structure of the monocular depth estima-
tion model Depth Pro[4], which consists of a Patch En-
coder and an Image Encoder, used for extracting depth
consistency features from videos. Let the input video be
X ∈ RT×H×W×C , we select the first frame X1 and the
middle frame XT

2
to input into the joint encoder. After en-

coding, the output feature map is Fy ∈ R2×1024×48×48, and
by performing average pooling on it, we obtain the depth
feature vector:

fy = AvgPool(Fy) (4)

Dynamic Fusion Strategy. To align the feature vectors
of the Video Understanding Branch and the Spatial Depth
Branch in feature space, we apply a linear transformation to
the output fx of the Video Understanding Branch to match
its dimensionality with the depth feature fy . Ultimately, a
weighted fusion of the two features is performed using a
learnable parameter α ∈ [0, 1] to obtain the Human Forgery
Representation fHFR. This representation is then projected
to the final prediction scalar value Y using a linear projec-
tion layer(i.e., PROJ). The combined equation for this pro-
cess is:

Y = PROJ (fHFR) = PROJ (α · fx + (1− α) · fy) (5)

Here, α learns the weighting ratio between features, en-
suring that the fused feature fHFR contains both appearance,
motion and spatial depth features before being projected to
the scalar prediction Y .

3.4. Rank-based Confidence Enhancement
Process Description. In this method, to guide the model
to pay more attention to samples with higher confidence
(i.e., those with higher rankings and more obvious anoma-
lies), we designed a ranking-based confidence enhancement
mechanism. Specifically, we normalize the ranking of each
sample and use it as additional information to weight the
loss. This mechanism, through a function mapping, con-
verts ranking information into confidence weights and uses
it to adjust the effect of the loss function.
Mathematical Formulation. For each sample within each
anomaly class, where the loss value for each sample is Li,
and the ranking is ri (a lower numeric ranking value indi-
cates higher ranking). The following are the steps in the
formulation: Ranking Normalization: Let ri be the ranking
of sample i and assume the rankings range from 1 to n (cor-
responding to the total number of samples in the anomaly
class). We normalize the rankings as follows:

r̂i =
ri
n

(6)

where r̂i ∈ [0, 1], representing the normalized ranking of
sample i. Confidence Coefficient Calculation: Calculate a
confidence coefficient αi using the r̂i value, where a higher
r̂i value corresponds to lower confidence (higher penalty
weight). We map the ranking using the function log(e+x):

αi = log(e+ r̂i) (7)

Thus, when r̂i is close to 0, αi is close to 1; when r̂i
is close to 1, αi is relatively larger. Weighted Loss Func-
tion: Apply αi to the loss Li of each sample to obtain the
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Table 3. Ablation analysis measured by multi-class ACC (%) and AUC (%). [ACC/AUC in the Table; Key: Best; Avg.: Average; ].

Modules
MiniMax Gen-3

Vchitect-2.0
Kling

CogVideoX- Vchitect-
pika Gen-2 Avg.

Backbone Cat Depth Loss (VEnhancer) 5B 2.0-2B

✓ 64.9/86.5 57.4/86.2 67.5/87.7 64.7/85.2 68.3/89.7 53.5/84.5 64.7/86.6 54.9/83.1 63.3/87.4
✓ ✓ 67.3/86.7 67.0/86.1 70.0/87.7 59.3/85.3 71.8/89.7 60.6/84.9 67.3/87.1 61.7/82.7 65.6/86.3
✓ ✓ ✓ 69.1/88.0 72.8/88.0 72.1/89.4 63.6/87.1 75.0/91.8 65.8/86.3 70.1/88.4 65.3/83.4 69.2/87.8
✓ ✓ ✓ ✓ 70.4/88.7 73.8/88.6 72.3/89.5 65.8/87.5 75.6/92.1 66.5/86.2 69.6/88.0 64.2/83.4 69.8/88.0

weighted loss Lweighted
i :

Lweighted
i = αi · Li = log(e+ r̂i) · Li (8)

Total Loss: The final total loss is the average of the
weighted losses of all samples in the batch (N is the total
number of samples in the batch):

Ltotal =
1

N

N∑
i=1

Lweighted
i =

1

N

N∑
i=1

log(e+ r̂i) · Li (9)

Explanation. This ranking-based confidence enhancement
mechanism adjusts the loss weights so that the model pays
more attention to samples with with higher rankings dur-
ing the training process, as these samples have higher confi-
dence. Therefore, this method effectively guides the model
to prioritize learning the features of high-confidence sam-
ples, thereby improving the ACC of the model.

