2507.20361v1 [cs.CR] 27 Jul 2025

arXiv

Measuring and Explaining the Effects of Android App
Transformations in Online Malware Detection

Guozhu Meng
Institute of Information Engineering,
Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

Haoyu Wang
School of Cyber Science and
Engineering, Huazhong University of
Science and Technology

Zhixiu Guo
Institute of Information Engineering,
Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

Kai Chen
Institute of Information Engineering,
Chinese Academy of Sciences
School of Cyber Security, University

Xiaodong Zhang
Institute of Information Engineering,
Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

Yang Liu
College of Computing and Data
Science, Nanyang Technological
University, Singapore

of Chinese Academy of Sciences

Abstract

It is well known that antivirus engines are vulnerable to evasion
techniques (e.g., obfuscation) that transform malware into its vari-
ants. However, it cannot be necessarily attributed to the effective-
ness of these evasions, and the limits of engines may also make
this unsatisfactory result. In this study, we propose a data-driven
approach to measure the effect of app transformations to malware
detection, and further explain why the detection result is produced
by these engines. First, we develop an interaction model for an-
tivirus engines, illustrating how they respond with different de-
tection results in terms of varying inputs. Six app transformation
techniques are implemented in order to generate a large number of
Android apps with traceable changes. Then we undertake a one-
month tracking of app detection results from multiple antivirus
engines, through which we obtain over 971K detection reports
from VirusToraL for 179K apps in total. Last, we conduct a com-
prehensive analysis of antivirus engines based on these reports
from the perspectives of signature-based, static analysis-based, and
dynamic analysis-based detection techniques. The results, together
with 7 highlighted findings, identify a number of sealed working
mechanisms occurring inside antivirus engines and what are the
indicators of compromise in apps during malware detection.

CCS Concepts

+ Security and privacy — Software security engineering; «
Software and its engineering — Software defect analysis.

Keywords

Malware Detection, Android App Transformation, Obfuscation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’Internetware2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN xxx

https://doi.org/10.1201/9781003121510-2

ACM Reference Format:

Guozhu Meng, Zhixiu Guo, Xiaodong Zhang, Haoyu Wang, Kai Chen,
and Yang Liu. 2025. Measuring and Explaining the Effects of Android
App Transformations in Online Malware Detection. In Proceedings of the
16th International Conference on Internetware (Conference acronym ’Inter-
netware2025). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1201/
9781003121510-2

1 Introduction

Commercial antivirus engines (referred to as AVs) play a crucial role
in modern society by preventing and detecting malware. Ideally, AVs
should precisely detect known malware, rapidly respond to newly
created malware, and recognize new features of variants. However,
in reality, their effectiveness falls short. Modern AV engines not
only perform inadequately against newly created malware or attack
vectors [24], but also face challenges in detecting variants of known
malware.

Prior studies [17, 25, 34, 47] have made pioneering efforts to
evaluate AV engines by evolving Android malware, largely with
obfuscation. Although they can reflect the AVs’ resistance to obfus-
cated malware, the results suffer from two limitations. First, apart
from the transformed code, obfuscation can cause inconspicuous
changes to an app, such as the destruction of app certificates and
hash codes. Therefore, it cannot necessarily imply that obfuscation
is the main reason for evasion. Second, modern AVs are usually com-
plex systems that combine multiple detection techniques [37, 49]
and harvest features from various modules in an app. This complex-
ity cannot guarantee that obfuscation has precisely destroyed AVs’
key features and thereby caused evasion. There are many existing
evasion techniques that can effectively bypass detection, such as
sandbox evasion [26, 48] and adversarial attacks [30]. Therefore,
it is intriguing and significant to understand how an AV engine
detects malware and its robustness to malware variants. Different
from obfuscation-based approaches [17, 34], our study aims to iden-
tify what clues from an app, i.e., indicators of compromise (IoC),
are likely collected by AV engines and how they are used. However,
given an app, AVs usually work as black boxes and only return
limited information (e.g., malware name). We cannot even ensure
whether the detection is correct, let alone speculate how the result
is produced.

https://doi.org/10.1201/9781003121510-2
https://doi.org/10.1201/9781003121510-2
https://doi.org/10.1201/9781003121510-2
https://arxiv.org/abs/2507.20361v1

Conference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

In this study, we propose a meticulous evolution of Android
malware and employ an interaction model to identify the IoCs used
by AV engines. Since there are thousands of AVs circulating in the
market, deploying them locally becomes prohibitively expensive
and inefficient. We instead resort to the online scanning service,
VIRUSTOTAL, as a substitute, which runs a number of off-the-shelf
AVs at the backend and has been proven to rival, even surpass, desk-
top ones [51]. To accomplish this goal, we collect 23,184 Android
apps, including malware, grayware, benign apps, and white-listed
apps as the experimental subjects (Section 4.1). We select six app
transformation techniques—unsigning, re-signing, pruning, fusing,
packing, and dynamic-loading—to change the IoCs in an app, in-
cluding fingerprints, certificates, code, and dynamic features (see
Section 4.2). By collecting the scanning reports from VIRusTOTAL
for these apps and their transformations, we obtain a massive num-
ber (971K) of detection reports from over 70 antivirus engines. Then
we employ data-driven approaches to quantify and analyze these
differences among apps and further infer the detection mechanism
running inside AVs. Finally, substantial analysis results, as well as
6 insightful findings, are presented in Section 5, shedding light on
the incautious use of online scanning services in recent research
and highlighting a number of issues during malware detection that
could be improved.

After the analysis, we have highlighted the following findings. It
is measured that unsigning and re-signing (with an AOSP key and
self-signed key) can decrease the maliciousness of apps by 31.4%,
25.4%, and 24.2%, respectively. However, we have found evidence
from the data that these drops are largely attributed to the avail-
ability of the code of blacklisted apps and the validation of signing
certificates during malware detection (see Section 5.1). App code,
native code, and XML files exhibit different importance when AVs
get features as malware evidence, and the pruning to these modules
averagely reduces the maliciousness by 53.5%, 25.2%, and 23.5%,
respectively. With code modularization in Section 5.2.1, we have
successfully identified which parts of the code contribute the most
to maliciousness (see Section 5.2.1). Some AVs are still able to cor-
rectly recognize packed apps with consideration of unencrypted
files located in the resources folders (e.g., assets, libs, and res).
The majority of AVs can deal with compressed payloads, but none
of them are able to detect malicious payloads which are split into
multiple files (see Section 5.2.3). Only one online AV engine can suc-
cessfully identify the apps that dynamically load malicious payload
during the 7-day tracking. It reveals the incapability of dynamic
analysis (see Section 5.3). Many sandboxes deployed in VirusTo-
TAL perform a security check on URLs contained in apps, but few
of them dynamically execute apps as observed. By inserting logic
bombs, we can evaluate the capability of dynamically analyzing
apps in Section 5.3.

Contributions. We have made the following contributions:

e Massive number of transformed Android apps and detec-
tion results. We develop six transformation techniques, and gen-
erate over 179K transformed apps in total from 23,184 Android
apps of multiple sources. Through querying online scanning ser-
vices, we obtain 971K security reports in a time frame of 30 days.
We will open-source our transformation code, security reports

Meng et al.

from VIRUSTOTAL, and non-private analysis results to the public
in future!.

e Analysis and explanation of the effects of app transfor-
mations. We conduct a comprehensive and extensive analysis
based on the collected data and reports to demystify AVs in ac-
cordance with signature-based, static analysis-based detection,
and dynamic analysis. We further make the attempt to explain
these results and highlight six findings that unveil previously
unknown phenomena during malware detection.

2 Background
2.1 Commercial Antivirus Software

Antivirus software is a computer program used to prevent, de-
tect and remove malware. Towards the ever-increasing malware, it
employs multiple techniques, such as signature-based, heuristic ap-
proaches, real-time detection, to confront the threats from malware.
The complexity and diversity of malware drive the advancements
of modern AV software, and born many security vendors. Most
of AVs work as blackbox systems, making it unclear how a file to
test goes though AVs and returns with a detection label. According
to [21], several detection mechanisms are probably encapsulated
within an AV engine, as elaborated below.

Malware signature. Signatures are a simple yet effective feature
for recognizing known malware [16, 44]. Intuitively, all objects have
their unique signatures. So one app is malware theoretically, if its
signature is in the malware corpus. Consequently, the adoption of
signatures can significantly enhance accuracy while reducing false
positive rates in malware detection. Signature can be created in
varying manners [21], for example, cryptographical hashes (e.g.,
MD5, SHA1 and SHA256), specific strings. Cryptographical hash
is a digest that can uniquely represent one object; even a minor
alteration to an app results in a drastically different hash. Strings
like IoCs can be a specific piece of code. According to our investiga-
tion, it is widely acknowledged and incorporated by many security
vendors [1, 37]. Moreover, fuzzy logic-based signatures (e.g., ss-
deep [5]) have attracted many security vendors where chunks of
data, rather than the whole file, are computed for hashes. This can
mitigate the weakness of the-whole-file signature against a slight
change to malware.

Static analysis. This is a detection method that does not actually
execute files. By gathering features and information from code, it
can thereby determine the maliciousness of one file to test. Addi-
tionally, there are a series of determination methods like pattern
matching, machine learning [10, 12], and formal reasoning. Usually,
static analysis based malware detection is an effective approach that
can access all actionable code and semantic logics inside. From the
simple pattern matching to complicated constraint solving, nearly
all AVs have employed static analysis for detection.

Dynamic analysis. Different from static analysis, it needs to exe-
cute the code for harvesting the runtime information. To achieve
this target, an AV should be equipped with a sandbox which phys-
ically installs and executes the code. Usually, instrumentation is

!All transformation code and transformed apps can be accessed from
https://github.com/impillar/AVScale. Due to the huge volume of apps, we only provide
the hash codes for these apps, and the reports can be downloaded from VirRusToTAL.

Measuring and Explaining the Effects of Android App Transformations in Online Malware DetectiGanference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

required for monitoring system status and code behaviors. This
method has lower false positives compared to static analysis, but
suffers from test coverage and logic bombs [15].

2.2 Online Scanning Services

Intuitively, one single AV engine is prone to be subverted by tar-
geted attacks, so that more and more users start to assemble multiple
AV engines to provide security protection.

VIRUSTOTAL. It is a public website providing multiple security
services, for example, file scanning, URL scanning, and data cor-
relation analysis. To date, it has integrated 76 antivirus engines
from 72 security vendors [6], providing a real-time scanning service
(note that security vendor Avast has two products—Avast and Avast
Mobile Security equipped in VIRusToTAL, and so do K7 Computing,
Symantec Corporation, and Trend Micro). Additionally, a number
of sandboxes are deployed to perform behavioral analysis on the
programs to test. In this study, we find 97 antivirus engines from
collected 971K security reports although some of them appear with
limited times. We further filter these AVs by removing those that
return over 90% “type-unsupported” results and obtain 66 ones.
For an Android app, VirusToTaL offers a number of miscella-
neous APIs for developers to fetch security analysis reports, scan
suspicious files, retrieve the detailed information of app and so
on. The analysis results by antivirus engines are presented with
a 6-tuple “(category, engine_name, engine_update, engine_version,
method, result)”. In particular, category denotes the marked flag

» &«

by antivirus which could be “confirmed-timeout”, “failure”, “harm-
less”, “malicious”, “suspicious”, “timeout”, “type-unsupported”, “un-
detected”. If the app is malware, the attribute “result” will present

its most likely name, otherwise is null.

3 Preliminary

For users, antivirus engines operate as a black box, accessible only
through limited interfaces. The behavior and reactions of antivirus
engines to different apps remain unknown and mysterious. When
scanning an app, users can only determine whether it is malicious
and its malware type as reported by the antivirus engine. Consider
a malware app A;. When we create a transformed app Az from
A1, the antivirus engine may yield different results for A; and Aj.
Let A, represent the difference between the apps, and A, denote
the difference between the corresponding detection results. We
hypothesize that the cause of A, is attributable to Ag, i.e., Ay =
A,. This assumption is also employed by prior studies [17, 20, 25]
to evaluate the effectiveness of malware evasion techniques.
Interaction Model. Without loss of generality, we define the in-
teraction model with blackbox antivirus engines as follows. Let X
be the set of apps to test, ¥ is a blackbox antivirus engine, and
F:3 — (B,L), where B is a boolean value and L is the output
labels of tested apps. Note that if 8 = false, £ = null and the app
is recognized as benign.

Moreover, we assume Tr as the transformations between apps
with traceable changes, so XxXTr — X. Given an input app u (u € X),
the output by the antivirus engine can be denoted as (8B, £Ly,). The
transformed app v can be created by applying v = Tr(u), and we
subsequently get its output label (B, Ly). Let A, be the difference
between apps, i.e., Aq = v — u, A, be the difference between output

Table 1: Sources of Android apps and the use in experiments

Dataset ‘ #8ize Experiment

GENOME [50] 1,235
Malware Drebin [7] 5,555
VIRUSSHARE [2] 6,017

Section 5.1, 5.2, 5.3, 5.2.2
Section 5.1, 5.2, 5.3, 5.2.2
Section 5.1, 5.2.2

Grayware AMD [42] ‘ 2,659 Section 5.1, 5.2, 5.2.2
ANVA apps ‘ 996 Section 5.2.2
Wild apps | 7074 Section5.1,5.2,5.2.2
Total | 23,184

labels within an transformation, i.e., Ay = (By — By, Ly — Loy). Ar
accounts for the following two categories.

e Maliciousness flip - 8. The decision made by an antivirus
engine shifts from benign to malicious or conversely. This can be
recognized with the transitions from “undetected” to “malicious”
in VIRUSTOTAL reports, which is noted as a negative flip. A positive
flip is a transition from “malicious” to “undetected”.

e Label change - L. For two malicious samples, an antivirus en-
gine may report with different malware families. For example,
the attribute “result” in VIRUSTOTAL may shift from “Fakelnst” to
“SmsReg”.

In particular, maliciousness flip reflects that the transformation

has cracked the indicator employed by AVs for detection, and label
change implies that the modifications destroy the original indicator
but produce another one with transformation.
Our Goals. An antivirus engine may employ three techniques for
malware detection including signature-based, static and dynamic
analysis. For each detection technique, we intend to identify the
IoCs used by AVs and how these IoCs are used for recognizing
malware. To be specific, we attempt to explore:

RQ1. How do these antivirus engines use signature for detection
and are there any weaknesses (see Section 5.1)?

RQ2. How do these antivirus engines use static-based detection
and what features matter (see Section 5.2)?

RQ3. Is dynamic analysis widely used in these engines and how
(see Section 5.3)?

4 The Approach

Figure 1 shows the overview of our approach. It proceeds with four
phases: data collection, app transformation, maliciousness labelling
and measurement. Specifically, we prepare a set of Android apps
(totaling 23,184) for our study, including malware, grayware, ANVA
apps and wild apps. These apps are transformed by six techniques,
and uploaded into VIRusToTAL for labelling. Last, we undertake the
analysis of security reports to answer the questions in Section 3.

4.1 Data Collection

To ensure diversity, we gather four types of Android apps: mal-
ware, grayware, ANVA apps, and benign apps. These categories
differ in the number of malicious indications flagged by AVs. Typ-
ically, malware samples exhibit more malicious indications from
AVs compared to grayware and benign apps.

Malware. It encompasses Android apps designed with malicious in-
tent, aiming to compromise Android systems and users for various

Conference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

Meng et al.

RQ1: How signature-based

22,502 = 22,502
a re——- - = unsi n@-{resi nin‘ -
malware l'l ; >[u signing gning [AOSP[P-KEY]

< 23,154

52,155 mm 891

approach is used in AVs?
971K
== '3?0"5 RQ2: How static analysis is used

and what features are extracted?

Y
grayware [] £ | App Corpus[- ~ 1= packing pruning]coarse| fine | -
e

| e e e e e e e - - 4

) 1
benignware UU—U[I 3000
b - dynamic-loading

VirusTotal

RQ3: Whether AVs perform
dynamic analysis and how?

1. Data Collection

2. App Transformation

3. Malice. Labelling 4. Measurement

Figure 1: System overview of our approach. It contains six app transformations and the numbers in black count generated apps.

purposes such as privacy theft, privilege escalation, and unautho-
rized premium service charges. In this study, we select 6,017 samples
from VIRUSSHARE [2] in the past five years, 1,235 samples from
GENOME [50], 5,555 samples from DREBIN [7].

Grayware. Grayware, while not as harmful as malware, is still
problematic as it often consumes device resources excessively, dis-
plays annoying advertisements, or solicits users’ private informa-
tion frequently. We randomly select 2,659 grayware samples from
the AMD dataset [42], covering eight known families including
Airpush, Andup, Dowgin, Kuguo, Kyview, Minimob, Utchi, and
Youmi.

ANVA apps. Anti Network-Virus Alliance is an authoritative orga-
nization and publishes a number of whitelisted apps every year [1].
These apps have been vetted by 11 renowned security vendors. We
collect 996 whitelisted apps from them to evaluate how AVs react
to their transformations.

Benign apps. To provide a comprehensive evaluation of antivirus
engines, we additionally crawl 7,074 Android apps from the wild,
including the official app store Google Play, and alternative ones
such as Apkpure [3]. None of these apps are flagged as malware by
any AV engines in VIRUSTOTAL.