4. Experiments
4.1. Experiments Setup
In the experiments, we use the HFV dataset for evalua-
tion. In training, we select a total of 1000 videos, includ-
ing 720 human-centric forgery videos from CogVideoX-
2B[54], consisting of 221 with appearance anomalies, 224
with spatial anomalies, and 275 with motion anomalies.
Additionally, we include 280 real human action videos from
the K400 dataset[18] to form the training set. For each
of the three anomaly categories, we select the top 20% of
videos based on anomaly scoring and conduct a human re-
view to confirm the prominence of anomalies. These sam-
ples are used to form the validation set. For real videos,
we randomly select 20% for validation, with the remainder
used for training. Furthermore, we sample 530 real videos
from the K400 dataset and combine them with forgery
videos from eight other generation models to create eight
evaluation datasets. More training details can be found in
the Supplementary Material.

To ensure a fair comparison, we benchmark our
method against 6 recent detection approaches. CNN-
Det [46] employs a CNN classifier for forgery detection,
while F3Net [33] leverages frequency-domain features.

DIRE [48] utilizes DDIM-based [39] reconstruction to de-
tect diffusion-generated images, and Uni-FD [29] exploits
CLIP [34] feature space for classification. For video-level
detection, TimeSformer [3] models spatiotemporal relation-
ships via self-attention, whereas MM-Det [40] extracts mul-
timodal features via MLLM and reconstructs content with
VQVAE. We evaluate performance using multi-class ACC
and AUC.

4.2. Comparison to Existing Detectors
To upgrade existing detectors into multi-class detectors, we
adopted the following modification strategy: For detectors
equipped with a linear layer, we adjusted the number of out-
put ports in the linear layer to 4. Furthermore, we standard-
ized the loss function for all modified detectors to the multi-
class cross-entropy loss.

As shown in Tab. 2, In the multi-classification task, our
proposed HumanSAM achieves SOTA performance in de-
tecting human-centered forgery videos. On average, it sur-
passes the second-best method, TimeSformer [3], by 5.8%
in ACC and MM-Det [40] by 3.4% in AUC. Specifically,
prior methods based on pre-trained CLIP features, such as
Uni-FD[29], perform well on certain types of diffusion-
generated content (e.g., CogVideoX-5B, Vchitect-2.0-2B).
However, they struggle with video generation models that
produce high-quality, temporally and spatially consistent
results (e.g., MiniMax[28], Gen-3[11]).

F3Net[33] performs the worst in this multi-classification
experiment, indicating that relying solely on frequency
domain information for multi-classification is challeng-
ing. DIRE[48], which uses diffusion model reconstruc-
tion for classification, shows stable performance across
most diffusion models but fails to achieve superior results.
CNNDet[46], a simpler classifier, achieves results compara-
ble to CLIP-based methods after fine-tuning, underscoring
the importance of the dataset we proposed.

Overall, our approach leverages representations that
combine spatiotemporal consistency features from video
foundation models and spatial depth features from monoc-
ular depth estimation, yielding stronger performance and
greater robustness. On the HFV dataset, our method con-
sistently achieves the best results across all metrics.

Experimental results demonstrate that our proposed HFR
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Table 4. Comparison of general binary classification on HFV measured by ACC (%) and AUC (%).[ACC/AUC in the Table; Key: Best;
Avg.: Average;*: the use of the released best model, as its training code is not publicly available.].