Table 1 shows the statistics of Android apps and their utiliza-
tion in our experiments. Our objective is to explore how AV en-
gines respond to transformed apps, necessitating that AVs can ide-
ally identify their original versions. Therefore, we select DREBIN,
GENOME, AMD, and VIRUSSHARE datasets, all of which are publicly
available. Additionally, we found multiple duplicates across these
datasets. There are 909 duplicated apps residing in both DREBIN and
GENOME datasets, 224 apps in VIRUSSHARE and Grayware, 6 apps
in both DREBIN and VIRUSSHARE, 1 app in DREBIN, GENOME and
VIRUSSHARE, and one app in ANVA is also found in VIRUSSHARE.
After removing these duplications, we obtain 23,184 unique apps.

4.2 App Transformation

We present six app transformation techniques in this section, and
briefly introduce the implementation for them.

Design Principle. Prior research on malware evasion and evalu-
ation employs many program transformation techniques like ob-
fuscation [34], refactoring [23], shrinking [38], optimization [38],
and packing [14]. Many of them are based on an assumption that
AVs must gather features from code for detection, so transforming
code will definitely influence detection results. However, this as-
sumption may not apply to all AV engines [46]. It remains unclear

what features are collected by blackbox AVs and how they are used.
Therefore, we dissect one APK file and identify five components
which can be the source for feature harvest: file signature, DEX file,
XML files, asset files and certificate. Subsequently, we design six
transformation techniques which can modify these features with
fine control. Although these transformations are not all in the real
world, they are effective in finding the answers of the research
questions in Section 3.

4.2.1 Unsigning. Android apps are required to be digitally signed
with a private certificate before shipment to ensure their integrity.
Apps without a valid certificate cannot be installed or executed on
a device by default. Therefore, a malware app with a corrupted or
missing certificate poses no risks. To determine whether antivirus
engines verify the integrity of apps under test, we propose an un-
signing transformation to remove the certificate of the app. We
implement this transformation by disassembling a signed app and
then assembling it into an unsigned app using ApkTooL. The un-
signed app will have a different hash code (e.g., SHA256 and MD5)
compared to the original. Consequently, if an antivirus engine re-
lies solely on the app’s digest without considering other features,
unsigned apps are likely to evade detection.

4.2.2 Re-signing. Th certificate of Android apps has been used to
identify repackaged apps [22]. That motivates us to explore whether
blackbox AVs have used app certificates for detection. Here we use
two certificates for app signing. One is a self-signed certificate,
which must be the first sight by AVs. The other is certificates from
Android Open Source Platform (AOSP), which are likely seen for
many times. It is observed that many developers use AOSP certifi-
cates to sign their own apps. Re-signing can be achieved with the
tools jarsigner and apksigner. Additionally, if too many apps are
signed with the same certificate and sent to AV engines, it may
raise the awareness of engines and produce unpredictable results.
For eliminating the cross effect among transformed apps, we create
different certificates for different tasks.

4.2.3 Pruning. There are several building block files for Android
app, including Java/Kotlin code (compiled into dex files), native
code, XML file. To evaluate how AVs leverage these files for deter-
mining maliciousness, we propose to prune an app by removing
parts of contained files. We develop three strategies for pruning
an app: 1) eliminating partial or all actionable code in the app.
Specifically, we remove all statements in methods while leaving
the method declarations unaltered. For the methods with a return

Measuring and Explaining the Effects of Android App Transformations in Online Malware DetectiGanference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

value, we make them return Null all the time. With this pruning, all
malicious code in Java can be excluded; 2) eliminating native code
that is oftentimes stored in the folder “1ib” and “asset”. It is easily
implemented by deleting all the native code in an app, which can-
not hinder successful compilation. Therefore, the malware whose
malicious code reside in native cease to effect; 3) removing all config-
uration information from the AndroidManifest.xml file that do not
influence app packaging, such as <permission>, <permission-group>,
<permission-tree>, <users-permission>, <uses-configuration>,
<uses-feature>, <users-library> and <uses-sdk>.

4.2.4 Fusion. Apart from pruning that reduces functions from
apps, we fuse two apps to combine the functions of different apps.
Especially when two malware are merged together, it is intriguing
to explore how AVs react to more complex or compound malware.
We develop a transformation technique to automatically merge two
apps by specifying the host app and the payload app. To resolve the
conflicts during fusion, we particularly process the following files:

e AndroidManifest.xml: We compute the union set for specific
elements such as “<uses-permission>”, “<permission-group>”,
“<uses-feature>”, “<uses-library>". For the components of the
fused apps, we pick one of them as the host app, and keep all
its component while removing the intent-filter of the main
activity of the other.

Resources files: Most of resource files reside in the folder res,
such as GUI layouts (e.g., layout/*.xml), drawable images (e.g.,
drawable/x.xml), string used in app (e.g., values/string. xml),
and id files (e.g., values/public.xml). Many of these files can
be glued by computing their file union set. We merge the content
of files if two apps possess the same files.

App code: We merge code into one single folder. If there exists
another file with the same name, we only remain one of them.
Although it may lead unexpected compilation errors, we avoid to
resolve this conflict but only use the fused apps with successful
compilation in our experiments.

4.2.5 Packing. Packing is a protective measure for software against
reverse engineering and arbitrarily code tampering. However, it
is also appealing to malware authors for concealing their mali-
cious code in an app [14]. Generally, Android packing first encrypts
the original DEX files and then creates a proxy class inherited
from “android.app.Application”, ensuring it is the first class to
execute. The proxy class will decrypt the primary DEX files, and ex-
ecute them dynamically. This process prevents static analysis from
extracting the original code and detecting malware. To uncover
how antivirus engines react to these packed benign or malicious
apps, and whether they have the ability to detect malicious code
inside the packer, we propose to automatically pack a number of
benign and malware samples with [4], and feed them to AVs.

4.2.6 Dynamic-loading. For the seek of flexibility, Android sup-
ports components to be dynamically created and executed with
reflection. It can be used for hot patching [13] and automatic app
generation [39]. However, it can be also employed by malware
authors for dynamically loading their malice and then launching
attacks [31, 47]. Since all malicious code is outside of the app space,
AVs that rely solely on static analysis cannot capture its malicious

code but may be aware with the dynamic loading behaviors. With-
out dynamic analysis, AVs cannot recognize the exact malicious
behaviors in the payload. In this study, we create a proxy app that
only downloads malicious payload from the cloud, and aim to iden-
tity whether dynamic analysis is conducted in AVs.

4.3 Maliciousness Labelling

In this study, we rely on VIRusToTAL as the oracle to determine the
maliciousness of apps. Each VIRUSTOTAL report provides over 70
data points, where one data point consists of six properties:category,
denoting the type of detection results, engine_name, means the
name of engine, engine_update is when the engine is updated, en-
gine_version is the identical version, method reveals how antivirus
engines detect, and result indicates the label of malware. To fetch
plenty of detection reports for analysis, we collect two types of
security reports as follows:

o First snapshot. Online scanning services respond to authorized
requests with detection results by AVs. We collect the staged
reports for already-analyzed apps, otherwise, upload apps for
scanning.

o Reanalysis snapshot. It is observed that VIRUSTOTAL constantly
upgrades its hosted AVs and re-test the apps stored on the server.
Due to the updates in the malware blacklist, enhancement of AVs’
detection capabilities, and so on, the labels of app maliciousness
may change over time [51]. Therefore, we request a forceful
re-analysis of these apps to get the latest detection results.

After fetching a security report from VIRUSTOTAL, we can deter-
mine the maliciousness of the app. Without loss of generality, we
define the maliciousness of an app by the number of AVs that recog-
nize them as malware. We assume that AV is the set which supports
the detection of our apps. Given an app u, its maliciousness can be
represented as M(u) = |AVi| where L;(u) € malware.

5 Measurement

In this section, we present the analysis corresponding to the re-
search questions in Section 3.

5.1 Signature-based Detection (RQ1)

It is unclear how antivirus engines adopt signatures for malware
detection. In this section, we conduct the following experiments,
and evaluate their signature-based detection.

Experiment Design. In this experiment, we try to crack apps’
certificate as well as their hash code and investigate how AVs react
afterwards. We employ three strategies by:

$1. removing the signing certificate for each app, from which we
obtain 22,502 unsigned apps in total;

$2. re-signing all the apps of S1 with a publicly-available certificate
on Android Open Source Platform (AOSP);

$3. creating a self-signed certificate and re-signing all S1 apps.

These strategies are devised with two considerations. On one
hand, app unsigning and re-signing are the two minimal changes
that can be performed on Android apps while preserving app in-
tegrity. Any trials to alter code or files can surely effect app signing
or destroy its integrity. On the other hand, null, self-signed and pub-
lic certificates serve as control variables, and we can infer whether

Conference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

Meng et al.

— orig
70004 | unsign
—— resign-AOSP
6000 | — resign-self
300
5000

4000
2004

of samples
of samples

3000
2000 1004

1000

— orig 200 — orig
unsign unsign

—— resign-AOSP

— resign-self

—— resign-AOSP
— resign-self

600

500

of samples
w s
8 3
8 3

N
3
8

S
8

o

0 10 20 30 40 50 0 10 20
#AVs reporting maliciousness

(a) Distribution of apps vs. # detected AVs

#AVs reporting maliciousness

(b) Dist. of grayware vs. # detected AVs

30 40 50 0 10 20 30 40 50
#AVs reporting maliciousness

(c) Dist. of malware vs. # detected AVs

Figure 2: Distribution for apps in terms of the number of detected AVs. The curves in blue represent the original apps, orange
denotes the unsigned apps and green curves shows the distribution for the re-signed apps.

and how these antivirus engines take advantage of them. We present
Figure 2 for a quick overview of the change of app maliciousness.
More specifically, a data point (x, y) in Figure 2a means there are y
apps of which the maliciousness is x. We plot four curves for the
original apps, and their transformations respectively.

Result Analysis. From Figure 2, we can see a remarkable left
shift for transformed apps, i.e., unsigned, re-signed apps exhibit
less maliciousness compared to the original. The three strategies
can reduce the degrees of maliciousness by 28.2%, 19.4% and 18.5%,
respectively. Exceptionally, there is an abrupt increase and decline
with S2, and S3-transformed apps with x being zero. Among 7179
apps with M = 0, 93.9% of their transformed apps start to exhibit
more or less maliciousness. Overall, the positive flip rates (PFR)
across all AVs are (31.4%, 25.4%, 24.2%) for the three strategies in
the first snapshot, but decrease to (15.4%, 12.8%, 23.3%), and PFR =
%. The transformations of unsigning and re-signing
with AOSP keys significantly impact maliciousness in subsequent
snapshots, while re-signing with self-signed keys has less effect.
This underscores the importance of considering the repackaging
effect in malware transformation.

Table 2 displays the top 5 AVs with the highest and lowest PFR. A
higher PFR indicates greater susceptibility to repackaging, implying
heavy reliance on app hash codes for detection. Variance in PFR
among AVs suggests differing detection methods:

e High S1-, $2-, S3-PFRs. We cluster malware samples recognized
by VBA, Zillya, TrendMicro-HouseCall, TrendMicro into multi-
ple families, and check whether these families have similar PFRs.
We find that VBA have a superior capability of recognizing fami-
lies “BaseBridge” (98.7%), Zillya is sensitive with “DroidKungFu”
(66.2%), TrendMicro-HouseCall achieves 85.1% recall with “Droid-
KungFu” and TrendMicro gets 80.0%. These exceptions reveal
that these AVs have used other methods to recognize malware
when the hash code does not match. However, AVs possess a
biased set of malware samples from which they harvest signature
for detection. Obviously, “DroidKungFu” and “BaseBridge” are
the two families with ample features.

e S1-PFR > S2-PFR ~ S3-PFR. Zoner (90.4%, 24.2%, 26.3%) is the
only instance exhibiting this characteristics. It can be implied
that Zoner first verify the integrity of the scanning target since
an app without certificates cannot be installed and pose risks.

Table 2: AVs with the highest/lowest positive flip rates for S1,
$2 and S3 apps. We only consider the AVs that recognize at
least 2,000 malware samples.

AV #Apps (>2K) S1(%) S2(%) S3(%) Ave.(%)
VBA32 2,712 78.6 78.6 78.6 78.6
Zillya 2,399 69.0 80.6 79.0 76.2
TrendMicro-HouseCall 3,044 73.3 74.5 73.2 73.7
TrendMicro 3,189 72.6 73.8 72.9 73.1
Jiangmin 7,661 64.5 64.5 65.0 64.6
Kaspersky 9,341 1.0 1.9 1.4 1.4
Avira 12,433 1.0 0.8 2.5 1.4
ZoneAlarm 9,371 1.0 1.6 1.4 1.3
Trustlook 12,236 2.1 0.7 0.4 1.1
ESET-NOD32 12,959 0.3 0.2 0.3 0.2

e S3-PFR > S2-PFR. For example, Alibaba (S2=2.1%, S3=97.7%),
McAfee-GW-Edition (S2=4.2%, S3=74.8%), MAX (52=25%, S3=94%),
Symantec (52=10.7%, S3=59.0%), and Tencent (S2=9.6%, S3=50.0%).
It shows that these AVs have a definite recognition of app cer-
tificate and take it as an important, or even dominating clue for
malware. Surprisingly, a malware sample can easily evade these
AVs’ detection by simply using a new signing certificate. Partic-
ularly, MAX, a machine learning-based engine, obviously takes
signing certificate as a dominating feature in classification.

A negative flip occurs when a benign label becomes malicious.
Most AVs exhibit a negative flip rate (NFR) below 10%, with Trust-
look being the exception (7.6%, 89.1%, 86.9%). In S2, 89.9% of negative
flips show the label “Android. PUA.DebugKey,” indicating Trust-
look’s focus on certificate verification before classification. Of the
7,129 apps in our corpus rated as non-malicious, 20.1% are classi-
fied as malware by at least one AV after the three transformations.
Trustlook is responsible for 65.3% of negative flips, KIGW 27.7%,
while Kaspersky and ZoneAlarm contribute 2.4% each.

5.2 Static Analysis-based Detection (RQ2)

In this study, we propose to employ three transformation techniques—
pruning, fusion, and packing, to achieve function reduction, function
combination and function concealing of apps, respectively. Together
with the changes of detection results, we demystify the usage of
static analysis by AVs.

Measuring and Explaining the Effects of Android App Transformations in Online Malware DetectiGanference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

5000
4000 300

3000

of samples.
of samples.
3
8

2000

1000

— orig 500

code
—— native
— xml 400

of samples.
1
g

N
3
8

100

0 10 20 30 a0 50 0 10 20
#AVs reporting maliciousness.

#AVs reporting maliciousness

(a) Distribution of apps vs. # detected AVs

(b) Dist. of grayware vs. # detected AVs

30 a0 50 0 10 20 30 a0 50
#AVs reporting maliciousness

(c) Dist. of malware vs. # detected AVs

Figure 3: Distribution for apps in terms of the number of detected AVs. The curves in blue represent the original apps, orange
denotes the apps pruned with code and green curves shows the distribution for the apps pruned by native code, and red for the

com.opera.installer
-- Alarm;
i

oo
3

I
|-- SystemService;
|-a;

|-

a
3

OnBootReceiver;

|--e

IS
8

% Contribution to maliciousness

S

com.opera.installer
|-- SmsReceiver;

apps pruned by xml.
#Nodes{ ([}—— o0 ° com.opera.installer
|-- AgreementActivitys;
|-&
0 200 400 600 800 [--i;
|-- ConsoleActivitys;
= [-¢
Edges e o° ° |-- DownloadsActivity;
|--d;
0 1000 2000 3000 4000 5000 [-b; -
|-- InstallActivitys;
|--f;
#Clusters{ +—{] }——1 o000 o000 0Q o K |--h; /
[5 10 15 20 25 30

Figure 4: Statistics of code modulariza-

5.2.1 Function Reduction. Given that APK files typically consist
of three semantic modules: Java/Kotlin code, native code [43], and
XML files, AVs are likely to have extracted features from these
modules for detection. To investigate this behavior, we conducted
the following experiment.

Coarse-grained pruning. We apply pruning algorithms to remove
these modules from the original apps (Section 4.2). Using the three
strategies, we generate three transformed apps for each original
one. In total, we successfully repackage 52,155 apps, each signed
with a new certificate. We denote the pruned apps by P;, P,, and Ps,
corresponding to the removal of Java/Kotlin code, native code, and
XML, respectively. Despite potential loss of functionality, observing
the detection results shift caused by pruning remains valuable.

Figure 3 shows the distributions of apps as per the number of
detected AVs. Besides the distribution of the entire dataset, we also
plot the changes of distributions for malware in Figure 3c, and
grayware in Figure 3b.

Result Analysis. Obviously, the maliciousness of Py, P, and Ps3
are significantly lower than the original apps. The average drops
are 53.5%, 25.2% and 23.5%, respectively. These drops are more
remarkable in malware (i.e., 58.1%, 28.7%, 27.0%) and grayware
(i.e., 69.6%, 28.8%, 30.7%). Since the majority of malware has their
malicious code in Java/Kotlin, when we remove Java/Kotlin code,
malicious behaviors are likely removed accordingly. Therefore, the
number of detected AVs exhibit a salient decline.

Figure 5: Modules in the app and their
tion maliciousness with the top-right no.

0.0 0.2 0.4 0.6 0.8
% Satisfied modules

Figure 6: Contributions of % of satisfied
modules to maliciousness

We examine the effect of pruning on individual AVs, focusing
on 32 AVs capable of identifying at least 50% of malware samples.
We compute their maliciousness flips, particularly positive flips,
and find that, on average, positive flips occur at rates of 56.7% for
code-pruned apps, 25.2% for native-pruned apps, and 24.2% for xml-
pruned apps. This is reasonable as Java/Kotlin code is considered
the most semantically rich part of an app.