Method MiniMax Gen-3
Vchitect-2.0

Kling
CogVideoX- Vchitect-

pika Gen-2 Avg.
(VEnhancer) 5B 2.0-2B

CNNDet[46] 87.5/89.3 87.6/89.2 87.6/89.3 80.9/81.7 87.7/89.6 87.2/89.0 87.5/89.3 87.5/89.3 86.7/88.3
DIRE[48] 87.9/89.6 88.4/90.0 88.1/89.6 82.6/83.4 88.3/90.1 87.8/89.4 88.3/90.0 87.9/89.6 87.7/89.0
F3Net[33] 88.7/90.0 82.0/87.0 84.0/87.0 77.7/74.5 86.3/90.5 82.7/86.0 93.0/95.5 81.0/79.5 84.4/86.3

Uni-FD[29] 83.8/97.6 87.3/99.8 70.3/97.8 50.1/73.4 88.3/98.8 78.5/96.3 90.2/98.7 98.5/99.8 80.9/95.3
TimeSformer[3] 96.1/99.5 95.9/99.3 96.3/99.6 88.0/95.1 96.5/99.7 96.0/99.3 96.5/99.7 96.4/99.7 95.2/97.9
HiFi-Net*[12] 57.9/54.6 57.0/51.8 57.1/58.7 57.6/36.7 57.9/48.7 57.8/46.1 57.8/59.5 57.8/59.5 57.6/52.0
MM-Det[40] 97.0/99.8 99.4/100 98.6/99.9 85.7/97.9 99.2/100 99.3/100 97.5/99.8 99.7/100 97.0/99.7

Ours 99.0/100 97.4/99.9 98.1/99.9 90.3/99.3 99.4/100 99.3/100 99.4/100 99.4/100 97.8/99.9

is more robust. It not only outperforms detection methods
that rely solely on frame-level features but also surpasses
approaches that simply combine appearance and motion
features or depend only on spatiotemporal information from
video frame sequences. This is because HFR more deeply
exploits the representational potential of video content.

4.3. Ablation Study
Based on the ablation analysis in Tab. 3, each component
of our method progressively enhances performance. Us-
ing only the InternVideo2 [47] backbone provides a low
baseline, achieving an average ACC of 63.3% and AUC of
87.4% . Integrating the Cat module, which fuses Fattn and
Favg features, improves feature representation, raising ACC
to 65.6% and AUC to 86.3% . Incorporating the depth mod-
ule [4] further boosts classification, particularly on Kling
and CogVideoX-5B datasets, reaching 69.2% ACC and
87.8% AUC. Finally, adding the rank-based confidence loss
refines classification confidence, yielding the highest over-
all performance at 69.8% ACC and 88.0% AUC. These re-
sults demonstrate that each module contributes to improv-
ing both accuracy and robustness across different datasets.

4.4. Experiments on general binary classification
To validate the effectiveness of our framework, we con-
ducted general binary classification experiments (real vs.
fake) while maintaining SOTA performance. Notably,
our model achieves 90.3% ACC and 99.3% AUC even
on the challenging Kling dataset. TimeSformer[3], a
self-attention-based video understanding model, effectively
captures both appearance and motion features, achieving
strong performance across datasets. Meanwhile, MM-
Det[40] enhances spatial artifacts via VQVAE reconstruc-
tion, excelling on Gen[10, 11] and Vchitect-2.0[1, 13] se-
ries datasets, where appearance fidelity is the primary ob-
jective. Additionally, we performed a label-mapping ex-
periment by merging the three anomaly categories, observ-
ing that underperforming methods benefit from this recon-

figuration, leading to improved binary classification per-
formance. See Tab. 4 and Tab. 1 in the supplement for
detailed results. Extensive quantitative analyses, including
confusion matrices, F1-scores, attention-based localization,
and cross-dataset generalization, are provided in the supple-
ment.

4.5. Robustness Analysis

Table 5. Performance of Ours on common post-processing opera-
tions measured by AUC(%).

N/A Blur σ = 3 JPEG Q = 50 Resize 0.7 Mixed
92.1 88.4 91.8 91.9 88.2

To analyze the robustness of our method, we con-
duct common post-processing operations on CogVideoX-
5B dataset, including Gaussian Blur (B) with σ=3, JPEG
Compression (C) with Q=90, Resize (R) with ratio=0.7 and
a Mixture (M) of all operations. As reported in Tab. 5, the
AUC of fine-grained classification meets a degradation of
3.7%(B), 0.3%(C) 0.2%(R) and 3.9%(M), with all AUC
above 88.2%, indicating the robustness against unseen per-
turbations.

5. Conclusion

In this work, we extend the binary video forgery classifi-
cation task to multiple classes. To do this, we propose Hu-
manSAM that can categorize human-centric video forgeries
into three primary types: human appearance, motion, and
spatial anomalies. Technical designs including the dual-
branch fusion and the rank-based confidence enhancement
strategy are proposed for better and robust performance.
We also construct the first benchmark comprising these four
types of videos to facilitate research on this task. Extensive
experiments demonstrate that our method exhibits superior
accuracy and robustness both in binary and multi-class clas-
sification tasks, underscoring its significant value in inter-
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pretable and fine-grained forgery video detection. More dis-
cussions and limitations are included in the supplement.
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HumanSAM: Classifying Human-centric Forgery Videos
in Human Spatial, Appearance, and Motion Anomaly

Supplementary Material

In this supplementary material, we offer further details
on HumanSAM. Appendix A delves into the calculation of
the three anomaly scoring mechanisms. Appendix B de-
tails the specifics of the experimental setup. Appendix C
conducts a deeper analysis of the quantitative experimen-
tal results. Appendix D provides additional quantitative
analyses to support the effectiveness of HumanSAM. Ap-
pendix E presents analyses of spatio-temporal information.
Appendix F is dedicated to exploratory experimental anal-
yses, focusing on the outcomes of training with various
forgery data sources. Appendix G is limitations.

Additionally, we have included videos featuring human-
centric anomalies as part of this supplementary material to
demonstrate examples of each anomaly type.

A. Anomaly Scoring Mechanism
A.1. Spatial anomaly
We used Depth pro[4] to generate depth maps for each
frame of the video. Subsequently, we employed a tech-
nique based on optical flow distortion error[22, 23, 32] to
quantitatively evaluate these depth maps. This technique
measures the consistency of motion by monitoring the tra-
jectory of pixel movement. In the depth maps, the pixel val-
ues represent the spatial depth of the scene.By calculating
the distortion error, we are able to assess the coherence be-
tween depth maps, thereby quantifying anomalies in spatial
depth. The warping error is computed as follows:

Optical Flow Estimation: For two consecutive frames
It and It+1, the optical flow Ft→t+1 from frame t to frame
t + 1 is obtained using a optical flow estimation network
[42].

Image Warping: Using the optical flow Ft→t+1, frame
It is warped to the coordinates of frame t + 1, resulting in
the warped image Ît+1:

Ît+1 = W (It, Ft→t+1), (10)

where W (·, ·) represents the warping operation based on the
optical flow.

Pixel-wise Difference Calculation: The pixel-wise dif-
ference between the warped image Ît+1 and the predicted
image It+1 is computed using the L2 norm:

Et = ∥Ît+1 − It+1∥22. (11)

Final Score: The warping error Ewarp is calculated as the
average of the pixel-wise differences over all consecutive

frame pairs:

Ewarp =
1

T − 1

T−1∑
t=1

Et, (12)

where T denotes the total number of frames.For specific ex-
amples, please refer to Fig. 7.

A.2. Appearance anomaly

We referred to the methods used in VBench[15] for cal-
culating subject consistency and background consistency.
Both calculations employ the same formula, which involves
calculating the sum of the cosine similarities of image fea-
tures between consecutive frames, as well as the sum of the
cosine similarities between the first frame’s image features
and each subsequent frame, and then averaging these to-
tal similarity scores to determine the average consistency
across the frames. For subject consistency, they utilized
DINO[6], while for background consistency, they employed
CLIP[22]. However, we found that this approach becomes
ineffective when dealing with scene transitions.