Surprisingly, we identify five AVs with consistently high flip
rates across all types of pruned apps: Alibaba (99.98%, 99.98%,
99.98%), MAX (96.0%, 99.0%, 95.8%), McAfee-GW-Edition (93.5%,
98.3%, 93.3%), Jiangmin (89.1%, 91.6%, 88.3%), and Symantec (90.5%,
76.0%, 75.8%). This could be due to these AVs aggregating features
from code, native, and XML files into a combined feature for detec-
tion. If any part of this feature is removed, detection is significantly
affected. This suggests a potential evasion approach by modifying
non-critical parts like XML files, which could be effective against
these susceptible AVs.

Finding 1. It is experimentally verified that Java/Kotlin code is the
main area to collect features for malware detection. However, we found
different use practices such as a combination of features and merely
relying on single type of features with regards to a single AV.

Fine-grained pruning. To explore the specific locations of ma-
licious code that attract AVs’ attention, we propose fine-grained
pruning for Android apps. Typically, AVs combine compromising
features from different class files to identify malware, which are

Conference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

semantically related in aspects such as control flow, data flow, and
caller-callee relationships. Thus, we aim to separate apps into in-
dependent modules and test their maliciousness. Due to the large
number of methods in an app, analyzing at the method granularity
is ineffective and inaccurate. Instead, we aim to determine relation-
ships between classes and form clusters accordingly. We develop
a script to identify Inter-Component Communications (ICCs) and
call graphs in an app using IC3-DIALDRoID [9], ignoring Android
APIs, external classes, and resource-related classes. Classes with
connections are aggregated into clusters.

Figure 4 shows the percentiles of an app with the number of
classes, edges, and formed clusters, while Figure 5 provides a modu-
larization example for an app. For each group of classes, we generate
corresponding pruned apps by eliminating actionable code in other
classes. We select the top 150 malware samples with at least 30 re-
porting AVs for pruning, resulting in 891 fine-grained pruned apps.
We stress-test the original 150 apps and 891 fine-grained pruned
apps using Monkey, finding that 21 apps execute similarly to their
originals, while the rest experience more crashes due to pruning.
Result Analysis. We upload these apps to VIRusToTAL and collect
891 security reports at the first snapshot. We compare the scanning
results with that of the original apps (to mitigate repackaging’s
influence, we repackage the original apps and get their results).
For Figure 5, we create three pruned apps for the three modules.
The original app has 29 degrees of maliciousness, and the app that
eliminate all code can only has 6 degrees. Maliciousness degrees
for these three modules are 17, 21, and 6, respectively. It implies
that AVs have obtained more features from the second module.

In addition, we plot Figure 6 to illustrate the relationship between
the contributions to maliciousness with the number of modules. It
closes to the Pareto principle that 20% of modules in an app have
contributed around 70% of maliciousness. By grouping code in terms
of call relationship, we can identify the most important modules
considered by AVs. It can benefit future research on malicious code
locating, and interpretation on malware detection results.

5.2.2 Function Combination. In this section, we propose to employ
the fusion transformation to merge two samples, combining mul-
tiple malicious functions into one app, and further infer how AVs
detect the combined malware.

Experiment Design. We cluster four sample sub-sets from our app
corpus. In particular, D, contains all malware samples in GENOME,
DREBIN, and VIRUSSHARE. Dy is the grayware set as Table 1. Dg
is a list of ANVA set, and Dy, is the sub-set of the wild apps that
are not labeled as malware by any AV. The relational behind these
combinations is that we intend to investigate how AVs report a
combined malware sample by fusing two apps of different mali-
ciousness degrees. Additionally, the malicious degress of apps are:
M(malware) > M(grayware) > M(ANV A) ~ M(benign) As such,
we select 3,000 samples in each sub-set, fuse any two sets and obtain
20,305 fused apps.

Given two fused samples u and v, £(u) and L(v) are the corre-
sponding detection results, respectively. The fusion app is denoted
as w, and its result £(w). Inspired by [36], we perform suffix re-
moval, tokenization, token filtering, and alias replacement to deter-
mine the normalized name for malware samples. In this manner,
we can determine whether £(w) = L(u).

Meng et al.

Table 3: AVs with largest positive flip rates and negative flip
rates. Here, “(n=v)” means the noise of re-signing and the
flip rate is v for resigning w/o packing.

AV PFR (%) ‘ AV NFR (%)
Alibaba 99.9 (n=97.7) K7GW 100 (n=36.0)
Tencent 99.3 (n=6.6) ESET-NOD32 99.9 (n=0.1)

AegisLab 98.0 (n=9.7) Tkarus 96.7 (n=0.3)
SymantecMobil. 97.2 (n=4.6) Trustlook
MAX 95.6 (n=55.7) Microsoft 73.2 (n=11.6)
Avast-Mobile 92.7 (n=16.6) Fortinet 9.4 (n=6.5)
Zillya 91.2 (n=76.2) | TrendMicro-H.C.
Zoner 91.1 (n=47.0) Sangfor
Qihoo-360 90.0 (n=8.5) F-Secure
F-Prot 89.7 (n=2.1) Rising 0.4 (p=0.0)

Upon individual investigation of AVs, AVG, Avast, and Kaspersky
demonstrate the greatest likelihood of maintaining original labels
when a non-malware sample is merged in. On average, AVG re-
tains the original labels 84.8% of the time, suggesting its propensity
to report known malware features. Avast and Kaspersky exhibit
probabilities of 84.6% and 83.0%, respectively. Conversely, some
AVs on VirusTotaL effectively detect malicious features in fused
apps. For instance, in the scenario of inserting non-malware code
into malware, Alibaba fails to identify 92.1% of malware samples
initially. MAX and Jiangmin exhibit probabilities of 76.2% and 68.5%,
respectively, suggesting a tendency to label them as non-malware.
In a reanalysis snapshot, Alibaba’s percentage drops to 3.4%, while
Jiangmin maintains a high detection rate.

By comparing the results fused by malware with malware, ANVA,
and benign apps separately, we can prioritize the types of malware
that are more easily detected by AVs. Among the apps labeled dif-
ferently from one of the original apps, 53.35% exhibit label changes
primarily due to fusion, excluding interference from signatures.
For Avira, 96.6% of fused apps labeled as “Malmix” when one of
the original apps is labeled as such, while 77.85% are labeled as
“BaseBridge” (including “BaseBrid”) when one of the original apps
is labeled as such. Similar trends are observed for F-Secure (100% for
“Trojan:Android/IconoSys”, 89.96% for “DroidKungFu”, and 83.50%
for “Trojan:Android/FakeBattScar”), AhnLab-V3 (88.89% for “Tro-
jan/Android Bankun” and 83.54% for “Trojan/Android.BaseBridge”),
etc., suggesting that certain features of these malicious types are
more easily detected by the corresponding engine or have higher
weight in their features. Conversely, Ikarus exhibits difficulty in de-
tecting apps labeled as “Trojan-Dropper.AndroidOS.Shedun,” with
93.03% changing to another type when fused with other apps, and
6.8% differing from both original apps. Alibaba also reports the
other app’s label in 93.41% of cases when fused with “TrojanDrop-
per:Android/Shedun”

Finding 2. The majority of malicious features can be well captured,
but engines have different detection capabilities for various malware
families, especially at the first snapshot. Attackers can exploit this
weakened effect to make a simple yet effective evasion to specific AVs.

5.2.3 Function Concealing. We apply packing to conceal functions
in apps and assess whether AVs can effectively detect packed apps
based on [4]. We obtain 15,595 packed apps and their detection
results, and present 10 AVs with the largest positive flip rates and
10 AVs with the largest negative flip rates in Table 3. As high-
lighted in the table, there are four AVs whose negative flip rates

Measuring and Explaining the Effects of Android App Transformations in Online Malware DetectiGanference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

are higher via re-signing, i.e., NFR(Trustlook, {re — signing}) >
NFR(Trustlook, {re — signing, packing}). Since static analysis can-
not identify the genuine code from packed apps, many AVs just re-
turn labels showing encrypted apps such as “PUA: Win32/Presenoker”,
“Adware (005487961)”, “Android/Packed.Jiagu.E”, “PUA.AndroidOS.
Jiagu”. We found the following exceptions during data analysis.

o Incomplete file scanning. Some AVs, like K7GW, ESET-NOD32
and Microsoft, tend to label malware and benign apps as packed
apps. However, Ikarus can correctly recognize all packed sam-
ples of the “BaseBridge” malware by examining the malicious
payload in unencrypted folders like “assets” or “raw.” It applies
to other AVs like ESET-NOD32, SymantecMobileInsight, and
Fortinet. However, Ikarus fails to detect payload stored in the
“lib” folders in the Dowgin malware, indicating incomplete scan-
ning by some AVs.

o Deficiency in decompressing payload. Usually, AV engines
have an ability of detecting compressed malicious code. However,
we found some malicious payloads that are compressed into
multiple parts (MD5: b0d7e14582d58fa6cdacaae65f7b82aa), which
can easily bypass the majority of AVs.

o Difference in machine learning. MAX and Trustlook are both
machine learning-based antivirus engines, which compute the
probabilities of files being malware. However, these two engines
react very differently in front of packed apps. MAX has a 95.6%
positive flip rate while Trustlook has a 77.3% negative flip rate.
Because packing mainly conceals the functions in Java/Kotlin
code, while reserving the semantics in configure and resource
files, the difference indicates that MAX largely relies on har-
vesting features in code for classification while overlooking the
semantics in AndroidManifest.xml or other files.

Finding 3. Although AVs can raise a warning for packed apps, most
of them cannot extract the genuine code in the shell and thereby
hardly identify malware or benign apps. Additionally, we identify
several weaknesses of specific AVs as described above, for example,
incomplete file scanning and deficiency in decompressing payload.

5.3 Dynamic Behavioral Analysis (RQ3)

Static analysis-based malware detection effectively identifies large-
scale malware but suffers from weaknesses. Malware authors de-
velop evasion techniques, such as obfuscation or concealment, de-
grading antivirus engine performance. Additionally, malware may
not execute as seen, and specific execution paths may never oc-
cur during runtime. Dynamic analysis supplements static analysis
against malware, with VirusToTAL equipped with eight sandboxes
for security analysis. Sandboxes install and run apps for behavioral
analysis, with two (Dr. Web and Tencent) incorporating AVs for
real-time malware labeling. We conduct experiments to evaluate
contemporary antivirus software’s ability.

5.3.1 Overview of Dynamic Analysis. We randomly select 2000 mal-
ware samples as payloads and create a proxy app that downloads
them at runtime. If the proxy app is detected as malware, it con-
firms that antivirus software has dynamically run the host app and
checked the maliciousness of the payload. To obtain evidence of
dynamic-based detection, we set up a publicly available tracking
website to host our selected malware. Upon launching the proxy

app and downloading payloads, the tracking website script records
connection information, including client user-agent, IP address,
visit time, fetched malware samples, etc.

We collected 7-day reports for the apps, totaling 50,543 requests
from 251 distinct IP addresses. To identify real scanning entities
among these IP addresses, we crawled configuration information
for each IP address using IP-API?, including continent, country, city,
exact location, ISP, etc. We grouped IP addresses of one scanning
entity based on the assumption that two IP addresses belong to
the same network with the subnet mask 255.255.255.0, and their
configuration information is identical except for the IP address.
This yielded 49 individual scanning entities. A heatmap in Fig-
ure 7 shows network flow, with Roubaix (19.5%), Strasbourg (18.7%),
Guangzhou (13.3%), Santa Clara (11.6%), and Ashburn (5.5%) hav-
ing the largest flow. On average, each entity dynamically ran 259
samples (25.9%) over the 7-day period. Most dynamic scans (90.2%)
were completed within 24 hours. Besides, we detected 92 requests
that were not made by our proxy apps, suggesting that AVs also
attempt to traverse all possibly related URLs.

Finding 4. We identified 49 dynamic analysis entities within the
7-day network flow tracking, and some of them also perform a fuzzy
search by mutating URLs to dig out more connections.

Label dynamics. We track the detection results of these disguised
apps by VIRusToTAL for 7 days, and also get the reanalysis snapshot
for these apps. Surprisingly, in the 8,000 security reports, only Ikarus
is able to detect the proxy app from the first day (We also confirm
that the URL has not been marked as malicious). Although two
engines from Dr. Web and Tencent have carried on their dynamic
analysis within sandboxes, the corresponding engines hosted in
VirusToTAL fail to label these malicious apps. Take as an example
the proxy app that loads malware (MD5:9d795006c4{ff9c61d460d7
€30de364d), the label returned by Ikarus “Trojan.Android0S.Ag
ent”. Compared with detection results at the same day, the label
given by Ikarus is “AdWare.AndroidOS.DroidRooter”, which is
totally different. Since our proxy apps have never been seen by these
antivirus engines, it is thus concluded that Ikarus has performed a
dynamic analysis to the new sample and label the newly detected
samples with consideration of similar malware in the database.

Finding 5. Through the 7-day tracking on detection results, only one
AV can successfully detect the maliciousness of our proxy apps. Even
the AVs whose sandboxes are integrated by VIRUSTOTAL, fail to detect
or synchronize with a correct detection result.

5.3.2 Measurement of Analysis Capability. 1t is learned from the
last experiment that some AVs and sandboxes in VIRUSTOTAL are
performing dynamic analysis of uploaded apps. To further measure
their capabilities, we craft a number of apps in this section. Specif-
ically, we inject logic bombs [15] into malware samples to hinder
dynamic-based analysis.

For simplicity, we do not take into account infinite code con-
straints like if-else statements. Instead, we employ SMS, location
and broadcast events as a trigger in [15] for malicious payload
downloading. First, we rank the occurrences of broadcast events
from 11,566 malware samples and determine the top 10 in Table 4
with their occurrence rates amongst malware. Additionally, we list

Zhttps://ip-api.com/

Conference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

o &

Figure 7: Heatmap of servers that perform dynamic analysis
on tested apps

the location event separately at the bottom since this event is not
captured by a BroadcastReceiver. In this way, we create 10 proxy
apps from H1 to H10 with a trigger. We implement the events “and
roid.provider.Telephony.SMS_RECEIVED” and “android.provider.T
elephony.SMS_DELIVER” into one app since both of them are for an
incoming SMS message.

To conduct our measurement, we design the proxy app to notify
our tracking server upon startup. Upon receiving an acceptable
event, the app initiates the download of malicious payloads, leaving
a trace on our server. To mitigate interference, we obfuscate our
server addresses with meaningless strings, as suggested by Finding
4. We create 100 samples for each type of proxy app, and each of
them will download a different malware samples. Totally, we get
1000 proxy apps and then upload them into VirusToTtAaL. With a
7-day observation, we receive 1212 requests from 2 IP addresses. In
addition, we collect in total 2000 malware detection reports at the
first and reanalysis snapshots.

We observe one server from Bitdefender and another in Dublin.
The requests originate from four proxy apps: H2, H3, H4, and H5.
On average, H4 triggers successfully in 0.83s with a 100% success
rate, H3 in 0.67s with a 95.9% success rate, H2 in 14.1s with a 95.8%
success rate, and H5 in 0.56s with a 78.5% success rate. Surprisingly,
we identify an exception, i.e., H1, whose download requests come
first but the initial requests are never captured. This can be largely
attributed to a testing sequence happening in a sandbox: install
the proxy app, send a broadcast event of BOOT_COMPLETED.
However, the proxy app is never actually started. The remaining
five types show no evidence of dynamic analysis. Examination of
detection reports from two snapshots reveals no negative results
for proxy apps. While numerous requests were captured, most are
likely due to static analysis, as URLs are extracted statically, and
AVs or other tools generate visit requests.

Finding 6. Sandboxes that dynamically analyze Android apps have
integrated a considerable number of triggering techniques such as
broadcast events, SMS service, etc. The triggering success rate is up
to 93.2% on average from the captured evidence. In addition, urls
contained in an app may also be examined without executing apps.

Meng et al.

Table 4: Top 10 broadcast events that are frequently received
by malware, and the additional event-location. “Perm” indi-
cates whether a permission is required.

Host Action Perm? Per. (%)
H1 android.intent.action. BOOT_COMPLETED X 58.2
H2 android.net.conn. CONNECTIVITY_CHANGE v 39.8
H3 android.intent.action.USER_PRESENT X 344
H4 android.provider.Telephony.SMS_RECEIVED v 283
H5 android.intent.action. PACKAGE_ADDED X 19.7
Heé android.intent.action. PACKAGE_REMOVED v 18.2
H7 android.provider.Telephony.SMS_DELIVER v 14.1
H8 android.intent.action. ACTION_POWER_CONNECTED X 11.9
H9 android.intent.action. ACTION_POWER_DISCONNECTED X 8.7
H10 android.intent.action.SCREEN_ON X 8.5
H11 [LOCATION CHANGE EVENT] v -

6 Threats to Validity

The threats to the experiments and results primarily arise from
three aspects. First, the determinacy of detection results is uncer-
tain. Since AVs operate as fuzzy systems and may return unexpected
results, as noted in previous research, this inaccuracy can negatively
impact the analysis results and conclusions drawn from them. Sec-
ond, approximately 3.6% of apps cannot be successfully unsigned
and re-signed, rendering them unusable for other transformations.
However, this accounts for a relatively small portion, allowing our
experimental apps to represent the majority. In dynamic analysis,
although we set up a tracking server to monitor app execution, we
are unable to capture requests from apps in an isolated sandbox, lim-
iting our ability to confirm the existence of dynamic analysis rather
than its absence. Lastly, during the diff analysis, we consistently
select results from an AV with identical versions and update dates.
However, this may not always be feasible, leading us to sometimes
use results produced on adjacent or relatively close dates.