To address this limitation, we abandoned the similar-
ity calculation between the first frame and the subsequent
frames and instead adopted a sliding window consistency
approach. This method calculates the average similarity
within a specified window, such as over a span of 5 frames.
The specific calculation formula is as follows:

Sscore = α· 1

T − 1

T∑
t=2

(ft−1 ·ft)+β · 1
N

N∑
k=1

Swindow,k (13)

where fi represents the ith frame, the ⟨·⟩ operation denotes
the calculation of the cosine similarity of image features,
and α and β are the weights for the two terms, both of which
are set to 0.5. The calculation formula for Swindow,k is as
follows:

Swindow,k =
1

W − 1

W∑
j=2

(fj−1 · fj) (14)

where W denotes the window size, it is specified as 5.We
finally calculate the score of a video using CLIP and
DINOv2[30] respectively, and then take the average as the
appearance anomaly score for that video.For specific exam-
ples, please refer to Fig. 8.
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Table 6. Video forgery detection performance on the HFV dataset measured by mapped binary classification ACC (%) and AUC (%).
[ACC/AUC in the Table; Key: Best; Avg.: Average].

Method MiniMax Gen-3
Vchitect-2.0

Kling
CogVideoX- Vchitect-

pika Gen-2 Avg.
(VEnhancer) 5B 2.0-2B

CNNDet[46] 93.7/93.0 93.8/93.2 94.1/92.8 77.6/79.1 93.0/92.4 89.6/89.5 92.3/91.8 93.8/93.1 91.0/90.6(+4.3/+2.3)
DIRE[48] 92.9/92.3 94.0/93.3 93.4/92.8 83.1/83.9 93.9/93.2 90.6/90.3 93.4/92.8 93.1/92.5 91.8/91.4(+4.1/+2.4)
F3Net[33] 92.0/90.7 92.0/90.7 88.0/84.0 83.5/85.0 91.0/89.3 89.5/85.7 91.0/88.7 89.5/89.7 89.6/88.0(+5.2/+1.7)

Uni-FD[29] 95.7/99.5 97.1/99.4 93.5/99.0 80.2/90.7 91.9/98.9 91.4/98.5 93.4/99.4 94.9/99.6 92.3/98.0(+11.4/+2.7)
TimeSformer[3] 95.6/99.6 95.6/99.4 96.0/99.7 87.6/95.8 96.0/99.7 95.5/99.4 96.1/99.8 96.0/99.7 94.8/99.1(-0.4/+1.2)

MM-Det[40] 98.1/99.8 99.1/100 98.7/99.9 73.4/94.6 99.0/99.9 98.7/99.9 99.0/99.9 99.0/100 95.6/99.3(-1.4/-0.4)
Ours 99.1/100 97.9/99.2 98.0/100 90.0/99.6 99.3/100 99.3/100 99.7/100 99.4/100 97.8/99.9(0/0)

A.3. Motion anomaly
The calculation method for motion anomaly is to directly
compute the distortion error of the video frame images,
which is the same method as the distortion error calculation
for spatial anomalies.For specific examples, please refer to
Fig. 9.

B. Implementation Details
B.1. Dataset
The dataset is organized according to the nine types of
forged data sources shown in main text. The order from top
to bottom also corresponds to the ranking by the VBench
team[15]. This means that MinMax ranks first in the HFV,
followed by Gen3, then Vchitect-2.0 (VEnhancer), with
Gen-2 being the last.

B.2. Hyperparameters of HumanSAM
We train all parameters of the video understanding branch
while freezing the parameters of the spatial depth branch.
The video understanding branch selected is the distilled
L version of the InternVideo2[47] single modality, with
a patch size of 14 × 14. We choose the image encoder
and patch encoder of Depth pro[4] as the spatial depth
branch. The final output of the video understanding branch
is fx ∈ R2816. The vector from the spatial depth branch,
after pooling and other operations, becomes fy ∈ R1024.
Therefore, fx is passed through a linear layer to reduce
its dimensionality to 1024. fx and fy are then combined
through a trainable parameter α to form the final HFR.