7 Related Work

Evaluation of antivirus engines. AVs are evaluated with trans-
formed apps in prior studies. For example, DROIDCHAMELEON [35]
is an approach to obfuscate app code and verify whether AVs are still
capable of recognizing malware. MYSTIQUE [25, 47] have employed
a generic algorithm to evolve malware by adding more features and
evaluate anti-malware tools. These transformations are all com-
pound and coarse-grained, where AVs’ failures may not be only
attributed to code obfuscation but also the broken of app integrity.
Cai and Yap [11] compare the detection results between malware
and obfuscated malware, and unveil AVs’ detection logic. Our study
has enriched transformation strategies and achieved a similar but
more accurate goal with a much larger dataset. Studies [17, 32] are
dedicated to a large-scale empirical study on the effects of code
obfuscation against antivirus software. They compare the detection
results by 61 antivirus engines and measure the performance of ob-
fuscation strategies and tools. Huang et. al [18] conduct a study to
explore the issues of antivirus engines in modern mobile platforms.
Murali et. al [28] propose an evolutionary algorithm to generate
malware antigen, which can be used to construct variants for a
given source malware. As for dynamic analysis-based antivirus en-
gines, AVLEAK [8] can fingerprint an emulator via black box testing
for privacy stealing. Quarta et. al [33] propose a blackbox method

Measuring and Explaining the Effects of Android App Transformations in Online Malware DetectiGanference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

to explore if an AV implements emulation, static unpacking and
heuristics matching. Additionally, some studies propose sandbox
evasion techniques to test antivirus engines. Yokoyama et. al [48]
fingerprint the unique features of sandboxes and train a classifier
to tell apart a sandbox and a real system. However, the features
of a sandbox can be replaced with more realistic values, in case of
malware evasion. Miramirkhani [26] propose Wear-and-Tear arti-
facts occurring in a sandbox. Consequently, malware can effectively
determine their running environment and evade dynamic analy-
sis. Apart from prior research, our study leverages the dynamics of
malware labels to determine whether AVs have anticipated detection
behaviors. By transforming Android malware and benign apps, we
can learn how AVs react to these tracable changes and measure their
performance.

Malware Labelling. Reports returned by online scanning services
may be inconsistent and confusing. Therefore, the works [29, 51]
take long-time snapshots of VIRUSTOTAL reports of malware sam-
ples, and unveil the dynamics of malware labels. Malware types are
varying across different antivirus engines. To clarify this confusion,
the works [19, 27, 36] learn the contextual information contained in
the reported malware names, and reason out the most convincing
type for malware. Wei et. al employ a lightweight static analysis
to measure the similarity with well-labeled malware and create
the AMD dataset [42]. There is a line of research on identifying
noisy training data in machine learning-based malware detection.
Xu et. al [45] propose a differential training to obtain intermedi-
ate states of two identical classification models as noise-detection
features. Then a set of outlier detection algorithms are applied to
identify noisy data. Wang et. al [40, 41] propose MalWhiteout, a
confidence learning approach to identify noises in malware labels,
and further improve machine learning-based malware detection. It
incorporates ensemble learning and inter-app relation to reduce
false positives of label noises. Compared to prior work, our approach
takes into account the dynamics of malware labels via massive app
transformations, and further measure the robustness of antivirus en-
gines. The results can help to understand the working mechanism of
these engines and improve their abilities in malware detection.

8 Conclusion

We propose a data-driven approach to explore blackbox AVs and
infer the detection strategies in AVs by transforming Android apps.
We first put forward an interaction model to simulate the behav-
iors of blackbox AVs. Guided by the model, we create a large cor-
pus of apps consisting of crawled apps from multiple sources, and
transformed apps by six transformations. 971K security reports
are collected from VirRusToTAL. Then we conduct a comprehensive
measurement from three aspects: signature-based, static analysis-
based detection, and dynamic analysis. Last, we draw 6 findings
that are useful in AV-involved research and practices.

Acknowledgment

Thanks for all the anonymous reviewers and their constructive
comments. The IIE authors are partially supported by the Strategic
Priority Research Program of Chinese Academy of Sciences under
Grant No. XDB0690100.

References

[1] 2020. Anti Network-Virus Alliance of China. https://www.anva.org.cn/index.

] 2020. VirusShare. https://virusshare.com/.

] 2021. Apkpure. https://apkpure.com/.

[4] 2021. Bangcle. https://github.com/woxihuannisja/Bangcle.

] 2021. Fuzzy hashing program. https://ssdeep-project.github.io/ssdeep/index.
html.

[6] 2022. VirusTotal. https://virustotal.com.

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket. In 21st Annual Network and Distributed System Security Symposium,
San Diego, California, USA, February 23-26, 2014.

[8] Jeremy Blackthorne, Alexei Bulazel, Andrew Fasano, Patrick Biernat, and Biilent

Yener. 2016. AVLeak: Fingerprinting Antivirus Emulators through Black-Box

Testing. In 10th USENIX Workshop on Offensive Technologies, WOOT 16, Austin,

TX, USA, August 8-9, 2016.

Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. 2017. Col-

lusive Data Leak and More: Large-scale Threat Analysis of Inter-app Commu-

nications. In Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April

2-6, 2017. 71-85.

Marcus Botacin and Heitor Murilo Gomes. 2025. Towards more realistic evalua-

tions: The impact of label delays in malware detection pipelines. Computer &

Security 148 (2025), 104122.

Zhenquan Cai and Roland H. C. Yap. 2016. Inferring the Detection Logic and

Evaluating the Effectiveness of Android Anti-Virus Apps. In Proceedings of the

Sixth ACM on Conference on Data and Application Security and Privacy, CODASPY

2016, New Orleans, LA, USA, March 9-11, 2016. 172-182.

Yizheng Chen, Zhoujie Ding, and David A. Wagner. 2023. Continuous Learning

for Android Malware Detection. In 32nd USENIX Security Symposium, USENIX

Security 2023, Anaheim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and

Carmela Troncoso (Eds.). USENIX Association, 1127-1144.

Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia, Chenfu Bao, and Tao Wei.

2017. Adaptive Android Kernel Live Patching. In 26th USENIX Security Symposium,

USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017. 1253-1270.

[14] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin

Li, Xueqiang Wang, and XiaoFeng Wang. 2018. Things You May Not Know About
Android (Un)Packers: A Systematic Study based on Whole-System Emulation. In
25th Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018.

[15] Yanick Fratantonio, Antonio Bianchi, William K. Robertson, Engin Kirda, Christo-

pher Kruegel, and Giovanni Vigna. 2016. TriggerScope: Towards Detecting Logic

Bombs in Android Applications. In IEEE Symposium on Security and Privacy, SP

2016, San Jose, CA, USA, May 22-26, 2016. 377-396.

Kent Griffin, Scott Schneider, Xin Hu, and Tzi-cker Chiueh. 2009. Automatic

Generation of String Signatures for Malware Detection. In Recent Advances in

Intrusion Detection, 12th International Symposium, RAID 2009, Saint-Malo, France,

September 23-25, 2009. Proceedings. 101-120.

Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A Large-Scale Empiri-

cal Study on the Effects of Code Obfuscations on Android Apps and Anti-Malware

Products. In Proceedings of the 40th International Conference on Software Engi-

neering (Gothenburg, Sweden). New York, NY, USA, 421-431.

Heqing Huang, Kai Chen, Peng Liu, Sencun Zhu, and Dinghao Wu. 2014. Uncov-

ering the Dilemmas on Antivirus Software Design in Modern Mobile Platforms.

In International Conference on Security and Privacy in Communication Networks -

10th International ICST Conference, SecureComm 2014, Beijing, China, September

24-26, 2014, Revised Selected Papers, Part II. 359-366.

Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F.

Bissyandé, Yves Le Traon, Jacques Klein, and Lorenzo Cavallaro. 2017. Euphony:

harmonious unification of cacophonous anti-virus vendor labels for Android

malware. In Proceedings of the 14th International Conference on Mining Software

Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017. 425-435.

Dhilung Kirat and Giovanni Vigna. 2015. MalGene: Automatic Extraction of

Malware Analysis Evasion Signature. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security (Denver, Colorado, USA).

Association for Computing Machinery, New York, NY, USA, 769-780.