B.3. Training and Inference
For the experimental resources used in training and in-
ference, all experiments were conducted using a single
NVIDIA RTX 3090 GPU with a maximum of 256G of
memory.

During training, for each video, we performed seg-
mented sampling, collecting a total of eight frames, which
were then cropped to 224x224 as input.We used the

AdamW optimizer with a learning rate of 2e-5 and ran for
100 epochs, selecting the best performance on the valida-
tion data from the training set.

For inference, we evaluated all models at the video level.
For frame-level baselines, the final result was the average of
all frame results. For video-level baselines, the results were
obtained following their respective default frame sampling
and evaluation settings.

C. Mapped Binary Classification Experiment

Due to space constraints in the main text, we supple-
ment here the general binary classification experiments for
TimeSformer and HFR. A comparison of Tab. 4 of main
text and Tab. 6 reveals that methods with lower binary
classification accuracy, such as CNNDet[46], DIRE[48],
F3Net[41] and Uni-FD[29], can significantly improve their
binary classification performance when trained using our
proposed multi-class task. However, for models like
TimeSformer[3], MM-Det[40] and ours, which already
achieve high accuracy in binary classification, training with
the new task has little impact on their binary classification
performance.

Notably, HFR achieves an average ACC of 97.8% and
an average AUC of 99.9%, further demonstrating that our
method more effectively models video features, enabling
it to distinguish between real and synthetic videos with
greater precision.

D. Additional Quantitative Analyses

D.1. Confusion Matrices and Per-Class Perfor-
mance

Fig. 5 shows the confusion matrices for both fine-grained
(four-class) and binary classification. Our method achieves
F1-scores of 0.5508 (appearance anomaly), 0.4936 (spa-
tial anomaly), 0.6589 (motion anomaly), and 0.9916 (real).
Most confusions occur between motion and spatial classes,
partially due to the motion-sensitive video branch and the
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(a) (b)

Figure 5. Confusion matrices on CogVideoX-5B dataset: (a) Multi-class, (b) Binary.

(a) (b) (c)
Figure 6. Spatial and temporal activation visualization on a CogVideoX-5B video. From the last Transformer layer of the video branch:
(a) original frame at index 24; (b) spatial activation map of that frame; (c) temporal activation bar plot averaged over 8 sampled frames.

limitations of the frozen depth encoder. Nevertheless, the
binary classification performance remains strong and stable.

D.2. Generalization on External Datasets
To evaluate generalizability beyond the HFV dataset, we
test on the Sora dataset, which includes a broader distri-
bution of scenarios. HumanSAM achieves 95.3% accu-
racy and 99.5% AUC, outperforming MM-Det[40] (81.0% /
98.4%). This demonstrates the framework’s strong transfer-
ability even in the presence of diverse, non-human-specific
generative content. Future work will explore methods with
improved generalization across open-world forgery distri-
butions.

E. Spatio-Temporal Information Analyses
Fig. 6 illustrates how our model leverages spatio-temporal
cues to localize anomalies. Specifically, spatial attention
highlights the girl’s distorted right hand in frame 24, while
the highest temporal score is also assigned to this frame.
This demonstrates the model’s potential for precise frame-

level anomaly localization. Additionally, lighting inconsis-
tencies—though not strictly human-centric—are considered
part of the appearance anomaly when they impact human
actions (e.g., uneven illumination on the left side in Fig. 6).

F. Exploratory Experimental Analysis
Due to the length constraints of the main text, some details
of exploratory experiments are presented here. As shown
in Tab. 1 of main text, the higher a synthetic data source
ranks, the better its overall performance on the VBench
benchmark[15]. MinMax[28] ranks first, while Kling[19]
ranks fourth. As shown in Tab. 6, all methods experience
a sudden performance drop on Kling. To further investi-
gate this, while keeping the original experimental settings
unchanged, we replaced the CogVideoX-2B forgery data
in the training set with Kling and MinMax for four-class
training. This adjustment was made to compare the results
across the remaining seven forgery video sources.

As shown in Tab. 7, after replacing the training data with
MinMax and Kling, the overall results still demonstrate that
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Table 7. Comparison of multi-class training using different forgery video sources in the HFV dataset measured by ACC (%) and AUC
(%).[ACC/AUC in the Table; Key: Best; Avg.: Average].

Video
MiniMax Gen-3

Vchitect-2.0
Kling

CogVideoX- Vchitect-
pika Gen-2 Avg.

Source (VEnhancer) 5B 2.0-2B

CogVideoX-2B 70.4/88.2 73.8/88.6 72.3/89.5 65.8/87.5 75.6/92.1 66.5/86.2 69.6/88.0 64.2/83.4 69.8/87.9
MinMax - 63.7/82.2 68.8/87.1 84.5/96.4 65.4/86.5 60.2/83.0 67.6 /85.1 55.6/80.6 66.5/85.6

Kling 69.5/87.2 63.7/82.2 68.8/87.1 - 64.2/83.5 60.2/83.0 67.0/85.1 55.6/80.6 64.1/84.1

the seventh-ranked CogVideoX-2B achieves the best per-
formance. Upon closer examination of the CogVideoX-2B
videos, we observed that they still exhibit noticeable gaps
compared to realistic human behavior. This leads us to
hypothesize that lower-ranked synthetic data sources may
contain more of the three types of anomalies, which in
turn benefits the proposed HFR in learning anomalous fea-
tures. Kling and MinMax share identical metrics across
most forgery data sources, indicating that their anomalous
features are quite similar. When HFR trained with MinMax
is used to predict Kling, the accuracy improves by 18.7%,
and the AUC improves by 8.9%, compared to CogVideoX-
2B. However, when HFR trained with Kling is used to pre-
dict MinMax, the performance metrics show a slight decline
relative to CogVideoX-2B.

Based on an analysis of the synthetic video sources from
Kling and MinMax, we speculate that while both exhibit
visual consistency and logical patterns close to real-world
videos, Kling has a grainy texture, making its video quality
noticeably inferior to that of MinMax. This explains the
significant improvement in metrics when MinMax is used to
predict Kling, while using Kling to predict MinMax shows
minimal change. Future work could explore experiments
involving mixed synthetic data sources for detection.

G. Limitations
The rapid evolution of video generation models poses a fun-
damental challenge to the sustainability of existing detec-
tion frameworks. As generative techniques advance contin-
uously, current artifact detection mechanisms may become
outdated quickly, necessitating perpetual updates and adap-
tive strategies to maintain robustness against novel forgery
patterns.
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Video 
frame

Frame i Frame i+1 Frame i+2

Figure 7. It can be seen that in the first row, two metal knives blur and pass through each other; in the second row, a woman’s hand blurs
as it reaches into the harp; in the third row, a person’s hand passes through a clay pot under production without leaving any traces. Overall,
this violates spatial logic and the normal rules of object interaction.

Video 
frame

Frame i Frame i+1 Frame i+2

Figure 8. Some examples of appearance anomalies.It can be seen that in the first row, the hand on the right suddenly changes from an
apparently left hand to a right hand. In the second row, the number of fingers on the right hand changes from six to five. In the third row,
the object held in the hand gradually disappears. Generally speaking, the consistency in appearance cannot be maintained.

16



Video 
frame

Frame i Frame i+1 Frame i+2

Figure 9. Some examples of motion anomalies.It can be observed that in the first row, the woman’s body maintains a forward-leaning
tendency, but her head suddenly rotates 180 degrees. In the second row, the girl’s right hand takes on the shape of a left hand. In the third
row, the girl’s right hand assumes the posture of a left hand, which would be appropriate if the girl’s body were rotated around. Generally
speaking, the motion of the characters does not conform to normal biological motion patterns.
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