[21] Joxean Koret and Elias Bachaalany. 2015. The Antivirus Hacker’s Handbook. John

Wiley and Sons. https://books.google.com/books?id=PUY1CAAAQBA]

Li Li, Tegawendé F. Bissyandé, and Jacques Klein. 2018. Rebooting Research on

Detecting Repackaged Android Apps: Literature Review and Benchmark. CoRR

abs/1811.08520 (2018). arXiv:1811.08520 http://arxiv.org/abs/1811.08520

[23] Yu Lin, Semih Okur, and Danny Dig. 2015. Study and Refactoring of Android

Asynchronous Programming (T). In 30th IEEE/ACM International Conference on
Automated Software Engineering, Lincoln, NE, USA, November 9-13, 2015. 224-235.
[24] MalwareBytes. 2017. Mapping Traditional AV Failures. Technical Report.
[25] Guozhu Meng, Yinxing Xue, Mahinthan Chandramohan, Annamalai Narayanan,
Yang Liu, Jie Zhang, and Tieming Chen. 2016. Mystique: Evolving Android

[9

[10

[11

=
)

(13

=
&

[17

[18

=
L

[20

[22

https://www.anva.org.cn/index
https://virusshare.com/
https://apkpure.com/
https://github.com/woxihuannisja/Bangcle
https://ssdeep-project.github.io/ssdeep/index.html
https://ssdeep-project.github.io/ssdeep/index.html
https://virustotal.com
https://books.google.com/books?id=PUY1CAAAQBAJ
https://arxiv.org/abs/1811.08520
http://arxiv.org/abs/1811.08520

Conference acronym ’Internetware2025, June 20-22, 2025, Trondheim, Norway

[26]

[27]

[28]

[29

[30]

[31

[32]

[33]

[34

[35

w
&

[37]

[38

[39]

Malware for Auditing Anti-Malware Tools. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security (AsiaCCS) (Xi’an,
China). 365-376. doi:10.1145/2897845.2897856

Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis
Polychronakis. 2017. Spotless Sandboxes: Evading Malware Analysis Systems
Using Wear-and-Tear Artifacts. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 1009-1024.
Aziz Mohaisen and Omar Alrawi. 2014. AV-Meter: An Evaluation of Antivirus
Scans and Labels. In Detection of Intrusions and Malware, and Vulnerability Assess-
ment - 11th International Conference, DIMVA 2014, Egham, UK, July 10-11, 2014.
Proceedings. 112-131. doi:10.1007/978-3-319-08509-8_7

Ritwik Murali, Palanisamy Thangavel, and C. Shunmuga Velayutham. 2023. Evolv-
ing malware variants as antigens for antivirus systems. Expert Systems with
Applications 226 (2023), 120092. doi:10.1016/j.eswa.2023.120092

Peng Peng, Limin Yang, Linhai Song, and Gang Wang. 2019. Opening the Blackbox
of VirusTotal: Analyzing Online Phishing Scan Engines. In Proceedings of the
Internet Measurement Conference, IMC 2019, Amsterdam, The Netherlands, October
21-23, 2019. 478-485.

Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. In
2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. IEEE, 1332-1349.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications. In 21st Annual Network and Dis-
tributed System Security Symposium, San Diego, USA, February 23-26, 2014.

Mila Dalla Preda and Federico Maggi. 2017. Testing android malware detectors
against code obfuscation: a systematization of knowledge and unified methodol-
ogy. J. Comput. Virol. Hacking Tech. 13, 3 (2017), 209-232.

Davide Quarta, Federico Salvioni, Andrea Continella, and Stefano Zanero. 2018.
Toward Systematically Exploring Antivirus Engines. In Detection of Intrusions
and Malware, and Vulnerability Assessment - 15th International Conference, DIMVA
2018, Saclay, France, June 28-29, 2018, Proceedings. 393-403.

Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. DroidChameleon: Evaluating
Android Anti-malware Against Transformation Attacks. In Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Communications Security
(Hangzhou, China) (ASIA CCS ’13). 329-334.

Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. DroidChameleon: evaluating
Android anti-malware against transformation attacks. In 8th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’13, Hangzhou,
China - May 08 - 10, 2013. 329-334. doi:10.1145/2484313.2484355

Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AV-
class: A Tool for Massive Malware Labeling. In Research in Attacks, Intrusions,
and Defenses - 19th International Symposium, RAID 2016, Paris, France, September
19-21, 2016, Proceedings. 230-253. doi:10.1007/978-3-319-45719-2_11

Symantec. 2019. Adding software to the Symantec Whitelist. https://knowledge.
broadcom.com/external/article?legacyld=TECH132220.

Zhushou Tang, Minhui Xue, Guozhu Meng, Chengguo Ying, Yugeng Liu, Jianan
He, Haojin Zhu, and Yang Liu. 2019. Securing android applications via edge
assistant third-party library detection. Computers & Security 80 (2019), 257 — 272.
Eric Umuhoza, Hamza Ed-Douibi, Marco Brambilla, Jordi Cabot, and Aldo Bongio.
2015. Automatic code generation for cross-platform, multi-device mobile apps:
some reflections from an industrial experience. In Proceedings of the 3rd Interna-
tional Workshop on Mobile Development Lifecycle, Pittsburgh, PA, USA, October
25-30, 2015. 37-44.

[40

[41

[42

(43

(44

[45

[47

[48

[49]

[50

[51

Meng et al.

Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui. 2022. MalWhiteout: Reducing
Label Errors in Android Malware Detection. In 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA,
October 10-14, 2022. ACM, 69:1-69:13.

Liu Wang, Haoyu Wang, Tao Zhang, Haitao Xu, Guozhu Meng, Peiming Gao,
Chen Wei, and Yi Wang. 2024. Android Malware Family Labeling: Perspectives
from the Industry. In Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering (Sacramento, CA, USA). Association for
Computing Machinery, New York, NY, USA, 2176-2186.

Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
Ground Truth Analysis of Current Android Malware. In Detection of Intrusions
and Malware, and Vulnerability Assessment - 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings. 252-276.

Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018.
JN-SAF: Precise and Efficient NDK/JNI-aware Inter-language Static Analysis
Framework for Security Vetting of Android Applications with Native Code. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. 1137-1150.
Christian Wressnegger, Kevin Freeman, Fabian Yamaguchi, and Konrad Rieck.
2017. Automatically Inferring Malware Signatures for Anti-Virus Assisted Attacks.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communi-
cations Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017.
587-598.

Jiayun Xu, Yingjiu Li, and Robert H. Deng. 2021. Differential Training: A Generic
Framework to Reduce Label Noises for Android Malware Detection. In 28th
Annual Network and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021. The Internet Society.

Ke Xu, Yingjiu Li, Robert H. Deng, Kai Chen, and Jiayun Xu. 2019. DroidEvolver:
Self-Evolving Android Malware Detection System. In IEEE European Symposium
on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. 47-62.
d0i:10.1109/EuroSP.2019.00014

Yinxing Xue, Guozhu Meng, Yang Liu, Tian Huat Tan, Hongxu Chen, Jun Sun,
and Jie Zhang. 2017. Auditing Anti-Malware Tools by Evolving Android Malware
and Dynamic Loading Technique. IEEE Trans. Information Forensics and Security
12,7 (2017), 1529-1544. doi:10.1109/TIFS.2017.2661723

Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin Papa, Katsunari Yoshioka, Tsu-
tomu Matsumoto, Takahiro Kasama, Daisuke Inoue, Michael Brengel, Michael
Backes, and Christian Rossow. 2016. SandPrint: Fingerprinting Malware Sand-
boxes to Provide Intelligence for Sandbox Evasion. In Research in Attacks, In-
trusions, and Defenses - 19th International Symposium, RAID 2016, Paris, France,
September 19-21, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9854),
Fabian Monrose, Marc Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro (Eds.).
Springer, 165-187.

Mo Yu, Damien Octeau, and Chuangang Ren. 2018. Combating Potentially
Harmful Applications with Machine Learning at Google: Datasets and Mod-
els. https://android-developers.googleblog.com/2018/11/combating-potentially-
harmful.html.

Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characteriza-
tion and Evolution. In Proceedings of the 2012 IEEE Symposium on Security and
Privacy (SP ’12). 95-109.

Shuofei Zhu, Jianjun Shi, Limin Yang, Bogin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and Modeling the Label Dynamics of Online Anti-
Malware Engines. In 29th USENIX Security Symposium, USENIX Security 2020,
Boston, MA, USA, August, 2020.

https://doi.org/10.1145/2897845.2897856
https://doi.org/10.1007/978-3-319-08509-8_7
https://doi.org/10.1016/j.eswa.2023.120092
https://doi.org/10.1145/2484313.2484355
https://doi.org/10.1007/978-3-319-45719-2_11
https://knowledge.broadcom.com/external/article?legacyId=TECH132220
https://knowledge.broadcom.com/external/article?legacyId=TECH132220
https://doi.org/10.1109/EuroSP.2019.00014
https://doi.org/10.1109/TIFS.2017.2661723
https://android-developers.googleblog.com/2018/11/combating-potentially-harmful.html
https://android-developers.googleblog.com/2018/11/combating-potentially-harmful.html

	Abstract
	1 Introduction
	2 Background
	2.1 Commercial Antivirus Software
	2.2 Online Scanning Services

	3 Preliminary
	4 The Approach
	4.1 Data Collection
	4.2 App Transformation
	4.3 Maliciousness Labelling

	5 Measurement
	5.1 Signature-based Detection (RQ1)
	5.2 Static Analysis-based Detection (RQ2)
	5.3 Dynamic Behavioral Analysis (RQ3)

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

